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Preface to the
Seventh Edition

The tabular format used in the fifth and sixth editions is continued in
this edition. This format has been particularly successful when imple-
menting problem solutions on a programmable calculator, or espe-
cially, a personal computer. In addition, though not required in
utilizing this book, user-friendly computer software designed to
employ the format of the tabulations contained herein are available.

The seventh edition intermixes International System of Units (SI)
and United States Customary Units (USCU) in presenting example
problems. Tabulated coefficients are in dimensionless form for conve-
nience in using either system of units. Design formulas drawn from
works published in the past remain in the system of units originally
published or quoted.

Much of the changes of the seventh edition are organizational, such
as:

m Numbering of equations, figures and tables is linked to the parti-
cular chapter where they appear. In the case of equations, the
section number is also indicated, making it convenient to locate
the equation, since section numbers are indicated at the top of each
odd-numbered page.

m In prior editions, tables were interspersed within the text of each
chapter. This made it difficult to locate a particular table and
disturbed the flow of the text presentation. In this edition, all
numbered tables are listed at the end of each chapter before the
references.

Other changes/additions included in the seventh addition are as
follows:

m Part 1 is an introduction, where Chapter 1 provides terminology
such as state properties, units and conversions, and a description of
the contents of the remaining chapters and appendices. The defini-



X Preface to the Seventh Edition

tions incorporated in Part 1 of the previous editions are retained in
the seventh edition, and are found in Appendix B as a glossary.

m Properties of plane areas are located in Appendix A.

m Composite material coverage is expanded, where an introductory
discussion is provided in Appendix C, which presents the nomen-
clature associated with composite materials and how available
computer software can be employed in conjunction with the tables
contained within this book.

m Stress concentrations are presented in Chapter 17.

m Part 2, Chapter 2, is completely revised, providing a more compre-
hensive and modern presentation of stress and strain transforma-
tions.

m Experimental Methods. Chapter 6, is expanded, presenting more
coverage on electrical strain gages and providing tables of equations
for commonly used strain gage rosettes.

m Correction terms for multielement shells of revolution were
presented in the sixth edition. Additional information is provided
in Chapter 13 of this edition to assist users in the application of
these corrections.

The authors wish to acknowledge and convey their appreciation to
those individuals, publishers, institutions, and corporations who have
generously given permission to use material in this and previous
editions. Special recognition goes to Barry J. Berenberg and Universal
Technical Systems, Inc. who provided the presentation on composite
materials in Appendix C, and Dr. Marietta Scanlon for her review of
this work.

Finally, the authors would especially like to thank the many dedi-
cated readers and users of Roark’s Formulas for Stress & Strain. It is
an honor and quite gratifying to correspond with the many individuals
who call attention to errors and/or convey useful and practical
suggestions to incorporate in future editions.

Warren C. Young
Richard G. Budynas



Preface to
the First Edition

This book was written for the purpose of making available a compact,
adequate summary of the formulas, facts, and principles pertaining to
strength of materials. It is intended primarily as a reference book and
represents an attempt to meet what is believed to be a present need of
the designing engineer.

This need results from the necessity for more accurate methods of
stress analysis imposed by the trend of engineering practice. That
trend is toward greater speed and complexity of machinery, greater
size and diversity of structures, and greater economy and refinement
of design. In consequence of such developments, familiar problems, for
which approximate solutions were formerly considered adequate, are
now frequently found to require more precise treatment, and many
less familiar problems, once of academic interest only, have become of
great practical importance. The solutions and data desired are often to
be found only in advanced treatises or scattered through an extensive
literature, and the results are not always presented in such form as to
be suited to the requirements of the engineer. To bring together as
much of this material as is likely to prove generally useful and to
present it in convenient form has been the author’s aim.

The scope and management of the book are indicated by the
Contents. In Part 1 are defined all terms whose exact meaning
might otherwise not be clear. In Part 2 certain useful general princi-
ples are stated; analytical and experimental methods of stress analysis
are briefly described, and information concerning the behavior of
material under stress is given. In Part 3 the behavior of structural
elements under various conditions of loading is discussed, and exten-
sive tables of formulas for the calculation of stress, strain, and
strength are given.

Because they are not believed to serve the purpose of this book,
derivations of formulas and detailed explanations, such as are appro-
priate in a textbook, are omitted, but a sufficient number of examples

Xi
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are included to illustrate the application of the various formulas and
methods. Numerous references to more detailed discussions are given,
but for the most part these are limited to sources that are generally
available and no attempt has been made to compile an exhaustive
bibliography.

That such a book as this derives almost wholly from the work of
others 1s self-evident, and it is the author’s hope that due acknowl-
edgment has been made of the immediate sources of all material here
presented. To the publishers and others who have generously
permitted the use of material, he wishes to express his thanks. The
helpful criticisms and suggestions of his colleagues, Professors E. R.
Maurer, M. O. Withey, J. B. Kommers, and K. F. Wendt, are gratefully
acknowledged. A considerable number of the tables of formulas have
been published from time to time in Product Engineering, and the
opportunity thus afforded for criticism and study of arrangement has
been of great advantage.

Finally, it should be said that, although every care has been taken to
avoid errors, it would be oversanguine to hope that none had escaped
detection; for any suggestions that readers may make concerning
needed corrections the author will be grateful.

Raymond J. Roark
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Chapter

Introduction

The widespread use of personal computers, which have the power to
solve problems solvable in the past only on mainframe computers, has
influenced the tabulated format of this book. Computer programs for
structural analysis, employing techniques such as the finite element
method, are also available for general use. These programs are very
powerful; however, in many cases, elements of structural systems can
be analyzed quite effectively independently without the need for an
elaborate finite element model. In some instances, finite element
models or programs are verified by comparing their solutions with
the results given in a book such as this. Contained within this book are
simple, accurate, and thorough tabulated formulations that can be
applied to the stress analysis of a comprehensive range of structural
components.

This chapter serves to introduce the reader to the terminology, state
property units and conversions, and contents of the book.

1.1 Terminology

Definitions of terms used throughout the book can be found in the
glossary in Appendix B.

1.2 State Properties, Units, and Conversions

The basic state properties associated with stress analysis include the
following: geometrical properties such as length, area, volume,
centroid, center of gravity, and second-area moment (area moment of
inertia); material properties such as mass density, modulus of elasti-
city, Poisson’s ratio, and thermal expansion coefficient; loading proper-
ties such as force, moment, and force distributions (e.g., force per unit
length, force per unit area, and force per unit volume); other proper-
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TABLE 1.1 Units appropriate to structural analysis

Property SI unit, symbol USCU unit,” symbol
(derived units) (derived units)

Length meter, m inch, in

Area square meter (m?) square inch (in%

Volume cubic meter (m?) cubic inch (in®)

Second-area moment (m?) (in%

Mass kilogram, kg (Ibf-s?/in)

Force Newton, N (kg-m/s?) pound, lbf

Stress, pressure Pascal, Pa (N/m?) psi (Ibf/in?%)

Work, energy Joule, J (N-m) (Ibf-in)

Temperature Kelvin, K degrees Fahrenheit, °F

"In stress analysis, the unit of length used most often is the inch.

ties associated with loading, including energy, work, and power; and
stress analysis properties such as deformation, strain, and stress.

Two basic systems of units are employed in the field of stress
analysis: SI units and USCU units.” SI units are mass-based units
using the kilogram (kg), meter (m), second (s), and Kelvin (K) or
degree Celsius (°C) as the fundamental units of mass, length, time,
and temperature, respectively. Other SI units, such as that used for
force, the Newton (kg-m/s?), are derived quantities. USCU units are
force-based units using the pound force (Ibf), inch (in) or foot (ft),
second (s), and degree Fahrenheit (°F) as the fundamental units of
force, length, time, and temperature, respectively. Other USCU units,
such as that used for mass, the slug (Ibf-s?/ft) or the nameless Ibf-
s%/in, are derived quantities. Table 1.1 gives a listing of the primary SI
and USCU units used for structural analysis. Certain prefixes may be
appropriate, depending on the size of the quantity. Common prefixes
are given in Table 1.2. For example, the modulus of elasticity of carbon
steel is approximately 207 GPa = 207 x 10% Pa = 207 x 10? N/m? Pre-
fixes are normally used with SI units. However, there are cases where
prefixes are also used with USCU units. Some examples are the kpsi
(1 kpsi = 107 psi = 103 Ibf/in?), kip (1 kip = 1 kilopound = 1000 Ibf), and
Mpsi (1 Mpsi = 108 psi).

Depending on the application, different units may be specified. It is
important that the analyst be aware of all the implications of the units
and make consistent use of them. For example, if you are building a
model from a CAD file in which the design dimensional units are given
in mm, it is unnecessary to change the system of units or to scale the
model to units of m. However, if in this example the input forces are in

"SI and USCU are abbreviations for the International System of Units (from the
French Systéme International d’Unités) and the United States Customary Units,
respectively.
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TABLE 1.2 Common prefixes

Prefix, symbol Multiplication factor

Giga, G 10°
Mega, M 106
Kilo, k 10°
Milli, m 1073
Micro, p 1076
Nano, n 107

Newtons, then the output stresses will be in N/mm?, which is correctly
expressed as MPa. If in this example applied moments are to be
specified, the units should be N-mm. For deflections in this example,
the modulus of elasticity E should also be specified in MPa and the
output deflections will be in mm.

Table 1.3 presents the conversions from USCU units to SI units
for some common state property units. For example, 10 kpsi =
(6.895 x 10%) - (10 x 10%) = 68.95 x 108 Pa = 68.95 MPa. Obviously, the
multiplication factors for conversions from SI to USCU are simply the
reciprocals of the given multiplication factors.

TABLE 1.3 Multiplication factors to convert from
USCU units to Sl units

To convert from USCU to SI Multiply by
Area:

ft? m? 9.290 x 1072

in? m? 6.452 x 1074
Density:

slug/ft® (Ibf-s%/ft*) kg/m? 515.4

Ibf-s?/in* kg/m? 2.486 x 1072
Energy, work, or moment:

ft-1bf or 1bf-ft J or N-m 1.356

in-1bf or lbf-in J or N-m 0.1130
Force:

Ibf N 4.448
Length:

ft m 0.3048

in m 2.540 x 1072
Mass:

slug (Ibf-s%/ft) kg 14.59

Ibf-s?/in kg 1.216
Pressure, stress:

Ibf/ft? Pa (N/m?) 47.88

Ibf/in? (psi) Pa (N/m?) 6.895 x 103
Volume:

ft3 m? 2.832 x 102
in® m? 1.639 x 107°




6 Formulas for Stress and Strain [cHAP. 1

1.3 Contents

The remaining parts of this book are as follows.

Part 2: Facts; Principles; Methods. This part describes important
relationships associated with stress and strain, basic material
behavior, principles and analytical methods of the mechanics of
structural elements, and numerical and experimental techniques in
stress analysis.

Part 3: Formulas and Examples. This part contains the many applica-
tions associated with the stress analysis of structural components.
Topics include the following: direct tension, compression, shear, and
combined stresses; bending of straight and curved beams; torsion;
bending of flat plates; columns and other compression members; shells
of revolution, pressure vessels, and pipes; direct bearing and shear
stress; elastic stability; stress concentrations; and dynamic and
temperature stresses. Each chapter contains many tables associated
with most conditions of geometry, loading, and boundary conditions for
a given element type. The definition of each term used in a table is
completely described in the introduction of the table.

Appendices. The first appendix deals with the properties of a plane
area. The second appendix provides a glossary of the terminology
employed in the field of stress analysis.

The references given in a particular chapter are always referred to
by number, and are listed at the end of each chapter.
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2

Facts; Principles; Methods



Chapter

Stress and Strain: Important
Relationships

Understanding the physical properties of stress and strain is a
prerequisite to utilizing the many methods and results of structural
analysis in design. This chapter provides the definitions and impor-
tant relationships of stress and strain.

2.1 Stress

Stress is simply a distributed force on an external or internal surface
of a body. To obtain a physical feeling of this idea, consider being
submerged in water at a particular depth. The “force” of the water one
feels at this depth is a pressure, which is a compressive stress, and not
a finite number of “concentrated” forces. Other types of force distribu-
tions (stress) can occur in a liquid or solid. Tensile (pulling rather than
pushing) and shear (rubbing or sliding) force distributions can also
exist.

Consider a general solid body loaded as shown in Fig. 2.1(a). P; and
p; are applied concentrated forces and applied surface force distribu-
tions, respectively; and R; and r; are possible support reaction force
and surface force distributions, respectively. To determine the state of
stress at point @ in the body, it is necessary to expose a surface
containing the point @. This is done by making a planar slice, or break,
through the body intersecting the point . The orientation of this slice
is arbitrary, but it is generally made in a convenient plane where the
state of stress can be determined easily or where certain geometric
relations can be utilized. The first slice, illustrated in Fig. 2.1(), is
arbitrarily oriented by the surface normal x. This establishes the yz
plane. The external forces on the remaining body are shown, as well as
the internal force (stress) distribution across the exposed internal
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(b) Isolated section

Figure 2.1

surface containing . In the general case, this distribution will not be
uniform along the surface, and will be neither normal nor tangential
to the surface at @. However, the force distribution at @ will have
components in the normal and tangential directions. These compo-
nents will be tensile or compressive and shear stresses, respectively.

Following a right-handed rectangular coordinate system, the y and z
axes are defined perpendicular to x, and tangential to the surface.
Examine an infinitesimal area AA, = AyAz surrounding @, as shown
in Fig. 2.2(a). The equivalent concentrated force due to the force
distribution across this area is AF,, which in general is neither
normal nor tangential to the surface (the subscript x is used to
designate the normal to the area). The force AF, has components in
the x, y, and z directions, which are labeled AF,,, AF,,, and AF,,
respectively, as shown in Fig. 2.2(b). Note that the first subscript
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(a) Force on the AA surface (b) Force components

Figure 2.2

denotes the direction normal to the surface and the second gives the
actual direction of the force component. The average distributed force

per unit area (average stress) in the x direction is'
- AF,
O_xx — XX
AA

X

Recalling that stress is actually a point function, we obtain the exact
stress in the x direction at point @ by allowing AA, to approach zero.
Thus,

or,

dF,,
o= gp (2.1-1)

Stresses arise from the tangential forces AF,, and AF,, as well, and
since these forces are tangential, the stresses are shear stresses.
Similar to Eq. (2.1-1),

dF,

Ty = dAj (2.1-2)
dF,,

e =g (2.1-3)

"Standard engineering practice is to use the Greek symbols ¢ and t for normal (tensile
or compressive) and shear stresses, respectively.



12 Formulas for Stress and Strain [cHAP. 2

Figure 2.3 Stress components.

Since, by definition, ¢ represents a normal stress acting in the same
direction as the corresponding surface normal, double subscripts are
redundant, and standard practice is to drop one of the subscripts and
write o, as g,. The three stresses existing on the exposed surface at
the point are illustrated together using a single arrow vector for each
stress as shown in Fig. 2.3. However, it is important to realize that the
stress arrow represents a force distribution (stress, force per unit
area), and not a concentrated force. The shear stresses t,, and t,, are
the components of the net shear stress acting on the surface, where the
net shear stress is given by’

(Tx)net = T?cy + T32cz (21'4)

To describe the complete state of stress at point @ completely, it
would be necessary to examine other surfaces by making different
planar slices. Since different planar slices would necessitate different
coordinates and different free-body diagrams, the stresses on each
planar surface would be, in general, quite different. As a matter of
fact, in general, an infinite variety of conditions of normal and shear
stress exist at a given point within a stressed body. So, it would take an
infinitesimal spherical surface surrounding the point @ to understand
and describe the complete state of stress at the point. Fortunately,
through the use of the method of coordinate transformation, it is only
necessary to know the state of stress on three different surfaces to
describe the state of stress on any surface. This method is described in
Sec. 2.3.

The three surfaces are generally selected to be mutually perpendi-
cular, and are illustrated in Fig. 2.4 using the stress subscript notation

T Stresses can only be added as vectors if they exist on a common surface.
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Figure 2.4 Stresses on three orthogonal surfaces.

as earlier defined. This state of stress can be written in matrix form,
where the stress matrix [o] is given by

[0-] = Tyx Gy Tyz (21'5)

Except for extremely rare cases, it can be shown that adjacent shear
stresses are equal. That is, t,, =1, 7., = 7,;, and t,, = 7,,, and the
stress matrix is symmetric and written as

[O]=| Ty 0y Ty (2.1-6)

Plane Stress. There are many practical problems where the stresses
in one direction are zero. This situation is referred to as a case of plane
stress. Arbitrarily selecting the z direction to be stress-free with
0, =1, =1,, = 0, the last row and column of the stress matrix can
be eliminated, and the stress matrix is written as

Txy Oy

[o] = [ax Txy} (2.1-7)

and the corresponding stress element, viewed three-dimensionally and
down the z axis, is shown in Fig. 2.5.

2.2 Strain and the Stress—Strain Relations

As with stresses, two types of strains exist: normal and shear strains,
which are denoted by ¢ and 7, respectively. Normal strain is the rate of
change of the length of the stressed element in a particular direction.
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oy ?
Try
——
Ty
o‘X
- Ay | | —» —»
Oy X
Txy
Ax
—
Ty
Oy
(a) (b)

Figure 2.5 Plane stress.

Shear strain is a measure of the distortion of the stressed element, and
has two definitions: the engineering shear strain and the elasticity
shear strain. Here, we will use the former, more popular, definition.
However, a discussion of the relation of the two definitions will be
provided in Sec. 2.4. The engineering shear strain is defined as the
change in the corner angle of the stress cube, in radians.

Normal Strain. Initially, consider only one normal stress ¢, applied to
the element as shown in Fig. 2.6. We see that the element increases in
length in the x direction and decreases in length in the y and z
directions. The dimensionless rate of increase in length is defined as
the normal strain, where ¢,, ¢,, and ¢, represent the normal strains in

Figure 2.6 Deformation attributed to o,.



SEC. 2.2] Stress and Strain: Important Relationships 15

the x, y, and z directions respectively. Thus, the new length in any
direction is equal to its original length plus the rate of increase
(normal strain) times its original length. That is,

Ax' = Ax + ¢, Ax, Ay = Ay + e Ay, AZ =Az+e,Az  (2.2-1)

There is a direct relationship between strain and stress. Hooke’s law
for a linear, homogeneous, isotropic material is simply that the normal
strain is directly proportional to the normal stress, and is given by

& = %[ox —v(o, + ;)] (2.2-2a)
&y = %[oy —v(o,+ 0,)] (2.2-2b)
&, = %[oz —v(o, + )] (2.2-2¢)

where the material constants, E and v, are the modulus of elasticity
(also referred to as Young’s modulus) and Poisson’s ratio, respectively.
Typical values of E and v for some materials are given in Table 2.1 at
the end of this chapter.

If the strains in Eqgs. (2.2-2) are known, the stresses can be solved for
simultaneously to obtain

E

e = Ay = oy [ Ve ey )] (2.2-3a)
E

% = Ay = o [ Ve et )] (2.2-3b)
E

0, = m[(l — Ve, + (e, + &) (2.2-3c)

For plane stress, with o, = 0, Egs. (2.2-2) and (2.2-3) become

&, = %(ax —va,) (2.2-4a)
1
&y = E(Uy —va,) (2.2-4b)

&, = — %(ax +a,) (2.2-4c¢)
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and

E
Oy = m(ex + vey) (2.2-5a)

oy = 1_—EV2(8y + ve,) (2.2-5b)

Shear Strain. The change in shape of the element caused by the shear
stresses can be first illustrated by examining the effect of 7,, alone as
shown in Fig. 2.7. The engineering shear strain y,, is a measure of the
skewing of the stressed element from a rectangular parallelepiped. In
Fig. 2.7(b), the shear strain is defined as the change in the angle BAD.
That is,

Yy =/ BAD — / BA'D’
where y,, is in dimensionless radians.

For a linear, homogeneous, isotropic material, the shear strains in
the xy, yz, and zx planes are directly related to the shear stresses by

=)

Yoy = (2.2-62)
Tyz

=G (2.2-6b)

Vo = 2 (2.2-6¢)
G

where the material constant, G, is called the shear modulus.

(a)

Figure 2.7 Shear deformation.
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It can be shown that for a linear, homogeneous, isotropic material
the shear modulus is related to Poisson’s ratio by (Ref. 1)

E

2.3 Stress Transformations

As was stated in Sec. 2.1, knowing the state of stress on three
mutually orthogonal surfaces at a point in a structure is sufficient to
generate the state of stress for any surface at the point. This is
accomplished through the use of coordinate transformations. The
development of the transformation equations is quite lengthy and is
not provided here (see Ref. 1). Consider the element shown in Fig.
2.8(a), where the stresses on surfaces with normals in the x, y, and z
directions are known and are represented by the stress matrix

Ox  Txy Tax
[Oly:=| T 0y Ty (2.3-1)

Tox Tyz 0z

Now consider the element, shown in Fig. 2.8(b), to correspond to the
state of stress at the same point but defined relative to a different set of
surfaces with normals in the «/, ¥/, and 2z’ directions. The stress matrix
corresponding to this element is given by

Oy Tyy Toy
[O']x/y/z’ = | Twy Oy Tyz (2.3-2)
Ty Tyy Oy

To determine [o],,, by coordinate transformation, we need to
establish the relationship between the x'y'zZ and the xyz coordinate
systems. This is normally done using directional cosines. First, let us
consider the relationship between the x' axis and the xyz coordinate
system. The orientation of the x" axis can be established by the angles
Oy Oyy, and 0,,,, as shown in Fig. 2.9. The directional cosines for x" are

given by

l, =cosl,, m, = cos 0 n, =cosl,, (2.3-3)

X'y
Similarly, the ¥ and 2’ axes can be defined by the angles 0,,,, 0.,,, 0

y Yy ¥z
and 0,,, 0,,, 0,,, respectively, with corresponding directional cosines

ly, = cos O, m,
[, =cos0,,, m, = cos 0

= cos0,,, ny, =cos0,, (2.3-4)

s n, =cosl,, (2.3-5)
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(b) Stress element relative to x'y'z" axes

Figure 2.8 The stress at a point using different coordinate systems.

It can be shown that the transformation matrix

l,. my n,
[T]=|1 my n, (2.3-6)

l, my, n,
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Figure 2.9 Coordinate transformation.

transforms a vector given in xyz coordinates, {V},,., to a vector in x'y'z’
coordinates, {V},, by the matrix multiplication

{V}x’y’z’ = [T] {V}xyz (23'7)

Furthermore, it can be shown that the transformation equation for the
stress matrix is given by (see Ref. 1)

[0]y2 = [Tl[0],,.[T]" (2.3-8)

where [T]T is the transpose of the transformation matrix [T], which is
simply an interchange of rows and columns. That is,

l L, 1,

r x 'y 2
[T]" =| my m, my, (2.3-9)
Ny Ny Ny

The stress transformation by Eq. (2.3-8) can be implemented very
easily using a computer spreadsheet or mathematical software. Defin-
ing the directional cosines is another matter. One method is to define
the x'y'Z’ coordinate system by a series of two-dimensional rotations
from the initial xyz coordinate system. Table 2.2 at the end of this
chapter gives transformation matrices for this.
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EXAMPLE

The state of stress at a point relative to an xyz coordinate system is given by
the stress matrix

-8 6 -2
[0]y.=| 6 4 2| MPa
-2 2 -5

Determine the state of stress on an element that is oriented by first rotating
the xyz axes 45° about the z axis, and then rotating the resulting axes 30°
about the new x axis.

Solution. The surface normals can be found by a series of coordinate
transformations for each rotation. From Fig. 2.10(a), the vector components
for the first rotation can be represented by

X cosf sinf 0 ][«x
y. ¢ =| —sinf cosf 0|3y (a)
2 0 0 1 z

The last rotation establishes the x’y’z’ coordinates as shown in Fig. 2.10(b), and
they are related to the x;y,z; coordinates by

x' 1 0 0 X
y =10 cosp sing |1 y; (b)
4 0 —sing cos@ 2
Substituting Eq. (a) in (b) gives
x 1 0 0 cosf sinf 0
y =10 cos¢ sing —sinf cosf O
4 |0 —sing cos¢ 0 0 1)1z
cosf sin 6 0 x
= | —sinfcos¢ cosfOcosp sing |}y (c)
sinflsing —cosfsing cosg@ z

y , Z,
N z
X y
8 ?
x s N
z, Zl xl’ X
(a) First rotation (b) Second rotation

Figure 2.10
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Equation (c) is of the form of Eq. (2.3-7). Thus, the transformation matrix is

cosf sin 0 0
[T]=| —sinfcos ¢ cosfcosg sing (d)
sinffsing —cosfsing cos@
Substituting 0 = 45° and ¢ = 30° gives
. 2V2 2/2 0
(T1=7 -v6 V6 2 (e)
V2 V2 2438
The transpose of [T] is
) 2v/2 —V/6 V2
[T]T:Z 2V/2 6 -2 (N
0 2 23
From Eq. (2.3-8),
lzﬁzﬂo —86—212J§—J€J§
[0leye =7 | V6 V6 2 64 2|/ 12v2 V6 -2
V2 =2 2v31L-2 2 -5 0 2 238

This matrix multiplication can be performed simply using either a computer
spreadsheet or mathematical software, resulting in

4 5196 -3
[0)ey. = | 5196 —4.801 2.714 MPa
-3 2.714  -8.199

Stresses on a Single Surface. If one was concerned about the state of
stress on one particular surface, a complete stress transformation
would be unnecessary. Let the directional cosines for the normal of
the surface be given by [, m, and n. It can be shown that the normal
stress on the surface is given by

o=o0,%+ oym2 +a,n%+ 2ty lm + 2t,,mn + 2t,,nl (2.3-10)
and the net shear stress on the surface is
= [(o,l + 1ym + 1,.n)° + (Tyyl +aym + 7:yzn)2
+ (Tl +7ym + o,n)? — a?]/? (2.3-11)
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The direction of 7 is established by the directional cosines
1
Zr = ;[(Gx - G)Z + Ty + szn]
1
m, = ;[rxyl + (0, —o)m +1,,n] (2.3-12)

1
n.= ?[szl + Ty, M + (Uz - G)T’L]

EXAMPLE
The state of stress at a particular point relative to the xyz coordinate system is

14 7 =7
[0],y. = 7 10 0 kpsi

-7 0 35

Determine the normal and shear stress on a surface at the point where the
surface is parallel to the plane given by the equation

20—y+3z2=9

Solution. The normal to the surface is established by the directional
numbers of the plane and are simply the coefficients of x, y, and z terms of
the equation of the plane. Thus, the directional numbers are 2, —1, and 3. The
directional cosines of the normal to the surface are simply the normalized
values of the directional numbers, which are the directional numbers divided

by /22 + (—=1)? + 32 = /14 Thus

1=2/v/14, m=-1/V/14, n=3/J/14

From the stress matrix, o, =14, 7, =17, 1,, = -7, 0,=10, 7,, =0, and o,
= 35kpsi. Substituting the stresses and directional cosines into Eq. (2.3-10)
gives

o = 14(2/v/14)% 4+ 10(—1/v/14)* + 35(3/v/14)* 4+ 2(7)(2/v14)(—1//14)
+ 2(0)(—1/v/14)(3/v/14) 4+ 2(—7)(3//14)(2//14) = 19.21 kpsi

The shear stress is determined from Eq. (2.3-11), and is

7 = {[14(2/v/14) + T(=1/v/14) + (=1)(3/v/14)?
+[7(2/7/14) + 10(=1/+/14) + (0)(3/v/14)]?
+[(=T)(2/v/14) + (0)(—1//14) + 35(3/V14)]> — (19.21)*}"/? = 14.95 kpsi
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From Eq. (2.3-12), the directional cosines for the direction of 7 are

L[(M —19.21)(2/v/14) + 1(—1//14) + (=7)(3/v/14)] = —0.687

k=1195
m, = T195[7(2Nﬁ) +(10 — 19.21)(—1/+/14) + (0)(3/+/14)] = 0.415
n, = %95[(—7)(2Nﬂ) +(0)(—1/+/14) + (35 — 19.21)(3/+/14)] = 0.596

Plane Stress. For the state of plane stress shown in Fig. 2.11(a),
0, =1, =1, =0. Plane stress transformations are normally per-
formed in the xy plane, as shown in Fig. 2.11(b). The angles relating
the x'y'z’ axes to the xyz axes are

ex/x = 9, Gx/y = 900 - 9, ex/z == 900
Hy/x = 6 + 900, Gy/y - 9, 6}”2 = 900
0., = 90°, 0., = 90°, 0..=0

Thus the directional cosines are

l, =cosf m, = sinf ny, =0
l, = —sin0 m,, = cos 0 n, =0
l,=0 my, =0 ny=1

The last rows and columns of the stress matrices are zero so the
stress matrices can be written as

0, T
[o], :[ N xy} (2.3-13)

Y Txy Oy
' Yy
i "\

- e o

—_— T /Tx’Y' oy
] —= — Yo
- - =X X
(a) Initial element (b) Transformed element

Figure 2.11 Plane stress transformations.
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and

[0]py = [ v Ty } (2.3-14)

Tx/y/ O'y/
Since the plane stress matrices are 2 x 2, the transformation matrix
and its transpose are written as

—sinf cos@ sin 6 cos 0 (2.3-15)

[T]:[ cos 6 sin0i| [T]T:[COSH —sin6i|

Equations (2.3-13)—(2.3-15) can then be substituted into Eq. (2.3-8) to
perform the desired transformation. The results, written in long-hand
form, would be

.9 .
0. =0,c08> 0+ o,sin” 0 + 21, cos0sin 0

o, =0,sin® 0+ a, cos? 0 — 2t,, cossin 0 (2.3-16)

y
Tyy = —(0, —0,)sin6cos 0 + rxy(cos2 0 — sin® 0)

If the state of stress is desired on a single surface with a normal
rotated 0 counterclockwise from the x axis, the first and third equa-
tions of Egs. (2.3-16) can be used as given. However, using trigono-
metric identities, the equations can be written in slightly different
form. Letting ¢ and 7 represent the desired normal and shear stresses
on the surface, the equations are

+ - :
o=2= 5 I 4 O 5 oycos20—|—7:xysm29
(2.3-17)
Oy — 0y .
T=— sin 20 + 7, cos 20

Equations (2.3-17) represent a set of parametric equations of a circle in
the o7 plane. This circle is commonly referred to as Mohr’s circle and is
generally discussed in standard mechanics of materials textbooks.
This serves primarily as a teaching tool and adds little to applications,
so it will not be represented here (see Ref. 1).

Principal Stresses. In general, maximum and minimum values of the
normal stresses occur on surfaces where the shear stresses are zero.
These stresses, which are actually the eigenvalues of the stress
matrix, are called the principal stresses. Three principal stresses
exist, 04, g9, and o5, where they are commonly ordered as ¢, = g4 = 0g3.
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Considering the stress state given by the matrix of Eq. (2.3-1) to be
known, the principal stresses g, are related to the given stresses by

(6y —0,)l, +1ym, +1,m, =0

Tyl +(0y —0p)m, +1,.n, =0 (2.3-18)
Touly +7,.mp + (0, — 0,)n, =0
where [,, m,, and n, are the directional cosines of the normals to the
surfaces containing the principal stresses. One possible solution to

Egs. (2.3-18) is [, = m, = n, = 0. However, this cannot occur, since

B+my+n;=1 (2.3-19)

To avoid the zero solution of the directional cosines of Eqgs. (2.3-18), the
determinant of the coefficients of /,, m,, and n, in the equation is set to
zero. This makes the solution of the directional cosines indeterminate

from Eqgs. (2.3-18). Thus,

(Gx - Gp) Txy Tox
Tyy (0y—0p) Tys =0
Tex Tyz (02 - Up)

Expanding the determinant yields

3 2 2 2 2
0, — (0, + 0y +0,)0, + (0,0, + 0,0, + 0,0, — Ty — Ty, — T2,)0,

2 2 2y _
— (00,0, + 2T,y T), T, — 04Ty, — 0y To — 0,Ty) =0 (2.3-20)

where Eq. (2.3-20) is a cubic equation yielding the three principal
stresses 0, g4, and aj.

To determine the directional cosines for a specific principal stress,
the stress is substituted into Eqgs. (2.3-18). The three resulting equa-
tions in the unknowns /,, m,, and n, will not be independent since
they were used to obtain the principal stress. Thus, only two of Eqs.
(2.3-18) can be used. However, the second-order Eq. (2.3-19) can be
used as the third equation for the three directional cosines. Instead of
solving one second-order and two linear equations simultaneously, a
simplified method is demonstrated in the following example.”

"Mathematical software packages can be used quite easily to extract the eigenvalues
(6,) and the corresponding eigenvectors (I,, m,, and n,) of a stress matrix. The reader is
urged to explore software such as Mathcad, Matlab, Maple, and Mathematica, etc.



26 Formulas for Stress and Strain [cHAP. 2

EXAMPLE

For the following stress matrix, determine the principal stresses and the
directional cosines associated with the normals to the surfaces of each
principal stress.

Solution. Substituting s, =3, 7,, =1,17,, =1,0,=0,1,, =2,and ¢, = 0 into
Eq. (2.3-20) gives

op — (34 0+ 0)ap + [(3)(0) + (0)(0) + (0)(3) — 2% — 1% — 1o,
—[(3)(0)(0) + (2)(2)(1)(1) — (3)(2%) — (0)(1?) — (0)(1*)] = O

which simplifies to
2 2
6, — 30, —60,+8=0 (a)

The solutions to the cubic equation are g, = 4, 1, and —2MPa. Following the
conventional ordering,

g, = 4 MPa, oy =1 MPa, g3 = —2 MPa

The directional cosines associated with each principal stress are determined
independently. First, consider ¢; and substitute ¢, = 4 MPa into Eqgs. (2.3-18).
This results in

~li+my+n; =0 )
ll — 4m1 + 2n1 =0 (C)
li+2m;—4n, =0 (d)

where the subscript agrees with that of a;.

Equations (b), (c), and (d) are no longer independent since they were used to
determine the values of g,. Only two independent equations can be used, and
in this example, any two of the above can be used. Consider Egs. (b) and (c),
which are independent. A third equation comes from Eq. (2.3-19), which is
nonlinear in [/;, m,, and n,. Rather than solving the three equations simulta-
neously, consider the following approach.

Arbitrarily, let /; = 1 in Egs. (b) and (c). Rearranging gives

my+n =1
4m,; —2n, =1
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solving these simultaneously gives m; = n, = 1. These values of [}, m;, and n,
do not satisfy Eq. (2.3-19). However, all that remains is to normalize their

values by dividing by /12 + 3)* + ())* = v/6/2. Thus,"

I, = (1)(2/v6) =V6/3
m; = (1/2)(2/v/6) = v/6/6
ny = (1/2)(2/V6) =6/6

Repeating the same procedure for o, = 1 MPa results in
l,=+3/3, my=—3/3, ny,=-+3/3
and for o3 = —2MPa
Is=0, my=+2/2, n3=-v2/2

If two of the principal stresses are equal, there will exist an infinite set
of surfaces containing these principal stresses, where the normals of
these surfaces are perpendicular to the direction of the third principal
stress. If all three principal stresses are equal, a hydrostatic state of
stress exists, and regardless of orientation, all surfaces contain the
same principal stress with no shear stress.

Principal Stresses, Plane Stress. Considering the stress element shown
in Fig. 2.11(a), the shear stresses on the surface with a normal in the z
direction are zero. Thus, the normal stress g, = 0 is a principal stress.
The directions of the remaining two principal stresses will be in the xy
plane. If 7,,,, = 0 in Fig. 2.11(b), then o,, would be a principal stress, g,
with [, = cos 0, m,, = sin0, and n, = 0. For this case, only the first two
of Egs. (2.3-18) apply, and are

0, —0,)co80+1,,sinl=0
(7= %) v (2.3-21)
Ty €080+ (0, —0,)sinb =0

As before, we eliminate the trivial solution of Egs. (2.3-21) by setting
the determinant of the coefficients of the directional cosines to zero.
That is,

(O-x - Gp) Txy

= (0, —0,)(0, —0,) — 1>
Ty (0, — a,) x — Op)Oy = Op xy

= 0—127 - (O—x + Gy)ap + (O—xo—y - Tg%y) =0 (23'22)

"This method has one potential flaw. If [, is actually zero, then a solution would not
result. If this happens, simply repeat the approach letting either m; or n; equal unity.
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Equation (2.3-22) is a quadratic equation in g, for which the two
solutions are

o, = é |:(ax +0)+ (0, —0,)" + 4%] (2.3-23)

Since for plane stress, one of the principal stresses (o,) is always zero,
numbering of the stresses (o; = g5 > 03) cannot be performed until Eq.
(2.3-23) is solved.

Each solution of Eq. (2.3-23) can then be substituted into one of Egs.
(2.3-21) to determine the direction of the principal stress. Note that if
o, =0, and 1,, = 0, then o, and ¢, are principal stresses and Eqgs.
(2.3-21) are satisfied for all values of 6. This means that all stresses in
the plane of analysis are equal and the state of stress at the point is
isotropic in the plane.

EXAMPLE

Determine the principal stresses for a case of plane stress given by the stress
matrix

[(r]:[_i _1‘11] kpsi

Show the element containing the principal stresses properly oriented with
respect to the initial xyz coordinate system.

Solution. From the stress matrix, ¢, = 5, g, = 11, and 7,, = —4 kpsi and Eq.
(2.3-23) gives

5, =1 [(5 +11)+ \/(5 —11)* + 4(—4)2] =13, 3kpsi

Thus, the three principal stresses (o4, 09, 05), are (13, 3, 0) kpsi, respectively.
For directions, first substitute g; = 13kpsi into either one of Egs. (2.3-21).
Using the first equation with 6 = 6,

(6, —01)cos 0 +1,,8in0; = (5 — 13)cos 01 + (—4)sin0; =0

or

0, = tan*(— §) = —63.4°
4
Now for the other principal stress, o, = 3kpsi, the first of Egs. (2.3-21) gives
(0, — 09)cos Uy + 1, sin Oy = (5 — 3) cos Oy + (—4) sin 0y = 0

or

0, = tan’1<§) = 26.6°
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Tll kpsi

_ Skpsi
l

4 kpsi

(@) Initial element (b) Transformed element containing the

principal stresses.

Figure 2.12 Plane stress example.

Figure 2.12(a) illustrates the initial state of stress, whereas the orientation
of the element containing the in-plane principal stresses is shown in Fig.
2.12(b).

Maximum Shear Stresses. Consider that the principal stresses for a
general stress state have been determined using the methods just
described and are illustrated by Fig. 2.13. The 123 axes represent the
normals for the principal surfaces with directional cosines determined
by Egs. (2.3-18) and (2.3-19). Viewing down a principal stress axis
(e.g., the 3 axis) and performing a plane stress transformation in the
plane normal to that axis (e.g., the 12 plane), one would find that the
shear stress is a maximum on surfaces +45° from the two principal
stresses in that plane (e.g., o1, 05). On these surfaces, the maximum
shear stress would be one-half the difference of the principal stresses
[e.g., Tmax = (01 — 05)/2] and will also have a normal stress equal to the
average of the principal stresses [e.g., 0., = (07 + 09)/2]. Viewing
along the three principal axes would result in three shear stress

0,
o, }SB\\(‘I
. ™

Figure 2.13 Principal stress state.
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maxima, sometimes referred to as the principal shear stresses. These
stresses together with their accompanying normal stresses are

Plane 1, 21 (Tga0)12 = (01 — 03)/2, (Oave)r,2 = (01 +02)/2
Plane 2, 3: (Tmax)2,3 = (03 — 03)/2, (Oave)o,3 = (02 +03)/2
Plane 1, 3: (Tmax)1.3 = (01 —03)/2, (Gave)1.3 = (01 +03)/2

(2.3-24)

Since conventional practice is to order the principal stresses by
g, = 09 = g3, the largest shear stress of all is given by the third of
Egs. (2.3-24) and will be repeated here for emphasis:

Tmax = (07 — 03)/2 (2.3-25)

EXAMPLE
In the previous example, the principal stresses for the stress matrix

[(r]:[_i _1‘11] kpsi

were found to be (01,09, 03) = (13, 3,0)kpsi. The orientation of the element
containing the principal stresses was shown in Fig. 2.12(d), where axis 3 was
the z axis and normal to the page. Determine the maximum shear stress and
show the orientation and complete state of stress of the element containing
this stress.

Solution. The initial element and the transformed element containing the
principal stresses are repeated in Fig. 2.14(a) and (b), respectively. The
maximum shear stress will exist in the 1, 3 plane and is determined by
substituting ¢; = 13 and g3 = 0 into Egs. (2.3-24). This results in

(Tmax)1,3 = (18 — 0)/2 = 6.5 kpsi, (Gave)1.3 = (13 +0)/2 = 6.5 kpsi

To establish the orientation of these stresses, view the element along the axis
containing g, = 3kpsi [view A, Fig. 2.14(c)] and rotate the surfaces +45° as
shown in Fig. 2.14(c).

The directional cosines associated with the surfaces are found through
successive rotations. Rotating the xyz axes to the 123 axes yields

1 [cos63.4° —sin63.4° 0«
2 ¢ = | sin63.4° c0s63.4° 03y
3] | o 0 1]z

[0.4472 —0.8944 0 X
=108944 04472 0[]y (@)
0 0 1 z
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(c) View A from (d) Two-dimensional transformation of
part (b) part (¢) showing the maximum shear stress

Figure 2.14 Plane stress maximum shear stress.
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A counterclockwise rotation of 45° of the normal in the 3 direction about axis 2

is represented by

x [cos45° 0 —sin45h° 1

yby=1 o 1 0 2

zZ | sin45° 0 cos 45° 3

[0.7071 0 —0.7071 1

= 0 1 0 2

| 0.7071 0O 0.7071 3

Thus,
x [0.7071 0 —0.7071 0.4472 —-0.8944 0 X
y = 0 1 0 0.8944 0.4472

P4 | 0.7071 0 0.7071 0 0 1 z

=1 0.8944 0.4472
| 0.3162 —-0.6325  0.7071

[0.3162 —0.6325 —0.7071 ‘ ’

(b)
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The directional cosines for Eq. (2.1-14c) are therefore

yx Mgy T 0.3162 —0.6325 —0.7071
Mye Nyy Ny, | =|0.8944  0.4472 0
Moy Mgy N 0.3162 —0.6325 0.7071

2y 2’z

The other surface containing the maximum shear stress can be found similarly
except for a clockwise rotation of 45° for the second rotation.

2.4 Strain Transformations

The equations for strain transformations are identical to those for
stress transformations. However, the engineering strains as defined in
Sec. 2.2 will not transform. Transformations can be performed if the
shear strain is modified. All of the equations for the stress transforma-
tions can be employed simply by replacing ¢ and 7 in the equations by ¢
and y/2 (using the same subscripts), respectively. Thus, for example,
the equations for plane stress, Eqs. (2.3-16), can be written for strain
as

£y = &, o8> 0 + &y sin® 0 + Vxy €OS 08I 0
&y = & sin” 0 + &y cos? 0 — Vxy COS 08I0 0 (2.4-1)
Ywy = —2(¢; —¢,)sin0cos 0 + yxy(cos2 0 — sin® 0)

2.5 Reference

1. Budynas, R. G.: “Advanced Strength and Applied Stress Analysis,” 2nd ed., McGraw-
Hill, 1999.
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2.6 Tables
TABLE 2.1 Material properties’
Thermal
Modulus of expansion
elasticity, £ coefficient, o
Poisson’s
Material Mpsi GPa ratio, v u/°F u/°C
Aluminum alloys 10.5 72 0.33 13.1 23.5
Brass (65/35) 16 110 0.32 11.6 20.9
Concrete 4 34 0.20 5.5 9.9
Copper 17 118 0.33 9.4 16.9
Glass 10 69 0.24 5.1 9.2
Iron (gray cast) 13 90 0.26 6.7 12.1
Steel (structural) 29.5 207 0.29 6.5 11.7
Steel (stainless) 28 193 0.30 9.6 17.3
Titanium (6 A1/4V) 16.5 115 0.34 5.2 9.5

"The values given in this table are to be treated as approximations of the true behavior of an
actual batch of the given material.

TABLE 2.2 Transformation matrices for positive

rotations about an axis’

Axis Transformation matrix
X axis:
z
23 X1 1 0 0 X
y yy¢=10 cos sinf |y
! 2 0 —sinf cos ||z
0
X, X1 Y
y axis:
X1
0
N X X cos@ 0 —sinf |[x
Y14 = 0 1 0 y
2 sinf 0 cosl || z
z !
z axis:
Y1 y
X X cos) sinf 0 ][x
¥y ¢ =| —sinf cosO 0|y
0 z 0 0 1]]z
X
2,31

A positive rotation about a given axis is counterclockwise about

the axis (as viewed from the positive axis direction).
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TABLE 2.3 Transformation equations

General state of stress

[0],y> = [Tlo],,.[T]"

0-ﬂc’y’z’ O‘xyz

where
Oy Tyy Tow l. my ny Ox  Txy Tox

[U]x'y'z' = | Ty Oy Tyz |, [T] = ly’ my  ny |, [O']xyz: Tyy Oy Tyz
Tox Ty’z’ Oy lz’ my ny Tox Tyz 0z

Stresses on a single surface (I, m, n are directional cosines of surface normal)

c=0l+ o-ym2 +o,n?+ 2ty Im + 2t,mn + 2t,,nl

t=[(o L+t ym+ 1,.n)% + (tyyl+o,m+ ryzn)2 + (Tl +1om + a,n)? — %2

1

I, ==[(0, — )+t ym+1,n]
T
1

me = [toyl + (0, — a)m +7,1]

1
n,= ; [szl + TyzM + (az - O')TL]

I., m,, and n, are directional cosines for the direction of 7.

Plane stress (0 is counterclockwise from x axis to surface normal, x')

0 =1%(0,+0,)+3(0, — g,)cos 20 + 1, sin 20

1= —4(0, — 0,)sin 20 + 1, cos 20

Principal stresses (general case)

3 2 2 2 2
0, = (0 + 0y +0,)0, + (0,0, + 0,0, + 0,0, — Ty — Ty, — T2,)0p

2 2 2\ _
= (0400, + 2T, T, Top — 04Ty, — 0T, — 0,T3) =0

Directional cosines (I,, m,, n,) are found from three of the following equations:

(05 — o), + Tymy, + 1,0, =0

Tylp + (0, —a,)m, +1,,n, =0 select two independent equations

Toulp +1.m, + (0, —a,)n, =0

2 2 2 _
L+my+n;=1

Principal stresses (plane stress) One principal stress is zero and the remaining two are

given by

0p=3 [(ax +a,)£,/(0, — o'y)2 + 4r%yi|

Angle of surface normal relative to the x axis is given by

fop—0
0, = tan ( d . x)
xy




Chapter

The Behavior of Bodies
under Stress

This discussion pertains to the behavior of what are commonly
designated as structural materials. That is, materials suitable for
structures and members that must sustain loads without suffering
damage. Included in this category are most of the metals, concrete,
wood, composite materials, some plastics, etc. It is beyond the scope of
this book to give more than a mere statement of a few important facts
concerning the behavior of a stressed material. Extensive literature is
available on every phase of the subject, and the articles contained
herein will serve as an introduction only.

3.1 Methods of Loading

The mechanical properties of a material are usually determined by
laboratory tests, and the commonly accepted values of ultimate
strength, elastic limit, etc., are those found by testing a specimen of
a certain form in a certain manner. To apply results so obtained in
engineering design requires an understanding of the effects of many
different variables, such as form and scale, temperature and other
conditions of service, and method of loading.

The method of loading, in particular, affects the behavior of bodies
under stress. There are an infinite number of ways in which stress
may be applied to a body, but for most purposes it is sufficient to
distinguish the types of loading now to be defined.

1. Short-time static loading. The load is applied so gradually that at
any instant all parts are essentially in equilibrium. In testing, the
load is increased progressively until failure occurs, and the total
time required to produce failure is not more than a few minutes. In
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service, the load is increased progressively up to its maximum
value, is maintained at that maximum value for only a limited
time, and is not reapplied often enough to make fatigue a consid-
eration. The ultimate strength, elastic limit, yield point, yield
strength, and modulus of elasticity of a material are usually
determined by short-time static testing at room temperature.

2. Long-time static loading. The maximum load is applied gradually
and maintained. In testing, it is maintained for a sufficient time to
enable its probable final effect to be predicted; in service, it is
maintained continuously or intermittently during the life of the
structure. The creep, or flow characteristics, of a material and its
probable permanent strength are determined by long-time static
testing at the temperatures prevailing under service conditions.
(See Sec. 3.6.)

3. Repeated loading. Typically, a load or stress is applied and wholly
or partially removed or reversed repeatedly. This type of loading is
important if high stresses are repeated for a few cycles or if
relatively lower stresses are repeated many times; it is discussed
under Fatigue. (See Sec. 3.8.)

4. Dynamic loading. The circumstances are such that the rate of
change of momentum of the parts must be taken into account. One
such condition may be that the parts are given definite accelera-
tions corresponding to a controlled motion, such as the constant
acceleration of a part of a rotating member or the repeated accel-
erations suffered by a portion of a connecting rod. As far as stress
effects are concerned, these loadings are treated as virtually static
and the inertia forces (Sec. 16.2) are treated exactly as though they
were ordinary static loads.

A second type of quasi-static loading, quick static loading, can be
typified by the rapid burning of a powder charge in a gun barrel.
Neither the powder, gas, nor any part of the barrel acquires appreci-
able radial momentum; therefore equilibrium may be considered to
exist at any instant and the maximum stress produced in the gun
barrel is the same as though the powder pressure had developed
gradually.

In static loading and the two types of dynamic loading just
described, the loaded member is required to resist a definite force. It
is important to distinguish this from impact loading, where the loaded
member is usually required to absorb a definite amount of energy.

Impact loading can be divided into two general categories. In the
first case a relatively large slow-moving mass strikes a less massive
beam or bar and the kinetic energy of the moving mass is assumed to
be converted into strain energy in the beam. All portions of the beam
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and the moving mass are assumed to stop moving simultaneously. The
shape of the elastic axis of the deflected beam or bar is thus the same
as in static loading. A special case of this loading, generally called
sudden loading, occurs when a mass that is not moving is released
when in contact with a beam and falls through the distance the beam
deflects. This produces approximately twice the stress and deflection
that would have been produced had the mass been “eased” onto the
beam (see Sec. 16.4). The second case of impact loading involves
the mass of the member being struck. Stress waves travel through
the member during the impact and continue even after the impacting
mass has rebounded (see Sec. 16.3).

On consideration, it is obvious that methods of loading really differ
only in degree. As the time required for the load to be applied
increases, short-time static loading changes imperceptibly into long-
time static loading; impact may be produced by a body moving so
slowly that the resulting stress conditions are practically the same as
though equal deflection had been produced by static loading; the
number of stress repetitions at which fatigue becomes involved is
not altogether definite. Furthermore, all these methods of loading may
be combined or superimposed in various ways. Nonetheless, the
classification presented is convenient because most structural and
machine parts function under loading that may be classified definitely
as one of the types described.

3.2 Elasticity; Proportionality of Stress and Strain

In determining stress by mathematical analysis, it is customary to
assume that material is elastic, isotropic, homogeneous, and infinitely
divisible without change in properties and that it conforms to Hooke’s
law, which states that strain is proportional to stress. Actually, none of
these assumptions is strictly true. A structural material is usually an
aggregate of crystals, fibers, or cemented particles, the arrangement of
which may be either random or systematic. When the arrangement is
random the material is essentially isotropic if the part considered is
large in comparison with the constituent units; when the arrangement
is systematic, the elastic properties and strength are usually different
in different directions and the material is anisotropic. Again, when
subdivision is carried to the point where the part under consideration
comprises only a portion of a single crystal, fiber, or other unit, in all
probability its properties will differ from those of a larger part that is
an aggregate of such units. Finally, very careful experiments show
that for all materials there is probably some set and some deviation
from Hooke’s law for any stress, however small.

These facts impose certain limitations upon the conventional meth-
ods of stress analysis and must often be taken into account, but
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formulas for stress and strain, mathematically derived and based on
the assumptions stated, give satisfactory results for nearly all
problems of engineering design. In particular, Hooke’s law may be
regarded as practically true up to a proportional limit, which, though
often not sharply defined, can be established for most materials with
sufficient definiteness. So, too, a fairly definite elastic limit is deter-
minable; in most cases it is so nearly equal to the proportional limit
that no distinction need be made between the two.

3.3 Factors Affecting Elastic Properties

For ordinary purposes it may be assumed that the elastic properties of
most metals, when stressed below a nominal proportional limit, are
constant with respect to stress, unaffected by ordinary atmospheric
variations of temperature, unaffected by prior applications of moder-
ate stress, and independent of the rate of loading. When precise
relations between stress and strain are important, as in the design
or calibration of instruments, these assumptions cannot always be
made. The fourth edition of this book (Ref. 1) discussed in detail the
effects of strain rate, temperature, etc., on the elastic properties of
many metals and gave references for the experiments performed. The
relationships between atomic and molecular structure and the elastic
properties are discussed in texts on materials science.

Wood exhibits a higher modulus of elasticity and much higher
proportional limit when tested rapidly than when tested slowly. The
standard impact test on a beam indicates a fiber stress at the propor-
tional limit approximately twice as great as that found by the standard
static bending test. Absorption of moisture up to the fiber saturation
point greatly lowers both the modulus of elasticity and the propor-
tional limit (Ref. 2).

Both concrete and cast iron have stress-strain curves more or less
curved throughout, and neither has a definite proportional limit. For
these materials it is customary to define E as the ratio of some definite
stress (for example, the allowable stress or one-fourth the ultimate
strength) to the corresponding unit strain; the quantity so determined
is called the secant modulus since it represents the slope of the secant
of the stress-strain diagram drawn from the origin to the point
representing the stress chosen. The moduli of elasticity of cast iron
are much more variable than those of steel, and the stronger grades
are stiffer than the weaker ones. Cast iron suffers a distinct set from
the first application of even a moderate stress; but after several
repetitions of that stress, the material exhibits perfect elasticity up
to, but not beyond, that stress. The modulus of elasticity is slightly less
in tension than in compression.
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Concrete also shows considerable variation in modulus of elasticity,
and in general its stiffness increases with its strength. Like cast iron,
concrete can be made to exhibit perfect elasticity up to a moderate
stress by repeated loading up to that stress. Because of its tendency to
yield under continuous loading, the modulus of elasticity indicated by
long-time loading is much less than that obtained by progressive load-
ing at ordinary speeds.

3.4 Load-Deformation Relation for a Body

If Hooke’s law holds for the material of which a member or structure is
composed, the member or structure will usually conform to a similar
law of load-deformation proportionality and the deflection of a beam or
truss, the twisting of a shaft, the dilation of a pressure container, etc.,
may in most instances be assumed proportional to the magnitude of
the applied load or loads.

There are two important exceptions to this rule. One is to be found
in any case where the stresses due to the loading are appreciably
affected by the deformation. Examples of this are: a beam subjected to
axial and transverse loads; a flexible wire or cable held at the ends and
loaded transversely; a thin diaphragm held at the edges and loaded
normal to its plane; a ball pressed against a plate or against another
ball; and a helical spring under severe extension.

The second exception is represented by any case in which failure
occurs through elastic instability, as in the compressive loading of a
long, slender column. Here, for compression loads less than a specific
critical (Euler) load, elastic instability plays no part and the axial
deformation is linear with load. At the critical load, the type of
deformation changes, and the column bends instead of merely short-
ening axially. For any load beyond the critical load, high bending
stresses and failure occurs through excessive deflection (see Sec. 3.13).

3.5 Plasticity

Elastic deformation represents an actual change in the distance
between atoms or molecules; plastic deformation represents a perma-
nent change in their relative positions. In crystalline materials, this
permanent rearrangement consists largely of group displacements of
the atoms in the crystal lattice brought about by slip on planes of least
resistance, parts of a crystal sliding past one another and in some
instances suffering angular displacement. In amorphous materials,
the rearrangement appears to take place through the individual
shifting from positions of equilibrium of many atoms or molecules,
the cause being thermal agitation due to external work and the result
appearing as a more or less uniform flow like that of a viscous liquid. It
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should be noted that plastic deformation before rupture is much less
for biaxial or triaxial tension than for one-way stress; for this reason
metals that are ordinarily ductile may prove brittle when thus
stressed.

3.6 Creep and Rupture under Long-Time Loading

More materials will creep or flow to some extent and eventually fail
under a sustained stress less than the short-time ultimate strength.
After a short time at load, the initial creep related to stress redis-
tribution in the structure and strain hardening ceases and the steady
state, or viscous creep, predominates. The viscous creep will continue
until fracture unless the load is reduced sufficiently, but it is seldom
important in materials at temperatures less than 40 to 50% of their
absolute melting temperatures. Thus, creep and long-time strength at
atmospheric temperatures must sometimes be taken into account in
designing members of nonferrous metals and in selecting allowable
stresses for wood, plastics, and concrete.

Metals. Creep is an important consideration in high-pressure steam
and distillation equipment, gas turbines, nuclear reactors, supersonic
vehicles, etc. Marin, Odqvist, and Finnie, in Ref. 3, give excellent
surveys and list references on creep in metals and structures. Conway
(Refs. 4 and 5) discusses the effectiveness of various parametric
equations, and Conway and Flagella (Ref. 6) present extensive
creep-rupture data for the refractory metals. Odqvist (Ref. 7) discusses
the theory of creep and its application to large deformation and
stability problems in plates, shells, membranes, and beams and
tabulates creep constants for 15 common metals and alloys. Hult
(Ref. 8) also discusses creep theory and its application to many
structural problems. Penny and Marriott (Ref. 9) discuss creep
theories and the design of experiments to verify them. They also
discuss the development of several metals for increased resistance to
creep at high temperatures as well as polymeric and composite
materials at lower temperatures. Reference 10 is a series of papers
with extensive references covering creep theory, material properties,
and structural problems.

Plastics. The literature on the behavior of the many plastics being
used for structural or machine applications is too extensive to list here.

Concrete. Under sustained compressive stress, concrete suffers
considerable plastic deformation and may flow for a very long time
at stresses less than the ordinary working stress. Continuous flow has
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been observed over a period of 10 years, though ordinarily it ceases or
becomes imperceptible within 1 or 2 years. The rate of flow is greater
for air than for water storage, greater for small than for large speci-
mens, and for moderate stresses increases approximately as the
applied stress. On removal of stress, some elastic recovery occurs.
Concrete also shows creep under tensile stress, the early creep rate
being greater than the flow rate under compression (Refs. 11 and 16).

Under very gradually applied loading concrete exhibits an ultimate
strength considerably less than that found under short-time loading;
in certain compression tests it was found that increasing the time of
testing from 1s to 4h decreased the unit stress at failure about 30%,
most of this decrease occurring between the extremely quick (1 or 2s)
and the conventional (several minutes) testing. This indicates that the
compressive stress that concrete can sustain indefinitely may be
considerably less than the ultimate strength as determined by a
conventional test. On the other hand, the long-time imposition of a
moderate loading appears to have no harmful effect; certain tests show
that after 10 years of constant loading equal to one-fourth the ultimate
strength, the compressive strength of concrete cylinders is practically
the same and the modulus of elasticity is considerably greater than for
similar cylinders that were not kept under load (Ref. 15).

The modulus of rupture of plain concrete also decreases with the
time of loading, and some tests indicate that the long-time strength in
cross-breaking may be only 55 to 75% of the short-time strength (Ref.
12).

Reference 17 is a compilation of 12 papers, each with extensive
references, dealing with the effect of volumetric changes on concrete
structures. Design modifications to accommodate these volumetric
changes are the main thrust of the papers.

Wood. Wood also yields under sustained stress; the long-time (several
years) strength is about 55% of the short-time (several minutes)
strength in bending; for direct compression parallel to the grain the
corresponding ratio is about 75% (Ref. 2).

3.7 Criteria of Elastic Failure and of Rupture

For the purpose of this discussion it is convenient to divide metals into
two classes: (1) ductile metals, in which marked plastic deformation
commences at a fairly definite stress (yield point, yield strength, or
possibly elastic limit) and which exhibit considerable ultimate elonga-
tion; and (2) brittle metals, for which the beginning of plastic deforma-
tion is not clearly defined and which exhibit little ultimate elongation.
Mild steel is typical of the first class, and cast iron is typical of the
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second; an ultimate elongation of 5% has been suggested as the
arbitrary dividing line between the two classes of metals.

A ductile metal is usually considered to have failed when it has
suffered elastic failure, i.e., when marked plastic deformation has
begun. Under simple uniaxial tension this occurs when the stress
reaches a value we will denote by o,,, which represents the yield
strength, yield point, or elastic limit, according to which one of these is
the most satisfactory indication of elastic failure for the material in
question. The question arises, when does elastic failure occur under
other conditions of stress, such as compression, shear, or a combina-
tion of tension, compression, and shear?

There are many theories of elastic failure that can be postulated for
which the consequences can be seen in the tensile test. When the
tensile specimen begins to yield at a tensile stress of g, the following
events occur:

1. The maximum-principal-stress theory: the maximum principal
stress reaches the tensile yield strength, o,,.

2. The maximum-shear-stress theory (also called the Tresca theory):
the maximum shear stress reaches the shear yield strength, 0.5 o,,.

3. The maximum-principal-strain theory: the maximum principal
strain reaches the yield strain, o,,/E.

4. The maximum-strain-energy theory: the strain energy per unit

volume reaches a maximum of 0.5 aﬁs/E.

5. The maximum-distortion-energy theory (also called the von Mises
theory and the Maxwell-Huber—Hencky—von Mises theory): the
energy causing a change in shape (distortion) reaches
[(1+v)/(BE)]o%,.

6. The maximum-octahedral-shear-stress theory: the shear stress
acting on each of eight (octahedral) surfaces containing a hydro-
static normal stress, o, = (61 + 05+ 03)/3, reaches a value of
ﬁays /3. It can be shown that this theory yields identical conditions
as that provided by the maximum-distortion-energy theory.

Of these six theories, for ductile materials, the fifth and sixth are the
ones that agree best with experimental evidence. However, the second
leads to results so nearly the same and is simpler and more conserva-
tive for design applications. Thus, it is more widely used as a basis for
design.

Failure theories for yield of ductile materials are based on shear or
distortion. The maximum-distortion-energy theory equates the distor-
tion energy for a general case of stress to the distortion energy when a
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simple tensile specimen yields. In terms of the principal stresses the
distortion energy for the general case can be shown to be (see Ref. 59)

1+

d= W[(fﬁ — 09)* + (064 — 63)° + (05 — 01)*] (3.7-1)

u

For the simple tensile test, yielding occurs when o; =0, and

g9 = 05 = 0. From Eq. (3.7-1), this gives a distortion energy at yield of

1+v
(ud)y = S—EU§S (37-2)

Equating the energy for the general case, Eq. (3.7-1), to that for yield,
Eq. (3.7-2), gives

VO5l(01 — 02)? + (03 — 03 + (05 — )] = 0y (3.7-3)

For yield under a single, uniaxial state of stress, the stress would be
equated to o,,. Thus, for yield, a single, uniaxial stress equivalent to
the general state of stress is equated to the left-hand side of Eq. (3.7-3).
This equivalent stress is called the von Mises stress, o, and is given
by

oot =\ 0.5l(0r — 02 + (03— 03 + (03— 0] (3.7-4)

Therefore, the maximum-distortion-energy theory predicts elastic fail-
ure when the von Mises stress reaches the yield strength.

The maximum-octahedral-shear-stress theory yields identical
results to that of the maximum-distortion-energy theory (see Ref.
59). Through stress transformation, a stress element can be isolated
in which all normal stresses on it are equal. These normal stresses are
the averages of the normal stresses of the stress matrix, which are also
the averages of the principal stresses and are given by

UaveZ%(0x+ay+az)=%(0'1+02+0'3) (3.7-5)

The element with these normal stresses is an octahedron where the
eight surfaces are symmetric with respect to the principal axes. The
directional cosines of the normals of these surfaces, relative to the
principal axes, are eight combinations of +1/+/3 (e.g., one set is 1/4/3,
1/4/3, 1/4/3; another is 1/4/3, —14/3, 1/4/3; etc.). The octahedron is as
shown in Fig. 3.1. The shear stresses on these surfaces are also equal,
called the octahedral shear stresses, and are given by

Toct = %\/(0-1 - 62)2 + (02 - O'3)2 + (03 — 0'1)2 (37-6)
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Figure 3.1 Octahedral surfaces containing octa-
hedral shear stresses (shown relative to the
principal axes, with only one set of stresses

displayed).
Again, for the simple tensile test, yield occurs when ¢, = g, and g, =
a5 = 0. From Eq. (3.7-6), this gives an octahedral shear stress at yield of
V2
(Toct)y = ? Oys (3.7-7)

Equating Eqgs. (3.7-6) and (3.7-7) results in Eq. (3.7-3) again, proving
that the maximum-octahedral-shear-stress theory is identical to the
maximum-distortion-energy theory.

The maximum-shear-stress theory equates the maximum shear
stress for a general state of stress to the maximum shear stress
obtained when the tensile specimen yields. If the principal stresses
are ordered such that o, > 05 > 05, the maximum shear stress is given
by 0.5(c; — g3) (see Sec. 2.3, Eq. 2.3-25). The maximum shear stress

obtained when the tensile specimen yields is 0.5 o,. Thus, the
condition for elastic failure for the maximum-shear-stress theory isf
01— 03 =0y (3.7-8)

The criteria just discussed concern the elastic failure of material.
Such failure may occur locally in a member and may do no real damage
if the volume of material affected is so small or so located as to have

+ Plane stress problems are encountered quite often where the principal stresses are
found from Eq. (2.3-23), which is

o,+0 0, — 0\ 2
J":<x2 y)i (F57) +

This yields only two of the three principal stresses. The third principal stress for plane
stress is zero. Once the three principal stresses are determined, they can be ordered
according to o; = 0y = 03 and then Eq. (3.7-8) can be employed.
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only negligible influence on the form and strength of the member as a
whole. Whether or not such local overstressing is significant depends
upon the properties of the material and the conditions of service.
Fatigue properties, resistance to impact, and mechanical functioning
are much more likely to be affected than static strength, and a degree of
local overstressing that would constitute failure in a high-speed
machine part might be of no consequence whatever in a bridge member.

A brittle material cannot be considered to have definitely failed until
it has broken, which can occur either through a tensile fracture, when
the maximum tensile stress reaches the ultimate strength, or through
what appears to be a shear fracture, when the maximum compressive
stress reaches a certain value. The fracture occurs on a plane oblique
to the maximum compressive stress but not, as a rule, on the plane of
maximum shear stress, and so it cannot be considered to be purely a
shear failure (see Ref. 14). The results of some tests on glass and
Bakelite (Ref. 26) indicate that for these brittle materials either the
maximum stress or the maximum strain theory affords a satisfactory
criterion of rupture while neither the maximum shear stress nor the
constant energy of distortion theory does. These tests also indicate
that strength increases with rate of stress application and that the
increase is more marked when the location of the most stressed zone
changes during the loading (pressure of a sphere on a flat surface)
than when this zone is fixed (axial tension).

Another failure theory that is applicable to brittle materials is the
Coulomb—Mohr theory of failure. Brittle materials have ultimate
compressive strengths ¢,. greater than their ultimate tensile
strengths o,,, and therefore both a uniaxial tensile test and a uniaxial
compressive test must be run to use the Coulomb—Mohr theory. First
we draw on a single plot both Mohr’s stress circle for the tensile test at
the instant of failure and Mohr’s stress circle for the compressive test
at the instant of failure; then we complete a failure envelope simply by
drawing a pair of tangent lines to the two circles, as shown in Fig. 3.2.

Failure under a complex stress situation is expected if the largest of
the three Mohr circles for the given situation touches or extends
outside the envelope just described. If all normal stresses are tensile,
the results coincide with the maximum stress theory. For a condition
where the three principal stresses are gy, 0, and o, as shown in Fig.
3.2, failure is being approached but will not take place unless the
dashed circle passing through ¢4 and o, reaches the failure envelope.

The accurate prediction of the breaking strength of a member
composed of brittle metal requires a knowledge of the effect of form
and scale, and these effects are expressed by the rupture factor (see
Sec. 3.11). In addition, what has been said here concerning brittle
metals applies also to any essentially isotropic brittle material.

Thus far, our discussion of failure has been limited to isotropic
materials. For wood, which is distinctly anisotropic, the possibility of
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failure in each of several ways and directions must be taken into
account, viz.: (1) by tension parallel to the grain, which causes
fracture; (2) by tension transverse to the grain, which causes fracture;
(3) by shear parallel to the grain, which causes fracture; (4) by
compression parallel to the grain, which causes gradual buckling of
the fibers usually accompanied by a shear displacement on an oblique
plane; (5) by compression transverse to the grain, which causes
sufficient deformation to make the part unfit for service. The unit
stress producing each of these types of failure must be ascertained by
suitable tests (Ref. 2).

Another anisotropic class of material of consequence is that of the
composites. It is well known that composite members (see Secs. 7.3,
8.2, and Appendix C), such as steel reinforced concrete beams, more
effectively utilize the more expensive, higher-strength materials in
high-stress areas and the less expensive, lower-strength materials in
the low-stress areas. Composite materials accomplish the same effect
at microstructural and macrostructural levels. Composite materials
come in many forms, but are generally formulated by embedding a
reinforcement material in the form of fibers, flakes, particles, or
laminations, in a randomly or orderly oriented fashion within a base
matrix of polymeric, metallic, or ceramic material. For more detail
properties of composites, see Ref. 60.

3.8 Fatigue

Practically all materials will break under numerous repetitions of a
stress that is not as great as the stress required to produce immediate
rupture. This phenomenon is known as fatigue.
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Over the past 100 years the effects of surface condition, corrosion,
temperature, etc., on fatigue properties have been well documented,
but only in recent years has the microscopic cause of fatigue damage
been attributed to cyclic plastic flow in the material at the source of a
fatigue crack (crack initiation) or at the tip of an existing fatigue crack
(crack propagation; Ref. 20). The development of extremely sensitive
extensometers has permitted the separation of elastic and plastic
strains when testing axially loaded specimens over short gage lengths.
With this instrumentation it is possible to determine whether cyclic
loading is accompanied by significant cyclic plastic strain and, if it is,
whether the cyclic plastic strain continues at the same level, increases,
or decreases. Sandor (Ref. 44) discusses this instrumentation and its
use in detail.

It is not feasible to reproduce here even a small portion of the fatigue
data available for various engineering materials. The reader should
consult materials handbooks, manufacturers’ literature, design
manuals, and texts on fatigue. See Refs. 44 to 48. Some of the more
important factors governing fatigue behavior in general will be
outlined in the following material.

Number of cycles to failure. Most data concerning the number of cycles
to failure are presented in the form of an S—N curve where the cyclic
stress amplitude is plotted versus the number of cycles to failure. This
generally leads to a straight-line log—log plot if we account for the
scatter in the data. For ferrous metals a lower limit exists on the stress
amplitude and is called the fatigue limit, or endurance limit. This
generally occurs at a life of from 10° to 107 cycles of reversed stress,
and we assume that stresses below this limit will not cause failure
regardless of the number of repetitions. With the ability to separate
elastic and plastic strains accurately, there are instances when a plot
of plastic-strain amplitudes versus N and elastic-strain amplitudes
versus N will reveal more useful information (Refs. 44 and 45).

Method of loading and size of specimen. Uniaxial stress can be
produced by axial load, bending, or a combination of both. In flat-
plate bending, only the upper and lower surfaces are subjected to the
full range of cyclic stress. In rotating bending, all surface layers are
similarly stressed, but in axial loading, the entire cross section is
subjected to the same average stress. Since fatigue properties of a
material depend upon the statistical distribution of defects throughout
the specimen, it is apparent that the three methods of loading will
produce different results.

In a similar way, the size of a bending specimen will affect the
fatigue behavior while it will have little effect on an axially loaded
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specimen. Several empirical formulas have been proposed to represent
the influence of size on a machine part or test specimen in bending.
For steel, Moore (Ref. 38) suggests the equation

(. 0016\ (. 0016
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where ¢/, is the endurance limit for a specimen of diameter d’ and o) is
the endurance limit for a specimen of diameter d”. This formula was
based on test results obtained with specimens from 0.125 to 1.875
inches in diameter and shows good agreement within that size range.
Obviously it cannot be used for predicting the endurance limit of very
small specimens. The few relevant test results available indicate a
considerable decrease in endurance limit for very large diameters
(Refs. 22—-24).

Stress concentrations. Fatigue failures occur at stress levels less than
those necessary to produce the gross yielding which would blunt the
sharp rise in stress at a stress concentration. It is necessary, therefore,
to apply the fatigue strengths of a smooth specimen to the peak
stresses expected at the stress concentrations unless the size of the
stress-concentrating notch or fillet approaches the grain size or the
size of an anticipated defect in the material itself (see Factor of stress
concentration in fatigue in Sec. 3.10). References 40 and 41 discuss the
effect of notches on low-cycle fatigue.

Surface conditions. Surface roughness constitutes a kind of stress
raiser. Discussion of the effect of surface coatings and platings is
beyond the scope of this book (see Refs. 28 and 36).

Corrosion fatigue. Under the simultaneous action of corrosion and
repeated stress, the fatigue strength of most metals is drastically
reduced, sometimes to a small fraction of the strength in air, and a
true endurance limit can no longer be said to exist. Liquids and gases
not ordinarily thought of as especially conducive to corrosion will often
have a very deleterious effect on fatigue properties, and resistance to
corrosion is more important than normal fatigue strength in determin-
ing the relative rating of different metals (Refs. 24, 25, and 31).

Range of stress. Stressing a ductile material beyond the elastic limit
or yield point in tension will raise the elastic limit for subsequent
cycles but lower the elastic limit for compression. The consequence of
this Bauschinger effect on fatigue is apparent if one accepts the
statement that fatigue damage is a result of cyclic plastic flow; 1.e.,
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if the range of cyclic stress is reduced sufficiently, higher peak stresses
can be accepted without suffering continuing damage.

Various empirical formulas for the endurance limit corresponding to
any given range of stress variation have been suggested, the most
generally accepted of which is expressed by the Goodman diagram or
some modification thereof. Figure 3.3 shows one method of construct-
ing this diagram. In each cycle, the stress varies from a maximum
value g,,,, to a minimum value o,,;,, either of which is plus or minus
according to whether it is tensile or compressive. The mean stress is

_1
Om = 9 (O-max + O-min)
and the alternating stress is
_1
Ogq = Q(amax - Gmin)

the addition and subtraction being algebraic. With reference to rectan-
gular axes, a,, is measured horizontally and ¢, vertically. Obviously
when ¢,, = 0, the limiting value of ¢, is the endurance limit for fully
reversed stress, denoted here by o,. When ¢, = 0, the limiting value of
0,, 1s the ultimate tensile strength, denoted here by ¢,. Points A and B
on the axes are thus located.

According to the Goodman theory, the ordinate to a point on the
straight line AB represents the maximum alternating stress ¢, that
can be imposed in conjunction with the corresponding mean stress o,),.
Any point above AB represents a stress condition that would even-
tually cause failure; any point below AB represents a stress condition
with more or less margin of safety. A more conservative construction,
suggested by Soderberg (Ref. 13), is to move point B back to o,
the yield strength. A less conservative but sometimes preferred
construction, proposed by Gerber, is to replace the straight line by
the parabola.
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The Goodman diagrams described can be used for steel and for
aluminum and titanium alloys, but for cast iron many test results fall
below the straight line AB and the lower curved line, suggested by
Smith (Ref. 21), is preferred. Test results for magnesium alloys also
sometimes fall below the straight line.

Figure 3.3 represents conditions where o, is tensile. If ¢, 1is
compressive, o, is increased; and for values of o,, less than the
compression yield strength, the relationship is represented approxi-
mately by the straight line AB extended to the left with the same
slope. When the mean stress and alternating stress are both torsional,
g, 1s practically constant until g,, exceeds the yield strength in shear;
and for alternating bending combined with mean torsion, the same
thing is true. But when ¢,, is tensile and ¢, is torsional, ¢, diminishes
as 0, increases in almost the manner represented by the Goodman
line. When stress concentration is to be taken into account, the
accepted practice is to apply K; (or K, if K; is not known) to ¢, only,
not to ¢, (for K, and K, see Sec. 3.10).

Residual stress. Since residual stresses, whether deliberately intro-
duced or merely left over from manufacturing processes, will influence
the mean stress, their effects can be accounted for. One should be
careful, however, not to expect the beneficial effects of a residual stress
if during the expected life of a structure it will encounter overloads
sufficient to change the residual-stress distribution. Sandor (Ref. 44)
discusses this in detail and points out that an occasional overload
might be beneficial in some cases.

The several modified forms of the Goodman diagram are used for
predicting the stress levels which will form cracks, but other more
extensive plots such as the Haigh diagram (Ref. 45) can be used to
predict in addition the stress levels for which cracks, once formed, will
travel, fatigue lives, etc.

Combined stress. No one of the theories of failure in Sec. 3.7 can be
applied to all fatigue loading conditions. The maximum-distortion-
energy theory seems to be conservative in most cases, however.
Reference 18 gives a detailed description of an acceptable procedure
for designing for fatigue under conditions of combined stress. The
procedure described also considers the effect of mean stress on the
cyclic stress range. Three criteria for failure are discussed: gross
yielding, crack initiation, and crack propagation. An extensive discus-
sion of fatigue under combined stress is found in Refs. 27, 31, and 45.

Stress history. A very important question and one that has been given
much attention is the influence of previous stressing on fatigue
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strength. One theory that has had considerable acceptance is the
linear damage law (Miner in Ref. 27); here the assumption is made
that the damage produced by repeated stressing at any level is directly
proportional to the number of cycles. Thus, if the number of cycles
producing failure (100% damage) at a stress range o; is IV;, then the
proportional damage produced by N cycles of the stress is N/N; and
stressing at various stress levels for various numbers of cycles causes
cumulative damage equal to the summation of such fractional values.
Failure occurs, therefore, when Y N/N; = 1. The formula implies that
the effect of a given number of cycles is the same, whether they are
applied continuously or intermittently, and does not take into account
the fact that for some metals understressing (stressing below the
endurance limit) raises the endurance limit. The linear damage law
is not reliable for all stress conditions, and various modifications have
been proposed, such as replacing 1 in the formula by a quantity x
whose numerical value, either more or less than unity, must be
determined experimentally. Attempts have been made to develop a
better theory (e.g., Corten and Dolan, Freudenthal and Gumbel, in
Ref. 32). Though all the several theories are of value when used
knowledgeably, it does not appear that as yet any generally reliable
method is available for predicting the life of a stressed part under
variable or random loading. (See Refs. 19 and 39.) See Refs. 44 and 45
for a more detailed discussion.

A modification of the foil strain gage called an S—N fatigue life gage
(Refs. 33 and 34) measures accumulated plastic deformation in the
form of a permanent change in resistance. A given total change in
resistance can be correlated with the damage necessary to cause a
fatigue failure in a given material.

3.9 Brittle Fracture

Brittle fracture is a term applied to an unexpected brittle failure of a
material such as low-carbon steel where large plastic strains are
usually noted before actual separation of the part. Major studies of
brittle fracture started when failures such as those of welded ships
operating in cold seas led to a search for the effect of temperature on
the mode of failure. For a brittle fracture to take place the material
must be subjected to a tensile stress at a location where a crack or
other very sharp notch or defect is present and the temperature must
be lower than the so-called transition temperature. To determine a
transition temperature for a given material, a series of notched speci-
mens is tested under impact loading, each at a different temperature,
and the ductility or the energy required to cause fracture is noted.
There will be a limited range of temperatures over which the ductility
or fracture energy will drop significantly. Careful examination of the
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fractured specimens will show that the material at the root of the
notch has tried to contract laterally. Where the fracture energy is
large, there is evidence of a large lateral contraction; and where the
fracture energy is small, the lateral contraction is essentially zero. In
all cases the lateral contraction is resisted by the adjacent less
stressed material. The deeper and sharper cracks have relatively
more material to resist lateral contraction. Thicker specimens have
a greater distance over which to build up the necessary triaxial tensile
stresses that lead to a tensile failure without producing enough shear
stress to cause yielding. Thus, the term transition temperature is
somewhat relative since it depends upon notch geometry as well as
specimen size and shape. Since yielding is a flow phenomenon, it is
apparent that rate of loading i1s also important. Static loading of
sufficient intensity may start a brittle fracture, but it can continue
under much lower stress levels owing to the higher rate of loading.
The ensuing research in the field of fracture mechanics has led to the
development of both acceptable theories and experimental techniques,
the discussion of which is beyond the scope of this book. Users should
examine Refs. 49-58 for information and for extensive bibliographies.

3.10 Stress Concentration

The distribution of elastic stress across the section of a member may be
nominally uniform or may vary in some regular manner, as illustrated
by the linear distribution of stress in flexure. When the variation is
abrupt so that within a very short distance the intensity of stress
increases greatly, the condition is described as stress concentration. It
is usually due to local irregularities of form such as small holes, screw
threads, scratches, and similar stress raisers. There is obviously no
hard and fast line of demarcation between the rapid variation of stress
brought about by a stress raiser and the variation that occurs in such
members as sharply curved beams, but in general the term siress
concentration implies some form of irregularity not inherent in the
member as such but accidental (tool marks) or introduced for some
special purpose (screw thread).

The maximum intensity of elastic stress produced by many of the
common kinds of stress raisers can be ascertained by mathematical
analysis, photoelastic analysis, or direct strain measurement and is
usually expressed by the stress concentration factor. This term is
defined in Appendix B, but its meaning may be made clearer by an
example. Consider a straight rectangular beam, originally of uniform
breadth b and depth D, which has had cut across the lower face a fairly
sharp transverse V-notch of uniform depth A, making the net depth of
the beam section at that point D — A. If now the beam is subjected to a
uniform bending moment M, the nominal fiber stress at the root of the
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notch may be calculated by ordinary flexure formula ¢ = Mc/I, which
here reduces to o = 6M/[b(D — h)?]. But the actual stress ¢ is very
much greater than this because of the stress concentration that occurs
at the root of the notch. The ratio ¢’/o, actual stress divided by
nominal stress, is the stress concentration factor K, for this particular
case. Values of K, for a number of common stress raisers are given in
Table 17.1. The most complete single source for numerical values of
stress concentration factors is Peterson (Ref. 42). It also contains an
extensive bibliography.

The abrupt variation and high local intensity of stress produced by
stress raisers are characteristics of elastic behavior. The plastic yield-
ing that occurs on overstressing greatly mitigates stress concentration
even in relatively brittle materials and causes it to have much less
influence on breaking strength than might be expected from a consid-
eration of the elastic stresses only. The practical significance of stress
concentration therefore depends on circumstances. For ductile metal
under static loading it is usually (though not always) of little or no
importance; for example, the high stresses that occur at the edges of
rivet holes in structural steel members are safely ignored, the stress
due to a tensile load being assumed uniform on the net section. (In the
case of eyebars and similar pin-connected members, however, a reduc-
tion of 25% in allowable stress on the net section is recommended.) For
brittle material under static loading, stress concentration is often a
serious consideration, but its effect varies widely and cannot be
predicted either from K, or from the brittleness of the material (see
Ref. 35).

What may be termed the stress concentration factor at rupture, or
the strength reduction factor, represents the significance of stress
concentration for static loading. This factor, which will be denoted
by K, is the ratio of the computed stress at rupture for a plain
specimen to the computed stress at rupture for the specimen contain-
ing the stress raiser. For the case just described, it would be the ratio
of the modulus of rupture of the plain beam to that of the notched
beam, the latter being calculated for the net section. K, is therefore a
ratio of stresses, one or both of which may be fictitious, but is none-
theless a measure of the strength-reducing effect of stress concentra-
tion. Some values of K, are given in Table 17 of Ref. 1.

It is for conditions involving fatigue that stress concentration is
most important. Even the most highly localized stresses, such as those
produced by small surface scratches, may greatly lower the apparent
endurance limit, but materials vary greatly in notch sensitivity, as
susceptibility to this effect is sometimes called. Contrary to what
might be expected, ductility (as ordinarily determined by axial testing)
is not a measure of immunity to stress concentration in fatigue; for
example, steel is much more susceptible than cast iron. What may be
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termed the fatigue stress concentration factor K; is the practical
measure of notch sensitivity. It is the ratio of the endurance limit of
a plain specimen to the nominal stress at the endurance limit of a
specimen containing the stress raiser.

A study of available experimental data shows that K; is almost
always less, and often significantly less, than K,, and various methods
for estimating K; from K, have been proposed. Neuber (Ref. 37)
proposes the formula

K -1
K =1+ L
f 1+ np/p/(n — )

where o is the flank angle of the notch (called 6 in Table 17.1), p is the
radius of curvature (in inches) at the root of the notch (called r in Table
17.1), and p’ is a dimension related to the grain size, or size of some
type of basic building block, of the material and may be taken as
0.0189 in for steel.

All the methods described are valuable and applicable within
certain limitations, but none can be applied with confidence to all
situations (Ref. 29). Probably none of them gives sufficient weight to
the effect of scale in the larger size range. There is abundant evidence
to show that the significance of stress concentration increases with
size for both static and repeated loading, especially the latter.

An important fact concerning stress concentration is that a single
isolated notch or hole has a worse effect than have a number of similar
stress raisers placed close together; thus, a single V-groove reduces the
strength of a part more than does a continuous screw thread of almost
identical form. The deleterious effect of an unavoidable stress raiser
can, therefore, be mitigated sometimes by juxtaposing additional form
irregularities of like nature, but the actual superposition of stress
raisers, such as the introduction of a small notch in a fillet, may result
in a stress concentration factor equal to or even exceeding the product
of the factors for the individual stress raisers (Refs. 30 and 43).

(3.10-1)

3.11 Effect of Form and Scale on Strength;
Rupture Factor

It has been pointed out (Sec. 3.7) that a member composed of brittle
material breaks in tension when the maximum tensile stress reaches
the ultimate strength or in shear when the maximum compressive
stress reaches a certain value. In calculating the stress at rupture in
such a member it is customary to employ an elastic-stress formula;
thus the ultimate fiber stress in a beam is usually calculated by the
ordinary flexure formula. It is known that the result (modulus of
rupture) is not a true stress, but it can be used to predict the strength
of a similar beam of the same material. However, if another beam of
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the same material but of different cross section, span/depth ratio, size,
or manner of loading and support is tested, the modulus of rupture will
be found to be different. (The effect of the shape of the section is often
taken into account by the form factor, and the effects of the span/depth
ratio and manner of loading are recognized in the testing procedure.)
Similarly, the calculated maximum stress at rupture in a curved beam,
flat plate, or torsion member is not equal to the ultimate strength of
the material, and the magnitude of the disparity will vary greatly with
the material, form of the member, manner of loading, and absolute
scale. In order to predict accurately the breaking load for such a
member, it is necessary to take this variation into account, and the
rupture factor (defined in Appendix B) provides a convenient means of
doing so. Values of the rupture factor for a number of materials and
types of members are given in Table 18 of Ref. 1.

On the basis of many experimental determinations of the rupture
factor (Ref. 35) the following generalizations may be made:

1. The smaller the proportional part of the member subjected to high
stress, the larger the rupture factor. This is exemplified by the facts
that a beam of circular section exhibits a higher modulus of rupture
than a rectangular beam and that a flat plate under a concentrated
center load fails at a higher computed stress than one uniformly
loaded. The extremes in this respect are, on the one hand, a
uniform bar under axial tension for which the rupture factor is
unity and, on the other hand, a case of severe stress concentration
such as a sharply notched bar for which the rupture factor may be
indefinitely large.

2. In the flexure of statically indeterminate members, the redistribu-
tion of bending moments that occurs when plastic yielding starts at
the most highly stressed section increases the rupture factor. For
this reason a flat plate gives a higher value than a simple beam,
and a circular ring gives a higher value than a portion of it tested as
a statically determinate curved beam.

3. The rupture factor seems to vary inversely with the absolute scale
for conditions involving abrupt stress variation, which is consistent
with the fact (already noted) that for cases of stress concentration
both K, and K; diminish with the absolute scale.

4. As arule, the more brittle the material, the more nearly all rupture
factors approach unity. There are, however, many exceptions to this
rule. It has been pointed out (Sec. 3.10) that immunity to notch
effect even under static loading is not always proportional to
ductility.

The practical significance of these facts is that for a given material
and given factor of safety, some members may be designed with a
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much higher allowable stress than others. This fact is often recognized
in design; for example, the allowable stress for wooden airplane spars
varies according to the form factor and the proportion of the stress that
is flexural.

What has been said here pertains especially to comparatively brittle
materials, 1.e., materials for which failure consists in fracture rather
than in the beginning of plastic deformation. The effect of form on the
ultimate strength of ductile members is less important, although even
for steel the allowable unit stress is often chosen with regard to
circumstances such as those discussed previously. For instance, in
gun design the maximum stress is allowed to approach and even
exceed the nominal elastic limit, the volume of material affected
being very small, and in structural design extreme fiber stresses in
bending are permitted to exceed the value allowed for axial loading. In
testing, account must be taken of the fact that some ductile metals
exhibit a higher ultimate strength when fracture occurs at a reduced
section such as would be formed in a tensile specimen by a concentric
groove or notch. Whatever effect of stress concentration may remain
during plastic deformation is more than offset by the supporting action
of the shoulders, which tends to prevent the normal “necking down.”

3.12 Prestressing

Parts of an elastic system, by accident or design, may have introduced
into them stresses that cause and are balanced by opposing stresses in
other parts, so that the system reaches a state of stress without the
imposition of any external load. Examples of such initial, or locked-up,
stresses are the temperature stresses in welded members, stresses in a
statically indeterminate truss due to tightening or “rigging” some of
the members by turnbuckles, and stresses in the flange couplings of a
pipeline caused by screwing down the nuts. The effects of such
prestressing upon the rigidity and strength of a system will now be
considered, the assumption being made that prestressing is not so
severe as to affect the properties of the material.

In discussing this subject it is necessary to distinguish two types of
systems, viz. one in which the component parts can sustain reversal of
stress and one in which at least some of the component parts cannot
sustain reversal of stress. Examples of the first type are furnished by a
solid bar and by a truss, all members of which can sustain either
tension or compression. Examples of the second type are furnished by
the bolt-flange combination mentioned and by a truss with wire
diagonals that can take tension only.

For the first type of system, prestressing has no effect on initial
rigidity. Thus a plain bar with locked-up temperature stresses will
exhibit the same modulus of elasticity as a similar bar from which
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these stresses have been removed by annealing; two prestressed
helical springs arranged in parallel, the tension in one balancing the
compression in the other, will deflect neither more nor less than the
same two springs similarly placed without prestressing.

Prestressing will lower the elastic limit (or allowable load, or
ultimate strength) provided that in the absence of prestressing all
parts of the system reach their respective elastic limits (or allowable
loads, or ultimate strengths) simultaneously. But if this relation
between the parts does not exist, then prestressing may raise any or
all of these quantities. One or two examples illustrating each condition
may make this clear.

Consider first a plain bar that is to be loaded in axial tension. If
there are no locked-up stresses, then (practically speaking) all parts of
the bar reach their allowable stress, elastic limit, and ultimate
strength simultaneously. But if there are locked-up stresses present,
then the parts in which the initial tension is highest reach their elastic
limit before other parts and the elastic limit of the bar as a whole is
thus lowered. The load at which the allowable unit stress is first
reached is similarly lowered, and the ultimate strength may also be
reduced; although if the material is ductile, the equalization of stress
that occurs during elongation will largely prevent this.

As an example of the second condition (all parts do not simulta-
neously reach the elastic limit or allowable stress) consider a thick
cylinder under internal pressure. If the cylinder is not prestressed, the
stress at the interior surface reaches the elastic limit first and so
governs the pressure that may be applied. But if the cylinder is
prestressed by shrinking on a jacket or wrapping with wire under
tension, as is done in gun construction, then the walls are put into an
initial state of compression. This compressive stress also is greatest at
the inner surface, and the pressure required to reverse it and produce
a tensile stress equal to the elastic limit is much greater than before.
As another example, consider a composite member comprising two
rods of equal length, one aluminum and the other steel, that are placed
side by side to jointly carry a tensile load. For simplicity, it will be
assumed that the allowable unit stresses for the materials are the
same. Because the modulus of elasticity of the steel is about three
times that of the aluminum, it will reach the allowable stress first and
at a total load less than the sum of the allowable loads for the bars
acting separately. But if the composite bar is properly prestressed, the
steel being put into initial compression and the aluminum into initial
tension (the ends being in some way rigidly connected to permit this),
then on the application of a tensile load the two bars will reach the
allowable stress simultaneously and the load-carrying capacity of the
combination is thus greater than before. Similarly the elastic limit and
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sometimes the ultimate strength of a composite member may be raised
by prestressing.

In a system of the second type (in which all parts cannot sustain
stress reversal) prestressing increases the rigidity for any load less
than that required to produce stress reversal. The effect of prestress-
ing up to that point is to make the rigidity of the system the same as
though all parts were effective. Thus in the case of the truss with wire
diagonals it is as though the counterwires were taking compression; in
the case of the flange-bolt combination it is as though the flanges were
taking tension. (If the flanges are practically rigid in comparison with
the bolts, there is no deformation until the applied load exceeds the
bolt tension and so the system is rigid.) When the applied load becomes
large enough to cause stress reversal (to make the counterwires go
slack or to separate the flanges), the effect of prestressing disappears
and the system is neither more nor less rigid than a similar one not
prestressed provided, of course, none of the parts has been over-
stressed.

The elastic limit (or allowable load, or ultimate strength) of a system
of this type is not affected by prestressing unless the elastic limit (or
allowable load, or ultimate strength) of one or more of the parts is
reached before the stress reversal occurs. In effect, a system of this
type is exactly like a system of the first type until stress reversal
occurs, after which all effects of prestressing vanish.

The effects of prestressing are often taken advantage of, notably in
bolted joints (flanges, cylinder heads, etc.), where high initial tension
in the bolts prevents stress fluctuation and consequent fatigue, and in
prestressed reinforced-concrete members, where the initially
compressed concrete is enabled, in effect, to act in tension without
cracking up to the point of stress reversal. The example of the
prestressed thick cylinder has already been mentioned.

3.13 Elastic Stability

Under certain circumstances the maximum load a member will
sustain is determined not by the strength of the material but by the
stiffness of the member. This condition arises when the load produces
a bending or a twisting moment that is proportional to the correspond-
ing deformation. The most familiar example is the Euler column.
When a straight slender column is loaded axially, it remains straight
and suffers only axial compressive deformation under small loads. If
while thus loaded it is slightly deflected by a transverse force, it will
straighten after removal of that force. But there is obviously some
axial load that will just hold the column in the deflected position, and
since both the bending moment due to the load and the resisting
moment due to the stresses are directly proportional to the deflection,
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the load required thus to hold the column is independent of the
amount of the deflection. If this condition of balance exists at stresses
less than the elastic limit, the condition is called elastic stability and
the load that produces this condition is called the critical load. Any
increase of the load beyond this critical value is usually attended by
immediate collapse of the member.

It is the compressive stresses within long, thin sections of a struc-
ture that can cause instabilities. The compressive stress can be elastic
or inelastic and the instability can be global or local. Global instabil-
ities can cause catastrophic failure, whereas local instabilities may
cause permanent deformation but not necessarily a catastrophic fail-
ure. For the Euler column, when instability occurs, it is global since
the entire cross section is involved in the deformation. Localized
buckling of the edges of the flange in compression of a wide-flange
I-beam in bending can occur. Likewise, the center of the web of a
transversely loaded I-beam or plate girder in bending undergoes pure
shear where along the diagonal (45°) compressive stresses are present
and localized buckling is possible.

Other examples of elastic stability are afforded by a thin cylinder
under external pressure, a thin plate under edge compression or edge
shear, and a deep thin cantilever beam under a transverse end load
applied at the top surface. Some such elements, unlike the simple
column described previously, do not fail under the load that initiates
elastic buckling but demonstrate increasing resistance as the buckling
progresses. Such postbuckling behavior is important in many
problems of shell design. Elastic stability is discussed further in
Chap. 15, and formulas for the critical loads for various members
and types of loadings are given in Tables 15.1 and 15.2.
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Chapter

Principles and Analytical Methods

Most of the formulas of mechanics of materials express the relations
among the form and dimensions of a member, the loads applied
thereto, and the resulting stress or deformation. Any such formula is
valid only within certain limitations and is applicable only to certain
problems. An understanding of these limitations and of the way in
which formulas may be combined and extended for the solution of
problems to which they do not immediately apply requires a knowl-
edge of certain principles and methods that are stated briefly in the
following articles. The significance and use of these principles and
methods are illustrated in Part 3 by examples that accompany the
discussion of specific problems.

4.1 Equations of Motion and of Equilibrium

The relations that exist at any instant between the motion of a body
and the forces acting on it may be expressed by these two equations:
(1) F, (the component along any line x of all forces acting on a
body) = ma, (the product of the mass of the body and the x component
of the acceleration of its mass center); (2) T, (the torque about any line
x of all forces acting on the body) = dH,/dt (the time rate at which its
angular momentum about that line is changing). If the body in
question is in equilibrium, these equations reduce to (1) F, =0 and
@ T, =0.

These equations, Hooke’s law, and experimentally determined
values of the elastic constants E, G, and v constitute the basis for
the mathematical analysis of most problems of mechanics of materials.
The majority of the common formulas for stress are derived by
considering a portion of the loaded member as a body in equilibrium
under the action of forces that include the stresses sought and then
solving for these stresses by applying the equations of equilibrium.
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4.2 Principle of Superposition

With certain exceptions, the effect (stress, strain, or deflection)
produced on an elastic system by any final state of loading is the
same whether the forces that constitute that loading are applied
simultaneously or in any given sequence and is the result of the
effects that the several forces would produce if each acted singly.

An exception to this principle is afforded by any case in which some
of the forces cause a deformation that enables other forces to produce
an effect they would not have otherwise. A beam subjected to trans-
verse and axial loading is an example; the transverse loads cause a
deflection that enables the longitudinal load to produce a bending
effect it would not produce if acting alone. In no case does the principle
apply if the deformations are so large as to alter appreciably the
geometrical relations of the parts of the system.

The principle of superposition is important and has many applica-
tions. It often makes it possible to resolve or break down a complex
problem into a number of simple ones, each of which can be solved
separately for like stresses, deformations, etc., which are then alge-
braically added to yield the solution of the original problem.

4.3 Principle of Reciprocal Deflections

Let A and B be any two points of an elastic system. Let the displace-
ment of B in any direction U due to force P acting in any direction V at
A be u; and let the displacement of A in the direction V due to a force @
acting in the direction U at B be v. Then Pv = Qu.

This is the general statement of the principle of reciprocal deflec-
tions. If P and @ are equal and parallel and u and v are parallel, the
statement can be simplified greatly. Thus, for a horizontal beam with
vertical loading and deflection understood, the principle expresses the
following relation: A load applied at any point A produces the same
deflection at any other point B as it would produce at A if applied at B.

The principle of reciprocal deflections is a corollary of the principle
of superposition and so can be applied only to cases for which that
principle is valid. It can be used to advantage in many problems
involving deformation. Examples of the application of the principle are
given in Chaps. 8 and 11.

4.4 Method of Consistent Deformations
(Strain Compatibility)

Many statically indeterminate problems are easily solved by utilizing
the obvious relations among the deformations of the several parts or
among the deformations produced by the several loads. Thus the



SEC. 4.5] Principles and Analytical Methods 65

division of load between the parts of a composite member is readily
ascertained by expressing the deformation or deflection of each part in
terms of the load it carries and then equating these deformations or
deflections. For example, the reaction at the supported end of a beam
with one end fixed and the other supported can be found by regarding
the beam as a cantilever, acted on by the actual loads and an upward
end load (the reaction), and setting the resultant deflection at the
support end equal to zero.

The method of consistent deformations is based on the principle of
superposition; it can be applied only to cases for which that principle is
valid.

4.5 Principles and Methods Involving Strain Energy

Strain energy is defined as the mechanical energy stored up in an
elastically stressed system; formulas for the amount of strain energy
developed in members under various conditions of loading are given
in Part 3. It is the purpose of this article to state certain relations
between strain energy and external forces that are useful in the
analysis of stress and deformation. For convenience, external forces
with points of application that do not move will here be called
reactions, and external forces with points of application that move
will be called loads.

External work equal to strain energy. When an elastic system is
subjected to static loading, the external work done by the loads as
they increase from zero to their maximum value is equal to the strain
energy acquired by the system.

This relation may be used directly to determine the deflection of a
system under a single load; for such a case, assuming a linear
material, it shows that the deflection at the point of loading in the
direction of the load is equal to twice the strain energy divided by the
load. The relationship also furnishes a means of determining the
critical load that produces elastic instability in a member. A reason-
able form of curvature, compatible with the boundary conditions, is
assumed, and the corresponding critical load found by equating the
work of the load to the strain energy developed, both quantities being
calculated for the curvature assumed. For each such assumed curva-
ture, a corresponding approximate critical load will be found and the
least load so found represents the closest approximation to the true
critical load (see Refs. 3 to 5).

Method of unit loads. During the static loading of an elastic system the
external work done by a constant force acting thereon is equal to the
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internal work done by the stresses caused by that constant force. This
relationship is the basis of the following method for finding the
deflection of any given point of an elastic system: A unit force is
imagined to act at the point in question and in the direction of the
deflection that is to be found. The stresses produced by such a unit
force will do a certain amount of internal work during the application
of the actual loads. This work, which can be readily found, is equal to
the work done by the unit force; but since the unit force is constant,
this work is equal to the deflection sought.

If the direction of the deflection cannot be ascertained in advance, its
horizontal and vertical components can be determined separately in
the way described and the resultant deflection found therefrom.
Examples of application of the method are given in Sec. 7.4.

Deflection, the partial derivative of strain energy. When a linear elastic
system 1is statically loaded, the partial derivative of the strain energy
with respect to any one of the applied forces is equal to the movement
of the point of application of that force in the direction of that force.
This relationship provides a means of finding the deflection of a beam
or truss under several loads (see Refs. 3, 5, and 7).

Theorem of least work.i When an elastic system is statically loaded,
the distribution of stress is such as to make the strain energy a
minimum consistent with equilibrium and the imposed boundary
conditions. This principle is used extensively in the solution of stati-
cally indeterminate problems. In the simpler type of problem (beams
with redundant supports or trusses with redundant members) the first
step in the solution consists in arbitrarily selecting certain reactions or
members to be considered redundant, the number and identity of
these being such that the remaining system is just determinate. The
strain energy of the entire system is then expressed in terms of the
unknown redundant reactions or stresses. The partial derivative of the
strain energy with respect to each of the redundant reactions or
stresses is then set equal to zero and the resulting equations solved
for the redundant reactions or stresses. The remaining reactions or
stresses are then found by the equations of equilibrium. An example of
the application of this method is given in Sec. 7.4.

T By theorem of least work is usually meant only so much of the theorem as is
embodied in the first application here described, and so understood it is often referred to
as Castigliano’s second theorem. But, as originally stated by Castigliano, it had a
somewhat different significance. (See his “Théoréme de I'équilibre des systémes
élastiques et ses applications,” Paris, 1879, or the English translation “Elastic Stresses
in Structures,” by E. S. Andrews, Scott, Greenwood, London. See also R. V. Southwell,
Castigliano’s Principle of Minimum Strain-energy, Proc. Roy. Soc. Lond., Ser. A, vol. 154,
1936.) The more general theory stated is called theorem of minimum energy by Love
(Ref. 1) and theorem of minimum resilience by Morley (Ref. 2).
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As defined by this procedure, the theorem of least work is implicit in
Castigliano’s theorem: It furnishes a method of solution identical with
the method of consistent deflections, the deflection used being zero and
expressed as a partial derivative of the strain energy. In a more
general type of problem, it is necessary to determine which of an
infinite number of possible stress distributions or configurations
satisfies the condition of minimum strain energy. Since the develop-
ment of software based on the finite-element method of analysis the
electronic computer has made practicable the solution of many
problems of this kind—shell analysis, elastic and plastic buckling,
etc.—that formerly were relatively intractable.

4.6 Dimensional Analysis

Most physical quantities can be expressed in terms of mass, length,
and time conveniently represented by the symbols M, L, and ¢,
respectively. Thus velocity is Lt~' acceleration is Lt2, force is
MLt=2, unit stress is ML~'t72, etc. A formula in which the several
quantities are thus expressed is a dimensional formula, and the
various applications of this system of representation constitute dimen-
stonal analysis.

Dimensional analysis may be used to check formulas for homogen-
eity, check or change units, derive formulas, and establish the rela-
tionships between similar physical systems that differ in scale (e.g., a
model and its prototype). In strength of materials, dimensional analy-
sis 1s especially useful in checking formulas for homogeneity. To do
this, it is not always necessary to express all quantities dimensionally
since it may be possible to cancel some terms. Thus it is often
convenient to express force by some symbol, as F, until it is ascertained
whether or not all terms representing force can be canceled.

For example, consider the formula for the deflection y at the free end
of a cantilever beam of length [ carrying a uniform load per unit
length, w. This formula (Table 8.1) is

__lwl
- 8EI

To test for homogeneity, omit the negative sign and the coefficient %
(which 1s dimensionless) and write the formula

L _ /L
T (F/LALA

It 1s seen that F' cancels and the equation reduces at once to L = L,
showing that the original equation was homogeneous.
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Instead of the symbols M, L, t, and F, we can use the names of the
units in which the quantities are to be expressed. Thus the above
equation may be written

(pounds/inch)(inches®)

inches = = inches

(pounds/inches®)(inches®)

This practice is especially convenient if it is desired to change units.
Thus it might be desired to write the above formula so that y is given
in inches when [ is expressed in feet. It is only necessary to write

l(pounds/inch)(feet x 12)4
8 (pounds/inches?)inches*

inches =

and the coefficient is thus found to be 2592 instead of .

By what amounts to a reversal of the checking process described, it
is often possible to determine the way in which a certain term or terms
should appear in a formula provided the other terms involved are
known. For example, consider the formula for the critical load of the
Euler column. Familiarity with the theory of flexure suggests that this
load will be directly proportional to E and I. It is evident that the
length [ will be involved in some way as yet unknown. It is also
reasonable to assume that the load is independent of the deflection
since both the bending moment and the resisting moment would be
expected to vary in direct proportion to the deflection. We can then
write P = REIl*, where k is a dimensionless constant that must be
found in some other way and the exponent a shows how [ enters the
expression. Writing the equation dimensionally and omitting k, we
have

F = %L‘LLG or L? = L*¢
Equating the exponents of L (as required for homogeneity) we find
a = —2, showing that the original formula should be P = kEI/I?. Note
that the derivation of a formula in this way requires at least a partial
knowledge of the relationship that is to be expressed.

A much more detailed discussion of similitude, modeling, and
dimensional analysis can be found in Chaps. 15 and 8 of Refs. 6 and
7, respectively. Reference 6 includes a section where the effect of
Poisson’s ratio on the stresses in two- and three-dimensional problems
is discussed. Since Poisson’s ratio is dimensionless, it would have to be
the same in model and prototype for perfect modeling and this
generally is not possible. References to work on this problem are
included and will be helpful.
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4.7 Remarks on the Use of Formulas

No calculated value of stress, strength, or deformation can be regarded
as exact. The formulas used are based on certain assumptions as to
properties of materials, regularity of form, and boundary conditions
that are only approximately true, and they are derived by mathema-
tical procedures that often involve further approximations. In general,
therefore, great precision in numerical work is not justified. Each
individual problem requires the exercise of judgment, and it is impos-
sible to lay down rigid rules of procedure; but the following sugges-
tions concerning the use of formulas may be of value.

1. For most cases, calculations giving results to three significant
figures are sufficiently precise. An exception is afforded by any
calculation that involves the algebraic addition of quantities that are
large in comparison with the final result (e.g., some of the formulas for
beams under axial and transverse loading, some of the formulas for
circular rings, and any case of superposition in which the effects of
several loads tend to counteract each other). For such cases more
significant figures should be carried throughout the calculations.

2. In view of uncertainties as to actual conditions, many of the
formulas may appear to be unnecessarily elaborate and include
constants given to more significant figures than is warranted. For
this reason, we may often be inclined to simplify a formula by dropping
unimportant terms, “rounding off” constants, etc. It is sometimes
advantageous to do this, but it is usually better to use the formula
as it stands, bearing in mind that the result is at best only a close
approximation. The only disadvantage of using an allegedly “precise”
formula is the possibility of being misled into thinking that the result
it yields corresponds exactly to a real condition. So far as the time
required for calculation is concerned, little is saved by simplification.

3. When using an unfamiliar formula, we may be uncertain as to the
correctness of the numerical substitutions made and mistrustful of the
result. It is nearly always possible to effect some sort of check by
analogy, superposition, reciprocal deflections, comparison, or merely
by judgment and common sense. Thus the membrane analogy (Sec.
5.4) shows that the torsional stiffness of any irregular section is
greater than that of the largest inscribed circular section and less
than that of the smallest circumscribed section. Superposition shows
that the deflection and bending moment at the center of a beam under
triangular loading (Table 8.1, case 2e) is the same as under an equal
load uniformly distributed. The principle of reciprocal deflections
shows that the stress and deflection at the center of a circular flat
plate under eccentric concentrated load (Table 11.2, case 18) are the
same as for an equal load uniformly distributed along a concentric
circle with radius equal to the eccentricity (case 9a). Comparison
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shows that the critical unit compressive stress is greater for a thin
plate under edge loading than for a strip of that plate regarded as an
Euler column. Common sense and judgment should generally serve to
prevent the acceptance of grossly erroneous calculations.

4. A difficulty frequently encountered is uncertainty as to boundary
conditions—whether a beam or flat plate should be calculated as freely
supported or fixed, whether a load should be assumed uniformly or
otherwise distributed, etc. In any such case it is a good plan to make
bracketing assumptions, i.e., to calculate the desired quantity on the
basis of each of two assumptions representing limits between which
the actual conditions must lie. Thus for a beam with ends having an
unknown degree of fixity, the bending moment at the center cannot be
more than if the ends were freely supported and the bending moments
at the ends cannot be more than if the ends were truly fixed. If so
designed as to be safe for either extreme condition, the beam will be
safe for any intermediate degree of fixity.

5. The stress and deflections predicted by most formulas do not
account for localized effects of the loads. For example, the stresses and
deflections given for a straight, simply-supported beam with a
centered, concentrated lateral force only account for that due to
bending. Additional compressive bearing stresses and deflections
exist depending on the exact nature of the interaction of the applied
and reaction forces with the beam. Normally, the state of stress and
deformation at distances greater than the dimensions of the loaded
regions only depend on the net effect of the localized applied and
reaction forces and are independent of the form of these forces. This is
an application of Saint Venant’s principle (defined in Appendix B).
This principle may not be reliable for thin-walled structures or for
some orthotropic materials.

6. Formulas concerning the validity of which there is a reason for
doubt, especially empirical formulas, should be checked dimensionally.
If such a formula expresses the results of some intermediate condition,
it should be checked for extreme or terminal conditions; thus an
expression for the deflection of a beam carrying a uniform load over
a portion of its length should agree with the corresponding expression
for a fully loaded beam when the loaded portion becomes equal to the
full length and should vanish when the loaded portion becomes zero.
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Chapter

Numerical Methods

The analysis of stress and deformation of the loading of simple
geometric structures can usually be accomplished by closed-form
techniques. As the structures become more complex, the analyst is
forced to approximations of closed-form solutions, experimentation, or
numerical methods. There are a great many numerical techniques
used in engineering applications for which digital computers are very
useful. In the field of structural analysis, the numerical techniques
generally employ a method which discretizes the continuum of the
structural system into a finite collection of points (or nodes) whereby
mathematical relations from elasticity are formed. The most popular
technique used currently is the finite element method (FEM). For this
reason, most of this chapter is dedicated to a general description of the
method. A great abundance of papers and textbooks have been
presented on the finite element method, and a complete listing is
beyond the scope of this book. However, some textbooks and historical
papers are included for introductory purposes.

Other methods, some of which FEM is based upon, include trial
functions via variational methods and weighted residuals, the finite
difference method (FDM), structural analogues, and the boundary
element method (BEM). FDM and BEM will be discussed briefly.

5.1 The Finite Difference Method

In the field of structural analysis, one of the earliest procedures for the
numerical solutions of the governing differential equations of stressed
continuous solid bodies was the finite difference method. In the finite
difference approximation of differential equations, the derivatives in
the equations are replaced by difference quotients of the values of the
dependent variables at discrete mesh points of the domain. After
imposing the appropriate boundary conditions on the structure, the
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discrete equations are solved obtaining the values of the variables at
the mesh points. The technique has many disadvantages, including
inaccuracies of the derivatives of the approximated solution, difficul-
ties in imposing boundary conditions along curved boundaries, diffi-
culties in accurately representing complex geometric domains, and the
inability to utilize non-uniform and non-rectangular meshes.

5.2 The Finite Element Method

The finite element method (FEM) evolved from the use of trial
functions via variational methods and weighted residuals, the finite
difference method, and structural analogues (see Table 1.1 of Ref. 1).
FEM overcomes the difficulties encountered by the finite-differ-
ence method in that the solution of the differential equations of the
structural problem are obtained by utilizing an integral formulation to
generate a system of algebraic equations with continuous piecewise-
smooth (trial) functions that approximate the unknown quantities. A
geometrically complex domain of the structural problem can be
systematically represented by a large, but finite, collection of simpler
subdomains, called finite elements. For structural problems, the
displacement field of each element is approximated by polynomials,
which are interpolated with respect to preselected points (nodes) on,
and possibly within, the element. The polynomials are referred to
as interpolation functions, where variational or weighted residual
methods (e.g. Rayleigh—Ritz, Galerkin, etc.) are applied to determine
the unknown nodal values. Boundary conditions can easily be applied
along curved boundaries, complex geometric domains can be modeled,
and non-uniform and non-rectangular meshes can be employed.

The modern development of FEM began in the 1940s in the field of
structural mechanics with the work of Hrennikoff, McHenry, and
Newmark, who used a lattice of line elements (rods and beams) for
the solution of stresses in continuous solids (see Refs. 2—4). In 1943,
from a 1941 lecture, Courant suggested piecewise-polynomial inter-
polation over triangular subregions as a method to model torsional
problems (see Ref. 5).

With the advent of digital computers in the 1950s, it became
practical for engineers to write and solve the stiffness equations in
matrix form (see Refs. 6-8). A classic paper by Turner, Clough, Martin,
and Topp published in 1956 presented the matrix stiffness equations
for the truss, beam, and other elements (see Ref. 9). The expression
finite element is first attributed to Clough (see Ref. 10).

Since these early beginnings, a great deal of effort has been
expended in the development of FEM in the areas of element formula-
tions and computer implementation of the entire solution process. The
major advances in computer technology includes the rapidly expand-
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ing computer hardware capabilities, efficient and accurate matrix
solver routines, and computer graphics for ease in the preprocessing
stages of model building, including automatic adaptive mesh genera-
tion, and in the postprocessing stages of reviewing the solution results.
A great abundance of literature has been presented on the subject,
including many textbooks. A partial list of some textbooks, introduc-
tory and more comprehensive, is given at the end of this chapter. For a
brief introduction to FEM and modeling techniques, see Chapters 9
and 10, respectively, of Ref. 11.

FEM is ideally suited to digital computers, in which a continuous
elastic structure (continuum) is divided (discretized) into small but
finite well-defined substructures (elements). Using matrices, the
continuous elastic behavior of each element is categorized in terms
of the element’s material and geometric properties, the distribution of
loading (static, dynamic, and thermal) within the element, and the
loads and displacements at the nodes of the element. The element’s
nodes are the fundamental governing entities of the element, since it
is the node where the element connects to other elements, where
elastic properties of the element are established, where boundary
conditions are assigned, and where forces (contact or body) are
ultimately applied. A node possesses degrees of freedom (dof’s).
Degrees of freedom are the translational and rotational motion that
can exist at a node. At most, a node can possess three translational
and three rotational degrees of freedom. Once each element within a
structure is defined locally in matrix form, the elements are then
globally assembled (attached) through their common nodes (dof’s) into
an overall system matrix. Applied loads and boundary conditions are
then specified, and through matrix operations the values of all
unknown displacement degrees of freedom are determined. Once
this is done, it i1s a simple matter to use these displacements to
determine strains and stresses through the constitutive equations of
elasticity.

Many geometric shapes of elements are used in finite element
analysis for specific applications. The various elements used in a
general-purpose commercial FEM software code constitute what is
referred to as the element library of the code. Elements can be placed
in the following categories: line elements, surface elements, solid
elements, and special purpose elements. Table 5.1 provides some, but
not all, of the types of elements available for finite element analysis.

Since FEM is a numerical technique that discretizes the domain of a
continuous structure, errors are inevitable. These errors are:

1. Computational errors. These are due to round-off errors from
the computer floating-point calculations and the formulations of the
numerical integration schemes that are employed. Most commercial
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TABLE 5.1 Sample finite element library

[cHAP. 5

nodes

Element Number
type Name Shape of nodes Applications
Line Truss -— 00— 2 Pin-ended bar in tension or
compression
Beam q P 2 Bending
Frame 2 Axial, torsional, and bending.
«-_Cf (A With or without load stiffening
Surface 4 Noded 4 Plane stress or strain,
quadri- D axisymmetry, shear panel, thin
lateral flat plate in bending
8 Noded 8 Plane stress or strain, thin
quadri- D plate or shell in bending
lateral
3 Noded 3 Plane stress or strain,
triangular A axisymmetry, shear panel, thin
flat plate in bending. Prefer
quad where possible. Used for
transitions of quads
6 Noded 6 Plane stress or strain,
triangular ﬁ; axisymmetry, thin plate or shell
in bending. Prefer quad where
possible. Used for transitions of
quads
Solidf 8 Noded 8 Solid, thick plate (using mid-
hexagonal side nodes)
(brick)
6 Noded 6 Solid, thick plate (using mid-
Pentagonal A side nodes). Used for
(wedge) B transitions
4 Noded g 4 Solid, thick plate (using mid-
tetrahedron A side nodes). Used for
(tet) o : transitions
Special Gap o—| |- 2 Free displacement for
purpose prescribed compressive gap
Hook (—") 2 Free displacement for
prescribed extension gap
Rigid b%< Variable Rigid constraints between

+ These elements are also available with mid-size nodes.

finite element codes concentrate on reducing these errors and conse-
quently the analyst generally is concerned with discretization factors.

2. Discretization errors.

The geometry and the displacement distri-

bution of a true structure vary continuously. Using a finite number of
elements to model the structure introduces errors in matching geo-
metry and the displacement distribution due to the inherent limita-
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tions of the elements. For example, consider the thin plate structure
shown in Fig. 5.1(a). Figure 5.1(b) shows a finite element model of the
structure where three-noded, plane stress, triangular elements are
employed. The plane stress triangular element has a flaw, which
creates two basic problems. The element has straight sides, which
remain straight after deformation. The strains throughout the plane
stress triangular element are constant. The first problem, a geometric
one, is the modeling of curved edges. Note that the surface of the
model with a large curvature appears reasonably modeled, whereas
the surface of the hole is very poorly modeled. The second problem,
which is much more severe, is that the strains in various regions of the
actual structure are changing rapidly, and the constant strain element
will only provide an approximation of the average strain at the center
of the element. So, in a nutshell, the results predicted using this model
will be relatively poor. The results can be improved by significantly
increasing the number of elements used (increased mesh density).
Alternatively, using a better element, such as an eight-noded quad-
rilateral, which is more suited to the application, will provide the
improved results. Due to higher-order interpolation functions, the
eight-noded quadrilateral element can model curved edges and
provides for a higher-order function for the strain distribution.

5.3 The Boundary Element Method

The boundary element method (BEM), developed more recently than
FEM, transforms the governing differential equations and boundary
conditions into integral equations, which are converted to contain

L

(a) Structural part

, L

(b) Finite element
model representation

N

Figure 5.1 Discretization of a continuous structure.
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surface integrals (see Refs. 12-16). Because only surface integrals
remain, surface elements are used to perform the required integra-
tions. This is the main advantage that BEM has over FEM, which
requires three-dimensional elements throughout the entire volumetric
domain. Boundary elements for a general three-dimensional solid are
quadrilateral or triangular surface elements covering the surface area
of the component. For two-dimensional and axisymmetric problems,
only line elements tracing the outline of the component are necessary.

Although BEM offers some modeling advantages over FEM, the
latter can analyze more types of engineering applications and is much
more firmly entrenched in today’s computer-aided-design (CAD) envir-
onment. Development of engineering applications of BEM are proceed-
ing however, and more will be seen of the method in the future.
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Chapter

Experimental Methods

A structural member may be of such a form or may be loaded in such a
way that the direct use of formulas for the calculation of stresses and
strain produced in it is ineffective. One then must resort either to
numerical techniques such as the finite element method or to experi-
mental methods. Experimental methods can be applied to the actual
member in some cases, or to a model thereof. Which choice is made
depends upon the results desired, the accuracy needed, the practical-
ity of size, and the cost associated with the experimental method.
There has been a tremendous increase in the use of numerical
methods over the years, but the use of experimental methods is still
very effective. Many investigations make use of both numerical and
experimental results to cross-feed information from one to the other
for increased accuracy and cost effectiveness (see Chap. 17 in Ref. 27).
Some of the more important experimental methods are described
briefly in Sec. 6.1 of this chapter. Of these methods, the most popular
method employs electrical resistance strain gages, and is described in
more detail in Sec. 6.2. Only textbooks, reference books, handbooks,
and lists of journals are referenced, since there are several organiza-
tions (see Refs. 1, 25, and 26) devoted either partially or totally to
experimental methods, and a reasonable listing of papers would be
excessive and soon out of date. The most useful reference for users
wanting information on experimental methods is Ref. 27, the “Hand-
book on Experimental Mechanics,” edited by A. S. Kobayashi and
dedicated to the late Dr. M. Hetenyi, who edited Ref. 2. Reference 27
contains 22 chapters contributed by 27 authors under the sponsorship
of the Society for Experimental Mechanics. Experimental methods
applied specifically to the field of fracture mechanics are treated
extensively in Refs. 13, 15, 17, 19, 22, and Chaps. 14 and 20 of Ref. 27.
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6.1 Measurement Techniques

The determination of stresses produced under a given loading of a
structural system by means of experimental techniques are based on
the measurement of deflections. Since strain is directly related to (the
rate of change of) deflection, it is common practice to say that the
measurements made are that of strain. Stresses are then determined
implicitly using the stress—strain relations. Deflections in a structural
system can be measured through changes in resistance, capacitance,
or inductance of electrical elements; optical effects of interference,
diffraction, or refraction; or thermal emissions. Measurement is
comparatively easy when the stress is fairly uniform over a consider-
able length of the part in question, but becomes more difficult when
the stress is localized or varies greatly with position. Short gage
lengths and great precision require stable gage elements and stable
electronic amplification if used. If dynamic strains are to be measured,
a suitable high-frequency response is also necessary. In an isotropic
material undergoing uniaxial stress, one normal strain measurement
is all that is necessary. On a free surface under biaxial stress condi-
tions, two measured orthogonal normal strains will provide the stres-
ses in the same directions of the measured strains. On a free surface
under a general state of plane stress, three measured normal strains
in different directions will allow the determination of the stresses in
directions at that position (see Sec. 6.2). At a free edge in a member
that is thin perpendicular to the free edge, the state of stress is
uniaxial and, as stated earlier, can be determined from one normal
strain tangent to the edge. Another tactic might be to measure the
change in thickness or the through-thickness strain at the edge. This
might be more practical, such as measuring the strain at the bottom
of a groove in a thin plate. For example, assume an orthogonal xyz
coordinate system where x is parallel to the edge and z is in the
direction of the thickness at the edge. Considering a linear, isotropic
material, from Hooke’s law, ¢, = —vo,/E. Thus, o, = —E¢,/v.

The following descriptions provide many of the successful instru-
ments and techniques used for strain measurement. They are listed
in a general order of mechanical, electrical, optical, and thermal
methods. Optical and thermal techniques have been greatly enhanced
by advances in digital image processing technology for computers (see
Chap. 21 of Ref. 27).

1. Mechanical measurement. A direct measurement of strain can be
made with an Invar tape over a gage length of several meters or with a
pair of dividers over a reasonable fraction of a meter. For shorter gage
lengths, mechanical amplification can be used, but friction is a
problem and vibration can make them difficult to mount and to
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read. Optical magnification using mirrors still requires mechanical
levers or rollers and is an improvement but still not satisfactory for
most applications. In a laboratory setting, however, such mechanical
and optical magnification can be used successfully. See Ref. 3 for more
detailed descriptions. A scratch gage uses scratches on a polished
target to determine strain amplitudes, and while the scratches are in
general not strictly related to time, they are usually related to events
in such a way as to be extremely useful in measuring some dynamic
events. The scratched target is viewed with a microscope to obtain
peak-to-peak strains per event, and a zero strain line can also be
scratched on the target if desired (Ref. 3). The use of lasers and/or
optical telescopes with electronic detectors to evaluate the motion of
fiduciary marks on distant structures makes remote-displacement
measurements possible, and when two such detectors are used, strains
can be measured. While the technique is valuable when needed for
remote measurement, generally for environmental reasons, it is an
expensive technique for obtaining the strain at a single location.

2. Brittle coatings. Surface coatings formulated to crack at strain
levels well within the elastic limit of most structural materials provide
a means of locating points of maximum strain and the directions of
principal strains. Under well-controlled environmental conditions and
with suitable calibration, such coatings can yield quantitative results
(Refs. 2, 3, 7, 9, 20, 21, and 27). This technique, however, is not
universally applicable, since the coatings may not be readily available
due to environmental problems with the coating materials.

3. Electrical strain and displacement gages. The evolution of electrical
gages has led to a variety of configurations where changes in resis-
tance, capacitance, or inductance can be related to strain and displace-
ment with proper instrumentation (Refs. 2-5, 20, 21, 23, 24, and 27).

(a) Resistance strain gage. For the electrical resistance strain
gages, the gage lengths vary from less than 0.01in to several inches.
The gage grid material can be metallic or a semiconductor. The gages
can be obtained in alloys that are designed to provide minimum output
due to temperature strains alone and comparatively large outputs due
to stress-induced strains. Metallic bonded-foil gages are manufactured
by a photoetching process that allows for a wide range of configura-
tions of the grid(s). The semiconductor strain gages provide the largest
resistance change for a given strain, but are generally very sensitive to
temperature changes. They are used in transducers where proper
design can provide temperature compensation The use of electrical
resistance strain gages for stress analysis purposes constitute the
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majority of experimental applications. For this reason, Sec. 6.2
provides further information on the use of these gages.

(b) Capacitance strain gage. Capacitance strain gages are larger
and more massive than bonded electric resistance strain gages and are
more widely used for applications beyond the upper temperature
limits of the bonded resistance strain gages.

(¢) Inductance strain gages. The change in air gap in a magnetic
circuit can create a large change in inductance depending upon the
design of the rest of the magnetic circuit. The large change in
inductance is accompanied by a large change in force across the gap,
and so the very sensitive inductance strain gages can be used only on
more massive structures. They have been used as overload indicators
on presses with no electronic amplification necessary. The linear
relationship between core motion and output voltage of a linear
differential transformer makes possible accurate measurement of
displacements over a wide range of gage lengths and under a wide
variety of conditions. The use of displacement data as input for work in
experimental modal analysis is discussed in Chap. 16 of Ref. 27 and in
many of the technical papers in Ref. 24.

4. Interferometric strain gages. Whole-field interferometric techniques
will be discussed later, but a simple strain gage with a short length
and high sensitivity can be created by several methods. In one, a
diffraction grating is deposited at the desired location and in the
desired direction and the change in grating pitch under strain is
measured. With a metallic grid, these strain gages can be used at
elevated temperatures. Another method, also useable at high tempera-
tures, makes use of the interference of light reflected from the inclined
surfaces of two very closely spaced indentations in the surface of a
metallic specimen. Both of these methods are discussed and referenced
in Ref. 27.

5. Photoelastic analysis. When a beam of polarized light passes
through an elastically stressed transparent isotropic material, the
beam may be treated as having been decomposed into two rays
polarized in the planes of the principal stresses in the material. In
birefringent materials the indexes of refraction of the material
encountered by these two rays will depend upon the principal stresses.
Therefore, interference patterns will develop which are proportional to
the differences in the principal stresses.

(@) Two-dimensional analysis. With suitable optical elements—
polarizers and wave plates of specific relative retardation—both the
principal stress differences and the directions of principal stresses
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may be determined at every point in a two-dimensional specimen
(Refs. 2-6, 10, 14, 18, 27, and 28). Many suitable photoelastic plastics
are available. The material properties that must be considered are
transparency, sensitivity (relative index of refraction change with
stress), optical and mechanical creep, modulus of elasticity, ease of
machining, cost, and stability (freedom from stresses developing with
time). Materials with appropriate creep properties may be used for
photoplasticity studies (Ref. 16).

(b) Three-dimensional analysis. Several photoelastic techniques
are used to determine stresses in three-dimensional specimens. If
information is desired at a single point only, the optical polarizers,
wave plates, and photoelastically sensitive material can be embedded
in a transparent model (Ref. 2) and two-dimensional techniques used.
A modification of this technique, stress freezing, is possible in some
biphase materials. By heating, loading, cooling, and unloading, it is
possible to lock permanently into the specimen, on a molecular level,
strains proportional to those present under load. Since equilibrium
exists at a molecular level, the specimen can be cut into two-
dimensional slices and all secondary principal stress differences deter-
mined. The secondary principal stresses at a point are defined as the
largest and smallest normal stresses in the plane of the slice; these in
general will not correspond with the principal stresses at that same
point in the three-dimensional structure. If desired, the specimen can
be cut into cubes and the three principal stress differences deter-
mined. The individual principal stresses at a given point cannot be
determined from photoelastic data taken at that point alone since the
addition of a hydrostatic stress to any cube of material would not be
revealed by differences in the indexes of refraction. Mathematical
integration techniques, which start at a point where the hydrostatic
stress component is known, can be used with photoelastic data to
determine all individual principal stresses.

A third method, scattered light photoelasticity, uses a laser beam
of intense monochromatic polarized light or a similar thin sheet of
light passing through photoelastically sensitive transparent models
that have the additional property of being able to scatter uniformly a
small portion of the light from any point on the beam or sheet. The
same general restrictions apply to this analysis as applied to the
stress-frozen three-dimensional analysis except that the specimen
does not have to be cut. However, the amount of light available for
analysis is much less, the specimen must be immersed in a fluid with
an index of refraction that very closely matches that of the specimen,
and in general the data are much more difficult to analyze.

(¢) Photoelastic coating. Photoelastic coatings have been sprayed,
bonded in the form of thin sheets, or cast directly in place on the
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surface of models or structures to determine the two-dimensional
surface strains. The surface is made reflective before bonding the
plastics in place so the effective thickness of the photoelastic plastic is
doubled and all two-dimensional techniques can be applied with
suitable instrumentation.

6. Moiré techniques. All moiré techniques can be explained by optical
interference, but the course-grid techniques can also be evaluated on
the basis of obstructive or mechanical interference.

(@) Geometric moiré. Geometric moiré techniques use grids of
alternate equally wide bands of relatively transparent or light-colored
material and opaque or dark-colored material in order to observe the
relative motion of two such grids. The most common technique (Refs.
2, 5, 8, and 11) uses an alternate transparent and opaque grid to
produce photographically a matching grid on the flat surface of the
specimen. Then the full-field relative motion is observed between the
reproduction and the original when the specimen is loaded. Similarly,
the original may be used with a projector to produce the photographic
image on the specimen and then produce interference with the
projected image after loading. These methods can use ordinary
white light, and the interference is due merely to geometric blocking
of the light as it passes through or is reflected from the grids.

Another similar technique, shadow moiré, produces interference
patterns due to motion of the specimen at right angles to its surface
between an alternately transparent and opaque grid and the shadow
of the grid on the specimen.

(b) Moiré interferometry. Interferometry provides a means of
producing both specimen gratings and reference gratings. Virtual
reference gratings of more than 100,000 lines per inch have been
utilized. Moiré interferometry provides contour maps of in-plane
displacements, and, with the fine pitches attainable, differentiation
to obtain strains from this experimental process is comparable to
that used in the finite-element method of numerical analysis where
displacement fields are generally the initial output. See Chap. 7 in
Ref. 27.

7. Holographic and laser speckle interferometry. The rapid evolution of
holographic and laser speckle interferometry is related to the devel-
opment of high-power lasers and to the development of digital compu-
ter enhancement of the resulting images. Various techniques are used
to measure the several displacement components of diffuse reflecting
surfaces. Details are beyond the scope of this book and are best
reviewed in Chap. 8 of Ref. 27.
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8. Shadow optical method of caustics. The very simple images created
by the reflection or refraction of light from the surface contours of
high-gradient stress concentrations such as those at the tips of cracks
make the use of the shadow optical method of caustics very useful for
dynamic studies of crack growth or arrest. Chapter 9 of Ref. 27 gives a
detailed discussion of this technique and a comparison to photoelastic
studies for the same loadings.

9. X-ray diffraction. X-ray diffraction makes possible the determination
of changes in interatomic distance and thus the measurement of
elastic strain. The method has the particular advantages that it can
be used at points of high stress concentration and to determine
residual stresses without cutting the object of investigation.

10. Stress-pattern analysis by thermal emission. This technique uses
computer enhancement of infrared detection of very small tempera-
ture changes in order to produce digital output related to stress at a
point on the surface of a structure, a stress graph along a line on the
surface, or a full-field isopachic stress map of the surface. Under cyclic
loading, at a frequency high enough to assure that any heat transfer
due to stress gradients is insignificant, the thermoelastic effect
produces a temperature change proportional to the change in the
sum of the principal stresses. Although calibration corrections must
be made for use at widely differing ambient temperatures, the tech-
nique works over a wide range of temperatures and on a variety of
structural materials including metals, wood, concrete, and plain and
reinforced plastics. Tests have been made on some metals at tempera-
tures above 700°C. Chapter 14 of Ref. 27 describes and surveys work
on this technique.

6.2 Electrical Resistance Strain Gages

General. The use of electrical resistance strain gages is probably the
most common method of measurement in experimental stress analy-
sis. In addition, strain gage technology is quite important in the design
of transducer instrumentation for the measurement of force, torque,
pressure, etc.

Electrical resistance strain gages are based on the principal that the
resistance R of a conductor changes as a function of normal strain e.
The resistance of a conductor can be expressed as

R= p% (6.2-1)

where p is the resistivity of the conductor (chms-length), and L and A
are the length and cross-sectional area of the conductor respectively. It
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can be shown that a change in R due to changes in p, L and A is given
by

AR A
= (420 +—p (6.2-2)

where v is Poisson’s ratio, and assuming small strain on the conductor,
¢, which i1s given by AL/L. If the change in the resistance of the
conductor is considered to be only due to the applied strain, then
Eq. (6.2-2) can be written as

% =S¢ (6.2-3)
where
S,=1+2v+2PF p/p (6.2-4)

S, is the sensitivity of the conductor to strain’. The first two terms
come directly from changes in dimension of the conductor where for
most metals the quantity 1 + 2v varies from 1.4 to 1.7. The last term in
Eq. (6.2-4) is called the change in specific resistance relative to strain,
and for some metals can account for much of the sensitivity to strain.
The most commonly used material for strain gages is a copper—nickel
alloy called Constantan, which has a strain sensitivity of 2.1. Other
alloys used for strain gage applications are modified Karma, Nichrome
V, and Isoelastic, which have sensitivities of 2.0, 2.2, and 3.6, respec-
tively. The primary advantages of Constantan are:

1. The strain sensitivity S, is linear over a wide range of strain and
does not change significantly as the material goes plastic.

2. The thermal stability of the material is excellent and is not greatly
influenced by temperature changes when used on common struc-
tural materials.

3. The metallurgical properties of Constantan are such that they can
be processed to minimize the error induced due to the mismatch in
the thermal expansion coefficients of the gage and the structure to
which it is adhered over a wide range of temperature.

T When using a commercial strain indicator, one must enter the sensitivity provided by
the gage manufacturer. This sensitivity is referred to the gage factor of the gage, S,. This
is defined slightly differently than S,, and will be discussed shortly.
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Isoelastic, with a higher sensitivity, is used for dynamic applica-
tions. Semiconductor gages are also available, and can reach sensitiv-
ities as high as 175. However, care must be exercised with respect to
the poor thermal stability of these piezoresistive gages.

Most gages have a nominal resistance of 120o0hm or 350ohm.
Considering a 120-ohm Constantan gage, to obtain a measurement
of strain within an accuracy of +5 p, it would be necessary to measure
a change in resistance within +1.2 mohm. To measure these small
changes in resistance accurately, commercial versions of the Wheat-
stone bridge, called strain gage indicators, are available.

Metallic alloy electrical resistance strain gages used in experimental
stress analysis come in two basic types: bonded-wire and bonded-foil
(see Fig. 6.1). Today, bonded-foil gages are by far the more prevalent.
The resistivity of Constantan is approximately 49 yohm - cm. Thus if a
strain gage is to be fabricated using a wire 0.025 mm in diameter and
is to have a resistance of 120o0hm, the gage would require a wire
approximately 120 mm long. To make the gage more compact over a
shorter active length, the gage is constructed with many loops as
shown in Fig. 6.1. Typical commercially available bonded-foil gage
lengths vary from 0.20mm (0.008in) to 101.6 mm (4.000in). For
normal applications, bonded-foil gages either come mounted on a
very thin polyimide film carrier (backing) or are encapsulated between
two thin films of polyimide. Other carrier materials are available for
special cases such as high-temperature applications.

The most widely used adhesive for bonding a strain gage to a test
structure 1is the pressure-curing methyl 2-cyanoacrylate cement.
Other adhesives include epoxy, polyester, and ceramic cements.

Wire Foil

Figure 6.1 Forms of electrical resistance strain gages.
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Extreme care must be exercised when installing a gage, since a good
bond and an electrically insulated gage are necessary. The installation
procedures can be obtained from technical instruction bulletins
supplied by the manufacturer. Once a gage is correctly mounted,
wired, resistance tested for continuity and insulation from the test
structure, and waterproofed (if appropriate), it is ready for instrumen-
tation and testing.

Strain Gage Configurations. In both wire or foil gages, many config-
urations and sizes are available. Strain gages come in many forms for
transducer or stress-analysis applications. The fundamental config-
urations for stress-analysis work are shown in Fig. 6.2.

A strain gage is mounted on a free surface, which in general, is in a
state of plane stress where the state of stress with regards to a specific
xy rectangular coordinate system can be unknown up to the three
stresses, o,, g,, and t,,. Thus, if the state of stress is completely
unknown on a free surface it 1s necessary to use a three-element
rectangular or delta rosette since each gage element provides only one
piece of information, the indicated normal strain at the point in the
direction of the gage.

To understand how the rosettes are used, consider the three-element
rectangular rosette shown in Fig. 6.3(a), which provides normal strain
components in three directions spaced at angles of 45°.

If an xy coordinate system is assumed to coincide with gages A
and C, then ¢, = ¢4 and ¢, = ¢¢c. Gage B in conjunction with gages A
and C pr0v1des 1nformat10n necessary to determlne 71y Recalling the
first of Eqs. (2.4-1), &, = ¢, cos? 0+e, sin® 0+ 7y, cos 0 sin 0, with
0 = 45°

ep =&, cos® 45° + &y sin® 45° + 74y cOs 45 sin 45°

= %(‘cx + &y + ny) = %(‘OA +éc+ yxy)
Solving for y,, yields
Yy = 28B —és—¢&c

Once ¢,, ¢,, and 7,, are known, Hooke’s law [Egs. (2.2- 5) and (2.2-6a)]
can be used to determine the stresses o, , Oy , and Tyy
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r 1SR4 = o

O T | I.n.l - o

(a) Uniaxial (b) Two-element, (c) Two-element,
90° planar rosette 90° planar (shear) rosette

S
<>

1

2
L v .J
(d) Three-element, 45° (e) Three element, (f) Three-element, 60°
planar rectangular rosette 60° delta rosette stacked delta rosette

Figure 6.2 Examples of commonly used strain gage configurations. (Source: Figures
a—c courtesy of BLH Electronics, Inc., Canton, MA. Figures d—f courtesy of Micro-
Measurements Division of Measurements Group, Inc., Raleigh, NC.) Note: The letters
SR-4 on the BLH gages are in honor of E. E. Simmons and Arthur C. Ruge and their two
assistants (a total of four individuals), who, in 1937-1938, independently produced the
first bonded-wire resistance strain gage.

The relationship between ¢4, ¢g, and ¢- can be seen from Mohr’s
circle of strain corresponding to the strain state at the point under
investigation [see Fig. 6.3(b)].

The following example shows how to use the above equations for an
analysis as well as how to use the equations provided in Table 6.1.

EXAMPLE

A three-element rectangular rosette strain gage is installed on a steel speci-

men. For a particular state of loading of the structure the strain gage readings
il

are

6y =200,  e5=900p &= 1000 g

¥ The strain gage readings are typically corrected due to the effect of transverse
strains on each gage. This will be discussed shortly.
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> X
- €4 =€, >
S— Ep—
900/ RA
¢ 2 > €
T
2.y
O e ]
€C= 8‘,
e
2 \ (b) Mohr's circle for strain

Figure 6.3 Three-element strain gage rosette.
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Determine the values and orientations of the principal stresses at the point.
Let E = 200 GPa and v = 0.285.

Solution. From above,
&, =4 = 200 g, &, = &c = 1000 p
Ty = 265 — &4 — &¢ = (2)(900) — 200 — 1000 = 600 u

The stresses can be determined using Egs. (2.2-5) and (2.2-6a):

Oy = m(gx + ve,)

200(10°) B . ;
= W[QOO + (0.285)(1000)](107°) = 105.58(10°) N/m* = 105.58 MPa

E
o, = m(ay + ve,)

200(10°) -6 6 2
= ————_[1000 + (0.285)(200)(10~¢) = 230.09(10%) N/m* = 230.09 MPa
1 —(0.285)
E 200(10°)

- v = -6y _ 6 2 _
Ty = 2T+ ) Vxy 21+ 0.285) 600(107°) = 46.69(10°) N/m” = 46.69 MPa

Figure 6.4(a) shows the stresses determined in the x and y directions as
related to the gage orientation shown in Fig. 6.3(a).
For the principal stress axes, we use Eq. (2.3-23) given by

o,=1 |:(ax +0,)£,/(0, + ay)z + 4132@]

! [105.58 +230.09 + \/ (105.58 + 230.09) + 4(46.67)2]

245.65, 90.01 MPa

For the orientation of the principal stress axes, using the first of Egs. (2.3-21)

gives
_1[%p — Ox
0, =tan™' <pr—> (@)
xy
For the principal stress, g; = 245.65 MPa, Eq. (a) gives

0, — t31][1,1(245.65 - 105.58) e

P 46.69

For the other principal stress, g4 = 90.01 MPa

L= tan_1(90.01 — 105.58) — _18.4°

0 46.69

D

Recalling that 6, is defined positive in the counterclockwise direction, the
principal stress state at the point relative to the xy axes of the strain gage
rosette correspond to that shown in Fig. 6.4(b).
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i i
245.65 MPa
230.09 MPa
46.69 MPa ] 1.6
105 58 MPa
1840

/ 90.01 MPa

(@) Stresses in the .x and y directions (b) Principal stresses

Figure 6.4 (a) Stresses in the x and y directions. (b) Principal stresses.

Using the equations given in Table 6.1 at the end of the chapter,

6a+&c 200+ 1000
1-v  1-0285

= 1678.3

1
1—+v\/(3A —0)* + (265 — 64 — £0)°

1 9 2
=———1/(200 — 1000 2(900) — 200 — 1000]* = 778.2
1+0285J( ) + [2(900) ] p

Thus,

~200(10)°
2

Op1 = (1678.3 + 778.2) = 245.65 MPa

200(10)°

G = (1678.3 — 778.2) = 90.01 MPa

The principal angle is

= % tan~! (2(900) — 200 1000) _1 tan’l(ﬂ) = %(143.13°) =716

0 200 — 1000 2 —800

p

counterclockwise from the x axis (A gage) to ¢,,; = 245.65 MPa. T Note that this
agrees with Fig. 6.4(b).

T When calculating 0,, do not change the signs of the numerator and denominator in
the equation. The tan~! is defined from 0° to 360°. For example, tan~!(4/4) is in the
range 0°-90°, tan~!(+/—) is in the range 90°-180°, tan~'(—/—) is in the range
180°-270°, and tan~'(—/+) is in the range 270°-360°. Using this definition for 0,, the
calculation will yield the counterclockwise angle from the x axis to ¢,,;, the greater of the
two principal stresses in the plane of the gages.
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Strain Gage Corrections. There are many types of corrections that may
be necessary to obtain accurate strain gage results (see Refs. 27 and
28). Two fundamental corrections that are necessary correct the
indicated strain errors due to strains on the specimen perpendicular
(transverse) to the longitudinal axis of the gage and changes in
temperature of the gage installation. With each strain gage, the
manufacturer provides much information on the performance of the
gage, such as its sensitivity to longitudinal and transverse strain and
how the sensitivity of the gage behaves relative to temperature
changes.

(b) Transverse sensitivity corrections. The strain sensitivity of a
single straight uniform length of conductor in a uniform uniaxial
strain field ¢ in the longitudinal direction of the conductor is given
by Eq. (6.2-3), which is S, = (AR/R)/¢. In a general strain field, there
will be strains perpendicular to the longitudinal axis of the conductor
(transverse strains). Due to the width of the conductor elements and
the geometric configuration of the conductor in the gage pattern, the
transverse strains will also effect a change in resistance in the
conductor. This is not desirable, since only the effect of the strain in
the direction of the gage length is being sought.

To further complicate things, the sensitivity of the strain gage
provided by the gage manufacturer is not based on a uniaxial strain
field, but that of a uniaxial siress field in a tensile test specimen. For a
uniaxial stress field let the axial and transverse strains be ¢, and ¢,
respectively. The sensitivity provided by the gage manufacturer, called
the gage factor S,, is defined as S, = (AR/R)¢,, where under a uniaxial
stress field, ¢, = —vg¢,. Thus

A
fR = Sgéq with & = —Vo&q, (6.2-5)

The term v, is Poisson’s ratio of the material on which the manufac-
turer’s gage factor was measured, and is normally taken to be 0.285. If
the gage i1s used under conditions where the transverse strain is
& = —Ve,, then the equation AR/R = S,¢, would yield exact results.
If ¢ # —vge,, then some error will occur. This error depends on the
sensitivity of the gage to transverse strain and the deviation of the
ratio of ¢/e, from —vy,. The strain gage manufacturer generally
supplies a transverse sensitivity coefficient, K,, defined as S,/S,,
where S, is the transverse sensitivity factor. One cannot correct the
indicated strain from a single strain reading. Thus it is necessary to
have multiple strain readings from that of a strain gage rosette. Table
6.2 at the end of the chapter gives equations for the corrected strain
values of the three most widely used strain gage rosettes. Corrected
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strain readings are given by ¢, whereas uncorrected strains from the
strain gage indicator are given by &.

EXAMPLE

In the previous example the indicated strains are &4 = 200 u, &5 = 900 p, and
gc = 1000 p. Determine the principal stresses and directions if the transverse
sensitivity coefficient of the gages are K4 = K, = 0.05 and K,z = 0.06.

Solution. From Table 6.2,
(1 = voKia)es — Kin(1 — voK0)ec

s 1- KK
_[1— (0.285)(0.05)](200) — (0.05)[1 — (0.285)(0.05)}(1000)
= 1—(0.05)(0.05)
— 148.23 1
R K, . .
(1 —voKip)ep — ﬁ[(l —voKi)(1 — K;0)eq + (1 —voKyo)(1 — Ky 0)ec]
SB — tADMC
1-Kp
0.06
_ ([1 ~(0.285)(0.06)(900) — 7 — s
x {[1 — (0.285)(0.05)][1 — 0.05)](200) + [1 — (0.285)(0.05)][1 — 0.05](1000)}>
x (1 —0.08)7"
—869.17 i
and

_(d- voKic)ec — Kio(1 — voKip)ey
1-KisKic
[1 — (0.285)(0.05)](1000) — (0.05)[1 — (0.285)(0.05)](200)
- 1— (0.05)(0.05)

éc

—=978.34

From Table 6.1,}
eA+ec  148.23+978.34

- = 1575.62
1—v 1-0.285 H
1
Ty \/(SA —0)? + (265 — &4 — £0)°
1 2 2
=~ /(14823 — 978.34)? 4+ [2(869.17) — 148.23 — 978.34]% = 802.48
— oV Y2+ [2(869.17) ] u

+ Note that if v for the specimen was different from v, = 0.285, it would be used in the
equations of Table 6.1 but not for Table 6.2.
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and
200(10)°
Oy = #(1575.62 + 802.48)(107%) = 237.8(10°) N/m? = 237.81 MPa
200(10)°
Tpy = w(lms.ﬁz — 802.48)(107%) = 90.01(10°) N/m? = 77.31 MPa
g L a1 (2(869.17) —148.23 —978.34\ 1 (61177
P 148.23 — 978.34 T2 —830.11

= %(143.61”) =718

The principal stress element is shown in Fig. 6.5 relative to the xy coordinate
system of the gage rosette as shown in Fig. 6.3(a).

(b) Corrections due to temperature changes. Temperature changes on
an installed strain gage cause a change in resistance, which is due to a
mismatch in the thermal expansion coefficients of the gage and the
specimen, a change in the resistivity of the gage material, and a
change in the gage factor, S,. This effect can be compensated for by
two different methods. The first method of temperature compensation
is achieved using an additional compensating gage on an adjacent arm
of the Wheatstone bridge circuit. This compensating gage must be
identical to the active gage, mounted on the same material as the
active gage, and undergoing an identical temperature change as that
of the active gage.

The second method involves calibration of the gage relative to
temperature changes. The gage can be manufactured and calibrated
for the application on a specific specimen material. The metallurgical
properties of alloys such as Constantan and modified Karma can be
processed to minimize the effect of temperature change over a limited
range of temperatures, somewhat centered about room temperature.
Gages processed in this manner are -called self-temperature-
compensated strain gages. An example of the characteristics of a

3
? 237.81 MPa

~_ / i713°
X

18.2°
/ 77.31 MPa

Figure 6.5 Principal stress element corrected for transverse sensitivity.
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BLH self-temperature-compensated gage specifically processed for use
on a low-carbon steel is shown in Fig. 6.6. Note that the apparent
strain is zero at 22°C and 45°C and approximately zero in the vicinity
of these temperatures. For temperatures beyond this region, compen-
sation can be achieved by monitoring the temperature at the strain
gage site. Then, using either the curve from the data sheet or the fitted
polynomial equation, the strain readings can be corrected numerically.
Note, however, that the curve and the polynomial equation given on
the data sheet are based on a gage factor of 2.0. If corrections are
anticipated, the gage factor adjustment of the strain indicator should
be set to 2.0. An example that demonstrates this correction is given at
the end of this section.

The gage factor variation with temperature is also presented in the
data sheet of Fig. 6.6. If the strain gage indicator is initially set at
(Sg);» the actual gage factor at temperature 7 is (S,)7, and the
indicator registers a strain measurement of &,.,qing, the corrected
strain is

Eactual = S 8I‘eading ( (e )
( g)T
BLH Electronics - Sensor Quality Control A158-31B-IL-S6
Gage Family: FAE, FAB
Temperature Induced Apparent Strain Specimen: 1018 Steel
50 . . +1.75%
0} - 1.50%
1 i

/ ; 711.25%
c
E 11.00% .2
E ®
3 | =
= ] £0.75% @
£ | >
2 L0.50% 5
2 | o B
g S R O 10.25% L
- (]
S 0.00% &
2 (O]

.............................................................. +-0.25%

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, £-0.50%

; ottt —+--0.75%

50 100 150 200
Temperature (°C)
—— Apparent Strain — Gage Factor Variation
~Apparent Strain = 48.85 +3.86 T - 7.85E-02 T2 + 4.05E-04 T° - 5.28E-07 T4 04/24/97

Figure 6.6 Strain gage temperature characteristsics. (Source: Data sheet courtesy BLH
Electronics, Inc., Canton, MA.)
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where

AS,(%)

(Sg)r = <1 + W) (Sg); (6.2-7)

and AS,(%) being the percent variation in gage factor given in Fig. 6.6.
If a simultaneous correction for apparent strain and gage factor
variation is necessary, the corrected strain is given by

(Sy);
€actual = ﬁ ('greading - 8apparent) (6.2-8)
8

EXAMPLE

A strain gage with the characteristics of Fig. 6.6 has a room-temperature gage
factor of 2.1 and is mounted on a 1018 steel specimen. A strain measurement of
—1800 u is recorded during the test when the temperature is 150°C. Deter-
mine the value of actual test strain if:

(a) the gage is in a half-bridge circuit with a dummy temperature compensat-
ing gage and prior to testing, the indicator is zeroed with the gage factor set
at 2.1.

(b) the gage is the only gage in a quarter-bridge circuit and prior to testing,
the indicator is zeroed with the gage factor set at 2.0.

Solution. From Fig. 6.6, the gage factor variation at 150°C is
ASg(%) = 1.18%. Thus, from Eq. (6.2-7), the gage factor at the test tempera-
ture is

1.13

(a) Since in this part, a dummy gage is present that cancels the apparent
strain, the only correction that is necessary is due to the change in the gage
factor. From Eq. (6.2-6),

2.1

€actual = (m)(—1800) =—-1780 u

which we see is a minor correction.

(b) In this part, we must use Eq. (6.2-8). Using the equation given in Fig. 6.6,
the apparent strain at the test temperature is

Eapparent = — 48.85 + (3.86)(150) — (7.85E-02)(150)°
+ (4.05E-04)(150)* — (5.28E-07)(150)* = —136.5
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Substituting this into Eq. (6.2-8), with (S,); = 2.0, gives

2.0

Cactunl = <m>[—1800 — (~136.5)] = —1566 4

which is not a minor correction.

6.3 Detection of Plastic Yielding

In parts made of ductile metal, sometimes a great deal can be learned
concerning the location of the most highly stressed region and the load
that produces elastic failure by noting the first signs of plastic yield-
ing. Such yielding may be detected in the following ways.

Observation of slip lines. If yielding occurs first at some point on the
surface, it can be detected by the appearance of slip lines if the surface
is suitably polished.

Brittle coating. If a member is coated with some material that will
flake off easily, this flaking will indicate local yielding of the member.
A coating of rosin or a wash of lime or white portland cement, applied
and allowed to dry, is best for this purpose, but chalk or mill scale will
often suffice. By this method zones of high stress such as those that
occur in pressure vessels around openings and projections can be
located and the load required to produce local yielding can be deter-
mined approximately.

Photoelastic coatings. Thin photoelastic coatings show very character-
istic patterns analogous to slip lines when the material beneath the
coating yields.

6.4 Analogies

Certain problems in elasticity involve equations that cannot be solved
but that happen to be mathematically identical with the equations
that describe some other physical phenomenon which can be investi-
gated experimentally. Among the more useful of such analogies are the
following.

Membrane analogy. This is especially useful in determining the
torsion properties of bars having noncircular sections. If in a thin
flat plate holes are cut having the outlines of various sections and over
each of these holes a soap film (or other membrane) is stretched and
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slightly distended by pressure from one side, the volumes of the
bubbles thus formed are proportional to the torsional rigidities of
the corresponding sections and the slope of a bubble surface at any
point is proportional to the stress caused at that point of the corre-
sponding section by a given twist per unit length of bar. By cutting in
the plate one hole the shape of the section to be studied and another
hole that is circular, the torsional properties of the irregular section
can be determined by comparing the bubble formed on the hole of that
shape with the bubble formed on the circular hole since the torsional
properties of the circular section are known.

Electrical analogy for isopachic lines. Isopachic lines are lines along
which the sums of the principal stresses are equal in a two-
dimensional plane stress problem. The voltage at any point on a
uniform two-dimensional conducting surface is governed by the
same form of equation as is the principal stress sum. Teledeltos
paper is a uniform layer of graphite particles on a paper backing
and makes an excellent material from which to construct the electrical
analog. The paper is cut to a geometric outline corresponding to the
shape of the two-dimensional structure or part, and boundary poten-
tials are applied by an adjustable power supply. The required bound-
ary potentials are obtained from a photoelastic study of the part where
the principal stress sums can be found from the principal stress
differences on the boundaries (Refs. 2 and 3). A similar membrane
analogy has the height of a nonpressurized membrane proportional to
the principal stress sum (Refs. 2 and 3).
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6.5 Tables

TABLE 6.1 Strain gage rosette equations applied to a specimen of a linear,
isotropic material

The principal strains and stresses are ?-\’ ’
given relative to the xy coordinate
€pl, Opl
axes as shown. /1
== i : j %
x
/ €p2, Op2

45°

Three-element rectangular rosette

45°
X
Principal strains N
gqt¢ 1
&p1 = 4 5 € +§\/(8A —e0)® +(2ep—eq —20)?
g4+ e 1
Epg = A B) & *Q\/(CA —e0)’ +(2ep—eq —e¢)°

Principal stresses

Efey+¢ 1 ;
=—[A C+m\/(3A_SC)2+(283_3A_SC)Z:|

T Ty
Eleq+ec 1
“pZ:E[q_vc*1+V\/(8A*EC)2+(2EB*UA*Ec)zj|

Principal angle
Treating the tan~" as a single-valued function,” the angle counterclockwise from gage A

to the axis containing ¢,, or o, is given by

0, = 1 tan-1 <21:B — 4 — .':C>
2 &4 — EC

f See Example in Sec. 6.2.
(continued)
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TABLE 6.1 Strain gage rosette equations applied to a specimen of a linear,
isotropic material (Continued)

120°

120° Three-element delta rosette

X 4

120°
Principal strains
Ep1 = W + g\/(SA —ep)* + (g — &) + (6c — £a)”
Epg = % - \g\/(% — &) + (e — &)’ + (6c — &)

Principal stresses

_Eleytegtec
=g 1—v

2 ;
+ %\/(SA —ep)” + (e — &c)’ + (¢ — SA)2:|

\/(SA —ep)’ + (g —ec) + (¢ — 1)’

‘2 =g 1—v 1+v

E |:8A +eptec V2
Principal angle

Treating the tan~' as a single-valued function' the angle counterclockwise from gage A
to the axis containing ¢,; or o), is given by

0 1 tan’1|: V3(ec — ¢p) i|

L) 24 — &g — &C

T See Example (as applied to a rectangular rosette) in Sec. 6.2.
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TABLE 6.2 Corrections for the transverse sensitivity of electrical resistance strain
gages

¢ refers to corrected strain value, whereas & refers to the strain read from the strain
indicator. The K, terms are the transverse sensitivity coefficients of the gages as supplied
by the manufacturer. Poisson’s ratio, vy, is normally given to be 0.285.

y
s
|

|
A
. g Two-element rectangular rosette
B

(1 =voKip)eq — Kiu(1 — voKip)ip

& =
1-KisKp

. = (1 — voKip)ep — Kip(1 — voKip)ea

Y 1-KKip

45° Three-element rectangular rosette

_ (= voKin)és — Kin(1 = voKic)éc

4 1-KKc
(1= voKiplip = 7 711 = voKia)(1 = Kie)ea + (1= voKie)(1 = Kplic]
ep = tATMC
1-Kp

e — (1- VOKtC)éc - Kyc(1— VOKtA)éA
T 1-KuaKic
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120°

A
120° Three-element delta rosette
120°
eq = kK{(1 = voK4)3 — Kip — K¢ — KipKi0)es — 2K,4[(1 — voKip)(1 — Ky0)ep
+ (1 = voKy0)(A — Kip)ecl)
eg = K{(1 = voKyp)(B — Kyo — Ky — KyoKia)ep — 2Kp[(1 — voKi0)(1 — Kip)éce
+ (1 = voKa)(1 — Ki0)eal)
ec = K{(1 =K 0)(3 — Ky — Kip — KiaKip)ec — 2K, cl(1 — voKiy)(1 — Kip)eg
+ (1 = voK;p)(1 — Kip)égl}
where

K= (SKtAKtBKtC - KtAKtB - KtBKtC - KLAKtC - Kt - KtB - KtC + 3)71
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Part

Formulas and Examples

Each of the following chapters deals with a certain type of
structural member or a certain condition of stress. What may
be called the common, or typical, case is usually discussed
first; special cases, representing peculiarities of form,
proportions, or circumstances of loading, are considered
subsequently. In the discussion of each case the underlying
assumptions are stated, the general behavior of the loaded
member is described, and formulas for the stress and
deformation are given. The more important of the general
equations are numbered consecutively throughout each section
to facilitate reference, but, wherever possible, formulas
applying to specific cases are tabulated for convenience and
economy of space.

In all formulas which contain numerical constants having
dimensions, the units are specified.

Most formulas contain only dimensionless constants and
can be evaluated in any consistent system of units.



Chapter

Tension, Compression, Shear,
and Combined Stress

7.1 Bar under Axial Tension (or Compression);
Common Case

The bar is straight, of any uniform cross section, of homogeneous
material, and (f under compression) short or constrained against
lateral buckling. The loads are applied at the ends, centrally, and in
such a manner as to avoid nonuniform stress distribution at any
section of the part under consideration. The stress does not exceed
the proportional limit.

Behavior. Parallel to the load the bar elongates (under tension) or
shortens (under compression), the unit longitudinal strain being ¢ and
the total longitudinal deflection in the length [ being 6. At right angles
to the load the bar contracts (under tension) or expands (under
compression); the unit lateral strain ¢ is the same in all transverse
directions, and the total lateral deflection ¢ in any direction is
proportional to the lateral dimension d measured in that direction.
Both longitudinal and lateral strains are proportional to the applied
load. On any right section there is a uniform tensile (or compressive)
stress o; on any oblique section there is a uniform tensile (or compres-
sive) normal stress ¢, and a uniform shear stress 5. The deformed
bar under tension is represented in Fig. 7.1(a), and the stresses in
Fig. 7.1(b).
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Formulas. Let

P = applied load

A = cross-sectional area (before loading)
[ = length (before loading)

E = modulus of elasticity

v = Poisson’s ratio

Then
P
A
P 2 o
0y = 4 Cos 0, max gy = g (when 6 = 0°)
_P in 20 max —1(hn9—45 r 135°)
=548 , ax 7y = go(when § =450
8—£
E
Pl
5—ZS—E
g = —ve
0 =¢d

. . 102
Strain energy per unit volume U = 5%

Total strain energy U = 16—2 Al = 1P(S
YV EoE M T

[cHAP. 7

(7.1-1)

(7.1-2)

(7.1-3)

(7.1-4)
(7.1-5)

(7.1-6)

(7.1-7)

For small strain, each unit area of cross section changes by (—2v¢)
under load, and each unit of volume changes by (1 — 2v)e under load.

In some discussions it is convenient to refer to the stiffness of a
member, which is a measure of the resistance it offers to being
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deformed. The stiffness of a uniform bar under axial load is shown by
Eq. (7.1-3) to be proportional to A and E directly and to [ inversely, i.e.,
proportional AE/I.

EXAMPLE

A cylindrical rod of steel 4in long and 1.5in diameter has an axial compres-
sive load of 20,0001b applied to it. For this steel v=0.285 and E =
30,000,000 lb/inZ. Determine (a) the unit compressive stress o; (b) the total
longitudinal deformation, J; (c) the total transverse deformation &'; (d) the
change in volume, AV; and (e) the total energy, or work done in applying the
load.

Solution
P 4P  4(—20,000) 2
oAb _A=20.09) 14 3901
@ = = 2@ ™ a1 920 Tb/n
s —11,320 6
® =% =30000.000 ~ >0

8 =el = (—=377)(107%)(4) = —1.509(107?) in (=" means shortening)
(©) & = —ve = —0.285(—377)(1075) = 107.5(10~%)

8 =¢d=(107.5)(107%)(1.5) = 1.613(107*) in ("+” means expansion)
(d) AV/V = (1 —2v)e =[1 — 2(0.285))(—377)(1076) = —162.2(107F)

AV = —162.2(10°%)V = —162.2(10’6)gd21 - —162.2(10’6)2(1.5)2(4)

= —1.147(107%) in® ("—" means decrease)
(e) Increase in strain energy,

U= %Pb‘ = %(—20,000)(—1.509)(10*3) = 15.09 in-Ib

7.2 Bar under Tension (or Compression);
Special Cases

If the bar is not straight, it is subject to bending; formulas for this case
are given in Sec. 12.4.

If the load is applied eccentrically, the bar is subject to bending;
formulas for this case are given in Secs. 8.7 and 12.4. If the load is
compressive and the bar is long and not laterally constrained, it must
be analyzed as a column by the methods of Chapters 12 and 15.

If the stress exceeds the proportional limit, the formulas for stress
given in Sec. 7.1 still hold but the deformation and work done in
producing it can be determined only from experimental data relating
unit strain to unit stress.
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If the section is not uniform but changes gradually, the stress at any

section can be found by dividing the load by the area of that section;
o g . .. P

the total longitudinal deformation over a length [ is given by J —dx
) P2 0 AE

and the strain energy is given by [ S AR dx, where dx is an infinite-
Jo

simal length in the longitudinal direction. If the change in section is
abrupt stress concentration may have to be taken into account, values
of K, being used to find elastic stresses and values of K, being used to
predict the breaking load. Stress concentration may also have to be
considered if the end attachments for loading involve pinholes, screw
threads, or other stress raisers (see Sec. 3.10 and Chap. 17).

If instead of being applied at the ends of a uniform bar the load is
applied at an intermediate point, both ends being held, the method of
consistent deformations shows that the load is apportioned to the two
parts of the bar in inverse proportion to their respective lengths.

If a uniform bar is supported at one end in a vertical position and
loaded only by its own weight, the maximum stress occurs at the
supported end and is equal to the weight divided by the cross-sectional
area. The total elongation is half as great and the total strain energy
one-third as great as if a load equal to the weight were applied at the
unsupported end. A bar supported at one end and loaded by its own
weight and an axial downward load P (force) applied at the unsup-
ported end will have the same unit stress ¢ (force per unit area) at all
sections if it is tapered so that all sections are similar in form but vary
in scale according to the formula

o Ao

where y is the distance from the free end of the bar to any section, A is
the area of that section, and w is the density of the material (force per
unit volume).

If a bar is stressed by having both ends rigidly held while a change
in temperature is imposed, the resulting stress is found by calculating
the longitudinal expansion (or contraction) that the change in
temperature would produce if the bar were not held and then calculat-
ing the load necessary to shorten (or lengthen) it by that amount
(principle of superposition). If the bar is uniform, the unit stress
produced is independent of the length of the bar if restraint against
buckling is provided. If a bar is stressed by being struck an axial blow
at one end, the case is one of impact loading, discussed in Sec. 16.3.

EXAMPLES

1. Figure 7.2 represents a uniform bar rigidly held at the ends A and D and
axially loaded at the intermediate points B and C. It is required to determine
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the total force in each portion of the bar AB, BC, CD. The loads are in newtons
and the lengths in centimeters.

Solution. Each load is divided between the portions of the bar to right and
left in inverse proportion to the lengths of these parts (consistent deforma-
tions), and the total force sustained by each part is the algebraic sum of the
forces imposed by the individual loads (superposition). Of the 9000 N load,
therefore, %, or 7000 N, is carried in tension by segment AB, and %, or 2000 N, is
carried in compression by the segment BD. Of the 18,000 N load, %, or 8000 N,
is carried in compression by segment AC, and 8, or 10,000 N, is carried in
tension by segment CD. Denoting tension by the plus sign and compression by
the minus sign, and adding algebraically, the actual stresses in each segment

are found to be

AB: 7000 — 8000 = —1000 N
BC: —2000 — 8000 = —10,000 N
CD: —2000 + 10,000 = +8000 N

The results are quite independent of the diameter of the bar and of E provided
the bar is completely uniform.

If instead of being held at the ends, the bar is prestressed by wedging it
between rigid walls under an initial compression of, say, 10,000N and the
loads at B and C are then applied, the results secured above would represent
the changes in force the several parts would undergo. The final forces in the
bar would therefore be 11,000 N compression in AB, 20,000 N compression in
BC, and 2000N compression in CD. But if the initial compression were less
than 8000N, the bar would break contact with the wall at D (no tension
possible); there would be no force at all in CD, and the forces in AB and BC,
now statically determinate, would be 9000 and 18,000 N compression, respec-
tively.

2. A steel bar 24in long has the form of a truncated cone, being circular
in section with a diameter at one end of 1in and at the other of 3in. For this
steel, E = 30,000,000 lb/in2 and the coefficient of thermal expansion is
0.0000065/°F. This bar is rigidly held at both ends and subjected to a drop
in temperature of 50°F. It is required to determine the maximum tensile stress
thus caused.

Solution. Using the principle of superposition, the solution is effected in
three steps: (a) the shortening 6 due to the drop in temperature is found,
assuming the bar free to contract; (b) the force P required to produce an
elongation equal to J, that is, to stretch the bar back to its original length, is
calculated; (¢) the maximum tensile stress produced by this force P is
calculated.

(a) 6 =50(0.0000065)(24) = 0.00780in.
(b) Let d denote the diameter and A the area of any section a distance x in
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from the small end of the bar. Then

d=1+2 A:f(lJri)2

12° 4 12
and
p 24 4P 4P (-12)
o= —dzj - _dx= = 3.395(10"")P
J, 2z =], (REX1+ <127 T 2BOA0%) (1 + x/12)] (107

Equating this to the thermal contraction of 0.007801n yields
P =2229701b

(¢) The maximum stress occurs at the smallest section, and is

4P 4(22,970)

ndy, (1)
The result can be accepted as correct only if the proportional limit of the steel
is known to be as great as or greater than the maximum stress and if the
concept of a rigid support can be accepted. (See cases 8, 9, and 10 in Table
14.1.)

o = 29,250 1b/in?

7.3 Composite Members

A tension or compression member may be made up of parallel
elements or parts which jointly carry the applied load. The essential
problem is to determine how the load is apportioned among the several
parts, and this is easily done by the method of consistent deformations.
If the parts are so arranged that all undergo the same total elongation
or shortening, then each will carry a portion of the load proportional to
its stiffness, i.e., proportional to AE/[ if each is a uniform bar and
proportional to AE if all these uniform bars are of equal length. It

follows that if there are n bars, with section areas A;,A,, ..., A,,
lengths /4,1y, ...,1,, and moduli E;, E,, ..., E,, then the loads on the
several bars P, P,, ..., P, are given by
AE,
_ L
Pr=P i 5 4,E, Az, (7.3-1)
L Ly L,
AyEy
Ly
P, = PAlEl A7, AT, (7.3-2)
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A composite member of this kind can be prestressed. P;, P,, etc., then
represent the increments of force in each member due to the applied
load, and can be found by Eqgs. (7.3-1) and (7.3-2), provided all bars can
sustain reversal of stress, or provided the applied load is not great
enough to cause such reversal in any bar which cannot sustain it. As
explained in Sec. 3.12, by proper prestressing, all parts of a composite
member can be made to reach their allowable loads, elastic limits, or
ultimate strengths simultaneously (Example 2).

EXAMPLES

1. A ring is suspended by three vertical bars, A, B, and C of unequal lengths.
The upper ends of the bars are held at different levels, so that as assembled
none of the bars is stressed. A is 4 ft long, has a section area of 0.3 in?, and is of
steel for which £ = 30,000,000 lb/ln2 B is 3ft long and has a sectlon area of
0.2 in?, and is of copper for which E = 17,000,000 lb/in?; C is 2ft long, has
a sectlon area of 0.4 in?, and is of aluminum for which E = 10,000,000 1b/1n2

A load of 10,0001b is hung on the ring. It is required to determine how much of
this load is carried by each bar.

Solution. Denoting by P,, Pg, and P, the loads carried by A, B, and C,
respectively, and expressing the moduli of elasticity in millions of pounds per
square inch and the lengths in feet, we substitute in Eq. (7.3-1) and find

(0.3)(30)
_ 1 _
Py = 10,000l Gs3m6y 0,207 (0.400) | — 180D
s T3 T

Similarly
Pp=21001b and P,=37201b

2. A composite member is formed by passing a steel rod through an aluminum
tube of the same length and fastening the two parts together at both ends. The
fastening is accomplished by adjustable nuts, which make it possible to
assemble the rod and tube so that one is under initial tension and the other
is under an equal initial compression. For the steel rod the section area is
1.5 in?%, the modulus of elasticity 30,000,0001b/in*> and the allowable stress
15,000 lb/m For the aluminum tube the section area is 2 in?, the modulus of
elast1c1ty 10,000,000 lb/ln2 and the allowable stress 10,000 lb/m2 It is desired
to prestress the composite member so that under a tensile load both parts will
reach their allowable stresses simultaneously.

Solution. When the allowable stresses are reached, the force in the steel rod
will be 1.5(15,000) = 22,5001b, the force in the aluminum tube will be
2(10,000) = 20,0001b, and the total load on the member will be
22,500 + 20,000 ; = 42,5001b. Let P; denote the initial tension or compression
in the members, and, as before, let tension be considered positive and
compression negative. Then, since Eq. (7.3-1) gives the increment in force,
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we have for the aluminum tube

(2)(d0) _
P; + 42,500m = 20,000

or
P; = +6920 1b (initial tension)
For the steel rod, we have

(1.5)(30)

Py 442,500 o 1 5)30)

= 22,500

or
P; = —-6920 1b (initial compression)

If the member were not prestressed, the unit stress in the steel would
always be just three times as great as that in the aluminum because it would
sustain the same unit deformation and its modulus of elasticity is three times
as great. Therefore, when the steel reached its allowable stress of
15,0001b/in2, the aluminum would be stressed to only 5000 lb/in2 and the
allowable load on the composite member would be only 32,5001b instead of
42,500 1Db.

7.4 Trusses

A conventional truss is essentially an assemblage of straight uniform
bars that are subjected to axial tension or compression when the truss
is loaded at the joints. The deflection of any joint of a truss is easily
found by the method of unit loads (Sec. 4.5). Let p;, p,y, ps, etc., denote
the forces produced in the several members by an assumed unit load
acting in the direction x at the joint whose deflection is to be found,
and let d;, Jq, J4, etc., denote the longitudinal deformations produced
in the several members by the actual applied loads. The deflection A,
in the direction x of the joint in question is given by

M=

A, = P10y +Pgdy +p303+ - =Y p;d; (7.4-1)

1

.
Il

The deflection in the direction y, at right angles to x, can be found
similarly by assuming the unit load to act in the y direction; the
resultant deflection is then determined by combining the x and y
deflections. Attention must be given to the signs of p and o, p is
positive if a member is subjected to tension and negative if under
compression, and J is positive if it represents an elongation and
negative if it represents a shortening. A positive value for > pd
means that the deflection is in the direction of the assumed unit
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load, and a negative value means that it is in the opposite direction.
(This procedure is illustrated in Example 1 below.)

A statically indeterminate truss can be solved by the method of least
work (Sec. 4.5). To do this, it is necessary to write down the expression
for the total strain energy in the structure, which, being simply the
sum of the strain energies of the constituent bars, is given by

1 1 1 71 n 1 /P?]
§P151 +§P252 +§P353+—§§P151—§§(E)1 (74-2)

Here P;, P,, etc., denote the forces in the individual members due to
the applied loads and 6 has the same meaning as above. It is necessary
to express each force P; as the sum of the two forces; one of these is the
force the applied loads would produce with the redundant member
removed, and the other is the force due to the unknown force (say, F)
exerted by this redundant member on the rest of the structure. The
total strain energy is thus expressed as a function of the known
applied forces and F, the force in the redundant member. The partial
derivative with respect to F of this expression for strain energy is then
set equal to zero and solved for F. If there are two or more redundant
members, the expression for strain energy with all the redundant
forces, F,, F,, etc., represented is differentiated once with respect to
each. The equations thus obtained are then solved simultaneously for
the unknown forces. (The procedure is illustrated in Example 2.)

EXAMPLES

1. The truss shown in Fig. 7.3 is composed of tubular steel members, for which
E = 30,000,000 lb/inz. The section areas of the members are given in the table
below. It is required to determine A, and A,, the horizontal and vertical
components of the displacement of joint A produced by the indicated loading.

Solution. The method of unit loads is used. The force P in each member due
to the applied loads is found, and the resulting elongation or shortening 6 is
calculated. The force p, in each member due to a load of 11b acting to the right
at A, and the force p, in each member due to a load of 11b acting down at A are
calculated. By Eq. (7.4-1), >~ p,J, then gives the horizontal and }_ p,J gives the
vertical displacement or deflection of A. Tensile forces and elongations are

1200 1b 600 Ib
/
T/ E B lA
D) ‘ ¢ {
4 4 |
600 1b
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denoted by +, compressive forces and shortenings by —. The work is
conveniently tabulated as follows:

Area, Length, (P : (P<9); ®y9);5

Member A;,in* I,in P, ““\4E);™ @), in@ () in (b)

(1) AB  0.07862 48 800  0.01628  1.000 0.01628 1.333  0.02171
(2) AC  0.07862 60 —1000 —0.02544 0 0 ~1.667  0.04240
(3) BC 0.1464 36 1200 0.00984 0 0 1.000  0.00984
(4) BE 0.4142 48 4000  0.01545 1.000 0.01545 2.667  0.04120
(5) BD 0.3318 60 —4000 —0.02411 0 0 ~1.667  0.04018
(6)CD 0.07862 48  —800 -0.01628 0 0 ~1.333  0.02171

A, =0.031731in A, =0.17704 in

A, and A, are both found to be positive, which means that the displacements
are in the directions of the assumed unit loads—to the right and down. Had
either been found to be negative, it would have meant that the displacement
was in a direction opposite to that of the corresponding unit load.

2. Assume a diagonal member, running from A to D and having a section
area 0.3318 in? and length 8.544ft, is to be added to the truss of Example 1;
the structure is now statically indeterminate. It is required to determine the
force in each member of the altered truss due to the loads shown.

Solution. We use the method of least work. The truss has one redundant
member; any member except BE may be regarded as redundant, since if any
one were removed, the remaining structure would be stable and statically
determinate. We select AD to be regarded as redundant, denote the unknown
force in AD by F, and assume F' to be tension. We find the force in each member
assuming AD to be removed, then find the force in each member due to a pull F
exerted at A by AD, and then add these forces, thus getting an expression for
the force in each member of the actual truss in terms of F. The expression for
the strain energy can then be written out, differentiated with respect to F,
equated to zero, and solved for F. F being known, the force in each member of
the truss is easily found. The computations are conveniently tabulated as
follows:

Forces in members'

Due to Due to
applied pull, F, Total forces, Actual total
loads without exerted by P;. Superposition values with
AD AD of (a) and (b) F =-10501b1in (c)
Member (a) (b) (b) (o) (d) (Ib)
(1) AB 800 —0.470 F 800 — 0470 F 1290
(2) AC —1000 —0.584 F —1000 — 0.584 F -390
3) BC 1200 0.351 F 1200+ 0.351 F 830
(4) BE 4000 0 4000 4000
(5) BD —4000 —0.584 F —4000 — 0.584 F —-3390
(6) CD —800 —0470 F —800 — 0.470 F —306
(7) AD 0 F F —1050

f + for tension and — for compression.
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1 /P2 (800 — 0.470F)2(48) (~1000 — 0.584F)X(60)
=L 5( ) 2E *

= 0.07862 0.07862
(1200 + 0.351F)%(36)  (4000)*(48)
0.1464 0.4142
(—4000 — 0.584F)%(60)  (—800 — 0.470F)*(48)
0.3318 0.07862
F2(102.5)
0.3318 ]

Setting the partial derivative of U relative to F to zero,

9U _ 1 [2(800 —0.4T0F)(~0.470)(48)  2(~1000 — 0.584F)(~0.584)(60)
9F ~ 2E 0.07862 0.07862
—-0

and solving for F' gives F = —-1050 Ib.

The negative sign here simply means that AD is in compression. A positive
value of F' would have indicated tension. Substituting the value of F' into the
terms of column (c) yield the actual total forces in each member as tabulated in
column (d).

7.5 Body under Pure Shear Stress

A condition of pure shear may be produced by any one of the methods
of loading shown in Fig. 7.4. In Fig. 7.4(a), a rectangular block of
length a, height b, and uniform thickness ¢ is shown loaded by forces
P; and Ps,, uniformly distributed over the surfaces to which they are
applied and satisfying the equilibrium equation P;b = Pya. There are
equal shear stresses on all vertical and horizontal planes, so that any
contained cube oriented like ABCD has on each of four faces the shear
stress © = P;/at = P,/bt and no other stress.

In Fig. 7.4(b) a rectangular block is shown under equal and opposite
biaxial stresses o, and o,. There are equal shear stresses on all planes
inclined at 45° to the top and bottom faces, so that a contained cube

—_

Figure 7.4
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oriented like ABCD has on each of four faces the shear stress
7 =0, = 0, and no other stress.

In Fig. 7.4(c), a circular shaft is shown under a twisting moment 7'; a
cube of infinitesimal dimensions, a distance z from the axis and
oriented like ABCD has on each of four faces an essentially uniform
shear stress t = Tz/J (Sec. 10.1) and no other stress.

In whatever way the loading is accomplished, the result is to impose
on an elementary cube of the loaded body the condition of stress
represented in Fig. 7.5, that is, shearing stress alone on each of four
faces, these stresses being equal and so directed as to satisfy the
equilibrium condition 7, = 0 (Sec. 4.1).

The stresses, oy and 1, on a transformed surface rotated counter-
clockwise through the angle 0 can be determined from the transforma-
tion equations given by Eqgs. (2.3-17). They are given by

gy =1 sin 20, Tp = T cos 20 (7.5-1)

where (69)max min = £ at 0 = £45°.

The strains produced by pure shear are shown in Fig. 7.5(b), where
the cube ABCD is deformed into a rhombohedron A’B'C'D’. The unit
shear strain, y, referred to as the engineering shear strain, is reduction
of angles /ABC and /ADC, and the increase in angles /DAB and
/BCD in radians. Letting G denote the modulus of rigidity, the shear
strain is related to the shear stress as

T
V=5 (7.5-2)

Assuming a linear material, the strain energy per unit volume for pure
shear, u,, within the elastic range is given by

172
90“7
T T A /K/B/ B
T, g
P o[ " /" /
/
T TB /D el

Figure 7.5 (a) Shear stress and transformation. (b) Shear strain.
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The relations between 1, g, and the strains represented in Fig. 7.5(b)
make it possible to express G in terms of E and Poisson’s ratio, v, for a
linear, homogeneous, isotropic material. The relationship is

E

“=51y

(7.5-4)

From known values of E (determined by a tensile test) and G
(determined by a torsion test) it is thus possible to calculate v.

7.6 Cases of Direct Shear Loading

By direct shear loading is meant any case in which a member is acted
on by equal, parallel, and opposite forces so nearly colinear that the
material between them is subjected primarily to shear stress, with
negligible bending. Examples of this are provided by rivets, bolts, and
pins, shaft splines and keys, screw threads, short lugs, etc. These are
not really cases of pure shear; the actual stress distribution is complex
and usually indeterminate because of the influence of fit and other
factors. In designing such parts, however, it is usually assumed that
the shear is uniformly distributed on the critical section, and since
working stresses are selected with due allowance for the approximate
nature of this assumption, the practice is usually permissible. In
beams subject to transverse shear, this assumption cannot be made
as a rule.

Shear and other stresses in rivets, pins, keys, etc., are discussed
more fully in Chap. 14, shear stresses in beams in Chap. 8, and shear
stresses in torsion members in Chap. 10.

7.7 Combined Stress

Under certain circumstances of loading, a body is subjected to a
combination of tensile and compressive stresses (usually designated
as biaxial or triaxial stress) or to a combination of tensile, compressive,
and shear stresses (usually designated as combined stress). For
example, the material at the inner surface of a thick cylindrical
pressure vessel is subjected to triaxial stress (radial compression,
longitudinal tension, and circumferential tension), and a shaft simul-
taneously bent and twisted is subjected to combined stress (longi-
tudinal tension or compression, and torsional shear).

In most instances the normal and shear stresses on each of three
mutually perpendicular planes are due to flexure, axial loading,
torsion, beam shear, or some combination of these which separately
can be calculated readily by the appropriate formulas. Normal stresses
arising from different load conditions acting on the same plane can be
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combined simply by algebraic addition considering tensile stresses
positive and compressive stresses negative. Similarly, shear stresses
can be combined by algebraic addition following a consistent sign
convention. Further analysis of the combined states of normal and
shear stresses must be performed using the transformation techniques
outlined in Sec. 2.3. The principal stresses, the maximum shear stress,
and the normal and shear stresses on any given plane can be found by
the equations given in Sec. 2.3.

The strains produced by any combination of stresses not exceeding
the proportional limit can also be found using Hooke’s law for each
stress and then combined by superposition. Consideration of the
strains caused by equal triaxial stresses leads to an expression for
the bulk modulus of elasticity given by

E

EXAMPLES

1. A rectangular block 12in long, 4in high, and 21n thick is sub]ected to a
longitudinal tensﬂe stress o, = 12,000 lb/ln a vertical compresswe stress
o, = 15,000 lb/m and a lateral compressive stress a, = 9000 lb/m The
materlal is steel, for which E = 30,000,000 lb/ln and v = 0.30. It is required
to find the total change in length.

Solution. The longitudinal deformation is found by superposition: The unit
strain due to each stress is computed separately by Egs. (7.1-2) and (7.1-4);
these results are added to give the resultant longitudinal unit strain, which is
multiplied by the length to give the total elongation. Denoting unit long-
itudinal strain by ¢, and total longitudinal deflection by ¢,, we have

12,000 —15,000 —9000
b=—p Vg Vg
= 0.000400 + 0.000150 + 0.000090 = +0.00064
d, = 12(0.00064) = 0.00768 in

The lateral dimensions have nothing to do with the result since the lateral
stresses, not the lateral loads, are given.

2. A piece of “standard extra-strong” pipe, 2 in nominal diameter, is simulta-
neously subjected to an internal pressure of p = 2000 lb/in2 and to a twisting
moment of 7" = 5000 in-1b caused by tightening a cap screwed on at one end.
Determine the maximum tensile stress and the maximum shear stress thus
produced in the pipe.

Solution. The calculations will be made, first, for a point at the outer
surface and, second, for a point at the inner surface. The dimensions of the
pipe and properties of the cross section are as follows: inner radius
r; =0.9695 in, outer radius r, =1.18751n, cross-sectional area of bore
Ay =2.9551n", cross-sectional area of pipe wall A, = 1.475 in?, and polar
moment of inertial J = 1.735 in®.
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We take axis x along the axis of the pipe, axis y tangent to the cross section,
and axis z radial in the plane of the cross section. For a point at the outer
surface of the pipe, ¢, is the longitudinal tensile stress due to pressure and o,
is the circumferential (hoop) stress due to pressure, the radial stress g, =0
(since the pressure is zero on the outer surface of the pipe), and t,, is the shear
stress due to torsion. Equation (7.1-1) can be used for Ty where P = pA,
and A = A,,. To calculate g,, we use the formula for stress in thick cylinders
(Table 13. 5 case 1b). Flnaﬁy, for 7,,, we use the formula for torsional stress
(Eq. (10.1-2). Thus,

pA,  (2000)(2.955)

_pay _ (2VUUN4.909) .9
0, = a, 1475 4007 Ib/in
P22 + 12) (0.9695%)(1.18752 + 1.1875%) L
- — 2000 — 7996 1b
=T (1.18752)(1.18752 — 0.96952) /n
_ Tr,  (5000)(1.1875)
Txy = 7 W = 3422 lb/ln

This is a case of plane stress where Eq. (2.3-23) applies. The principal stresses
are thus

o, = %[(Gx +0,)£/(0, — ay)2 +412)]

= 1[(4007 + 7996) + \/ (4007 — 7996)% + 4(34222)] = 9962, 2041 lb/in®

Thus, 0. = 9962 Ib/in®.

In order to determine the maximum shear stress, we order the three
principal stresses such that ¢; > 0y > 5. For plane stress, the out- of plane
principal stresses are zero. Thus, o, = 9962 1b/in% ¢, = 2041 lb/in?, and
g5 = 0. From Eq. (2.3-25), the maximum shear stress is

max = 3(61 — 03) = 1(9962 — 0) = 4981 Ib/in®

For a point on the inner surface, the stress conditions are three-dimensional
since a radial stress due to the internal pressure is present. The longitudinal
stress is the same; however, the circumferential stress and torsional shear
stress change. For the inner surface,

o, = 4007 Ib/in®

2 2 2
242 1.18752 + 0.9695 L
- — 2000 — 9996 1b
% =P 1.18752 — 0.9695° /mn

o 2

0, = —p = —2000 lb/in*

_ Tr; (5000)(0.9695) 9
W= 7T 1735 2794 1b/in

Ty = Tpp = 0
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The principal stresses are found using Eq. (2.3-20):"

a5 — (4007 + 9996 — 2000)07 + [(4007)(9996) + (9996)(—2000)
+ (—2000)(4007) — 2794% — 0 — 0]o,, — [(4007)(9996)(—2000) + 2(2794)(0)(0)
— (4007)(0%) — (9996)(0%) — (—2000)(2794%)] = 0

or
o —12.003(10%)07 + 4.2415(10%0, + 64.495(10%) = 0

Solving this gives g, = 11,100, 2906, and —2000 lb/inZ, which are the
principal stresses o4, g9, and a3, respectively. Obviously, the maximum
tensile stress is 11,100 1b/in®. Again, the maximum shear stress comes
from Eq. (2.3-25), and is $[11,100 — (—2000)] = 6550 1b/in”.

Note that for this problem, if the pipe is a ductile material, and one
were looking at failure due to shear stress (see Sec. 3.7), the stress
conditions for the pipe are more severe at the inner surface compared
with the outer surface.

¥ Note: Since t,, = 1,, = 0, 0, is one of the principal stresses and the other two can be
found from the plane stress equations. Consequently, the other two principal stresses are
in the xy plane.



Chapter

Beams; Flexure of Straight Bars

8.1 Straight Beams (Common Case) Elastically
Stressed

The formulas in this section are based on the following assumptions:
(1) The beam is of homogeneous material that has the same modulus of
elasticity in tension and compression. (2) The beam is straight or
nearly so; if it is slightly curved, the curvature is in the plane of
bending and the radius of curvature is at least 10 times the depth. (3)
The cross section is uniform. (4) The beam has at least one long-
itudinal plane of symmetry. (5) All loads and reactions are perpendi-
cular to the axis of the beam and lie in the same plane, which is a
longitudinal plane of symmetry. (6) The beam is long in proportion to
its depth, the span/depth ratio being 8 or more for metal beams of
compact section, 15 or more for beams with relatively thin webs, and
24 or more for rectangular timber beams. (7) The beam is not
disproportionately wide (see Sec. 8.11 for a discussion on the effect
of beam width). (8) The maximum stress does not exceed the propor-
tional limit.

Applied to any case for which these assumptions are not valid, the
formulas given yield results that at best are approximate and that
may be grossly in error; such cases are discussed in subsequent
sections. The limitations stated here with respect to straightness
and proportions of the beam correspond to a maximum error in
calculated results of about 5%.

In the following discussion, it is assumed for convenience that the
beam is horizontal and the loads and reactions vertical.

Behavior. As the beam bends, fibers on the convex side lengthen, and
fibers on the concave side shorten. The neutral surface is normal to the
plane of the loads and contains the centroids of all sections, hence the
neutral axis of any section is the horizontal central axis. Plane sections

125
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remain plane, and hence unit fiber strains and stresses are propor-
tional to distance from the neutral surface. Longitudinal displace-
ments of points on the neutral surface are negligible. Vertical
deflection is largely due to bending, that due to shear being usually
negligible under the conditions stated.

There is at any point a longitudinal fiber stress ¢, which is tensile if
the point lies between the neutral and convex surfaces of the beam and
compressive if the point lies between the neutral and concave surfaces
of the beam. This fiber stress ¢ usually may be assumed uniform
across the width of the beam (see Secs. 8.11 and 8.12).

There is at any point a longitudinal shear stress t on the horizontal
plane and an equal vertical shear stress on the transverse plane.
These shear stresses, due to the transverse beam forces, may be
assumed uniform across the width of the beam (see page 129).

Figure 8.1(a,b) represent a beam under load and show the various
dimensions that appear in the formulas; Fig. 8.1(c) shows a small
stress element at a point g acted on by the stresses ¢ and r.

Formulas. Let I =the moment of inertia of the section of the beam
with respect to the neutral axis and E = modulus of elasticity of the
material.

The fiber stress ¢ at any point ¢ is

My

y .
’A Horizontal plane
——— / through q T
cC g — T
o o
Neutral ‘T_I[”_-)

axis T
Section through q
(enlarged)
(b) (c)

Figure 8.1
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where M is the bending moment at the section containing g, and y is
the vertical distance from the neutral axis to q.
The shear stress 7 at any point q is
VA'y
=—= 8.1-2
=7 ( )
where V is the vertical shear at the section containing q, A’ is the area
of that part of the section above (or below) g, y is the distance from the
neutral axis to the centroid of A’, and b is the net breadth of the section
measured through q.
The complementary energy of flexure Uy, is

M?

where M represents the bending moment equation in terms of x, the
distance from the left end of the beam to any section.
The radius of curvature p of the elastic curve at any section is

where M is the bending moment at the section in question.
The general differential equation of the elastic curve is

d?y,
dx?

where M has the same meaning as in Eq. (8.1-3) and y, represents the
vertical deflection of the centroidal axis of the beam. Solution of this
equation for the vertical deflection y, is effected by writing out the
expression for M, integrating twice, and determining the constants of
integration by the boundary conditions.

By the method of unit loads the vertical deflection at any point is
found to be

EI

M (8.1-5)

Mm
Ve = J—EI dx (8.1-6)
or by Castigliano’s second theorem it is found to be
oUu
=— 1-

where M has the same meaning as in Eq. (8.1-3) and m is the equation
of the bending moment due to a unit load acting vertically at the
section where y, is to be found. The integration indicated must be
performed over each portion of the beam for which either M or m is
expressed by a different equation. A positive result for y, means that
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the deflection is in the direction of the assumed unit load; a negative
result means it is in the opposite direction (see Example 2 at the end of
this section).

In Eq. (8.1-7), U is given by Eq. (8.1-3) and P is a vertical load, real
or imaginary, applied at the section where y, is to be found. It is most
convenient to perform the differentiation within the integral sign; as
with Eq. (8.1-6), the integration must extend over the entire length of
the beam, and the sign of the result is interpreted as before.

The change in slope of elastic curve A0 (radians) between any two
sections ¢ and b is

b
M
AO = Lﬁdx (8.1-8)

where M has the same meaning as in Eq. (8.1-3).
The deflection Ay, at any section a, measured vertically from a
tangent drawn to the elastic curve at any section b, is

b

M

Ay, = J —xdx (8.1-9)
< EI

where x is the distance from a to any section dx between a and b.
Important relations between the bending moment and shear equa-
tions are

v-M (8.1-10)
dx
M:Jde (8.1-11)

These relations are useful in constructing shear and moment
diagrams and locating the section or sections of maximum bending
moment since Eq. (8.1-10) shows that the maximum moment occurs
when V, its first derivative, passes through zero and Eq. (8.1-11)
shows that the increment in bending moment that occurs between any
two sections is equal to the area under the shear diagram between
those sections.

Maximum fiber stress. The maximum fiber stress at any section occurs
at the point or points most remote from the neutral axis and is given
by Eq. (8.1-1) when y = ¢; hence

o ===

Mec M
max T =Tje = (8.1-12)

n|
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where S is the section modulus. The maximum fiber stress in the beam
occurs at the section of greatest bending moment; if the section is not
symmetrical about the neutral axis, the stresses should be investi-
gated at both the section of greatest positive moment and the section of
greatest negative moment.

Maximum transverse shear stress.” The maximum transverse shear
stress in the beam occurs at the section of greatest vertical shear.
The maximum transverse shear stress at any section occurs at the
neutral axis, provided the net width b is as small there as anywhere
else; if the section is narrower elsewhere, the maximum shear stress
may not occur at the neutral axis. This maximum transverse shear
stress can be expressed conveniently by the formula

%

(Tmax)v =02 (8.1-13)

where V /A is the average shear stress on the section and « is a factor
that depends on the form of the section. For a rectangular section,
o= % and the maximum stress is at the neutral axis; for a solid circular
section, « :% and the maximum stress is at the neutral axis; for a
triangular section, o = % and the maximum stress is halfway between
the top and bottom of the section; for a diamond-shaped section of
depth h, o = % and the maximum stress is at points that are a distance
h/8 above and below the neutral axis.

In the derivation of Eq. (8.1-2) and in the preceding discussion, it is
assumed that the shear stress is uniform across the width of the beam;
i.e., it is the same at all points on any transverse line parallel to the
neutral axis. Actually this is not the case; exact analysis (Ref. 1) shows
that the shear stress varies across the width and that for a rectangle
the maximum intensity occurs at the ends of the neutral axis where,
for a wide beam, it is twice the average intensity. Photoelastic
investigation of beams under concentrated loading shows that loca-
lized shearing stresses about four times as great as the maximum
stress given by Eq. (8.1-2) occur near the points of loading and support
(Ref. 2), but experience shows that this variation may be ignored and
design based on the average value as determined by Eq. (8.1-2).

T Note that the transverse shear stress denoted here is the shear stress due to the
vertical transverse force, V. The maximum transverse shear stress in a beam is not
necessarily the maximum shear stress in the beam. One needs to look at the overall state
of stress in light of stress transformations. For long beams, the maximum shear stress is
normally due to the maximum fiber stress, and, using Eq. (2.3-25), the maximum shear
stress is Tpay = 2 0pnay = 3 M/S. For this reason, we will denote the maximum transverse
shear stress in a beam as (t,,)y-
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For some sections the greatest horizontal shear stress at a given
point occurs, not on a horizontal plane, but on an inclined longitudinal
plane which cuts the section so as to make b a minimum. Thus, for a
circular tube or pipe the greatest horizontal shear stress at any point
occurs on a radial plane; the corresponding shear stress in the plane of
the section is not vertical but tangential, and in computing t by Eq.
(8.1-2) b should be taken as twice the thickness of the tube instead of
the net horizontal breadth of the member. (See Table 9.2, case 20 for
an example of where this shear stress in a tube is of importance.)

In an I-, T-, or box section there is a horizontal shear stress on any
vertical longitudinal plane through the flange, and this stress is
usually a maximum at the juncture of flange and web. It may be
calculated by Eq. (8.1-2), taking A’ as the area outside of the vertical
plane (for outstanding flanges) or between the vertical plane and the
center of the beam section (for box girders), and b as the flange
thickness (see the solution to Example 1b). The other terms have the
same meanings as explained previously.

Shear stresses are not often of controlling importance except in wood
or metal beams that have thin webs or a small span/depth ratio. For
beams that conform to the assumptions stated previously, strength
will practically always be governed by fiber stress.

Change in projected length due to bending. The apparent shortening of
a beam due to bending, i.e., the difference between its original length
and the horizontal projection of the elastic curve, is given by

1((dy z
Al=—= —_ .1-14
[ C—
To evaluate Al, dy/dx is expressed in terms of x [Eq. (8.1-5)] and the
square of this is integrated as indicated.

The extreme fibers of the beam undergo a change in actual length
due to stress given by

!
Mec
e=| —=dx 8.1-15

J, 7 (811
By means of these equations the actual relative horizontal displace-
ment of points on the upper or lower surface of the beam can be

predicted and the necessary allowances made in the design of rocker
bearings, clearance for the corners, etc.

Tabulated formulas. Table 8.1 gives formulas for the reactions,
moments, slopes and deflections at each end of single-span beams
supported and loaded in various ways. The table also gives formulas
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for the vertical shears, bending moments, slopes, and deflections at
any distance x from the left end of the span.

In these formulas, the unit step function is used by itself and in
combination with ordinary functions.

The unit step function is denoted by (x — a)° where the use of the
angle brackets () is defined as follows: If x < a, (x — @)’ = 0; if x > a,
(x—a)? =1. At x=a the unit step function is undefined just as
vertical shear is undefined directly beneath a concentrated load. The
use of the angle brackets () is extended to other cases involving powers
of the unit step function and the ordinary function (x — @)*. Thus the
quantity (x — a)"(x — @)’ is shortened to (x — a)" and again is given a
value of zero if x < a and is (x — )" if x > a.

In addition to the usual concentrated vertical loads, concentrated
couples, and distributed loads, Table 8.1 also presents cases where the
loading is essentially a development of reactions due to deformations
created within the span. These cases include the concentrated angular
displacement, concentrated transverse deflection, and linear tempera-
ture differential across the beam from top to bottom. In all three cases
it can be assumed that initially the beam was deformed but free of
stress and then is forced to conform to the end conditions. (In many
cases no forces are created, and the formulas give only the deformed
shape.)

Hetényi (Ref. 29) discusses in detail the Maclaurin series form of the
equations used in this article and suggests (Ref. 53) that the deforma-
tion type of loading might be useful in solving beam problems.
Thomson (Ref. 65) describes the use of the unit step function in the
determination of beam deflections. By superposition, the formulas can
be made to apply to almost any type of loading and support. The use of
the tabulated and fundamental formulas given in this article is
illustrated in the following examples.

EXAMPLES

1. For a beam supported and loaded as shown in Fig. 8.2, it is required to
determine the maximum tensile stress, maximum shear stress, and maximum
compressive stress, assuming, first, that the beam is made of wood with
section as shown in Fig. 8.2(a) second, that the beam is made of wood with
section as shown in Fig. 8.2(b); and third that the beam is a 4-in, 7.7-1b steel I-
beam.

Solution. By using the equations of equilibrium (Sec. 4.1), the left and right
reactions are found to be 900 and 1500 1b, respectively. The shear and moment
equations are therefore

(x =0 to x = 160): V =900 — 12x
M = 900x — 12x(3 x)

(x = 160 to x = 200):  V = 900 — 12x + 1500
M = 900x — 12x( x) 4+ 1500(x — 160)
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Figure 8.2

Using the step function described previously, these equations can be reduced
to

V =900 — 12x + 1500(x — 160)°
M = 900x — 6x% + 1500(x — 160)

These equations are plotted, giving the shear and moment diagrams shown
in Fig. 8.2. The maximum positive moment evidently occurs between the
supports; the exact location is found by setting the first shear equation equal to
zero and solving for x, which gives x = 751in. Substitution of this value of x in
the first moment equation gives M = 33,7501b-in. The maximum negative
moment occurs at the right support where the shear diagram again passes
through zero and is 9600 lb-in.

The results obtained so far are independent of the cross section of the beam.
The stresses will now be calculated for each of the sections (a), (b), and (c).

(@) For the rectangular section: I =bd® = 86.2 int; I/e= 1bd* =23.1 in®;
and A = bd = 18.60 in®. Therefore

oo = Mmax 33750 4 Ib/in® [by Eq. (8.1-12)]

max =70 T 231

This stress occurs at x = 75in and is tension in the bottom fibers of the beam
and compression in the top. The maximum transverse shear stress is

3 Vipax 3 1020

fmax =57 A" T 578,60

=821b/in®>  [by Eq. (8.1-13)]

which is the horizontal and vertical shear stress at the neutral axis of the
section just to the left of the right support.

(b) For the routed section it is found (Appendlx A) that the neutral axis is 4in
from the base of the section and I = 82.6 in*. The maximum transverse shear
stress on a horizontal plane occurs at the neutral axis since b is as small there
as anywhere, and so in Eq. (8.1-2) the product A’y represents the statical

* The actual maximum shear stress for this example is found from a stress transfor-
mation of the maxlmum bending stress Thus, at the outer fibers of the beam at x = 75,
Tmax = 5 Omax = 3 1460 = 730 1b/in%.
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moment about the neutral axis of all that part of the section above the neutral
axis. Taking the moment of the flange and web 3portions separately, we find
A’y = (2.75)(2.3)(2.30) + (1)(1.15)(0.575) = 15.2 in". Also, b = 1.00 in.

Slnce the section is not symmetrical about the neutral axis, the fiber stresses
will be calculated at the section of maximum positive moment and at the
section of maximum negative moment. We have

W = 1630 1b/i in® (tension in bottom fiber)
: 82.6
Atx=T751in: o= 43.750)(53.45
% = 1410 lb/m (compression in top fiber)
4 1 . . .
% =4561b/in>  (compression in bottom fiber)
Atx=1601in: o= 06001845
% =400 lb/in? (tension in top fibers)

It is seen that for this beam the maximum fiber stresses in both tension and
compression occur at the section of maximum positive bending moment. The
maximum transverse shear stress is

(1020)(15.2)

)
(Tma)y = 82.6)(1) =188 1b/in [by Eq. (8.1-2)]

This is the maximum shear stress on a horizontal plane and occurs at the
neutral axis of the section just to the left of the right support. The actual
maximum shear stress is T, =10, =1 x 1630 = 815 1b/in®.

(¢) For the steel I-beam, the structural steel handbook gives I/c = 3.00 i in® and
t = 0.190 in. Therefore

o = 0100 11,250 Ib/in”

max 3

This stress occurs at x = 75 in, where the beam is subject to tension in the
bottom fibers and compression in the top. The maximum transverse shear
stress is approximated by

1020

(4)(0 19) = 1340 lb/ln

(Tmax)V

Although this method of calculating ¢ (where the shear force is assumed to be
carried entirely by the web) is only approximate, it is usually sufficiently
accurate to show whether or not this shear stress is important. If it indicates
that this shear stress may govern, then the stress at the neutral axis may be
calculated by Eq. (8.1-2). For standard I-beams, the allowable vertical shear is
given by the structural-steel handbooks, making computation unnecessary.

2. The beam is shown in Fig. 8.3 has a rectangular sectlon 2in wide and 4in
deep and is made of spruce, where E = 1,300,000 lb/m It is required to
determine the deflection of the left end.

Solution. The solution will be effected first by superposition, using the
formulas of Table 8.1. The deflection y of the left end is the sum of the
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150 1b w=2.141b/in
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deflection y; produced by the distributed load and the deflection y, produced
by the concentrated load. Each of these is computed independently of the other
and added using superposition. Thus

1 (2.14)(140%) 9,800,000
y; = —400 = ( 40)|: 24 i ]——I— i
by formula for 0 at A, case 2e, where a=0, [=140in and w, =
w; = 2.141b/in. y, is calculated as the sum of the deflection the 150-lb load
would produce if the beam were fixed at the left support and the deflection
produced by the fact that it actually assumes a slope there. The first part of the
deflection is given by the formula for max y (case 1a), and the second part is
found by multiplying the overhang (40 in) by the slope produced at the left end
of the 140-in span by a counterclockwise couple equal to 150(40) = 6000 1b-in
applied at that point (formula for 0 at A, case 3e, where a = 0).

_1(150)(40%)
V2= TR R

+ (_40)[_1(_6000)(140)] _ 14,400,000

3 EI EI
Adding algebraically, the deflection of the left end is

4,600,000 . L.
Yy=y1+tys=— # =-0.33in  (deflection is downward)

The solution of this problem can also be effected readily by using Eq. (8.1-6).
The reaction at the left support due to the actual loads is 3431b and the
reaction due to a unit load acting down at the left support is 1.286. If x is
measured from the extreme left end of the beam

(x — 40)*
M = —150x + 343(x — 40) — 2.14T and m = —x+ 1.286(x — 40)

Simplifying the equations, we have

Mm
y= Jﬁd’“
1 40 180
=27 U (—150x)(—x)dx + J (—1.071x2 + 278.8x — 15,430)(0.286x — 51.6)dx]

0 40
=+0.33in

(Here the plus sign means that y is in the direction of the assumed unit load,
i.e., downward.)

This second solution involves much more labor than the first, and the
calculations must be carried out with great accuracy to avoid the possibility
of making a large error in the final result.
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3. A cast iron beam is simply supported at the left end and fixed at the right
end on a span of 100cm. The cross section is 4cm wide and 6cm deep
(I =72 cm*). The modulus of elasticity of cast iron is 107 N/ecm?, and the
coefficient of expansion is 0.000012 cm/cm/°C. It is desired to determine the
locations and magnitudes of the maximum vertical deflection and the maxi-
mum bending stress in the beam. The loading consists of a uniformly increas-
ing distributed load starting at 0 at 40 cm from the left end and increasing to
200 N/cm at the right end. In addition, the beam, which was originally 20°C, is
heated to 50°C on the top and 100°C on the bottom with the temperature
assumed to vary linearly from top to bottom.

Solution. Superimposing cases 2c and 6¢ of Table 8.1, the following reac-
tions are determined. (Note: For case 2¢, w, =0, a = 40 cm, w; = 200 N/cm,
and [ =100 cm; for case 6¢, T; = 50°C, Ty = 100°C, y = 0.000012 cm/cm/°C,
t=6cm, and a =0.)

200(100 — 40)3(4 - 100 + 40)  3(107)(72)(0.000012)(100 — 50)
Ry = - — _604.8N
40(1009) 2(6)(100)
MA =0 Ya = 0
5. _ —200(100 — 40)*(2- 100+ 3-40) _0.000012(100 — 50)(~100)
A= 240(107)(72)(100) 4(6)
= —0.0033 rad

Therefore

604.8x  200(x — 40)° N 0.000012(100 — 50)x2
6EI (100 — 40)(120)EI 2(6)
= —0.0033x — 1.4(107")x® — 3.86(10 ') (x — 40)5 + 5.0(107%)x?

y = —0.0033x —

and

dy

2= —0.0033 — 4.2(10" " — 19.3(107 ) (x — 40)* + 10(10 %)x

The maximum deflection will occur at a position x; where the slope dy/dx is
zero. At this time an assumption must be made as to which span, x; < 40 or
x; > 40, will contain the maximum deflection. Assuming that x; is less than
40 cm and setting the slope equal to zero,

0 = —0.0033 — 4.2(10"")a? + 10(107®)x,

Of the two solutions for x;, 39.7 and 198 cm, only the value of 39.7 cm is valid
since it is less than 40 cm. Substituting x = 39.7 cm into the deflection equation
gives the maximum deflection of —0.061 cm. Similarly,

200

M= —604.8c—— "
% = 5100 — 40) "

x — 40)°
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which has a maximum negative value where x is a maximum, i.e., at the right
end:

200 5
M, .. =—604.8(100) — ——— (100 — 40)° = —180,480 N-
max (100) 6100 40)( ) : cm
_ Mc  180,480(3) )
Omax = T = 772 = 7520 N/cm

4. The cast iron beam in Example 3 is to be simply supported at both ends and
carry a concentrated load of 10,000 N at a point 30 cm from the right end. It is
desired to determine the relative displacement of the lower edges of the end
section. For this example, case le can be used with ¢ = 70 cm:

~10,000(100 — 70)

~10,000(70)
= ) 900 — 70)(100 — 70) = —0.00632 rad, -0
4= 510 72)(100) " X ) ra Ya
10,000(70) .
=) 1002 — 702) = 0.00826 rad
B = 6(107(72)(100) ) ra
Then
dy ey 10,000 )
g = ~0-00632 4 2.083(10 )% — e (v~ T0)

= —0.00632 + 2.083(10 %)% — 6.94(107%)(x — 70)?

The shortening of the neutral surface of the beam is given in Eq. (8.1-14) to

be
1 (dy 2
Al== pc
1 70
- ﬂ [—0.00632 + 2.083(10~%)x?] dx
0
1 100
+ QJ [—0.04033 + 9.716(10*)x — 4.857(10°)x*]* dx
70
or

Al =0.00135 cm (a shortening)

In addition to the shortening of the neutral surface, the lower edge of the left
end moves to the left by an amount 04¢ or 0.00632(3) = 0.01896 cm. Similarly,
the lower edge of the right end moves to the right by an amount 0zc or
0.00826(3) = 0.02478 cm. Evaluating the motion of the lower edges in this
manner is equivalent to solving Eq. (8.1-15) for the total strain in the lower
fibers of the beam.

The total relative motion of the lower edges of the end sections
is therefore a moving apart by an amount 0.01896 + 0.02478 —
0.00135 = 0.0424 cm.
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8.2 Composite Beams and Bimetallic Strips

Beams that are constructed of more than one material can be treated by
using an equivalent width technique if the maximum stresses in each of
the several materials remain within the proportional limit. An equiva-
lent cross section is developed in which the width of each component
parallel to the principal axis of bending is increased in the same
proportion that the modulus of elasticity of that component makes
with the modulus of the assumed material of the equivalent beam.

EXAMPLE

The beam cross section shown in Fig. 8. 4(a) is composed of three portions of
equal width and depth The top portion is made of aluminum for Wthh
E,=10-10° lb/1n the center is made of brass for which Ej =15 106 1b/in?;
and the bottom is made of steel for which Eg = 30 - 10° lb/m Figure 8. 4(b)
shows the equivalent cross section, which is assumed to be made of aluminum.
For this equivalent cross section the centroid must be located and the moment
of inertia determined for the centroidal axis.

Solution

__3(2)(5) + 4.5(2)(3) + 9(2)(1)

3 NWRT =2.271n
93 923
I = 3( )+6(5 2.27)% + 51(2 ) 93— 2,27 +&+18(227 1)
:89.5 in?

The equivalent stiffness EI of this beam is therefore 10-10%(89.5), or
895 - 10 1b-in”.

A flexure stress computed by ¢ = Mc/I,, will give a stress in the equivalent
beam which can thereby be converted into the stress in the actual composite
beam by multiplying by the modulus ratio. If a bending moment of 300,000 Ib-
in were applied to a beam with the cross section shown, the stress at the top
surface of the equivalent beam would be ¢ = 300, 000(6 2.27)/89.5, or
12,500 lb/m Since the material at the top is the same in both the actual
and equivalent beams, this is also the maximum stress in the aluminum
portion of the actual beam The stress at the bottom of the equivalent beam
would be ¢ = 300,000(2.27)/89.5 = 7620 lb/in%. Multiplying the stress by the

——

e PO e r\)a’(— N -
H
()]

(€]
he— ) —>]

Figure 8.4
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modulus ratio, the actual stress at the bottom of the steel portion of the beam
would be ¢ = 7620(30/10) = 22,900 Ib/in?.

Bimetallic strips are widely used in instruments to sense or control
temperatures. The following formula gives the equivalent properties of
the strip for which the cross section is shown in Fig. 8.5:

wtit E E,

Equivalent E] = ——2~—"—— 2-1
quivalent 19.E, + 1,5, 1 (8.2-1)
or
2 3
t t E, (t E,t,
K =4 2442 e == 2-2
' " th " (tb> +Eb (tb) +Ea tq (8:2:2)

All the formulas in Table 8.1, cases 1 to 5, can be applied to the
bimetallic beam by using this equivalent value of EI. Since a bimetallic
strip is designed to deform when its temperature differs from 7, the
temperature at which the strip is straight, Table 8.1, case 6, can be
used to solve for reaction forces and moments as well as deformations
of the bimetallic strip under a uniform temperature 7'. To do this, the
term y(Ty — T,)/t is replaced by the term 6(y, — y )T — T,)(¢, +tp)/
(t%Kl) and EI is replaced by the equivalent EI given by Eq. (8.2-1).

After the moments and deformations have been determined, the
flexure stresses can be computed. The stresses due to the bending
moments caused by the restraints and any applied loads are given by
the following expressions:

In the top surface of material a:

—6M ty E,t
=— |2+ 422 8.2-3
’ wt§K1< +ta+Ebtb) ( )

In the bottom surface of material b:

6M t, Eyt,
= 2+-24+222 2-4
? wtzK, ( + ty + Eata) (8.2-4)

If there are no restraints imposed, the distortion of a bimetallic strip
due to a temperature change is accompanied by flexure stresses in the
two materials. This differs from a beam made of a single material
which deforms free of stress when subjected to a linear temperature

k< w

- |
l Material a
o Material b ]

—
o
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variation through the thickness if there are no restraints. Therefore
the following stresses must be added algebraically to the stresses
caused by the bending moments, if any:

In the top surface of material a:

_ —0y =T - T)E, ta\" Epty
_ 9.
Kl 3 b + tb Eata (8 5)
In the bottom surface of material b:
(Vb - ya)(T - To)Eb ta Ea ta ’
— 324222 8.2-6
K, tp * Ey \t,, ( )

EXAMPLE

A bimetallic strip is made by bonding a p1ece of titanium alloy 1 ;in wide by
0.030in thick to a piece of stalnless steel —1n wide by 0.060in thick. For
titanium, E = 17 108 lb/m and y=5.7- 10 6 1n/1n/ F; for stainless steel,
E=28.10° Ib/in% and y = 9.6 - 10~ s in/in/°F. It is desired to find the length
of bimetal required to develop a reaction force of 50z at a simply supported left
end when the right end is fixed and the temperature is raised 50°F; also the
maximum stresses must be determined.

Solution. First find the value of K; from Eq. (8.2-2) and then evaluate the
equivalent stiffness from Eq. (8.2-1):

0.03 0.03\% 17/0.03\® 280.06
K =4+ 60.06+4<0.06) +%<0.06> *170.08 = 137

0.25(0.06%)(0.03)(28 - 106)(17 - 10°)
12[0.03(17 - 106) + 0.06(28 - 10)]

Equivalent EI = 11.37 = 333 Ib-in?

Under a temperature rise over the entire length, the bimetallic strip curves
just as a single strip would curve under a temperature differential. To use case
6¢c in Table 8.1, the equivalent to y(Ty — T})/t must be found. This equivalent
value is given by

6(9.6 - 1075 — 5.7 - 1075)(50)(0.03 + 0.06)

=0.00257 in~*
(0.062)(11.37) m

The expression for R, can now be obtained from case 6¢ in Table 8.1 and,
noting that a = 0, the value of the length [ can be determined:

3 —a?) -3 -5
Ry == EI'(T, — T)) = 57(333)(0.00257) = ¢ b

Therefore [ = 4.111n.
The maximum bending moment is found at the fixed end and is equal to R,/

max M = ——(4 11) = —1.285 lb-in
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Combining Egs. (8.2-3) and (8.2-5), the flexure stress on the top of the titanium
is

. __ —6(-1285) (2 0.06+go.03>
~0.25(0.06)%(11.37) 0.03 ' 280.06

_(9.6-107° = 5.7-10-)(50)(17 - 10°) [30.03 2<0.03)2 280.06i|

11.37 0.06 0.06) ~170.03

= 3242 4 378 = 3620 Ib/in”

Likewise, the flexure stress on the bottom of the stainless steeel is

g

6(—1.285) |:2 0.03 280‘06]

= 0.25(0.062)(11.37) 0.06 ' 170.03
L (96 10-° —5.7- 10-%)(50)(28 - 10°) [ , 0.03 Lo 17(0.03 3
11.37 0.06 2810.06

= —4365 + 1644 = —2720 Ib/in®

8.3 Three-Moment Equation

The three-moment equation, which expresses the relationship between
the bending moments found at three consecutive supports in a contin-
uous beam, can be readily derived for any loading shown in Table 8.1.
This is accomplished by taking any two consecutive spans and eval-
uating the slope for each span at the end where the two spans join.
These slopes, which are expressed in terms of the three moments and
the loads on the spans, are then equated and the equation reduced to
its usual form.

EXAMPLE

Consider two contiguous spans loaded as shown in Fig. 8.6. In addition to the
loading shown, it is known that the left end of span 1 had settled an amount
y9 — y; relative to the right end of the span, and similarly that the left end of
span 2 has settled an amount y; — y, relative to the right end. (Note that y;, ys,
and y5 are considered positive upward as usual.) The individual spans with
their loadings are shown in Fig. 8.7(a,b). Determine the relationship between
the applied loads and the moment at the intermediate support.

Solution. Using cases 2e and 3e from Table 8.1 and noting the relative
deflections mentioned above, the expression for the slope at the right end of

Micha1mr—az_'lwz 7jMzs

< 11 4 12

Figure 8.6
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Wy

a W,
" ey
1, 1
(a) (b)
Figure 8.7
span 1 is

wy (B — a})? Cwi(h - a))’

24E,1,l,  3860E,I,l
M} —My(% - 3ai) 42N

6E. 1,1, 6E. 1,1, Iy

0, = (82 + 9a,1; + 3a?)

+

Similarly, using cases le and 3e from Table 8.1, the expression for the slope at
the left end of span 2 is

s (92 612 4 312) + 23 22
L

(212 as)(ly — ag) — === (21 2)

6EIl 6EIZ

Equating these slopes gives

Mlll MZZI MQZZ MBZZ wl(ll ) 9
- 78 + 21 12
6E,I, " 3E,I, | 3E,I,  6E,l,  360E 1111 (T + 21ayy + 12a7)

-1 Waas — Yo
— 21, — — Jo  JZ
A 6E, 1,1, (2l — ay)(ly — ay) l2

If M, and M; are known, this expression can be solved for M,: if not, similar
expressions for the adjacent spans must be written and the set of equations
solved for the moments.

The three-moment equation can also be applied to beams carrying
axial tension or compression in addition to transverse loading. The
procedure 1s exactly the same as that described above except the slope
formulas to be used are those given in Tables 8.8 and 8.9.

8.4 Rigid Frames

By superposition and the matching of slopes and deflections, the
formulas in Table 8.1 can be used to solve for the indeterminate
reactions in rigid frames or to determine the deformations where the
support conditions permit such deformations to take place. The term
rigid in this section simply means that any deformations are small
enough to have negligible effect on bending moments.

In Table 8.2 formulas are given for the indeterminate reactions and
end deformations for rigid frames consisting of three members. Only
in-plane deformations and only those due to bending moments have
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been included in the expressions found in this table. Since deforma-
tions due to transverse shear and axial loading are not included, the
results are limited to those frames made up of members which are long
in proportion to their depths (see assumptions 6 to 8 in Sec. 8.1). Each
member must be straight and of uniform cross section having a
principal axis lying in the plane of the frame. The elastic stability of
the frame, either in the plane of the frame or out of this plane, has not
been treated in developing Table 8.2. The effects of axial load on the
bending deformations, as documented in Tables 8.7-8.9, have not been
considered. A final check on a solution must verify that indeed these
effects can be neglected. Very extensive compilations of formulas for
rigid frames are available, notably those of Kleinlogel (Ref. 56) and
Leontovich (Ref. 57).

While Table 8.2 is obviously designed for frames with three
members where the vertical members both lie on the same side of
the horizontal member, its use is not limited to this configuration. One
can set the lengths of either of the vertical members, members 1 and 2,
equal to zero and solve for reactions and deformations of two-member
frames. The length of the horizontal member, member 3, should not be
set to zero for two reasons: (1) It does not generally represent a real
problem; and (2) the lengths of members 1 and 2 are assumed not to
change, and this adds a restraint to member 3 that would force it to
have zero slope if its length was very short. Another very useful
application of the expressions in Table 8.2 is to apply them to frames
where one of the two vertical members lies on the opposite side of the
horizontal member. Instead of forming a U-shape in the side view, it
forms a Z-shape. To do this one must change the signs of three
variables associated with the reversed member: (1) the sign of the
length of the reversed member, (2) the sign of the distance a which
locates any load on the reversed member, and (3) the sign of the
product EI of the reversed member. All the reactions and end-point
deflections retain their directions as given in the figures in Table 8.2;
that is, if member 1 is reversed and extends upward from the left end
of member 3, Hy now acts at the upper end of member 1 and is
positive to the left as is dy4. Example 3 illustrates this application
as well as showing how the results of using Tables 8.1 and 8.2
together can be used to determine the deformations anywhere in a
given frame.

When the number of members is large, as in a framed building, a
relaxation method such as moment distribution might be used or a
digital computer could be programmed to solve the large number of
equations. In all rigid frames, corner or knee design is important;
much information and experimental data relating to this problem are
to be found in the reports published by the Fritz Engineering Labora-
tories of Lehigh University. The frames given in Table 8.2 are assumed
to have rigid corners; however, corrections can be made easily once the
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rigidity of a given corner design is known by making use of the
concentrated angular displacement loading with the displacement
positioned at the corner. This application is illustrated in Example 2.

EXAMPLES

1. The frame shown in Fig. 8.8(a) is fixed at the lower end of the right-hand
member and guided at the lower end of the left-hand member in such a way as
to prevent any rotation of this end but permitting horizontal motion if any is
produced by the loading. The configuration could represent the upper half of
the frame shown in Fig. 8.8(b); for this frame the material properties and
physical dimensions are given as [, =40in, l, =20in, l3=15in, E; =
E, = E; = 30-10°% Ib/in®, I, = 8 in*, I, = 10 in*, and I, = 4 in®. In addition to
the load P of 10001b, the frame has been subjected to a temperature rise of
50°F since it was assembled in a stress-free condition. The coefficient of
expansion of the material used in all three portions is 0.0000065in/in/°F.

Solution. An examination of Table 8.2 shows the required end or support
conditions in case 7 with the loading cases f and q listed under case 5. For
cases b to 12 the frame constants are evaluated as follows:

40° N 403 — (40 — 20)°  (402)(15)
oo B L B-U-b)" Bl 3E 3(10) 4
HE = 3Fp T, 3E,I, E.I, 30(106)

 2666.7 + 1866.7 + 6000
- 30(106)

= 0.0003511 in/1b

Similarly

Cyar = Cyr = 0.00001033 1b~*
Cyy = 0.0000244 in/Ib

Cya = Cyry = 0.00000194 1b~!
Camr = 0.000000359 (Ib-in)~*

-
jo" ;T;" 1000 Ib
l 77/77¢7/

10001
ROLLN 1000 Ib

12

Hg

(a) (b)

Figure 8.8
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For case 7f

a3

6(30 - 106)(8)
= 1000(0.0003511 — 0.000124 + 0.0000012) = 0.2282 in

123
= 1000[0.0003511 —12(0.00001033) +—]

Similarly
LFy; =0.0442in and LF,;; =0.00632 rad
For case 7q

LFy = —(T — T,)y3l3 = —50(0.0000065)(15) = —0.004875 in
LFy, =0.0065in and LFy; =0rad

For the combined loading

LFy; = 0.2282 — 0.004875 = 0.2233 in
LFy = 0.0507 in
LF,, = 0.00632 in

Now the left end force, moment, and displacement can be evaluated:

_ LFyCyy — LFyCyy  0.0507(0.359 - 10-6) — 0.00632(1.94 - 10~%)
 Cyy Oy —C%,  (24.4-1076)(0.359 - 10-6) — (1.94 - 10-6)?
=1189 b

M, = 11,179 Ib-in

Spa — 0.0274 in

Va

Figure 8.9 shows the moment diagram for the entire frame.

+1015

-16,820 i
B

+21,015

A
+11,179

Figure 8.9 (units are in lb-in)

2. If the joint at the top of the left vertical member in Example 1 had not been
rigid but instead had been found to be deformable by 10~7 rad for every inch-
pound of bending moment applied to it, the solution can be modified as follows.

Solution. The bending moment as the corner in question would be given by
M, — 28(1000), and so the corner rotation would be 10~7(M, — 28,000) rad in a
direction opposite to that shown by 6, in case 5a. Note that the position of 0, is
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at the corner, and so @ would be 40 in. Therefore, the following load terms due to
the corner deformation can be added to the previously determined load terms:

LFy = —10""(M, — 28,000)(40)
LFV = O
LF,; = —107"(M, — 28,000)

Thus the resultant load terms become

LFy =0.2233 —4-10°M, +0.112 = 0.3353 — 4 - 10°M,
LFy = 0.0507 in
LFy; = 0.00632 — 10""M,, + 0.0028 = 0.00912 — 10~ "M,

Again, the left end force, moment and displacement are evaluated:

~0.0507(0.359 - 1076) — (0.00912 — 10" M,)(1.94 - 1076)

Va 4.996 - 10-12
=100 + 0.0388M,
a7, _ (000912 — 1077 M,)(24.4 - 107%) — 0.0507(1.94 - 10~°)
AT 4.996- 1012

= 24,800 — 0.488M 4

or
M, = 16,670 Ib-in
Spa = —0.0460 in
V,=T471b

3. Find the reactions and deformations at the four positions A to D in the
pinned-end frame shown in Fig. 8.10. All lengths are given in millimeters,
M, =2000 N-mm, and all members are made of aluminum for which
E = 7(10)N/mm~ with a constant cross section for which I = 100 mm*.

Solution. Case 1h of Table 8.2 covers this combination of loading and end
supports, if, due to the upward reach of member 1, appropriate negative values
are used. The need for negative values is described in the introduction to Sec.

13.214
Va 13.214
<V V60535
A AY 40358 40358 \\DQ
1
100 LM, 6 ‘e 15964 13214 60535 ~ ¢
40 A8 3G,
ch 4.0358 ‘G(.I;_F_D'/ e
2000 T 40358
150 4.0358| - 13.214
| 1596.4 40358
B 8 \ B \
13214 3 13.214 |\
Vg S 4 \__'\(93
(a) (b) (c) (d)

Figure 8.10
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8.4. Substitute the following material properties and physical dimensions into
case lh: [; = =100 mm, /, = 150 mm, /3 = 75 mm, a = —(100 — 40) = —60 mm,
EI, = —7(10°) N-mm?, and E,I, = E5I; = 7(10%) N-mm2. Using these data
gives the frame and load constants as

Ay =0.2708in/Ib, Ay = Ay = —0.0008036 1b
Ay = 0.00001786 (Ib-in)™",  LPy = 0.0005464(2000) = 1.0928 in
LP,; = —0.000009286(2000) = —0.01857 rad

Using these frames and load terms in case 1, the pinned-end case, the reaction
and deformations are found to be
LP
dga=0 My=0 Hy=—""-40352N (toleft)
App
and

V4 =AygHy — LPy; = 0.01533 rad (clockwise)
Applying the three independent statics equations to Fig. 8.10(a) results in
V,=-13.214N  Hz=-4.0358N and Vy=13214N

Now treat each of the three members as separate bodies in equilibrium, and
find the deformations as pinned-end beams using equations from Table 8.1 as
appropriate.

For member 1 as shown in Fig. 8.10(b): Using case 3e twice, once for each of
the two moment loadings, gives

—2000
A = 57 10%)(100) [2(100)° — 6(60)(100) + 3(60)°]
1596.4
+ 507~ 10%)(100) 2(100)° — 6(100)(100) + 8(100)’
= —0.001325 rad
2000 1596.4

[(100)? — 3(60)?] [(100)? — 3(100)?]

C = (7 - 105)(100) ~ 6(7- 105)(100)

= 0.007221 rad

To obtain the angle ¥, = 0.01533 rad at position A, member 1 must be given an
additional rigid-body clockwise rotation of 0.01533 — 0.001325 = 0.01401 rad.
This rigid-body motion moves position C to the left a distance of 1.401 mm and
makes the slope at position C equal to 0.007221 — 0.01401 = —0.006784 rad
(clockwise).

For member 3 as shown in Fig. 8.10(c): Again use case 3e from Table 8.1
twice to get

~1596.4

C T 8(7-105)(75)

= —0.006782 rad
1596.4

D = 5(7-105)(75)

= 0.005013 rad

—605.35

2 2
67 105)(75) 2(7%)" — 6(75)(75) + 3(75)’]

[2(75)* — 0 + 0] —

—605.35

2 2
6(7- 105)(75) [(75)" = 3(75)7]

[(75)% — 0] +
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No rigid-body rotation is necessary for member 3 since the left end has the
same slope as the lower end of member 1, which is as it should be.
For member 2 as shown in Fig. 8.10(d): Use case 3e from Table 8.1 to get

_ —605.35
~ 6(7- 105)(150)

_ 605.35
B ™ 6(7-106)(150)

0, [2(150)? — 0 + 0] = —0.004324 rad

[(150) — 0] = 0.002162 rad

To match the slope at the right end of member 3, a rigid-body counterclockwise
rotation of 0.005013 + 0.00432 = 0.009337 rad must be given to member 2.
This creates a slope Yz = 0.009337 + 0.002162 = 0.01150 rad counterclock-
wise and a horizontal deflection at the top end of 0.009337(150) = 1.401 mm to
the left. This matches the horizontal deflection of the lower end of member 1 as
a final check on the calculations.

To verify that the effect of axial load on the bending deformations of the
members is negligible, the Euler load on the longest member is found to be
more than 100 times the actual load. Using the formulas from Table 8.8 would
not produce significantly different results from those in Table 8.1.

8.5 Beams on Elastic Foundations

There are cases in which beams are supported on foundations which
develop essentially continuous reactions that are proportional at each
position along the beam to the deflection of the beam at that position.
This is the reason for the name elastic foundation. Solutions are
available (Refs. 41 and 42) which consider that the foundation trans-
mits shear forces within the foundation such that the reaction force is
not directly proportional to the deflection at a given location but
instead is proportional to a function of the deflections near the given
location; these solutions are much more difficult to use and are not
justified in many cases since the linearity of most foundations is open
to question anyway.

It is not necessary, in fact, that a foundation be continuous. If a
discontinuous foundation, such as is encountered in the support
provided a rail by the cross ties, is found to have at least three
concentrated reaction forces in every half-wavelength of the deflected
beam, then the solutions provided in this section are adequate.

Table 8.5 provides formulas for the reactions and deflections at the
left end of a finite-length beam on an elastic foundation as well as
formulas for the shear, moment, slope, and deflection at any point x
along the length. The format used in presenting the formulas is
designed to facilitate programming for use on a digital computer or
programmable calculator.
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In theory the equations in Table 8.5 are correct for any finite-length
beam or for any finite foundation modulus, but for practical purposes
they should not be used when fI exceeds a value of 6 because the
roundoff errors that are created where two very nearly equal large
numbers are subtracted will make the accuracy of the answer ques-
tionable. For this reason, Table 8.6 has been provided. Table 8.6
contains formulas for semi-infinite- and infinite-length beams on
elastic foundations. These formulas are of a much simpler form since
the far end of the beam is assumed to be far enough away so as to have
no effect on the response of the left end to the loading. If f/ > 6 and the
load is nearer the left end, this is the case.

Hetényi (Ref. 53) discusses this problem of a beam supported on an
elastic foundation extensively and shows how the solutions can be
adapted to other elements such as hollow cylinders. Hetényi (Ref. 51)
has also developed a series solution for beams supported on elastic
foundations in which the stiffness parameters of the beam and
foundation are not incorporated in the arguments of trigonometric
or hyperbolic functions. He gives tables of coefficients derived for
specific boundary conditions from which deformation, moments, or
shears can be found at any specific point along the beam. Any degree of
accuracy can be obtained by using enough terms in the series.

Tables of numerical values, Tables 8.3 and 8.4 are provided to assist
in the solution of the formulas in Table 8.5. Interpolation is possible for
values that are included but should be used with caution if it is noted
that differences of large and nearly equal numbers are being encoun-
tered. A far better method of interpolation for a beam with a single
load is to solve the problem twice. For the first solution move the load
to the left until (I — a) is a value found in Table 8.3, and for the second
solution move the load similarly to the right. A linear interpolation
from these solutions should be very accurate.

Presenting the formulas for end reactions and displacements in
Table 8.5 in terms of the constants C; and C,; is advantageous since
it permits one to solve directly for loads anywhere on the span. If the
loads are at the left end such that C; = C,;, then the formulas can be
presented in a simpler form as is done in Ref. 6 of Chap. 13 for
cylindrical shells. To facilitate the use of Table 8.5 when a concen-
trated load, moment, angular rotation, or lateral displacement is at
the left end (that is, a = 0), the following equations are presented to
simplify the numerators:

C,Cy+CyCy=Cpy, 2024+ CyCy=2+Cyy
CyC3 — C1Cy = Cyg, C; —2C,C3=Cyy
C2+C2=1+Cy,, 2C2—C,C,=Cy,
C2 + C3 =204, 2C,C5+C% =Cyy
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EXAMPLES

1. A 6-in, 12.5-1b I-beam 20 ft long is used as a rail for an overhead crane and
is in turn being supported every 2 ft of its length by being bolted to the bottom
of a 5-in, 10-1b I-beam at midlength. The supporting beams are each 21.5 ft
long and are considered to be simply supported at the ends. This is a case of a
discontinuous foundation being analyzed as a continuous foundation. It is
desired to determine the maximum bending stresses in the 6-in beam as well
as in the supporting beams when a load of 1 ton is supported at one end of the
crane.

Solution. The spring constant for each supporting beam is 48EI/I3, or
(48)(30 - 105)(12.1)/(21.5 - 12)® = 1013 lb/in. If this is assumed to be distribu-
ted over a 2-ft length of the rail, the equivalent value of b %, is 1.013/24 = 42.2
Ib/in per inch of deflection. Therefore

(b 42.2 v -

and

Bl = (0.01127)(240) = 2.70

An examination of the deflection of a beam on an elastic foundation shows that
it varies cyclicly in amplitude with the sine and cosine of fix. A half-wavelength
of this cyclic variation would occur over a span [/, where pl; =z, or [} =n/
0.01127 = 279 in. There is no question about there being at least three
supporting forces over this length, and so the use of the solution for a
continuous foundation is entirely adequate.

Since f is less than 6, Table 8.5 will be used. Refer to case 1 where both
ends are free. It must be pointed out that a simple support refers to a reaction
force, developed by a support other than the foundation, which is large enough
to prevent any vertical deflection of the end of the beam. From the table we
find that R4, = 0 and M, = 0; and since the load is at the left end, @ = 0. When
a =0, the C, terms are equal to the C terms, and so the four terms C;, Cy, Cs,
and C, are calculated:

C; = cosh plcos il = 7.47(—0.904) = —6.76
C, = cosh Blsin Bl + sinh plcos Bl = 7.47(0.427) + 7.41(—0.904) = —3.50

Similarly C3 =3.17, C, =9.89, and C;; =54.7. (See Tables 8.3 and 8.4.)
Therefore,

B 2000 (—3.50%) — (2)(3.17)(—6.76) _
Oa = 2(30 - 106)(21.8)(0.011272) 54.7 = 0.01216 rad
. 2000 (9.89)(=6.76) — (3.17)(=3.50) _ | (oo

T 2(30 - 10)(21.8)(0.01127%) 54.7
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With the deformations at the left end known, the expression for the bending
moment can be written:

w
2
=1.092(2)(30 - 10%)(21.8)(0.01127%*)F; — 0.01216(30 - 10°)(21.8)(0.01127)F,
2000
"~ 2(0.01127)"
= 181,400F; — 89,600F, — 88,700F,

M = —y,2EIp*F, — 0,EIF, — —F.,

Now substituting the expressions for F,,, Fs, and F, gives

M = 181,400 sinh fx sin fx — 89,600(cosh fx sin ffx — sinh fx cos fx)
— 88,700(cosh fx sin fix + sinh fx cos fx)

or
M = 181,400 sinh fx sin fx — 178,300 cosh fx sin fx + 900 sinh fx cos fx

The maximiun value of M can be found by trying values of x in the
neighborhood of x = n/4f = 7/4(0.01127) = 69.7 in, which would be the loca-
tion of the maximum moment if the beam were infinitely long (see Table 8.6).
This procedure reveals that the maximum moment occurs at x = 66.5 in and
has a value of —55,400 lb-in.

The maximum stress in the 6-in I-beam is therefore 55,400(3)/21.8 =
7620 1b/in?. The maximum stress in the supporting 5-in I-beams is found at
the midspan of the beam directly above the load. The deflection of this beam is
known to be 1.0921in, and the spring constant is 1013 1b/in, so that the center
load on the beam is 1.092(1013) = 1107 Ib. Therefore the maximum bending
moment is Pl/4 = 1107(21.5)(12)/4 = 71,400 Ib-in and the maximum stress is
71,400(2.5)/12.1 = 14,780 1b/in®.

2. If the 6-in I-beam in Example 1 had been much longer but supported in the
same manner, Table 8.6 could have been used. Case 8 reveals that for an end
load the end deflection is —W/2EIB® = —2000/2(30 - 10%)(21.8)(0.011273) =
—1.070in and the maximum moment would have equaled —0.3225W/
p = —0.3225(2000)/0.01127 = —57,200 in-1b at 69.7in from the left end. We
should not construe from this example that increasing the length will always
increase the stresses; if the load had been placed elsewhere on the span, the
longer beam could have had the lower maximum stress.

3. An aluminum alloy beam 3in wide, 21in deep, and 60in long is manufac-
tured with an initial concentrated angular deformation of 0.02 rad at
midlength; this initial shape is shown in Fig. 8.11(a). In use, the beam is
placed on an elastic foundation which develops 500 lb/in2 vertical upward
pressure for every 11in it is depressed. The beam is loaded by two concentrated
loads of 40001b each and a uniformly distributed load of 801b/in over the
portion between the concentrated loads. The loading is shown in Fig. 8.11(b). It
is desired to determine the maximum bending stress in the aluminum beam.
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4000 4000

—30 30 — 15+ 80 154
=002 ’

(a) (b)

Figure 8.11
Solution. First determine the beam and foundation parameters:

E=95-10%1b/in®, I=L1(3)(2% =2in*, ko =5001b/in®/in, b, =3in

3 3(500) Ve o B
ﬁ_[74(9.5.106)(2)] = 0.0666, 1=60in, pl=4.0

C,=-1785, C,=-3850, Cy=-2065 ~ C,=-2.83, Cj =744

An examination of Table 8.5 shows the loading conditions covered by the
superposition of three cases in which both ends are free: case 1 used twice with
W, =40001b and a; = 15in, and W, =40001b and a, = 45 in; case 2 used
twice with w; = 80 1b/in and a3 = 15 in, and w, = —801b/in and a, = 45 in;
case 5 used once with 6, = 0.02 and a = 30 in.

The loads and deformations at the left end are now evaulated by summing
the values for the five different loads, which is done in the order in which the
loads are mentioned. But before actually summing the end values, a set of
constants involving the load positions must be determined for each case. For
case 1, load 1:

C,; = cosh (60 — 15)cos f(60 — 15) = 10.068(—0.99) = —9.967
C,, = —8.497

For case 1, load 2:
C,=0834, C,=1933
For case 2, load 3:

C,

a.

,=-8497, C

a.

,=1414
For case 2, load 4:

C, = 1.933, C,s = 0.989
For case 5:

C,=3298,  C, =4.930
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Therefore R4 = 0 and M, = 0.

4000 (—38.50)(—8.497) — (2)(—20.65)(—9.967)

AT 2RI 744
4000 (—38.50)(1.933) — (2)(—20.65)(0.834)
2EI* 744
80 (—38.50)(1.414) — (—20.65)(—8.497)
2EIB? 744
—80 (—38.50)(0.989) — (—20.65)(1.933)
2EIf? 744
+ 0,09, (=38:50)(4.93) — (2)(~20.65)(3.298)
744
= 4002 (—0.0568)+400(2)(—0.02688)+ 803(—0.1545)
EIp EIp EIp
80

0.00125) + 0.02(—0.0721
EIB3( ) ( )

= —0.007582 rad

Similarly,
¥4 =—0.01172in

An examination of the equation for the transverse shear V shows that the
value of the shear passes through zero at x = 15, 30, and 45in. The maximum
positive bending moment occurs at x = 15in and is evaluated as follows,
noting again that R, and M, are zero:

M5 = —(—0.01172)(2)(9.5 - 10°)(2)(0.066662)[sinh(0.06666)(15) sin 1]
— (—0.007582)(9.5 - 10%)(2)(0.06666)(cosh 1sin 1 — sinh 1 cos 1)
= 8330 lb-in

Similarly, the maximum negative moment at x = 301in is evaluated, making
sure that the terms for the concentrated load at 15in and the uniformly
distributed load from 15 to 30in are included:

Msy = —13,000 lb-in

The maximum bending stress is given by o = Mc/I and is found to be
6500 1b/in”.

8.6 Deformation Due to the Elasticity of Fixed
Supports

The formulas in Tables 8.1, 8.2, 8.5, 8.6, and 8.8-8.10 that apply to
those cases where fixed or guided end supports are specified are based
on the assumption that the support is rigid and holds the fixed or
guided end truly horizontal or vertical. The slight deformation that
actually occurs at the support permits the beam to assume there a
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Figure 8.12
slope A0, which for the conditions represented in Fig. 8.12, that is, a
beam integral with a semi-infinite supporting foundation, is given by

1667TM  (1-)V
AV=—"Ene T ER,

Here M is the bending moment per unit width and V is the shear force
per unit width of the beam at the support; E is the modulus of
elasticity, and v is Poisson’s ratio for the foundation material; and
h, = h + 1.5r (Ref. 54). The effect of this deformation is to increase the
deflections of the beam. For a cantilever, this increase is simply x A0,
but for other support conditions the concept of the externally created
angular deformation may be utilized (see Example 2 on page 144).

For the effect of many moment-loaded cantilever beams spaced
closely one above the next, see Ref. 67.

8.7 Beams under Simultaneous Axial and
Transverse Loading

Under certain conditions a beam may be subjected to axial tension or
compression in addition to the transverse loads. Axial tension tends to
straighten the beam and thus reduce the bending moments produced
by the transve:rse loads, but axial compression has the opposite effect
and may greatly increase the maximum bending moment and deflec-
tion and obviously must be less than the critical or buckling load. See
Chap. 15. In either case a solution cannot be effected by simple
superposition but must be arrived at by methods that take into
account the change in deflection produced by the axial load.

For any condition of loading, the maximum normal stress in an
extreme fiber is given by

P, Me

max :A:l: Vi (8.7-1)

o
where P is the axial load (positive if tensile and negative if compres-
sive), A is the cross-sectional area of the beam, I/c is the section
modulus, and M is the maximum bending moment due to the
combined effect of axial and transverse loads. (Use the plus sign if



154 Formulas for Stress and Strain [cHAP. 8

M causes tension at the point in question and the minus sign if M
causes compression.)

It is the determination of M that offers difficulty. For some cases,
especially if P is small or tensile, it is permissible to ignore the small
additional moment caused by P and to take M equal to M’, the bending
moment due to transverse loads only. Approximate formulas of the
type (Ref. 33)

. y;nax 0 _ Ginax
Imax =14y P2/ED ™ T 1+ a,P?/EI 7.2)
M Mmax

max = 14y P2/EL

have been used, but the values of «,, ay, and «y, are different for each
loading and each manner of supporting the beam.

Instead of tabulating the values of o, which give answers with
increasing error as P increases, Tables 8.7(a—d) gives values of the
coefficient Cp which can be used in the expressions

YA = pr:q, OA = CP0:47 MA = CpM/ y etc. (87'3)

where the primed values refer to the laterally loaded beam without the
axial load and can be evaluated from expressions found in Table 8.1.
For those cases listed where the reactions are statically indeterminate,
the reaction coefficients given will enable the remaining reactions to
be evaluated by applying the principles of static equilibrium. The
given values of Cp are exact, based on the assumption that deflections
due to transverse shear are negligible. This same assumption was
used in developing the equations for transverse shear, bending
moment, slope, and deflection shown in Tables 8.8 and 8.9.

Table 8.8 lists the general equations just mentioned as well as
boundary values and selected maximum values for the case of axial
compressive loading plus transverse loading. Since, in general, axial
tension is a less critical condition, where deflections, slopes, and
moments are usually reduced by the axial load, Table 8.9 is much
more compact and gives only the general equations and the left-end
boundary values.

Although the principle of superposition does not apply to the
problem considered here, this modification of the principle can be
used: The moment (or deflection) for a combination of transverse loads
can be found by adding the moments (or deflections) for each trans-
verse load combined with the entire axial load. Thus a beam supported
at the ends and subjected to a uniform load, a center load, and an axial
compression would have a maximum bending moment (or deflection)
given by the sum of the maximum moments (or deflections) for Table
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8.8, cases le and 2e, the end load being included once for each
transverse load.

A problem closely related to the beam under combined axial and
lateral loading occurs when the ends of a beam are axially restrained
from motion along the axis of the beam (held) and a lateral load is
applied. A solution is effected by equating the increase in length of the
neutral surface of the beam PI/AE to the decrease in length due to the
curvature of the neutral surface zjo 0*°dx [Eq. (8.1-14)]. In general,
solving the resulting equation for P is difficult owing to the presence of
the hyperbolic functions and the several powers of the load P in the
equation. If the beam is long, slender, and heavily loaded, this will be
necessary for good accuracy; but if the deflections are small, the
deflection curve can be approximated with a sine or cosine curve,
obtaining the results given in Table 8.10. The following examples will
illustrate the use of the formulas in Tables 8.7-8.10.

EXAMPLES

1. A 4-in, 7.7-1b steel I-beam 20ft long is simply supported at both ends and
simultaneously subjected to a transverse load of 501b/ft (including its own
weight), a concentrated lateral load of 6001b acting vertically downward at a
position 8ft from the left end, and an axial compression of 30001b. It is
required to determine the maximum fiber stress and the deflection at
midlength.

Solution. Here P =30001b; I =2401in; I =61in*; I/c = 3in®; A = 2.21 in”
w, = w; =2=4.171b/in; and a = 0 for case 2e; W 600 1b and a=961in for
case le; k= \/P/E =0.00408 in~*; kI = 0.98. The solution will be carried out
(a) ignoring deflection, (b) using coefﬁments from Table 8.7 and (c) using
precise formulas from Table 8.8.

(@) R, = 860 1b, and max My = 860(8) — 8(50)(4) = 5280 Ib-ft:

. B M 3000 5280(12)
max compressive stress = 4~ I_/c “991 3 = —22,475 1b/in?

For the uniform load (Table 8.1, case 2e):

—5 w,l*  —5(4.17)(240%)

Y2 =354 BT~ 384(30. 100)6) ~ 00 n
For the concentrated load (Table 8.1, case le):
R, =3601b
0, = —~600(96)[2(240) — 96](240 — 96) _ o

6(30 - 106)(6)(240)
360(120%)  600(120 — 96)°

6(30. 10506) 6301006 — -07in

yiys = —0.123(120) +

Thus
Total midlength deflection = —1.907 in
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(b) From Table 8.7(b) (simply supported ends), coefficients are given for
concentrated loads at [/4 and [/2. Plotting curves of the coefficients versus
kl and using linear interpolation to correct for a = 0.4l give a value of
Cp = 1.112 for the midlength deflection and 1.083 for the moment under the
load. Similarly, for a uniform load on the entire span (a = 0), the values of Cp
are found to be 1.111 for the midlength deflection and 1.115 for the moment at
midlength. If it is assumed that this last coefficient is also satisfactory for the
moment at x = 0.4/, the following deflections and moments are calculated:

Max My = 360(8)(1.083) + [500(8) — 8(50)(4)](1.115) = 3120 + 2680 = 5800 Ib-ft
. P M 3000 5800(12)
Max compressive stress = AT IeT 221 3 - = —24,560 Ib/in’

Midlength deflection = —0.907(1.112) — 1.00(1.111) = —2.12 in

(¢) From Table 8.8 cases le and 2e, R4, = 860 lb and

0 —600 [sin 0.00408(240 — 96) 240 —96
4773000 sin 0.98 240
4 —4.17 ¢ 0.98 0.98
0.00408(3000) 2 2
—600 (0.5547
= 3000 <0.8305 - 0.6) —0.341(0.533 — 0.49)
= —0.0283 rad
860 0283(3000)
Max Mg = ——— .004 _ 2
ax Mg 000408s1n000 08(96) — 0.00403 n0.39
4.17
- m(l — COSs 0392)
= 80,500 4 7950 — 19,000 = 69,450 lb-in
3000 69,450
Max compressive stress = — 591 3 = —24,500 lb/m
—0.0283 860
Midlength defl —_— 49+ ——— (049 —sin0.4
idleng eflection = 0.00408 sin 0 9+0.00408(3000)(0 9 —sin 0.49)
600
~ 0.00408(3000) [0.00408(120 — 96)

— 5in 0.00408(120 — 96)]

B 4.17 0.00408%(1202)
0.004082(3000) 2

—1+cos 0.00408(120)]
= —3.27+1.36 — 0.00785 — 0.192 = —2.11 in

The ease with which the coefficients Cp can be obtained from Tables 8.7(a—d)
makes this a very desirable way to solve problems of axially loaded beams.
Some caution must be observed, however, when interpolating for the position
of the load. For example, the concentrated moment in Tables 8.7¢ and 8.7d
shows a large variation in Cp for the end moments when the load position is
changed from 0.25 to 0.50, especially under axial tension. Note that there are
some cases in which Cp either changes sign or increases and then decreases
when k£l is increased; in these cases the loading produces both positive and
negative moments and deflections in the span.
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2. A solid round brass bar 1 cm in diameter and 120 cm long is rigidly fixed at
both ends by supports assumed to be sufficiently rigid to preclude any relative
horizontal motion of the two supports. If this bar is subjected to a transverse
center load of 300 N at midlength, what is the center deflection and what is the
maximum tensile stress in the bar?

Solution. Here P is an unknown tensile load; W =300 N and a = 60 cm;
1=120cm; A =0.785cm?, I=0.0491cm?; and E=10-108 N/cm (Thls
situation is described in Table 8.10, case 2.) The first equation is solved for y,,,.:

0.785 300(120%)

Ymax ¥ 16(0.0491)7™  2(xH)(10 - 109)(0.0491)
Ymax +y13nax = 5.44

Therefore y,,« = 1.57 cm. The second equation is now solved for P:

_ 73(10 - 105)(0.785)
4(1202)

[P 3315 1z .
k=VEr= [(10- 106)(0.0491)} = 0.0822 cm

kl=9.86

1.572 = 3315 N

From Table 8.7, case 1d, the values of R4 and M, can be calculated. (Note
that 04 and y, are zero.) First evaluate the necessary constants:

C, = sinh 9.86 = 9574.4
Cy =cosh9.86 — 1 =9574.4 — 1 = 9573.4

C, = sinh 9.86 — 9.86 = 9564.5
Cps = cosh% —1=169.193— 1 =68.193

C,4 =sinh 4.93 — 4.93 = 69.186 — 4.93 = 64.256

C3C,5 — CyCoy 9573.4(68.193) — 9574.4(64.256)

Ry=W =300 = 300(0.5
A C2 - C,C, 9573.4% — 9574.4(9564.5) 0.5)
=150 N
1 = ~WCiCus — CsCyy _ —300 9564.5(68.193) — 9573.4(64.256)
AT B CI-C,C,  0.0822 74,900
—300
= 50893 0493 = ~1800 N-cm

. P Mc 3315 1800(0.5)
Max tensﬂe stress = Z + T = m —+ m = 4220 =+ 18,330

= 22,550 N/cm?

—1800 9.86 150
Midlength deflection = h— 1)+ s (sinh 4.93 — 4.
ldlength deflection = —o—— ( >+3315(0'0822)(sm 93 93)

=-370+354=—-16cm
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This compares favorably with the value y,,. = 1.57 cm obtained from the
equation which was based on the assumption of a cosine curve for the
deflection.

An alternative to working with the large numerical values of the hyperbolic
sines and cosines as shown in the preceding calculations would be to simplify
the equations for this case where the load is at the center by using the double-
angle identities for hyperbolic functions. If this is done here, the expressions
simplify to

w -w kl —W (kL kl
RA - ?

MA:TtanhZ yl/Z :ﬁ Z—tanhz

Using these expressions gives R4 = 150 N, M, = —1800 N-cm and y;, =
—1.63 cm. Table 8.6 for axial compression gives the formulas for these special
cases, but when the lateral loads are not placed at midlength or any of the
other common locations, a desk calculator or digital computer must be used. If
tables of hyperbolic functions are employed, it should be kept in mind that
adequate solutions can be made using values of &/ close to the desired values if
such values are given in the table and the desired ones are not. For example, if
the values for the arguments 9.86 and 4.93 are not available but values for 10
and 5 are (note that it is necessary to maintain the correct ratio a/l), these
values could be used with no noticeable change in the results. Finally, an
energy approach, using Rayleigh’s technique, is outlined in Chap. 6, Sec. 13, of
Ref. 72. The method works well with simple, axially constrained, and uncon-
strained beams.

8.8 Beams of Variable Section

Stress. For a beam whose cross section changes gradually, Egs.
(8.1-1), (8.1-4), and (8.1-10)—(8.1-12) (Sec. 8.1) apply with sufficient
accuracy; Eqgs. (8.1-3) and (8.1-5)—(8.1-7) apply if I is treated as a
variable, as in the examples that follow. All the formulas given in
Table 8.1 for vertical shear and bending moments in statically deter-
minate beams apply, but the formulas given for statically indetermi-
nate beams and for deflection and slope are inapplicable to beams of
nonuniform section unless the section varies in such a way that I is
constant.

Accurate analysis (Ref. 3) shows that in an end-loaded cantilever
beam of rectangular section which is symmetrically tapered in the
plane of bending the maximum fiber stress is somewhat less than is
indicated by Eq. (8.1-12) the error amounting to about 5% for a surface
slope of 15° (wedge angle 30°) and about 10% for a surface slope of 20°.
See also Prob. 2.35 in Ref. 66. The maximum horizontal and vertical
shear stress is shown to occur at the upper and lower surfaces instead
of at the neutral axis and to be approximately three times as great as
the average shear stress on the section for slopes up to 20°. It is very
doubtful, however, if this shear stress is often critical even in wood
beams, although it may possibly start failure in short, heavily rein-
forced concrete beams that are deepened or “haunched” at the ends.
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Such a failure, if observed, would probably be ascribed to compression
since it would occur at a point of high compressive stress. It is also
conceivable, of course, that this shear stress might be of importance in
certain metal parts subject to repeated stress.

Abrupt changes in the section of a beam cause high local stresses,
the effect of which is taken into account by using the proper factor of
stress concentration (Sec. 3.10 and Table 17.1).

Deflection. Determining deflections or statically indeterminate reac-
tions for beams of variable section can be considered in two categories:
where the beam has a continuously varying cross section from one end
to the other, and where the cross section varies in a stepwise fashion.

Considering the first category, where the section varies continu-
ously, we sometimes find a variation where Eq. (8.1-5) can be inte-
grated directly, with the moment of inertia treated as a variable. This
has been accomplished in Ref. 20 for tapered beams of circular section,
but using the expressions presented, one must carry more than the
usual number of digits to get accurate results. In most instances,
however, this is not easy, if possible, and a more productive approach is
to integrate Eq. (8.1-6) numerically using small incremental lengths
Ax. This has been done for a limited number of cases, and the results
are tabulated in Tables 8.11(a)—(d).

These tables give coefficients by which the stated reaction forces or
moments or the stated deformations for uniform beams, as given in
Table 8.1, must be multiplied to obtain the comparable reactions or
deformations for the tapered beams. The coefficients are dependent
upon the ratio of the moment of inertia at the right end of the beam I
to the moment of inertia at the left end 1, assuming that the uniform
beam has a moment of inertia I4. The coefficients are also dependent
upon the manner of variation between the two end values. This
variation is of the form I, = I,(1 + Kx/1)", where x is measured from
the left end and K = (Iz/I;)"/" — 1. Thus if the beam is uniform, n = 0;
if the width of a rectangular cross section varies linearly, n = 1; if the
width of a rectangular cross section varies parabolically, n = 2; if the
depth of a rectangular cross section varies linearly, n = 3; and if the
lateral dimensions of any cross section vary linearly and proportio-
nately, n = 4. Beams having similar variations in cross section can be
analysed approximately by comparing the given variations to those
found in Table 8.11.

Coefficients are given for only a few values of a/l, so it is not
desirable to interpolate to determine coefficients for other values of
a/l. Instead it is advisable to determine the corrected deformations or
reactions with the loads at the tabulated values of a/l and then
interpolate. This allows the use of additional known values as shown
in the second example below. For beams with symmetric end condi-
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tions, such as both ends fixed or both ends simply supported, the data
given for any value of a/l < 0.5 can be used twice by reversing the
beam end for end.

EXAMPLES

1. A tapered beam 30in long with a depth varying linearly from 2in at the left
end to 4in at the right end and with a constant width of 1.5in is fixed on the
right end and simply supported on the left end. A concentrated clockwise
couple of 50001b-in is applied at midlength and it is desired to know the
maximum bending stress in the beam.

Solution. First determine the left-end reaction force for a uniform cross
section. From Table 8.1, case 3c, the left reaction is

—3M,(12 —a?) —3(5000)(30% — 15%)
R, = F - 2609 - -187.51b

For the tapered beam

152
==

_ 1.5(4%)

.4
19 8 1in

I, 1in*, Iy

In Table 8.11(c) for n =3, Iz/I4 = 8; and for case 3c with the loading at [/2,
the coefficient is listed as 0.906. Therefore, the left-end reaction is
—187.5(0.906) = —170 1b

The maximum negative moment will occur just left of midlength and will
equal —170(15) = —2550 Ib-in. The maximum positive moment will occur just
right of midlength and will equal —2550 + 5000 = 2450 1b-in. At midlength the
moment of inertia I = 1.5(3%)/12 = 3.37 in*, and so the maximum stress is
given by ¢ = Mc/I = 2550(1.5)/3.37 = 1135 lb/in2 just left of midlength.

2. A machine part is an 800-mm-long straight beam with a variable wide-
flange cross section. The single central web has a constant thickness of 1.5 mm
but a linearly varying depth from 6 mm at the left end A to 10 mm at the right
end B. The web and flanges are welded together continuously over the entire
length and are also welded to supporting structures at each end to provide
fixed ends. A concentrated lateral load of 100 N acts normal to the central axis
of the beam parallel to the web at a distance of 300 mm from the left end. The
maximum bending stress and the deflection under the load are desired. The
modulus of elasticity is 70 GPa, or 70,000 N/mm?.

Solution. First determine the left-end reaction force and moment for a beam
of constant cross section. From Table 8.1, case 1d,

100

8003

—100(300)
8002

R, = %(z —a)*(l+ 2a) = (800 — 300)*(800 + 600) = 68.36 N

—W
M, = l—Qa(z _ap = (800 — 300)2 = —11,720 N-mm
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For the tapered beam,

_ 4(10%) — 2.5(6%)
- 12
_ 8(14%) — 6.5(10%)

olla”) —b.ollby) _ 4
Iy 12 1287.7 mm

I, =288.3 mm*

and at midlength where x = /2, the moment of inertia is given by

6(12%) — 4.5(8%)

_ 4
13 =672.0 mm

Ly =

Using the formula for the variation of I with x and these three values for the
moment of inertia, approximate values for K and n can be found.

K n
IB:IA(1+K)n, Il/2:1A<1+§>

1287.7 e o
sagg = 4466 =(1+K)",  ooe=2331= <1 +§>

4.466Y" —2(2.331)" +1=0

Solving this last expression gives 1/n = 0.35, n = 2.86, and K = 0.689.

An examination of Tables 8.11(a—d) shows that for a fixed-ended beam with
a concentrated load, which is case 1d in Table 8.1, values of coefficients are
given only for a/l = 0.25 and 0.50. For this problem a/l = 0.375. Simple linear
interpolation is not sufficiently accurate. However, if one imagines the load at
a/l =0.25 the values for Ry and M, can be found. This procedure can be
repeated for a/l = 0.50. Two other sets of data are also available. If the load
were placed at the left end, a/l=0, M, =0, Ry =100 N, and dM,/da =
—100 N. If the load were placed at the right end, a/l=1, R4 =0, M, =0,
and dM,/da = 0. The variations of the tabulated coefficients with Ig/I, and
with n do not pose a comparable problem since many data are available.
Plotting curves for the variation with Iz/I, and interpolating linearly between
n =2 and n = 3 for n = 2.86 give the coefficients used below to find the values
for R, and M, at a/l = 0.25 and 0.50:

Untapered beam Tapered beam where n = 2.86 and Ip/I, = 4.466

a/l 0.25 0.50 0.25 0.50

R, (N) 84.38 50.00 84.38(0.922) = 77.80 50(0.0805) = 40.25
M, (N-mm) -11,250 —10,000 —11,250(0.788)=—8865 —10,000(0.648) = —6480

Plotting these values of R, and M, versus a/! for the four positions allows
one to pick from the graphs at a/l=0.375, R4, =60N, and M, =
—8800 N-mm. The use of static equilibrium now gives Mz = —10,800 N-mm
and the moment at the load of 9200 N-mm. The bending stress at the left end is
found to be the largest.

_ Mycy  8800(5)

— 152.6 MP
A= ~ osss  °26MPa
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No correction coefficients for deflections are included for case 1d in Table 8.11.
The deflection at the load position can be found from the information in this
table, however, if either end of the beam is isolated and treated as a cantilever
with an end load and an end moment. The moment of inertia at the load
position C is given by

 5.5(11.5%) — 4(7.5%)
- 12

I = 556.4 mm*

Treat the left portion of the beam as a 300-mm-long cantilever, using case la
with an end load of 60N and case 3a with an end moment of 9200 N-mm.
Determine the correction coefficients for a/l =0, n = 3, and the moment of
inertia ratio of 288.33/556.44 = 0.518. Interpolation between data for n = 2
and n = 3 is not justified when considering the approximations already made
from plotted curves. Noting that all correction coefficients in Table 8.11 are
unity for Ipz/I, =1 and using data points for Iz/I, = 0.25 and 0.50, the
correction coefficients used below were found

_ 60(300°)(1.645)  9200(3002)(1.560)

¢ = T3(70.000)(556.4) T 2(70,000)(556.4) 220 +16.6=-62mm

This deflection at the load can be checked by repeating the above procedure by
using the right-hand portion of the beam. The slope of the beam at the load can
also be used as a check.

Alternative solution. The solution just presented was intended to illus-
trate appropriate methods of interpolation with the limited load positions
shown in the tables. There is also an alternative solution involving super-
position of cases. Remove the fixity at end A and treat the 500-mm-long right
portion as a cantilever with an end load of 100N. Use n = 3 as being close
enough to n=2.86 and Ip/I, = 1287.7/556.4 = 2.314. Interpolate between
I/l =2 and 4 to obtain from case la in Table 8.11(c) the correction
coefficients used below to calculate the slope and deflection at the load

_100(500%)(0.555)

- ~100(5002)(0.593)
Y€ = T 3(70,000)(556.4)

= POO99) _ 6.1903 rad
2(70,000)(556.4) a

—59.37 mm 0c

Since the left portion is unloaded and remains straight, the end deflection and
slope are y, = —59.37 — 300(0.1903) = —116.5 mm, and 0,4 = 0.1903 rad. Next
treat the complete beam as a cantilever under an end load R4, and an end
moment M,. Let I, = 228.3 mm?*, Iz/I, = 4.466, and again let n = 3. From
cases la and 3a in Table 8.11(c),

 R,(8007)(0.332) . M4(800%)(0.380)
47 3(70,000)(288.3) ' 2(70,000)(288.3)
_ R,(8002)(0.380)  M4(800)(0.497)
47 7 2(70,000)(288.3)  (70,000)(288.3)

= 2.808R, + 0.00602M,

—0.006024R, — 19.7(10~ %)M,

Adding the slopes and deflections from the load of 100N to those above and
equating each to zero to represent the fixed end gives R4 = 60.3 N and
M, = —8790 N-mm. This is a reasonable check on those values from the
first solution.
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The second category of determining deflections, where the cross
section varies in steps from one uniform section to another, can be
solved in several ways. Equation (8.1-5) can be integrated, matching
slopes and deflections at the transition sections, or Eq. (8.1-6) can be
integrated over the separate portions and summed to obtain the
desired deflections. A third method utilizes the advantages of the
step function and its application to beam deflections as given in
Table 8.1. In a given portion of the span where the cross section is
uniform it is apparent that the shape of the elastic curve will remain
the same if the internal bending moments and the moments of inertia
are increased or decreased in proportion. By this means, a modified
moment diagram can be constructed which could be applied to a beam
with a single constant cross section and thereby produce an elastic
curve identical to the one produced by the actual moments and the
several moments of inertia present in the actual span. It is also
apparent that this modified moment diagram could be produced by
adding appropriate loads to the beam. (See Refs. 29 and 65.) In
summary, then, a new loading is constructed which will produce the
required elastic curve, and the solution for this loading is carried out
by using the formulas in Table 8.1. This procedure will be illustrated
by the following example.

EXAMPLE

The beam shown in Fig. 8.13 has a constant depth of 4in and a step increase in
the width from 2 to 5in at a point 5 ft from the left end. The left end is simply
supported, and the right end is fixed; the loading is a uniform 200 1b/ft from
x = 3 ft to the right end. Find the value of the reaction at the left end and the
maximum stress.

Solution. For the left 5ft, I, = 2(4%)/12 =10.67 in*. For the right 5ft,
I, = 5(4%)/12 = 26.67 in”, or 2.5 times I,.

The same M /I diagram shown in Fig. 8.13(e) can be produced by the loading
shown in Fig. 8.14 acting upon a beam having a constant moment of inertia 1.
Note that all loads on the left portion simply have been increased by a factor of
2.5, while added loads at the 5-ft position reduce the effects of these added
loads to those previously present on the right portion.

To find the left-end reaction for the beam loaded as shown in Fig. 7.14(a),
use Table 8.1, case lc, where W = 1.5R; — 600 and a = 5; case 2c¢, where
w, = w; = 500 Ib/ft and a = 3 ft; case 2¢c, again, where w, = w; = —300 lb/ft
and a =5 ft; and finally case 3c, where M, = —(7.5R; — 600) and a = 5ft.
Summing the expressions for R, from these cases in the order above, we
obtain

B _ (1.5R; — 600)(10 — 5)° 500(10 — 3)®
R, =25R, = 5109 [2(10) + 5] + WB(IO) + 3]
(—300)(10 — 5)° 3[—(7.5R; —600)] . 5 _,
1 [3(10) + 5] — T — (10% — 52)

which gives R; = 244 1b.
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From Fig. 8.13(a) we can observe that the maximum positive bending
moment will occur at x = 4.22 ft, where the transverse shear will be zero.
The maximum moments are therefore

2
Max + M = 244(4.22) — %(1.222) = 881 lb-ft
Max — M = 244(10) — 4900 = —2460 Ib-ft at the right end
The maximum stresses are o = 881(122)(2)/10.67 =19821b/in® at x = 4.22 ft

and ¢ = 2460(12)(2)/26.67 = 2215 lb/in® at x = 10 ft.

8.9 Slotted Beams

If the web of a beam is pierced by a hole or slot (Fig. 8.15), the stresses
in the extreme fibers a¢ and b at any section B are given by

My VaxL /(I + 1)

Oy, =— e o, (compression)
My Vyxl/(I + 1) .
gy = I_/C W (tensmn)

Here M, is the bending moment at A (midlength of the slot), V, is the
vertical shear at A, I/c is the section modulus of the net beam section
at B, I; and I, are the moments of inertia, and (I/c), and (I/c), are the
section moduli of the cross sections of parts 1 and 2 about their own
central axes. M and V are positive or negative according to the usual
convention, and x is positive when measured to the right.

The preceding formulas are derived by replacing all forces acting on
the beam to the left of A by an equivalent couple M, and shear V, at A.
The couple produces a bending stress given by the first term of the
formula. The shear divides between parts 1 and 2 in proportion to
their respective I's and produces in each part an additional bending
stress given by the second term of the formula. The stress at any other
point in the cross section can be found similarly by adding the stresses
due to M, and those due to this secondary bending caused by the
shear. (At the ends of the slot there is a stress concentration at the
corners which is not taken into account here.)

B
L°
1

3>

i

M

T
/
o

Figure 8.15
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The above analysis applies also to a beam with multiple slots of
equal length; all that is necessary is to modify the term (I; + I,). The
numerator is still the I of the part in question and the denominator is
the sum of the I’s of all the parts 1, 2, 3, etc. The formulas can also be
used for a rigid frame consisting of beams of equal length joined at
their ends by rigid members; thus in Fig. 8.15 parts 1 and 2 might
equally well be two separate beams joined at their ends by rigid
crosspieces.

8.10 Beams of Relatively Great Depth

In beams of small span/depth ratio, the transverse shear stresses are
likely to be high and the resulting deflection due to shear may not be
negligible. For span/depth ratios of 3 or more, the deflection y, due to
shear is found by the method of unit loads to be

Vo
=F|— .10-1
3= F | 4G (8.10-1)
or by Castigliano’s theorem to be
U,
s =p (8.10-2)

In Eq. (8.10-1), V is the vertical shear due to the actual loads, v is
the vertical shear due to a unit load acting at the section where the
deflection is desired, A is the area of the section, G is the modulus of
rigidity, F' is a factor depending on the form of the cross section, and
the integration extends over the entire length of the beam, with due
regard to the signs of V and v. For three solid sections, a rectangle, a
triangle with base either up or down, and a trapezoid with parallel
sides top and bottom, F' = &; for a diamond-shaped section, F' = 31; for a
solid circular section, F = 1—90; for a thin-walled hollow circular section,
F =2; for an I- or box section with flanges and webs of uniform
thickness,

3(D% — D2)D, (t, AD2
F=|14+222 U0 (2 )22
[ LY t 1072

where

D, = distance from neutral axis to the nearest surface of the flange
D, = distance from neutral axis to extreme fiber

t, = thickness of web (or webs in box beams)

ty = width of flange

r = radius of gyration of section with respect to the neutral axis
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If the I- or box beam has flanges of nonuniform thickness, it may be
replaced by an “equivalent” section whose flanges, of uniform thick-
ness, have the same width and areas as those of the actual section
(Ref. 19). Approximate results may be obtained for I-beams using
F =1 and taking for A the area of the web.

Application of Eq. (8.10-1) to several common cases of loading yields
the following results:

1_ Pl

End support, center load Py, = ZF G

End support, uniform load w = 1 w_l2

pp ’ ys - 8 AG
Cantilever,end load P y, =F %

) ) 1. wl?

Cantilever, uniform load w y, = PG

In Eq. (8.10-2), U,=F [(V?/2AG)dx, P is a vertical load, real or
imaginary, applied at the section where y, is to be found, and the
other terms have the same meaning as in Eq. (8.10-1).

The deflection due to shear will usually be negligible in metal beams
unless the span/depth ratio is extremely small; in wood beams,
because of the small value of G compared with E, deflection due to
shear is much more important. In computing deflections it may be
allowed for by using for £ a value obtained from bending tests (shear
deflection ignored) on beams of similar proportions or a value about
10% less than that found by testing in direct compression if the
span/depth ratio is between 12 and 24. For larger ratios the effect of
shear is negligible, and for lower ratios it should be calculated by the
preceding method.

For extremely short deep beams, the assumption of linear stress
distribution, on which the simple theory of flexure is based, is no
longer valid. Equation (8.1-1) gives sufficiently accurate results for
span/depth ratios down to about 3; for still smaller ratios it was
believed formerly that the actual stresses were smaller than the
formula indicates (Refs. 1 and 2), but more recent analyses by
numerical methods (Refs. 43 and 44) indicate that the contrary is
true. These analyses show that at s/d between 1.5 and 1, depending on
the manner of loading and support, the stress distribution changes
radically and the ratio of maximum stress to Mc/I becomes greater
than 1 and increases rapidly as s/d becomes still smaller. In the
following table, the influence of s/d on both maximum fiber stress
and maximum horizontal shear stress is shown in accordance with the
solution given in Ref. 43. Reference 44 gives comparable results, and
both strain-gage measurements (Ref. 45) and photoelastic studies (Ref.
46) support the conclusions reached in these analyses.
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T T T T T 77 I 1 I
1 d d
1 ‘ 1

-E——Span= 23/241 ﬂ—Spon=23/24l—H

Uniform load over entire [ Uniform load over middle ﬁl
Ratio Ratio max o, max o, max 1t max o, max o, max t
l/d span/d Mec/I Mc/1 V/A Mc/1 Mc/1 V/A
3 2.875 1.025 1.030 1.58 0.970 1.655 1.57
2.5 2.395 1.046 1.035 1.60 0.960 1.965 1.60
2.0 1.915 1.116 1.022 1.64 0.962 2.525 1.70
1.5 1.4375 1.401 0.879 1.80 1.038 3.585 1.92
1 0.958 2.725 0.600 2.43 1.513 6.140 2.39
0.5 0.479 10.95 2.365 4.53 5.460 15.73 3.78
% 0.3193 24.70 5.160 6.05 12.35 25.55 7.23

These established facts concerning elastic stresses in short beams
seem incompatible with the contrary influence of s/d on modulus of
rupture, discussed in Sec. 8.15, unless it is assumed that there is a
very radical redistribution of stress as soon as plastic action sets in.

The stress produced by a concentrated load acting on a very short
cantilever beam or projection (gear tooth, sawtooth, screw thread) can
be found by the following formula, due to Heywood (Chap. 2, Ref. 28)
and modified by Kelley and Pedersen (Ref. 59). As given here, the
formula follows this modification, with some changes in notation.
Figure 8.16 represents the profile of the beam, assumed to be of
uniform thickness ¢. ED is the axis or center line of the beam; it
bisects the angle between the sides if these are straight; otherwise it is
drawn through the centers of two unequal inscribed circles. W repre-
sents the load; its line of action, or load line, intersects the beam
profile at C and the beam axis at O. The inscribed parabola, with
vertex at O, is tangent to the fillet on the tension side of the beam at A,
which 1s the point of maximum tensile stress. (A can be located by
making AF equal to FE by trial, F being the intersection of a
perpendicular to the axis at O and a trial tangent to the fillet.) B is
the corresponding point on the compression side, and D is the inter-
section of the beam axis with section AB. The dimensions a and e are
perpendicular, respectively, to the load line and to the beam axis, r is
the fillet radius, and b is the straight-line distance from A to C. The
tensile stress at A is given by

w e\071[1.5a cosp  0.45
G_T[I—FO.ZG(;) ][ s, +(be)1/2]
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Figure 8.16

Here the quantity in the first pair of brackets is the factor of stress
concentration for the fillet. In the second pair of brackets, the first
term represents the bending moment divided by the section modulus,
the second term represents the effect of the component of the load
along the tangent line, positive when tensile, and the third term
represents what Heywood calls the proximity effect, which may be
regarded as an adjustment for the very small span/depth ratio.

Kelley and Pedersen have suggested a further refinement in locat-
ing the point of maximum stress, putting it at an angular distance
equal to 25° —%oc, positive toward the root of the fillet. Heywood
suggests locating this point at 30° from the outer end of the fillet,
reducing this to 12° as the ratio of b to e increases; also, Heywood
locates the moment of W about a point halfway between A and B
instead of about D. For most cases the slightly different procedures
seem to give comparable results and agree well with photoelastic
analysis. However, more recent experimental studies (1963), including
fatigue tests, indicate that actual stresses may considerably exceed
those computed by the formula (Ref. 63).

8.11 Beams of Relatively Great Width

Because of prevention of the lateral deformation that would normally
accompany the fiber stresses, wide beams, such as thin metallic strips,
are more rigid than the formulas of Sec. 8.1 indicate. This stiffening
effect is taken into account by using E/(1 —v?) instead of E in the
formulas for deflection and curvature if the beams are very wide (Ref.
21). The anticlastic curvature that exists on narrow rectangular
beams is still present at the extreme edges of very wide beams, but
the central region remains flat in a transverse direction and trans-
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verse bending stresses equal to Poisson’s ratio times the longitudinal
bending stresses are present. For rectangular beams of moderate
width, Ashwell (Ref. 10) shows that the stiffness depends not only
upon the ratio of depth to width of the beam but also upon the radius of
curvature to which the beam is bent. For a rectangular beam of width
b and depth A bent to a radius of curvature p by a bending moment M,
these variables are related by the expression 1/p = M/KEI, where
I = bh?/12, and the following table of values for K is given for several
values of Poisson’s ratio and for the quantity 5%/ph.

b%/ph
Value of v | 0.25 1.00 4.00 16.0 50.0 200. 800.
0.1000 1.0000 1.0003 1.0033 1.0073 1.0085 1.0093 1.0097
0.2000 1.0001 1.0013 1.0135 1.0300 1.0349 1.0383 1.0400
0.3000 1.0002 1.0029 1.0311 1.0710 1.0826 1.0907 1.0948
0.3333 1.0002 1.0036 1.0387 1.0895 1.1042 1.1146 1.1198
0.4000 1.0003 1.0052 1.0569 1.1357 1.1584 1.1744 1.1825
0.5000 1.0005 1.0081 1.0923 1.2351 1.2755 1.3045 1.3189

In very short wide beams, such as the concrete slabs used as
highway-bridge flooring, the deflection and fiber-stress distribution
cannot be regarded as uniform across the width. In calculating the
strength of such a slab, it is convenient to make use of the concept of
effective width, i.e., the width of a spanwise strip which, acting as a
beam with uniform extreme fiber stress equal to the maximum stress
in the slab, develops the same resisting moment as does the slab. The
effective width depends on the manner of support, manner of loading,
and ratio of breadth to span b/a. It has been determined by Holl (Ref.
22) for a number of assumed conditions, and the results are given in
the following table for a slab that is freely supported at each of two
opposite edges (Fig. 8.17). Two kinds of loading are considered, viz.
uniform load over the entire slab and load uniformly distributed over a
central circular area of radius c¢. The ratio of the effective width e to
the span a is given for each of a number of ratios of ¢ to slab thickness
h and each of a number of b/a values.

Values of e/a for

Loading b/a=1 b/ja=12 b/a=1.6 b/a=2 b/a =00
Uniform 0.960 1.145 1.519 1.900

Central, c =0 0.568 0.599 0.633 0.648 0.656
Central, ¢ = 0.125h 0.581 0.614 0.649 0.665 0.673
Central, ¢ = 0.250h 0.599 0.634 0.672 0.689 0.697
Central, ¢ = 0.500h 0.652 0.694 0.740 0.761 0.770
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Figure 8.17

For the same case (a slab that is supported at opposite edges and
loaded on a central circular area) Westergaard (Ref. 23) gives
e =0.58a + 4c as an approximate expression for effective width.
Morris (Ref. 24) gives e = %ec +d as an approximate expression for
the effective width for midspan off-center loading, where e, is the
effective width for central loading and d is the distance from the load
to the nearer unsupported edge.

For a slab that is fixed at two opposite edges and uniformly loaded,
the stresses and deflections may be calculated with sufficient accuracy
by the ordinary beam formulas, replacing E by E/(1 — v?). For a slab
thus supported and loaded at the center, the maximum stresses occur
under the load, except for relatively large values of ¢, where they occur
at the midpoints of the fixed edges. The effective widths are approxi-
mately as given in the following table (values from the curves of Ref.
22). Here b/a and ¢ have the same meaning as in the preceding table,
but it should be noted that values of e/b are given instead of e/a.

Values of e/b for
Max stress
Values of ¢ bja=1 b/ja=1.2 b/a=1.6 b/a=2.0 at
0 0.51 0.52 0.53 0.53 Load
0.01a 0.52 0.54 0.55 0.55 Load
0.03a 0.58 0.59 0.60 0.60 Load
0.10a 0.69 0.73 0.81 0.86 Fixed edges

Holl (Ref. 22) discusses the deflections of a wide beam with two
edges supported and the distribution of pressure under the supported
edges. The problem of determining the effective width in concrete
slabs and tests made for that purpose are discussed by Kelley (Ref. 25),
who also gives a brief bibliography on the subject.

The case of a very wide cantilever slab under a concentrated load is
discussed by MacGregor (Ref. 26), Holl (Ref. 27), Jaramillo (Ref. 47),
Wellauer and Seireg (Ref. 48), Little (Ref. 49), Small (Ref. 50), and
others. For the conditions represented in Fig. 8.18, a cantilever plate
of infinite length with a concentrated load, the bending stress ¢ at any
point can be expressed by ¢ = K,,(6P/t?), and the deflection y at any
point by y = Ky(Pa2 /D), where K,, and K, are dimensionless coeffi-
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Figure 8.18

cients that depend upon the location of the load and the point, and D is
as defined in Table 11.2. For the load at x = ¢, z = 0, the stress at any
point on the fixed edge x = 0, z = z, and the deflection at any point on
the free edge x = a, z = z, can be found by using the following values of
K, and K,

z/a

c/a 0 0.25 0.50 1.0 1.5 2 ()
K, 0.509 0.474 0.390 0.205 0.091 0.037 0
1.0 K, 0.524 0.470 0.380 0.215 0.108 0.049 0
K, 0.428 0.387 0.284 0.140 0.059 0.023 0

0.75
K, 0.318 0.294 0.243 0.138 0.069 0.031 0
0.50 K, 0.370 0.302 0.196 0.076 0.029 0.011 0
0.25 K, 0.332 0.172 0.073 0.022 0.007 0.003 0

These values are based on the analysis of Jaramillo (Ref. 47), who
assumes an infinite length for the plate, and are in good agreement, so
far as comparable, with coefficients given by MacGregor (Ref. 26).
They differ only slightly from results obtained by Holl (Ref. 27) for a
length/span ratio of 4 and by Little (Ref. 49) for a length/span ratio of
5 and are in good agreement with available test data.

Wellauer and Seireg (Ref. 48) discuss the results of tests on beams of
various proportions and explain and illustrate an empirical method by
which the K,, values obtained by Jaramillo (Ref. 47) for the infinite
plate under concentrated loading can be used to determine approxi-
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mately the stress in a finite plate under an arbitrary transverse
loading.

The stresses corresponding to the tabulated values of K,, are span-
wise (x direction) stresses; the maximum crosswise (z direction) stress
occurs under the load when the load is applied at the midpoint of the
free edge and is approximately equal to the maximum spanwise stress
for that loading.

Although the previous formulaes are based on the assumption of
infinite width of a slab, tests (Ref. 26) on a plate with a width of 8% in
and span a of 1% in showed close agreement between calculated and
measured deflections, and Holl's analysis (Ref. 27), based on the
assumption of a plate width four times the span, gives results that
differ only slightly from MacGregor’s (Ref. 26). The formulas given
should therefore be applicable to slabs of breadth as small as four
times the span.

8.12 Beams with Wide Flanges; Shear Lag

In thin metal construction, box, T-, or I-beams with very wide thin
cover plates or flanges are sometimes used, and when a thin plate is
stiffened by an attached member, a portion of the plate may be
considered as a flange, acting integrally with the attached member
which forms the web; examples are to be found in ship hulls, floors,
tanks, and aircraft. In either type of construction the question arises
as to what width of flange or plate would be considered effective; i.e.,
what width, uniformly stressed to the maximum stress that actually
occurs, would provide a resisting moment equal to that of the actual
stresses, which are greatest near the web and diminish as the distance
from it increases.

This problem has been considered by several investigators; the
results tabulated on page 174 are due to Hildebrand and Reissner
(Ref. 38), Winter (Ref. 39), and Miller (Ref. 28).

Let b = actual net width of the flange (or clear distance between
webs in continuous plate and stiffener construction), let / = span, and
let &' = effective width of the flange at the section of maximum
bending moment. Then the approximate value of &'/b, which varies
with the loading and with the ratio /b, can be found for beams of
uniform section in the table on p. 174. (In this table the case numbers
refer to the manner of loading and support represented in Table 8.1.)
See also Ref. 37.

Some of the more important conclusions stated in Ref. 38 can be
summarized as follows.

The amount of shear lag depends not only on the method of loading
and support and the ratio of span to flange width but also on the ratio
of G to E and on the ratio m = (31, + I,)/(I,, + I;), where I, and I, are



Ratio of effective width to total width b’/b for wide flanges

Case no. and 1/b

load positions

(from Table 8.1) Reference no. | 1 1.25 1.50 1.75 2 2.5 3 4 5 6 8 10 15 20
la.a=0 38 0.571 | 0.638 | 0.690 | 0.730 | 0.757 | 0.801 | 0.830 | 0.870 | 0.895 | 0.913 | 0.934 | 0.946

2a. w, = w;,a=0 38 0.550 | 0.600 | 0.632 | 0.685 | 0.724 | 0.780 | 0.815 | 0.842 | 0.876 | 0.899

2a. w, =0,a=0 38 0.609 | 0.650 | 0.710 | 0.751 | 0.784 | 0.826 | 0.858

le.a=1/2 38 0.530 | 0.571 | 0.638 | 0.686 | 0.757 | 0.801 | 0.830 | 0.870 | 0.895 | 0.936 | 0.946
le.a=1/2 39 0.550 | 0.670 | 0.732 | 0.779 | 0.850 | 0.894 | 0.945
le.a=1/2 28 0.525 0.750

le.a=1/4 38 0.455 | 0.495 | 0.560 | 0.610 | 0.686 | 0.740 | 0.788 | 0.826 | 0.855 | 0.910 | 0.930
2e. w, =w;,a=0 38 0.640 | 0.690 | 0.772 | 0.830 | 0.897 | 0.936 | 0.957 | 0.977 | 0.985 | 0.991 | 0.995

8
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the moments of inertia about the neutral axis of the beam of the side
plates and cover plates, respectively. (The values tabulated from Ref.
38 are for G/E = 0.375 and m = 2.) The value of 4'/b increases with
increasing m, but for values of m between 1.5 and 2.5 the variation is
small enough to be disregarded. Shear lag at the critical section does
not seem to be affected appreciably by the taper of the beam in width,
but the taper in cover-plate thickness may have an important effect. In
beams with fixed ends the effect of shear lag at the end sections is the
same as for a cantilever of span equal to the distance from the point of
inflection to the adjacent end.

In Ref. 39 it is stated that for a given /b ratio the effect of shear lag
is practically the same for box, I-, T-, and U-beams.

Flange in compression. The preceding discussion and tabulated
factors apply to any case in which the flange is subjected to tension
or to compression less than that required to produce elastic instability
(see Chap. 15). When a thin flange or sheet is on the compression side,
however, it may be stressed beyond the stability limit. For this
condition, the effective width decreases with the actual stress. A
formula for effective width used in aircraft design is

b = Kt\/E
S

where s is the maximum compressive stress (adjacent to the support-
ing web or webs) and K is a coefficient which may be conservatively
taken as 0.85 for box beams and 0.60 for a T- or an I-beam having
flanges with unsupported outer edges.

A theoretical analysis that takes into account both compressive
buckling and shear lag is described in Ref. 40. Problems involving
shear lag and buckling are most frequently encountered in design with
thin-gage metal; good guides to such design are the books “Cold-
Formed Steel Design Manual” in 5 parts including commentary,
published in 1982 by the American Iron and Steel Institute, and
“Aluminum Construction Manual,” 4th ed., published in 1981 by the
Aluminum Association. See also Ref. 68.

8.13 Beams with Very Thin Webs

In beams with extremely thin webs, such as are used in airplane
construction, buckling due to shear will occur at stresses well below
the elastic limit. This can be prevented if the web is made shear-
resistant by the addition of stiffeners such as those used in plate
girders, but the number of these required may be excessive. Instead of
making the web shear-resistant, it may be permitted to buckle
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elastically without damage, the shear being carried wholly in diagonal
tension. This tension tends to pull the upper and lower flanges
together, and to prevent this, vertical struts are provided which
carry the vertical component of the diagonal web tension. A girder
so designed is, in effect, a Pratt truss, the web replacing the diagonal-
tension members and the vertical struts constituting the compression
members. In appearance, these struts resemble the stiffeners of an
ordinary plate girder, but their function is obviously quite different.

A beam of this kind is called a diagonal-tension field beam, or
Wagner beam, after Professor Herbert Wagner of Danzig, who is
largely responsible for developing the theory. Because of its rather
limited field of application, only one example of the Wagner beam will
be considered here, viz. a cantilever under end load.

Let P = end load, A = depth of the beam, ¢ = thickness of the web,
d = spacing of the vertical struts, x = distance from the loaded end to
the section in question, H, and H, = total stresses in the tension and
compression flanges, respectively, at the given section, C = total
compression on a vertical strut, and f = unit diagonal tensile stress
in the web. Then

Px 1 Px 1 Pd 2P
HtZ———P, HCZT-FEP, CZT, fzm

The vertical component of the web tension constitutes a beam
loading on each individual flange between struts; the maximum
value of the resulting bending moment occurs at the struts and is
given by M; = {5 Pd?/h. The flexural stresses due to M; must be added
to the stresses due to H, or H,, which may be found simply by dividing
H, or H, by the area of the corresponding flange.

The horizontal component of the web tension causes a bending
moment M = %Ph in the vertical strut at the end of the beam unless
bending there is prevented by some system of bracing. This end strut
must also distribute the load to the web, and should be designed to
carry the load as a pin-ended column of length %h as well as to resist
the moment imposed by the web tension.

The intermediate struts are designed as pin-ended columns with
lengths somewhat less than A. An adjacent portion of the web is
included in the area of the column, the width of the strip considered
effective being 30t in the case of aluminum and 60¢ in the case of steel.

Obviously the preceding formulas will apply also to a beam with end
supports and center load if P is replaced by the reaction %P. Because of
various simplifying assumptions made in the analysis, these formulas
are conservative; in particular the formula for stress in the vertical
struts or stiffeners gives results much larger than actual stresses
that have been discovered experimentally. More accurate analyses,
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together with experimental data from various sources, will be found in
Refs. 30, 34, 35, 62, and 69-71.

8.14 Beams Not Loaded in Plane of Symmetry;
Flexural Center

The formulas for stress and deflection given in Sec. 8.1 are valid if the
beam is loaded in a plane of symmetry; they are also valid if the
applied loads are parallel to either principal central axis of the beam
section, but unless the loads also pass through the elastic axis, the
beam will be subjected to torsion as well as bending.

For the general case of a beam of any section loaded by a transverse
load P in any plane, therefore, the solution comprises the following
steps: (1) The load P is resolved into an equal and parallel force P’
passing through the flexural center @ of the section, and a twisting
couple T equal to the moment of P about @; (2) P’ is resolved at @ into
rectangular components P, and P,, each parallel to a principal central
axis of the section; (3) the flexural stresses and deflections due to P,
and P,, are calculated independently by the formulas of Sec. 8.1 and
superimposed to find the effect of P’; and (4) the stresses due to T are
computed independently and superimposed on the stresses due to P,
giving the stresses due to the actual loading. (It is to be noted that T'
may cause longitudinal fiber stresses as well as shear stresses. See
Sec. 10.3 and the example at the end of this section.) If there are
several loads, the effect of each is calculated separately and these
effects added. For a distributed load the same procedure is followed as
for a concentrated load.

The above procedure requires the determination of the position of
the flexural center @. For any section having two or more axes of
symmetry (rectangle, I-beam, etc.) and for any section having a point
of symmetry (equilateral triangle, Z-bar, etc.), @ is at the centroid. For
any section having only one axis of symmetry, @ is on that axis but in
general not at the centroid. For such sections and for unsymmetrical
sections in general, the position of @ must be determined by calcula-
tion, direct experiment, or the soap-film method (Sec. 6.4).

Table 8.12 gives the position of the flexural center for each of a
number of sections.

Neutral axis. When a beam is bent by one or more loads that lie in a
plane not parallel to either principal central axis of the section, the
neutral axis passes through the centroid but is not perpendicular to
the plane of the loads. Let axes 1 and 2 be the principal central axes of
the section, and let I; and I, represent the corresponding moments of
inertia. Then, if the plane of the loads makes with axis 1 an angle o,



178 Formulas for Stress and Strain [cHAP. 8

the neutral axis makes with axis 2 an angle f such that tanf =
(Iy/I))tana. It can be seen from this equation that the neutral axis
tends to approach the principal central axis about which the moment
of inertia is least.

EXAMPLE

Figure 8.19(a) represents a cantilever beam of channel section under a
diagonal end load applied at one corner. It is required to determine the
maximum resulting fiber stress.

Solution. For the section (Fig 8.190): I,=5.61 in?, I,=19.9 in*;
b=3.875in, h=5.751n, and t = ; in. By the formula from Table 8.12, e =
btht/4I = 1.551n; therefore the ﬂexural center is at @, as shown. When the
load is resolved into vertical and horizontal components at @ and a couple, the
results are as shown in Fig. 8.19(b). (Vertical and horizontal components are
used because the principal central axes u and v are vertical and horizontal.)

The maximum fiber stress will occur at the corner where the stresses due to
the vertical and horizontal bending moments are of the same kind; at the
upper-right corner f both stresses are tensile, and since f is farther from the u
axis than the lower-left corner g where both stresses are compressive, it will
sustain the greater stress. This stress will be simply the sum of the stresses
due to the vertical and horizontal components of the load, or

o= 9401(363(3) + 342(3561?3 765) = 5100 4 6070 = 11,200 Ib/in®

The effect of the couple depends on the way in which the inner end of the beam
is supported. If it is simply constrained against rotation in the planes of
bending and twisting, the twisting moment will be resisted wholly by shear
stress on the cross section, and these stresses can be found by the appropriate
torsion formula of Table 10.1. If, however, the beam is built in so that the
flanges are fixed in the horizontal plane, then part of the torque is resisted by
the bending rigidity of the flanges and the corresponding moment causes a
further fiber stress. This can be found by using the formulas of Sec. 10.3.

20°

1000 Ib
u 1
P/=940Ip T
36

° ]

, T 313Ib in
P,=3421b

Figure 8.19
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For the channel section, K is given with sufficient accuracy by the formula
K = (t3/3)(h + 2b) (Table 9.2, case 1), which gives K =0.073 in*. Taking
G = 12,000,000 lb/in2, and E = 30,000,000 1b/in”, and the formula for C,, as

_ R2b3t2h + 3b

= = 41 6
w="1g hyep oodm

the value for f# can be found. From Table 10.3, the formula for f is given as

_ (KG\"? 10.073(12)
ﬁ_<CwE> _[38.4(30)

1/2
:| = 0.0276

From Table 10.3, case 1b, the value of 07 at the wall is given as

T, 313

0 =& g5 P = 35430 105)0.0276)

tanh 0.0276(36) = 7.47(107%) in 2

Therefore the longitudinal compressive stress at f can be found from the
expression for g, in Table 10.2, case 1, as

_hbh+3bL, 64)6+3(4)

6 —6y __ i 02
=g nres ! = 5 6 e GOI0NTAD07) = 1610 1b/in

The resultant fiber stress at f is 11,200 — 1610 = 9590 lb/in2.

8.15 Straight Uniform Beams (Common Case);
Ultimate Strength

When a beam is stressed beyond the elastic limit, plane sections
remain plane or nearly so but unit stresses are no longer proportional
to strains and hence no longer proportional to distance from the
neutral surface. If the material has similar stress-strain curves in
tension and compression, the stress distribution above and below the
neutral surface will be similar and the neutral axis of any section
which is symmetric about a horizontal axis will still pass through the
centroid; if the material has different properties in tension and
compression, then the neutral axis will shift away from the side on
which the fibers yield the most; this shift causes an additional
departure from the stress distribution assumed by the theory outlined
in Sec. 8.1.

Failure In bending. The strength of a beam of ordinary proportions is
determined by the maximum bending moment it can sustain. For
beams of nonductile material (cast iron, concrete, or seasoned wood)
this moment may be calculated by the formula M,, = ¢'(I/c) if ¢, the
modulus of rupture, is known. The modulus of rupture depends on the
material and other factors (see Sec. 3.11), and attempts have been
made to calculate it for a given material and section from the form of



180 Formulas for Stress and Strain [cHAP. 8

the complete stress-strain diagram. Thus for cast iron an approximate
value of ¢’ may be found by the formula ¢’ = K./c/Z/g,, where c is the
distance to the extreme fiber, 2’ is the distance from the neutral axis to
the centroid of the tensile part of the section, and K is an experimental
coefficient equal to g for sections that are flat at the top and bottom
(rectangle, I, T, etc.) and % for sections that are pointed or convex at the
top and bottom (circle, diamond, etc.) (Ref. 4). Some tests indicate that
this method of calculating the breaking strength of cast iron is some-
times inaccurate but generally errs on the side of safety (Ref. 5).

In general, the breaking strength of a beam can be predicted best
from experimentally determined values of the rupture factor and
ultimate strength or the form factor and modulus of rupture. The
rupture factors are based on the ultimate tensile strength for all
materials except wood, for which it is based on compressive strength.
Form factors are based on a rectangular section. For structural steel,
wrought aluminum, and other ductile metals, where beams do not
actually break, the modulus of rupture means the computed fiber
stress at the maximum bending moment (Refs. 6 to 9).

When the maximum bending moment occurs at but one section, as
for a single concentrated load, the modulus of rupture is higher than
when the maximum moment extends over a considerable part of the
span. For instance, the modulus of rupture of short beams of brittle
material is about 20 percent higher when determined by center
loading than when determined by third-point loading. The disparity
decreases as the span/depth ratio increases.

Beams of ductile material (structural steel or aluminum) do not
ordinarily fracture under static loading but fail through excessive
deflection. For such beams, if they are of relatively thick section so as
to preclude local buckling, the maximum bending moment is that
which corresponds to plastic yielding throughout the section. This
maximum moment, or “plastic” moment, is usually denoted by M, and

can be calculated by the formula M, = ¢,Z, where o, is the lowerpyield
point of the material and Z, called the plastic section modulus, is the
arithmetical sum of the statical moments about the neutral axis of the
parts of the cross section above and below that axis. Thus, for a

rectangular section of depth d and width b,
Z=}bd)Ed) + Gbd)d) =1bd”

This method of calculating the maximum resisting moment of a
ductile-material beam is widely used in “plastic design” and is
discussed further in Sec. 8.16. It is important to note that when the
plastic moment has been developed, the neutral axis divides the cross-
sectional area into halves and so is not always a centroidal axis. It is
also important to note that the plastic moment is always greater than
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the moment required to just stress the extreme fiber to the lower yield
point. This moment, which may be denoted by M,, is equal to g,I/c,
and so

M,_Z
M, Ijc

This ratio Z/(I/c), called the shape factor, depends on the form of the
cross section. For a solid rectangle it would be % bd?/ % bd?, or 1.5; for an
I-section it is usually about 1.15. Table A.1 gives formulas or numer-
ical values for the plastic section modulus Z and for the shape factor
for most of the cross sections listed.

In tubes and beams of thin open section, local buckling or crippling
will sometimes occur before the full plastic resisting moment is
realized, and the length of the member will have an influence. Tubes
of steel or aluminum alloy generally will develop a modulus of rupture
exceeding the ultimate tensile strength when the ratio of diameter to
wall thickness is less than 50 for steel or 35 for aluminum. Wide-
flanged steel beams will develop the full plastic resisting moment
when the outstanding width/thickness ratio is less than 8.7 for
o, = 33,000 Ib/in® or 8.3 for o, = 36,000 Ib/in®. Charts giving the
effective modulus of rupture of steel, aluminum, and magnesium
tubes of various proportions may be found in Ref. 55.

Failure in shear. Failure by an actual shear fracture is likely to occur
only in wood beams, where the shear strength parallel to the grain is,
of course, small.

In I-beams and similar thin-webbed sections the diagonal compres-
sion that accompanies shear (Sec. 7.5) may lead to a buckling failure
(see the discussion of web buckling that follows), and in beams of cast
iron and concrete the diagonal tension that similarly accompanies
shear may cause rupture. The formula for shear stress [Eq. (8.1-2)]
may be considered valid as long as the fiber stresses do not exceed the
proportional limit, and therefore it may be used to calculate the
vertical shear necessary to produce failure in any case where the
ultimate shearing strength of the beam is reached while the fiber
stresses, at the section of maximum shear, are still within the propor-
tional limit.

Web buckling; local failure. An I-beam or similar thin-webbed member
may fail by buckling of the web owing to diagonal compression when
the shear stress reaches a certain value. Ketchum and Draffin (Ref.
11) and Wendt and Withey (Ref. 12) found that in light I-beams this
type of buckling occurs when the shear stress, calculated by
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1= 1.25 V/web area (Ref. 11) or 1 = V/Web area (Ref. 12), reaches a
value equal to the unit load that can be carried by a vertical strip of the
beam as a round-ended column. For the thin webs of the beams tested,
such a thin strip would be computed as a Euler column; for heavier
beams an appropriate parabolic or other formula should be used
(Chap. 12).

In plate girders, web buckling may be prevented by vertical or
diagonal stiffeners, usually consisting of double angles that are riveted
or welded, one on each side of the web. Steel-construction specifica-
tions (Ref. 13) require that such stiffeners be provided when A/t
exceeds 70 and v exceeds 64,000,000/(h/t)*. Such stiffeners should
have a moment of inertia (figured for an axis at the center line of the
web) equal to at least 0.00000016H* and should be spaced so that the
clear distance between successive stiffeners is not more than
11,000t/,/v or 84in, whichever is least. Here h is the clear depth of
the web between flanges, ¢ is the web thickness, v is the shear stress
V/ht, and H is the total depth of the web. In light-metal airplane
construction, the stiffeners are sometimes designed to have a moment
of inertia about an axis parallel to the web given by I = (2.29d/t)
(Vh/33E)"?, where V = the (total) vertical shear and d = the stiffener
spacing center to center (Ref. 14).

Buckling failure may occur also as a result of vertical compression
at a support or concentrated load, which is caused by either column-
type buckling of the web (Refs. 11 and 12) or crippling of the web at
the toe of the fillet (Ref. 15). To guard against this latter type of
failure, present specifications provide that for interior loads
R/t(N + 2k) < 24,000 and for end reactions R/t(N + k) < 24,000,
where R is the concentrated load or end reaction, ¢ the web thickness,
N the length of bearing, and k the distance from the outer face of the
flange to the web toe of the fillet. Here R is in pounds and all linear
dimensions are in inches.

Wood beams will crush locally if the supports are too narrow or if
a load is applied over too small a bearing area. The unit bearing stress
in either case is calculated by dividing the force by the nominal
bearing area, no allowance being made for the nonuniform distribu-
tion of pressure consequent upon bending (Ref. 9). Metal beams also
may be subjected to high local pressure stresses; these are discussed in
Chap. 14.

Lateral buckling. The compression flange of an I-beam or similar
member may fail as a column as a result of lateral buckling if it is
unsupported. Such buckling may be elastic or plastic; that is, it may
occur at a maximum fiber stress below or above the elastic limit. In the
first case the buckling is an example of elastic instability, for which
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relevant formulas are given in Table 15.1. For buckling above the
elastic range analytical solutions are difficult to obtain, and empirical
expressions based on experiment are used (as will be shown to be true
also of the columns discussed in Chap. 12).

Moore (Ref. 16) found that standard I-beams fail by lateral buckling
when

!
s’ = 40,000 — 60'"7

where s’ is the compressive stress in the extreme fiber [computed by
Eq. (8.1-1)], [ is the span (in inches), r is the radius of gyration (in
inches) of the beam section about a central axis parallel to the web,
and m is a coefficient which depends on the manner of loading and
support and has the following values:

Loading and support Value of m
End supports, uniform load 0.667
End supports, midpoint load 0.500
End supports, single load at any point 0.500
End supports, loads at third points 0.667
End supports, loads at quarter points 0.750
End supports, loads at sixth points 0.833
Cantilever beam, uniform load 0.667
Cantilever beam, end load 1.000
Fixed-ended beam, uniform load 0.281
Fixed-ended beam, midpoint load 0.250

For very light I-beams, Ketchum and Draffin (Ref. 11) found that the
lower limit of test results is given by

s’ = 24,000 — 40m71

where the terms have the same meaning and m the same values as
given previously.

The beams tested by Moore generally failed at stresses below but
very close to the yield point and so probably could be regarded as
representing plastic buckling. The lighter beams tested by Ketchum
and Draffin, however, failed at stresses below the limit of proportion-
ality and are examples of elastic buckling.

In Ref. 13 rules are given for the reduction in allowable compressive
stress according to the unbraced length of the compression flange. A
review of the literature on this subject of the lateral buckling of
structural members and a bibliography through 1959 are to be found
in Ref. 58.
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Narrow rectangular beams may fail also as a result of buckling of
the compression edge. When this buckling occurs below the elastic
limit, the strength is determined by elastic stability; formulas for this
case are given in Table 15.1. For buckling at stresses beyond the
elastic limit, no simple formula for the critical stress can be given, but
methods for calculating this critical stress are given for aluminum
beams by Dumont and Hill (Ref. 17) and for wood beams by Trayer and
March (Ref. 18).

8.16 Plastic, or Ultimate Strength, Design

The foregoing discussion of beams and frames is based for the most
part on the assumption of purely elastic action and on the acceptance
of maximum fiber stress as the primary criterion of safety. These
constitute the basis of elastic analysis and design. An alternative and
often preferred method of design, applicable to rigid frames and
statically indeterminate beams made of materials capable of plastic
action, is the method of plastic, or ultimate strength, design. It is based
on the fact that such a frame or beam cannot deflect indefinitely or
collapse until the full plastic moment M, (see Sec. 8.15) has been
developed at each of several critical sections. If it is assumed that the
plastic moment—a determinable couple—does indeed act at each such
section, then the problem becomes a statically determinate one and
the load corresponding to the collapse condition can be readily calcu-
lated.

A simple illustration of the procedure is afforded by the beam of Fig.
8.20(a), corresponding to case lc of Table 8.1. Suppose it is desired to
determine the maximum value of the load W that the beam can
support. It is shown by elastic analysis, and is indeed apparent from
inspection, that the maximum bending moments occur at the load and
at the left end of the beam. The maximum possible value of each such
moment is M,. It is evident that the beam cannot collapse until the

w
51 5 R
(a)
Va Mp M,
i —
M V, Vv, R
(b)

Figure 8.20
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moment at each of these points reaches this value. Therefore, when W
has reached its maximum value and collapse is imminent, the beam is
acted on by the force system represented in Fig. 8.20(b); there is a
plastic hinge and a known couple M, at each of the critical sections
and the problem is statically determinate. For equilibrium of the right
half, R = M,/(l/2) and V; = R; and for equilibrium of the left half,
Vo=W—Rand [W—-M,/(l/2)]l/2 = 2M,, or W = 6M,,/1.

In attempting to predict the collapse load on the basis of elastic
analysis, it is easy to fall into the error of equating the maximum
elastic moment %Wl at the wall (Table 8.1) to M, thus obtaining
W= 1—36Mp /1. This erroneous procedure fails to take into account the
fact that as W increases and yielding commences and progresses at the
wall section, there is a redistribution of moments; the moment at the
wall becomes less than %Wl, and the moment at the load becomes
greater than 3—52 Wi until finally each moment becomes equal to M,,. An
important point to note is that although the elastic moments are
affected by even a very slight departure from the assumed condi-
tions—perfect fixity at one end and rigid support at the other—the
collapse load is not thus affected. So long as the constraints are rigid
enough to develop the plastic hinges as indicated, the ultimate load
will be the same. Similarly, the method does not require that the beam
be uniform in section, although a local reduction in section leading to
the formation of a hinge at some point other than those assumed, of
course, would alter the solution.

For a beam with multiple concentrated transverse loads or with
distributed transverse loads, the locations of hinges are not known and
must be assumed and verified. A virtual work approach to plastic
collapse may permit a more rapid analysis than does the use of
equilibrium equations, see Ref. 66. Verification consists of using the
equilibrium conditions to construct a moment diagram and determine
that no moments larger than the locally permitted values of the fully
plastic moment are present.

Since nonlinear behavior does not permit superposition of results,
one must consider all loads which are acting at a given time. If any of
the several loads on a beam tend to cancel the maximum moments due
to other loads, one must also consider the order in which the loads are
applied in service to assure that the partially loaded beam has not
collapsed before all loads have been applied.

Column 4 of Table A.1 contains an expression or a numerical value
for the plastic section modulus Z and for the shape factor SF = Zc/I
for many of the cross sections. Using the plastic section modulus and
the value of the yield strength of the material, one can find the full
plastic moment M,,. Table 8.13 contains expressions for the loadings
which will cause plastic collapse and the locations of the plastic hinges
associated with each such loading.
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The following example problems illustrate (1) the direct use of the
tabulated material and (2) the use of the virtual work approach to a
problem where two loads are applied simultaneously and where one
plastic hinge location is not obvious.

EXAMPLES

1. A hollow aluminum cylinder is used as a transversely loaded beam 6 ft long
with a 3-in outer diameter and a 1-in inner diameter. It is fixed at both ends
and subjected to a distributed loading which increases linearly from zero at
midspan to a maximum value w; at the right end. The yield strength of this
material is 27,000 psi, and the value of W), at plastic collapse is desired.

Solution. From Table A.1 case 15, the expression for the plastic section
modulus is given as Z = 1.333(R3 — R?), which gives
Z =1.333(1.5% — 0.5°) = 4.33 in®
and
M,, = 4.33(27,000) = 117,000 Ib-in

From Table 8.13 case 2d, with w, = 0 for a uniformly increasing load, the
locations of the fully developed plastic hinges are at the two ends and at a
distance xpy from the left end, where

AN
xhzza+<a2—al+§—§)

Since [ =72 in and a = 86 in, the third hinge is found at x;, = 50.70 in. The
expression for the collapse load w, is given as

12M(I - a)
(I = xp0)(x%, — Baxyg + Iy + a®/1)

Wy = = 1703 1b/in

2. A steel beam of trapezoidal section is shown in Fig. 8.21. It is 1500 mm long,
fixed at the right end and simply supported at the left end. The factor of safety
of the loading shown is to be determined based on plastic collapse under a
proportionately increased set of similar loads. The yield strength of the
material is 200 N/mm? in both tension and compression. All dimensions are
in millimeters.

Solution. First evaluate M,. An examination of Table A.1 shows that the
plastic section modulus for this cross section is not given. The yield strength in
tension and compression is the same, so half the cross-sectional area of

P =4000 N
w =4 N/mm 80

400 |+ L_
LD N,
1500 S 1—L_e,o__]

(a) (b)

Figure 8.21
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2100 mm?2 will be in tension and half in compression under a fully developed
plastic hinge. Calculations show that a horizontal axis 16.066 mm above the
base will divide this area into equal parts. The centroid of the upper portion is
7.110 mm above this axis, and the centroid of the lower portion is 7.814 mm
below. Therefore

M, = 200(1050)(7.110 + 7.814) = 3.134(10°) N-mm

Let the concentrated load at collapse P, be accompanied by a uniformly
distributed load w,, which equals P,/1000. During a virtual displacement of
the beam when plastic rotation is taking place about the fully developed
plastic hinges, the elastic deformations and any deformations due to the
development of the plastic hinges remain constant and can be neglected in
computing the work done by the loading. The angles shown in Fig. 8.22 are not
true slopes at these locations but merely represent the virtual rotations of the
fully developed plastic hinges. The location of hinge A is not known at this
point in the solution, but it is either under the concentrated load or somewhere
in the portion of the beam under the distributed load.

Trial 1. Assume that hinge A is under the concentrated load and the virtual
displacements are represented by Fig. 8.22(a). The work performed by the
loads during their vertical displacements is absorbed by the two plastic hinges.
The hinge at A rotates through the angle 6 + ¢ and the hinge at B through the
angle ¢. Thus

M,(0 + ¢ + ¢) = P, 11006 + 1,(900)(450)0

where w,=P,/1000 and from geometry 4004 = 11000 so that P,=
4.319(10‘3)Mp, and from the equilibrium of the entire beam one obtains
R, = 3.206(10*3)Mp. Using these two values and constructing a moment
diagram, one finds that a maximum moment of 1.190M,, will be present at a
distance of 742 mm from the left end.

Thus the assumption that hinge A was under the concentrated load was
incorrect. A second trial solution will be carried out by assuming that hinge A
is a distance a from the left end.

Trial 2. Figure 8.22(b) shows the virtual displacements for this second
assumption. Again set the virtual work done by the loading equal to the
energy absorbed by the two plastic hinges, or

0a? _
w‘za + w,(900 — a)<1500 —a— 9002 “>¢

M, (0 + 2¢) = P.4004 +

Note that w,=P,/1000 and from geometery ¢(1500—a)=0a so that
P, = M,[(1500 + a)/(1345a — 0.75a%)]. A minimum value of P, is desired so

we Pe Wwe Pe

B -
Hoo—J .‘*Q_J

(a) (b)

Figure 8.22
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this expression is differentiated with respect to a and the derivative set equal
to zero. This leads to @ = 722.6 mm and P, = 3.830(10*3)Mp, a significantly
smaller value than before and one which leads to a moment diagram with a
maximum positive moment of M, at a = 722.6 mm and a maximum negative
moment of —M, at the right end. This then is the correct solution, and
substituting the numerical value for M, one gets P,=12,000 N and

c

w, = 12 N/mm. The applied loads were P = 4000 N and w = 4 N/mm, so the
factor of safety is 3.0.

Because of the simplicity, these examples may give an exaggerated
impression of the ease of plastic analysis, but they do indicate that
for any indeterminate structure with strength that is determined
primarily by resistance to bending, the method is well-suited to the
determination of ultimate load and—through the use of a suitable
factor of safety—to design. Its accuracy has been proved by good
agreement between computed and experimental ultimate loads for
both beams and frames. An extended discussion of plastic analysis is
not appropriate here, but the interested reader will find an extensive
literature on the subject (Refs. 60, 61).



8.17 Tables

TABLE 8.1 Shear, moment, slope, and deflection formulas for elastic straight beams

NOTATION: W =load (force); w = unit load (force per unit length); M, = applied couple (force-length); 0, externally created concentrated angular
displacement (radians); A, = externally created concentrated lateral displacement; 7 and 7T, = temperatures on the top and bottom surfaces,
respectively (degrees). R4 and Rp are the vertical end reactions at the left and right, respectively, and are positive upward. M, and My are the
reaction end moments at the left and right, respectively. All moments are positive when producing compression on the upper portion of the beam cross
section. The transverse shear force V is positive when acting upward on the left end of a portion of the beam. All applied loads, couples, and
displacements are positive as shown. All deflections are positive upward, and all slopes are positive when up and to the right. E is the modulus of
elasticity of the beam material, and I is the area moment of inertia about the centroidal axis of the beam cross section. y is the temperature coefficient
of expansion (unit strain per degree)

1. Concentrated intermediate load Transverse shear = V = Ry — W(x — a)°
a W M l Bending moment = M = M, + Ryx — W{(x—a)
B
e Y Myx  Ryx?
N ::‘.)” T’ X T Stope =0 =0+ 4 0 - s o
R 3
Lé' 8 N My R, W )
My } 1 Deflection =y =y, + 04x + Sl + GEL 6EI(x ay
A (Note: see page 131 for a definition of the term (x — a)".)
End restraints,
reference no. Boundary values Selected maximum values of moments and deformations
2
la. Left end free, right Ry=0 My=0 0, = Wi -a” Max M = Mp; max possible value = — W/ when a = 0

end fixed (cantilever) 2E1 2
Max 0 = 0y; ibl lue = Wi h =0
yA7@(215_312a+a) ax 0 = 04; max possible value = o7 when a =
— — . -wr
Rg=W Mg=-W(l-a) Max y = y4; max possible value = =& when a =0
=0 yp=0
2
1b. Left end guided, R,=0 My = we-a” 0,=0 Max + M = M,; max possible value = g whena =0

right end fixed 2l

Max — M = Mp; max possible value = %Wl whena =0

. —-wie
Max y = y,; max possible value = 0BT whena =0

[£1'8 038
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TABLE 8.1 Shear, moment, slope, and deflection formulas for elastic straight beams (Continued)

End restraints,
reference no.

Boundary values

Selected maximum values of moments and deformations

lc. Left end simply
supported right end
fixed

’-t—-a

R, = (l—a) @ +a) My=0

2B
_ —Wa
T 4EI

(I-a y4=0

Ry = %(312 -a®)  03=0

Max + M = 213 (l — a)%(2l + a) at x = a; max possible value = 0.174WI when a = 0.366]

Max — M = Mp; max possible value = —0.1924WI when a = 0.5773!

—Wa o a \V2 o \172
Maxy = okl (I—a) <m) l<2l+ ) when a > 0.4141

—Wa ,, o _ —Wa® - a?)? (P +a?) B w3 o
My = oF P —a?) yp=0 Max y = SEIGE — ) atx = 2 when a < 0.414/; max possible y = —0. OOQS—EI when x = a = 0.414]
. w 5
1d. Left end fixed, right R, = l—s(l —a)*(l+2a) Max + M = 2WG (I —a)? at x = a; max possible value = g when a = é

end fixed

My =1%o

04=0 ya=0
W2
RB:Tg(SI—Za)

My =% a)

0p=0 yp=0

Max—M =M, if a < é max possible value = —0.1481WI[ when a :é

_ 2.3
Max y = M atx = Lﬂ ifa > £; max possible value =

l
whenx=a=_
3EI(l + 20)* l+2a 2 2

—-we
192E1

le. Left end simply
supported, right
end simply supported

RA:E(l—a) My=0

(JA: —a)l—a) y4=0

GEIZ
Wa
Ry = - Mz=0
Op= %@ _a?)  yy=0

6EIl

Max M = Rja at x = a; max possible value = ? when a = é
~Wa (B —a\"* 2 —a\"? 1 ) W
Max y = SEI <T) atx=1— ( 3 ) when a < g max possible value = 18T atx
! l
=3 when a = 3

Max 0 = 0, when a < %; max possible value = —0. 0642% when a = 0.423]

1f. Left end guided, right
end simply supported

21y

Ry=0 My=W(l-a) 0,=0
yA:W;L(le+2alfa)
Rg=W Mz=0

_ W e _
0p 2EI(l @) yp=0

Max M = M, for 0 < x < a; max possible value = W/ when a =0

Max 0 = 0p; max possible value = % whena =0

e
Max y = y,; max possible value = TI;JVI when a =0

061}
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TABLE 8.1 Shear, moment, slope, and deflection formulas for elastic straight beams (Continued)

2. Partial distributed load

Transverse shear =V =R, — w, (x —a) — 2(1 (x ay?
W, Bending moment = M = M, + Ryx — —(x —ay? — lg(] ) @ (x —ay’
M
8 8 M, x Ry w, w; — w,
B _n_ A A a N3 1 a Y
T/ X 7 Stope = 0= 04+ 1 +9mr ~681 ™ " 2amIl - )¢~ @
R
B o Myx? RAx w, 4 (w; —w,) 5
Deflection = y = yA+0A+0Ax+ ormT T GEI m(x*a) ~120EI( - a) (x—ay

End restraints,
reference no.

Boundary values

Selected maximum values of moments and deformations

2a. Left end free, right
end fixed (cantilever)

’«—o

—Wa ;3
0 =g =" + 5=
0 g W ;-
Yo = 24EI(I a3l +a) — 120EI (I-aP’@l+a)
RB:M(l—a)
2
My == (1 -af - - o

If @ = 0 and w; = w, (uniform load on entire span), then

—w,l? w,l?

Max M = My = Maxof()AfGEI
—w,l*
Maxy=y, = SE?I

If @ = 0 and w, = 0 (uniformly increasing load), then

—w, w, I

Max M = My =—! MHXGZGAZTLZEI
o mwlt
Maxy =94 = 5og7

If @ = 0 and w; = 0 (uniformly decreasing load), then

—wul? w,l?
Max M = Mp=—2" Max():()A:ﬁ
—11w, I
Maxy =y, = T50BL
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TABLE 8.1 Shear, moment, slope, and deflection formulas for elastic straight beams (Continued)

End restraints,
reference no.

Boundary values

Selected maximum values of moments and deformations

2b. Left end guided,
right end fixed

Ry=0 0,=0

My =g +H - o)

Y4 = 24EI a’(l+a) - 240El(l—a)(3l+2a)
Ry = w*“”(l—a)

My a2l +a)— wafa)?(sua)

0p=0 yp=0

If @ = 0 and w; = w, (uniform load on entire span), then

— 2
Max — M = My = w, Max+M:MA:w”61
—w,I*
Maxy=ys = 3amr
If @ = 0 and w, = 0 (uniformly increasing load), then
2
Max— M =My =—“"  Max+M= MA,Z—i
o —wlt
Maxy =4 = 5057

If @ = 0 and w; = 0 (uniformly decreasing load), then

— 2 2
Max — M = My = 2%l Moy by = g, = el
2 8
—Tw, I
Maxy =94 = 35087

2c. Left end simply
supported, right end
fixed

Ry d(l—a) Bl+a)+ 2L Ya (1 _ g4l + a)

0P
0 = gapi(t — @'+ 30) ~ S (1~ @21+ 3a)
My=0 y,=0
Rﬂzm(l—apm
Mp = Ryl - (l*a) S Z e gy

0p=0 yp=0

If @ = 0 and w; = w, (uniform load on entire span), then

3 5 —w,
Ry =gw,l Rp =3w,l Max —M = Mp =
9w, I? 3 —w, I
= W —3 —g, = Wt~
Max + M 128 atx =g/ Max 0 =0, 18ET
Maxy — ~0.00542" 4t 2 0.42151
y= AT atr= o

If a = 0 and w, = 0 (uniformly increasing load), then

_wl _ 2wyl _ _ —w,I?
Ry=55  Rp="55  Max—M=My=—
—w, I
Max -+ M = 0.0298w, at x = 044720 Max 0 =0, = b0
w;l*
Max y = —0.00239—— at x = 0.4472]
EI
If @ = 0 and w; = 0 (uniformly decreasing load), then
Ry=%w,] Rp=gw,] Max—M=DMp=r5w,?
Max + M = 0.0422w,[* at x = 0.329]
3 4
Max 0= 0, = =22 Maxy = —0.00304%2"; at x = 0.40251

80EI EI’
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TABLE 8.1 Shear, moment, slope, and deflection formulas for elastic straight beams (Continued)

2d. Left end fixed, right
end fixed

_ Wy ;3 Wy =Wy 5 3

R, = o (l—a)y(l+a)+ S0P (I —a)’(3l+ 2a)
_"Wa ;3 W W, 3

M, = o0 (I—a)’(I+ 3a) 602 (I—a)’(2l + 3a)

04=0 y,=0

Rp = (I—a)— Ry

Wt
2
My = R,1+ M, 7%(17@2 7%(17@2

0p=0 yz=0

If @ = 0 and w; = w, (uniform load on entire span), then

—w,I? w, I 1
Max —M =M, = Mg = o Max+M = o1 atx—é
—w,l*
Maxy = 2o’ gpx=t
axy 384Kl atx 5
If @ = 0 and w, = 0 (uniformly increasing load), then
3wl P _Twl _ _
RA720 M, = 30 RB*ZO Max — M = Mp =

Max + M = 0.0215w, 1 at x = 0.5481

w,l
Max y = —O,OOIBOQW at x = 0.525]

2e. Left end simply
supported, right end
simply supported

wi

—Wag_ g2 P Wa g g2
RAle(l a)” + 3] (I—a)

My=0 y,=0

_ TWa g 202 2
04 _—24Ell(l a)*(I* + 2al — a%)
- %(l — @)*(78 + 6al — 3a?)
RB:W(Z*G)’RA
_ Wa g9 92
05 = 541 )
+ gg;;;; (I — @)*(81% + 9al + 3a%)

Mp=0 y3=0

If @ = 0 and w; = w, (uniform load on entire span), then

w,l w,? I
RA:RB:7 MafoTatxfé
w,l? —5w, It 1
Max 6 =05 = 5157 XY= 3gaEr 73

If @ = 0 and w, = 0 (uniformly increasing load), then

R, = '%ll Ry = w?ll Max M = 0.0641w,;12 at x = 0.57731
—Tw, w1l

4 = 360ET B~ 45ET

w,l*
Maxy = _0'00653ﬁ at x = 0.5195/
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TABLE 8.1 Shear, moment, slope, and deflection formulas for elastic straight beams (Continued)

End restraints,
reference no. Boundary values Selected maximum values of moments and deformations
2f. Left end guided, Ry,=0 0, =0 If @ = 0 and w; = w, (uniform load on entire span), then
right end simply w wy—w 2 3
My =Yg 4+ P Yag_ g2 =M, =Y R
supported h= (l-a) + 5 (l—a) Max M = My 5 Max 0 = 0 5T
w) ya =22 (1 — (51 + 2al — a®) _, _—hwl
24EI Maxy=y, = SABT
(“— a - uilngLf}“ (I — a)*(9P + 2al — a®) If a =0 and w, = 0 (uniformly increasing load), then
w,l? w,
RB:M(l—a) MaxM:MA:T Max():(}B:@
0p = 22 (1 — )%+ a) + LY (1 - 02(31 + @) Max —3wl!
B = 6EI 24ET Y= YA T 40RT
My=0 yp=0 If @ = 0 and w; = 0 (uniformly decreasing load), then
w,l? 5w, I
Max M =M, = 3 Max0703724EI
—2w, It
Maxy =94 =557
3. Concentrated intermediate moment Transverse shear = V = R,
Bending moment = M = M, + Ryx + M,(x — a)°
o Myx  Rpx*> M,
Slope =0 =0, +ﬁ+ SEL +E(x7a)
. Myx®> Rux® M, 9
Deflection =y =y, +6Ax+ﬁ+m+m(x— ay
End restraints,
reference no. Boundary values Selected maximum values of moments and deformations
3a. Left end free, right Ry=0 My,=0 Max M = M,
end fixed (cantilever) M- a) ) —M,l
0y =—2—— Max 0 = 0,; max possible value = —-- whena =0
k- a _ﬂ EI EI
Mo M, —a?) M,
— o )= Y ,: i =2 =
Y= okl Max y = y,; max possible value SRl when a =0
7
Rp=0 Mg =M,
0p=0 yp=0

8
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TABLE 8.1 Shear, moment, slope, and deflection formulas for elastic straight beams (Continued)

3b Left end guided,
right end fixed

_ —M,(l - a)
- l

_ M,a(l-a)
- 2EI

Ry=0 05=0

M,a
My = i =0

Max + M = Mp; max possible value = M, whena =1

Max — M = M,; max possible value = —M, whena =0

2 l
2~ whena=_

Max y = y,; max possible value = SEl 5

3c. Left end simply
supported, right end
fixed

—3M,
Ry = o o —d)

M,
04 = g5~ D)Ba—D

My=0 ya=0

3M, .
Ry = 213"(127(11)

M, ;
M,,:Z—lfz’(?;az—lz)

0p=0 yp=0

Max + M = M, + R,a just right of x = a; max possible value = M, when a = 0 or @ = /; min possible value

= 0.423M, when a = 0.5771

Max - M = 7321;100(12 — a?) just left of x = @ if @ > 0.282; max possible value = —0.577TM,

when a = 0.5771

7Mg

Max - M = o

(1 — 3a?) at Bif a < 0.282/; max possible value = —0.5M, when a = 0

M,(l— — M2
Max +y= ol = a) Ba-D*?atx= l‘/;laTsz; max possible value = 0.0257 ! atx = 0.4741

6/3(+ a)EI EI

when a = 0.7211

. " L !
<Note: There is no positive deflection if a < g)

203 1 a\? | ayt . -
Max — y occurs at x = m |:1 -3 1-— 6(7) +9<7) :|, max possible value =

whena =0
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TABLE 8.1 Shear, moment, slope, and deflection formulas for elastic straight beams (Continued)

End restraints,
reference no.

Boundary values

Selected maximum values of moments and deformations

3d. Left end fixed, right
end fixed

—6M,a
Ry = 130 (l-a

M, = ﬁ/l (2 — 4al + 3a%)

0y =0 Ya=0
Rp=-R,

M,
My = l—;(3a2 — 2al)

0p=0 yp=0

Max+M = T;(zmﬂ — 94?1 4 6a®) just right of x = a; max possible value = M, when a = [

Max — M = %(4012 — 90214 6a® — I%) just left of x = a; max possible value = —M, whena =0

Max+y= ﬂ atx = i(3a — 1); max possible value = 0 016171‘4"12 at x = 0.565/ when a = 0.767!
YT 3REI " T Ba §maxp = mr T =

(Note: There is no positive deflection if @ < é)

3e. Left end simply
supported, right end
simply supported

o,

&

R, =

_ M, o 2
0, = 6E11(2l 6al + 3a”)
My=0 y,=0

M,
Ry="p

— MO 2 2
O =ggn " ~3¢)

Mp=0 yp=0

Max+M = %(Z — a) just right of x = @; max possible value = M, when a = 0
—M,a
l
M, (6al — 3a® — 212)*?
9V3EI

M,

= 00642? at x = 0.577] when a = [ (Note: There is no positive deflection if a < 0.423[)

Max — M = just left of x = a; max possible value = —M, whena =1

Max +y = at x = (2al — a® — %lz)]/Z when a > 0.423/; max possible value

3f. Left end guided,
right end simply
supported

(e

Ry=0 0,=0

M, =-M,
M,a
Ya =5 @Gl-a)
Rp=0 Mp= yp=0
—M,a
0p =57

Max M =-M,for0O<x<a

Max 0 = 0p; max possible value = % whena =1

MPE
Max y = y,; max possible value = % whena =1

96}
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TABLE 8.1 Shear, moment, slope, and deflection formulas for elastic straight beams (Continued)

4. Intermediate externally

created angular deformation

Transverse shear = V = R,

Bending moment = M = M, + Rx

MAx Ryx? 0
=0=0 —
Slope =04+ Vit 2EI +0,{x — a)
3—//—4* Myx*  Rpx®
Deflection =y =y, + ()Ax+ oSBT + = SET + 0,¢x — ay
MA R
IR
End restraints,
reference no. Boundary values Selected maximum values of moments and deformations
4a. Left end free, right Ry=0 My=0 Max y = y4, max possible value = 0, when a = [
end fixed 0,=—0, ys=0,a
a Rp=0 Mp=0
\‘-‘#g 0p=0  yp=0
8, 1
—EI0,
4b. Left end guided, Ry,=0 M,= 7 L Max M = My,
right end fixed
1 l . 0,1
04=0 y,=0 a,,) Max +y =y, when @ > —; max possible value = -2- whena =1
° 2 2 2
(=
Rp=0 = _EZM" Max —y = ;lﬂ a)® at x = a; max possible value = %"l whena =0
B V7 0p=0 yz=0
. . —3EI0,
4c. Left end simply My =0 Ya = Max M = Mp; max possible value = 7 whena=1
Zi};gorted, right end 0 _3Elad e .y
A 3 Max +y = H,,a(l - 5) atx = 1(1 — 5) when a > 2/; max possible value = 0.19260, at x = 0.5771
. s Lo 2
when a =1 (Note: There is no positive deflection if a < 3 )
Max —y = 790(1(1 — ?;ll + 215) at x = a; max possible value = —0.2320,/ at x = 0.366/ when a = 0.366(
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TABLE 8.1 Shear, moment, slope, and deflection formulas for elastic straight beams (Continued)

End restraints,
reference no. Boundary values Selected maximum values of moments and deformations
4d. Left end fixed, right Ry = 6EI0, (I-2a) Max + M = Mp when a < E; max possible value = 2E10, whena =0
end fixed B 2 l
M, = %(Sa —20) Max — M = M, when a < é; max possible value = 410, whena =0
04 = = 2
4=0 ¥a=0 Max +yoccursatx = ———— ifa < l: max possible value = il(},, when a =0
R.—_R 3(l — 2a) 3 27
B = —hiy
2EI0, Note: There is no positive deflection if ! <a< %l
B="% (—3a) 3 3
— 2 —
0p=0 yp=0 Max —y = ZZ"G (I — a)* at x = a; max possible value = ! when a = é
de. Left en;:l ;implﬁ; d By = 00 My=0 Max y = _(;"a(l — a) at x = @; max possible value = =0, when a = é
supported, right en —
simply supported Oa = T(l —a) y4=0
Rp = Mp=0
o ﬁ 0
yp=0 Op =7
7
8o
4f. Left end guided, R,=0 M,=0 Max y = y,; max possible value = —0,/ when a =0
right etng simply 0, = 4 =—0,(l—a)
supporte Ry = My =0
F a —>| g = 0p =0,
(——=
£
5. Intermediate externally created lateral Transverse shear = V = R,
displacement Bending moment = M = M, + Ry«
o Myx  Ryx?
Slope =0 =0, +ﬁ+ oEI
. Myx*>  Rpx® 0
Deflection =y =y, + OAx+W+ 6ET + A (x — a)

861

ujelIlS pue SSa4]S 10} SejNuWLIoS

g "dvHI]



5a. Left end free, right Ry=0 M,=0 Maxy =y, whenx <a
end fixed 0,=0 ys=-A,
o Ry=0 My=0
r O = yp=0
Dy 77
5b. Left end guided, Ry=0 M, = Maxy =y, whenx <a
right end fixed 0,20 yy=-A,
r_ a _,,' Rp=0 Mzp=0
( 0p=0 yp=0
N7
5c. Left end simply 4 = BE‘IAO M,=0 Max M = My Max 0 =0,
supported, right end B A
fixed 0, = —34, Y, =0 Max+y= ﬁ(ZZ3 +a® — 31%a) just right of x = a; max possible value = A, when a = 0
2l
—A, :
I"_ a— Ry=-R, My= SE;A" Max —y = 2,3‘1(312 — a?) just left of x = a; max possible value = —A, when a = [
TE |o=0 =0
8,
5d. Left end fixed, right Ry = 12E;IA() 0,=0 Max + M = My Max — M = M,
end fixed 5
—6EIA, —3A, 1
, . =—F V4= Max 0 = atx:é
Rp=-R, Mg =—M, Ay s o .
5 2 Max+y = —.;’(l‘ + 2a® — 3a?l) just right of x = a; max possible value = A, when a = 0
A 0 =0 yp=0 E
° 2
—A,
Max —y = l;’a (31 — 2a) just left of x = a; max possible value = —A, whena =1
5e. Left end simply Ri=0 M, = Max +y = ﬁ(l — a) just right of x = a; max possible value = A, when a = 0
supported, right end vy l
simply supported Ya=0 04=—" —A,a
l Max —y = —°— just left of x = @; max possible value = —A, whena =1
Rp=0 Mp=0
r*__ 0] B B
—A,
4,
5f. Left end guided, right | R, =0 M, =0 Maxy =y, whenx <a
end simpl; orted
nd simply suppor 0,=0 y,=—A,
a —~| Rp=0 Mp=0
r_ O0p=0 yp=0

C—=

0
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TABLE 8.1 Shear, moment, slope, and deflection formulas for elastic straight beams (Continued)

6. Uniform temperature
variation from top to bottom from a to [

Transverse shear = V = R,
Bending moment = M = M, + Ryx

Y a Temperature =

le— T, My
r [}

]_ |z/—%% T "

Myx N Ryx?

Slope = 0 = 04 +—— =1 T eED

Ty = T~

Myx*>  Ryx®
Ax+Ax+V(

Deflection =y =y, + 0,0+ ornl T err T

A Temperuture'
A 2

=temperature coefficient of expansion (unit strain/°) ¢=depth of beam

Ty — Ty)(x — @)

End restraints,

reference no. Boundary values

Selected maximum values of moments and deformations

6a. Left end free, right Ry,=0 My=0 M = 0 everywhere
end fixed .
04 = T/(Tz =T —a)
a ﬁ i
i o4 = g (T = T = @)
T2

v Rp=0 Mp=0

0 =0 yp=0

Max 0 = 0,; max possible value = —

—T,)whena =0

yl2
Max y = y,; max possible value = %(TZ —T,)whena=0

6b. Left end guided,
right end fixed

(=2

2V | Ry=o0

EI,

(T, =T —a)
4= =T —a)
My =M,

0p =0 yp=0

Max 0 = _l—(:y(T2 — T,)(l — a) at x = a; max possible value = _4/tl

—EIy
M = M, everywhere; max possible value = T’(TZ —T,)whena=0

l
— Tl)whena:5

2
Max y = y,; max possible value = %(TZ —T,)whena = é

be. Left end Slm.ply My=0  y4=0 Max M = My; max possible value = — —T,)whena=0
supported, right end SEL 2
fixed Ry=— LTy — T —a?) 1/2
A= 53 e — 11 T -
2t Max +y = w@a D atx= 1(331%32) ; max possible value
P +a
04 = 4 (To = Ty~ a)(3a— I)
2
Ry=-R, My =R,l = 00257%(T2 —T,) at x = 0.474] when a = 0.721] (Note: Thereisno positive deflectionif a < 1/3)
0p=0 yp=0 28 1 a2 ayt l
Max — y occurs at x = 3E ) 1- 5 1-— 6(7) + 9(7) ; max possible value = W(Tz T))atx = 3

whena =0
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TABLE 8.1 Shear, moment, slope, and deflection formulas for elastic straight beams (Continued)

6d. Left end fixed, right
end fixed

a—>-! T,

—6Elay
Ry=—5 (T, -T)(-a)
_EL
Tar
04=0 y,=0

Ry =—R,

My (T, = T — a)Ba—1)

—EIy
My = T;(Tz —T)(—a)Ba+1)

0p=0 yp=0

Max 4+ M = M,; max possible value = %(T2 —T,)whena =21

. . . 1
(Note: There is no positive moment if a < 5)

—4EIy
3t

Max — M = Mp; max possible value = (T, — T,) whena = é

2M
Max +y=_——"%-

when a = 0.767] (Note: There is no positive deflection if a < é)

6e. Left end simply
supported, right end
simply supported

%_0_’1 T,

T

R,=0 My,=0 y4=0

-
21l
Rp=0 Mz=0 yp=0

N (T, — T)(I - a)

Op =5 (Ty = TN — a®)

M = 0 everywhere
Max + 0 = 0p; max possible value = %(T2 —T))whena=0

Max — 0 = 0,: max possible value = ;—'QZ(TZ —T,) whena =0

_y . o2
Max y = gl;(TZ — T)(1* — a®)*; max possible value = %(T —T))atx= !

o
=3

. Left end guided,
right end simply
supported

Ry=0 M;=0 0,=0
4 =5 (To =T~ a)*
Rp=0 Mz =0 yg=0

0p =21, = Ty~ @)

M = 0 everywhere

Max 0 = 0p: max possible value = %(T2 —T,)whena =0

2
Max y = y,; max possible value = %(TQ —T,)whena=0
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TABLE 8.2 Reaction and deflection formulas for in-plane loading of elastic frames

NOTATION: W = load (force); w = unit load (force per unit length); M, = applied couple (force-length); 0, = externally created concentrated angular displacement (radians); A, = externally created
concentrated lateral displacement (length); 7' — 7, = uniform temperature rise (degrees); T; and T, = temperature on outside and inside, respectively (degrees). Hy and Hp are the horizontal end
reactions at the left and right, respectively, and are positive to the left; V, and Vj are the vertical end reactions at the left and right, respectively, and are positive upwards; M, and Mp are the
reaction moments at the left and right, respectively, and are positive clockwise. I;, I, and I; are the respective area moments of inertia for bending in the plane of the frame for the three members

(length to the fourth); E,, E,, and E, are the respective moduli of elasticity (force per unit area); y;, 75, and y; are the respective temperature coefficients of expansions (unit strain per degree)

General reaction and deformation expressions for cases 1-4, right end pinned in all four cases

Deformation equations:
Horizontal deflection at A = dyy = AyyHy + AgyyMy — LPy
Angular rotation at A = Y, = Ay Hy + Apypy My — LPy,
B, B 5
3E\I, 3E,I, 3E;l;

A Iy
Apy = Ayn = 2E,1, + 6E, 1, (20 +15)

where Ay = @B+LL,+13)

_ L Iy
Ay =5 T V35,1,

and where LPy and LP); are loading terms given below for several types of load

(Note: V4, Vi, and Hp are to be evaluated from equilibrium equations after calculating H, and M,)

1. Left end pinned, Since d74 =0 and My =0,

right end pinned
H, = LPy and Y, =AygHy — LPy
Apn
The loading terms are as follows.
Reference no., loading Loading terms
2
la. Concentrated load on the ’*0 W LPy = Wa_ 3lia— 2L 15 — lyly — af(l, —1y)
6E,1, A

horizontal member
a

W a?
LPy = 76E313 (3a — 2l — K)
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TABLE 8.2 Reaction and deflection formulas for in-plane loading of elastic frames (Continued)

_ 3
1b. Distributed load on the  Wg Wp LPy = 24E 1 (l1 1) — (”;bﬁo%)laml +8ly)
horizontal member 378
P —Twl§ 11wy, — wy)l§
M T I2E,I, 180E, 1,
3
lc. Concentrated moment on rCI M, LPy, = 62"41 |:611a 201y — lyly — Sli(l‘ - lz):|
the horizontal member 1 3
M, 3a
LPy = gpo <4a 2l — T)
1d. Concentrated angular Ifo% )9 LPy =0, [ll — lg(ll - 12):|
displacement on the >\° 3
horizontal member _o(?2_9a
o)
aq A =Ay(ly = 1y) . . .
le. Concentrated laternal " *| _LD LPy = — (Note: A, could also be an increase in the length /; or a decrease in the length /;)
displacement on the 3
horizontal member LPy = A,
Iy
W &
1f. Concentrated load on the LPy = W(AHH aApgy + GBI )
left vertical member a
4 a2
LPy = W(AMII —aAyy + m)
o W goon L 2o
1g. Distributed load on the LPy = w,(Agyly *AHMEer + (wy, — wg) AHHE —AHM§+W
left vertical member 1 1
bls g 41 w,) i ”‘ (21 3.
Wy = Wa| g 6EI(1+2) + (wp, —w, 24EI+3 1+ 3l)
M
1h. Concentrated moment o

on the left vertical
member

Fes

M (& a
£ =g )

a
Ly =M, (5~ A

[£1'8 038
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TABLE 8.2 Reaction and deflection formulas for in-plane loading of elastic frames (Continued)

Reference no., loading

Loading terms

1i. Concentrated angular ,\90 LPy =0,(a)
displacement on the left — LPy = 0,(1)
tical by [o}
vertical member 9
1j. Concentrated lateral =80 LPy =A,(1) (Note: A, could also be a decrease in the length /3)
displacement on the
- LPy =0
left vertical member a M
R
|
1k. Concentrated load —GL LPy =W 7(312(1 —2I3 — & )— I (ly —a)(l; + 212)]
3

on the right vertical
member

£
LPy = W[G

s 1y~ 0)]

w
- Wa
11. Distributed load on
the right vertical
member W

R
wu[ of__ Bk <ll+2lz>} (wy — u>[

94E,I, 12E,I,

—131 —131,
wa( o ) - wa)(SGE%‘x})

40, 12

36E I

o+ 25)]

1m. Concentrated moment 0 1M
on the right vertical °
member

LPy =M, [ZE 7%~ 6E I +zzz)]
Iy
LPy = M, EL

1n. Concentrated angular
displacement on the

LPy =0,(l; —a)
LPy =0

1p. Concentrated lateral
displacement on the
right vertical member

a
right vertical member T; \(80
a
7:* .

LPy =A,(-1) (Note: A, could also be an increase in the length /3)

LPy =0
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TABLE 8.2 Reaction and deflection formulas for in-plane loading of elastic frames (Continued)

1q. Uniform temperature rise:

T = uniform temperature
T, = unloaded temperature

[]

(h—1)

1Py =1 = 1)1ty -
3

-1
LPy = (T - T»[Zmll - 7212)]

il — 79 lz)] 7 = temperature coefficient of expansion (unit strain/degree)

1r. Uniform temperature
differential from outside
to inside. Average
temperature is 7,

T —TH[v, 2 2,02 &
LPy = % [’ 1l + vols + M] t,,ty, and t3 are beam thicknesses from inside to outside

t ty t3
(T, - Ty) (4"«’111 “/313)
LPy =——= +5
u 2 RS

2. Left and guided
horizontally, right end
pinned

Since Y4 =0 and Hy =0

M, = Ly and Spa = Ay My — LPy
AMM

Use the loading terms for cases 1a to 1r

3. Left end roller
supported along the
horizontal,

right end pinned . H 8
VA

Since H, and M, are both zero, this is a statically determinate case
Oya=—LPy and Y, =—LPy

Use the loading terms for cases 1a to 1r

4. Left end fixed, right
end pinned

A

W,

Since dy4 =0 and ¥y, =0,

_ AMM LPH — AHMLP}VI

Hy= S and My =
Apr Ay — Amn)”

Apr Ay — Amy)”

Use the loading terms for cases la to 1r

AppLPy — Ay LPy

[£1'8 038

sieg ybreans Jo ainxal4 ‘sweag

G0C



TABLE 8.2 Reaction and deflection formulas for in-plane loading of elastic frames (Continued)

General reaction and deformation expressions for cases 5-12, right end fixed in all eight cases:

1 —]

!

/ 2
¥a 1,
s ~—H,g
MK~

Vg

LH

Deformation equations:

Horizontal deflection at A = dyy = CyyHy + Cyy Va + Cyyy My — LFy

Vertical deflection at A = oy = CygHy + Cyy Vy + Cyy My — LFy,

Angular rotation at A = 4, = CyypHy + Cory Vg + CopyyMy — LEy,

B B-(-b) Bl

where Cyy = -+ + 55—+
HH = 3E, 1, 3E, 1, E,ly
Iyl L
Chy =Cyy = 2E2] qI 2l - lz)+ 313
2 L1
Cay = Cyn = BT, +2E 7 Ch=-b)+5+ - 3
LE 1

Cw=%,1, " 3E,T,

bly 8

EyI, ' 2E;l,

c by
wi =g T VB T E,L

CVM = CMV =

and where LFy, LFy, and LF); are loading terms given below for several types of load

(Note: If desired, Hg, Vg, and My are to be evaluated from equilibrium equations after calculating H,, V,, and M,)

5. Left end fixed,

Since oy =0, dy4 =0, and 4, = 0, these three equations are solved simultaneously for Hy, V,, and M,:

right end
fixed
CygHy + ChyyVy + Cyyy My = LF,
Mg c Hg HEHA av Va+ Cay My H
M ,ZWQH_ v CygHy + CyyVy + CypyyMy = LFy,
A AL CymrHy + Cyy Va + Cyy My = LFy
VA The loading terms are given below.
Reference no., loading Loading terms
5a. Concentrated load on W |: h 2:|
a LFy =W 2L =)y —a)+ 55753 —a
the horizontal 1‘ " 2E, 1, @h ~ i)k ~a) 2E313( 2=
member

all
LFy = W(CW —aCyy + @)

_ Iy B 1 e
LFy = W[Eizlz (s ‘1)+72E313 (I3 —a) ]
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TABLE 8.2 Reaction and deflection formulas for in-plane loading of elastic frames (Continued)

5b.

Distributed load on
the horizontal member

Wa Wb

@24 -

LFy =w, |:4EI

1
LEy =w <2E212 8E I ) +0wp = “)(GE I, 30E313)

L

L 143
6B, 1 ] +wp = ")[12E LCh B tagg

]

Ly =, (28 4 B )y, (2B B
M= a\2E, I, " 6E,I, v~ W\ g, T, T 24E, T,
- L
5c. Concentrated moment on LFy =M, 2 —lL)——=+(3—a)
. 2E, 1. Esly
the horizontal member
2
LFy _MD< Cyy BTN )
ly 1
LFy =M, [Ez AL a)]
5d. Concentrated angular LFy = 0,(%,)
displacement on the LFy = 0,(a)
horizontal member
LEy = 0,()
5e. Concentrated lateral LFy =0
dis]?lacement on the LFy, = A,(1)
horizontal member
LFy =0
@
5f. Concentrated load on LFy =W|( Cyy —aCppyy + ——
. 6E, I
the left vertical member
LFy = W(Cyy — aCyyy)
@
LFy = W(CMH —aCypr + m)
. w 2 i N 12 4
5g. Distributed load on b LFy = w,( Cyyly — CHM B 24E 7 ) + (wy, — a)(CHH 2 )

the left vertical member

2 l 12
LFy =w, (CVHZ] Cvum 2) + (wy — a)(Cw,g‘ — Cvnr gl)

2 ZS l
= w,( Cyumly — Cyy o + (wy, — wo)| Costr 5 — Cont =
2 V6B I, 2 EREToNg

-C
HM g

la

1
t30E,T,

3

1)
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TABLE 8.2 Reaction and deflection formulas for in-plane loading of elastic frames (Continued)

Reference no., loading

Loading terms

5h. Concentrated moment on
the left vertical member

2
LFH:M< CHM+2EI>

LFy = M,(~Cyy)

LFy = (CMM+EI>

5i. Concentrated angular )\ LFy = 0,(a)
dlsp‘lacement on the left 90 _f LF, =0
vertical member a 7
LFy = 0,(1)
5j. Concentrated lateral A = LFy = A,(1)
displacement on the left ° T LF, =0
. v =
vertical member a
4 LFy =0
5k. Concentrated load on the LFy = E,T, [85,(Iy — @)* — 203 — &® + 3al3]
right vertical member
LFy = g 7ol — 0]
’
w
LFy = o8, 1, — (I, —a)®
51. Distributed load on the Wa LFy = 3 —2 (41, — 3Ly) | +( w,) (51, — 4ly)
it . H = Walgag,r, 0 T T T ”120EI 1T
right vertical member
Bl 31
w = — 2°3
b | v =i T W g T
/ Lfyy = w0, g (=0 5
M =Wagg,n, W T Y ogp, T,
M,
5m. Concentrated moment LFy = 25,1, [20,(y — @) — a® + 3]

on the right vertical
member

,707‘ o
LEy = g (-h(s ~ @)

M,
LFy = m[*(lz —a)l

ulRIlS pue SS.IS 10} Se|NW.OS

g "dvHI]



TABLE 8.2 Reaction and deflection formulas for in-plane loading of elastic frames (Continued)

5n. Concentrated angular LFy =0,(, —a)
disp}acement on the right LFy = 0,(l5)
vertical member
LEFy = 0,(1)
5p. LFg =A,(-1) (Note: A, could also be an increase in the length /3)
LFy, =0
LFy =0
5q. Uniform temperature rise: LFyg = (T - T,)(—y3l3) 7 = temperature coefficient of expansion (inches/inch/degree)

T = uniform temperature
T, = unloaded temperature

LFy = (T = T,)(1 1y —72ls)
LFy =0

a

f ;,2\,90
Concentrated lateral 3
displacement on the right 4 /“Ao
vertical member

5r. Uniform temperature LFy = (T, — Tz)[ 11 + 12 2 (211 ly) +l Zq/d]
differential from outside K
to inside; average llsp,  Bys . s .
temperature is 7, LFy =(T, - T, )( & + 5 21, t;, ty, and t3 are beam thicknesses from inside to outside
LEy = (T — Ty(1ir 4 B2 | s
2 ty l3
6. Left end pinned, Since 0y = 0,0y, =0 and My =0,
right end fixed b, _LFuCw —LFyCay |, _LFyChy — LFyCphy
A= A=
M H Crrr Cvy — (Cppy)? Crrr Cvy — (Cpy)*
<
:TTEV B s = CyuHy + Cyy Vg — LFy
v A 8 Use the loading terms for cases 5a to 5r
A
7. Left end guided Since dyy =0,¥, =0and Hy =0,

horizontally, right
end fixed

_ LFyCyy — LEy Cyy
Cyv Camr — (Cym)®
Oma = CyyVa + CyyMy — LFy

LF)yCyy — LFyCyy

V, 5
4 Cyv Car — (Cyy)”

A=

Use the loading terms for cases 5a to 5r
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sieg ybreans Jo ainxal4 ‘sweag

602



TABLE 8.2 Reaction and deflection formulas for in-plane loading of elastic frames (Continued)

8. Left end guided vertically, Since oy =0,¥4 =0, and V, =0,
right end fixed
47, — 1P Cann = LEy o _ LFyCu — Ly Cuy
Mg Z<_ Hg Crrr Comy — (Crmg)” Crrr Comy — (Crg)”
HAq v Oya = CyyHy + Cyyy My — LFy
A 8 Use the loading terms for cases 5a to 5r
9. Left end roller supported Since oy =0,Hy =0, and M, =0,
along the horizontal, V, = LFy S1a = Cay'Va — LFy and Wa=CoyVa — LEy
right end fixed Cyy
Use the loading terms for cases 5a to 5r
10. Left end roller supported Since dpy =0,V, =0, and M, =0,
along the vertical, right H, = LFy dys = CyHy — LFy and Ya = CyyH,y — Ly,
end fixed Cun
Use the loading terms for cases 5a to 5r
11. Left end guided by Since 4, =0,H, =0, and V, =0,
LF, R
moment only (zerf) slope M, =u Sua = Coy My — LFy and Sya = Cyyy My — LFy
at the left end), right <«~H Cym
end fixed MM\/ Ms
Va Use the loading terms for cases 5a to 5r
12. Left end free, right end Since Hy =0, V, =0 and M, = 0, this is a statically determinate case. The deflections are given by

fixed
Mg > <—Hg

oun=—LFy  Oys = —LFy

Use the loading terms for cases 5a to 5r

and

Y =—LFy
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SEC. 8.17]

Beams; Flexure of Straight Bars

TABLE 8.3 Numerical values for functions used in Table 8.5

px Fy F, F; F,

0.00 1.00000 0.00000 0.00000 0.00000
0.10 0.99998 0.20000 0.01000 0.00067
0.20 0.99973 0.39998 0.04000 0.00533
0.30 0.99865 0.59984 0.08999 0.01800
0.40 0.99573 0.79932 0.15995 0.04266
0.50 0.98958 0.99792 0.24983 0.08331
0.60 0.97841 1.19482 0.35948 0.14391
0.70 0.96001 1.38880 0.48869 0.22841
0.80 0.93180 1.57817 0.63709 0.34067
0.90 0.89082 1.76067 0.80410 0.48448
1.00 0.83373 1.93342 0.98890 0.66349
1.10 0.75683 2.09284 1.19034 0.88115
1.20 0.65611 2.23457 1.40688 1.14064
1.30 0.52722 2.35341 1.63649 1.44478
1.40 0.36558 2.44327 1.87659 1.79593
1.50 0.16640 2.49714 2.12395 2.19590
1.60 —0.07526 2.50700 2.37456 2.64573
1.70 —0.36441 2.46387 2.62358 3.14562
1.80 —0.70602 2.35774 2.86523 3.69467
1.90 —1.10492 2.17764 3.09266 4.29076
2.00 —1.56563 1.91165 3.29789 4.93026
2.10 —2.09224 1.54699 3.47170 5.60783
2.20 —2.68822 1.07013 3.60355 6.31615
2.30 —3.35618 0.46690 3.68152 7.04566
2.40 —4.09766 —0.27725 3.69224 7.78428
2.50 —4.91284 —1.17708 3.62088 8.51709
2.60 —5.80028 —2.24721 3.45114 9.22607
2.70 —6.75655 —3.50179 3.16529 9.88981
2.80 —7.77591 —4.95404 2.74420 10.48317
2.90 —8.84988 —6.61580 2.16749 10.97711
3.00 —9.96691 —8.49687 1.41372 11.33837
3.20 —12.26569 —12.94222 —0.71484 11.50778
3.40 —14.50075 —18.30128 —3.82427 10.63569
3.60 —16.42214 —24.50142 —8.09169 8.29386
3.80 —17.68744 —31.35198 —13.66854 3.98752
4.00 —17.84985 —38.50482 —20.65308 —2.82906
4.20 —16.35052 —45.41080 —29.05456 —12.72446
4.40 —12.51815 —51.27463 —38.74857 —26.24587
4.60 —5.57927 —55.01147 —49.42334 —43.85518
4.80 5.31638 —55.21063 —60.51809 —65.84195
5.00 21.05056 —50.11308 —71.15526 —92.21037
5.20 42.46583 —37.61210 —80.07047 —122.53858
5.40 70.26397 —15.28815 —85.54576 —155.81036
5.60 104.86818 19.50856 —85.35442 —190.22206
5.80 146.24469 69.51236 —76.72824 —222.97166
6.00 193.68136 137.31651 —56.36178 —250.04146

211



212 Formulas for Stress and Strain [cHAP. 8
TABLE 8.4 Numerical values for denominators used in Table 8.5

ﬁl Cll C12 C13 Cl4
0.00 0.00000 0.00000 0.00000 0.00000
0.10 0.00007 0.20000 0.00133 0.02000
0.20 0.00107 0.40009 0.01067 0.08001
0.30 0.00540 0.60065 0.03601 0.18006
0.40 0.01707 0.80273 0.08538 0.32036
0.50 0.04169 1.00834 0.16687 0.50139
0.60 0.08651 1.22075 0.28871 0.72415
0.70 0.16043 1.44488 0.45943 0.99047
0.80 0.27413 1.68757 0.68800 1.30333
0.90 0.44014 1.95801 0.98416 1.66734
1.00 0.67302 2.26808 1.35878 2.08917
1.10 0.98970 2.63280 1.82430 2.57820
1.20 1.40978 3.07085 2.39538 3.14717
1.30 1.95606 3.60512 3.08962 3.81295
1.40 2.65525 4.26345 3.92847 4.59748
1.50 3.53884 5.07950 4.93838 5.52883
1.60 4.64418 6.09376 6.15213 6.64247
1.70 6.01597 7.35491 7.61045 7.98277
1.80 7.70801 8.92147 9.36399 9.60477
1.90 9.78541 10.86378 11.47563 11.57637
2.00 12.32730 13.26656 14.02336 13.98094
2.10 15.43020 16.23205 17.10362 16.92046
2.20 19.21212 19.88385 20.83545 20.51946
2.30 23.81752 24.37172 25.36541 24.92967
2.40 29.42341 29.87747 30.87363 30.33592
2.50 36.24681 36.62215 37.58107 36.96315
2.60 44.55370 44.87496 45.75841 45.08519
2.70 54.67008 54.96410 55.73686 55.03539
2.80 66.99532 67.29005 67.92132 67.21975
2.90 82.01842 82.34184 82.80645 82.13290
3.00 100.33792 100.71688 100.99630 100.37775
3.20 149.95828 150.51913 150.40258 149.96510
3.40 223.89682 224.70862 224.21451 224.02742
3.60 334.16210 335.25438 334.46072 334.55375
3.80 498.67478 500.03286 499.06494 499.42352
4.00 744.16690 745.73416 744.74480 745.31240
4.20 1110.50726 1112.19410 1111.33950 1112.02655
4.40 1657.15569 1658.85362 1658.26871 1658.96679
4.60 2472.79511 2474.39393 2474.17104 2474.76996
4.80 3689.70336 3691.10851 3691.28284 3691.68805
5.00 5505.19766 5506.34516 5506.88918 5507.03673
5.20 8213.62683 8214.49339 8215.32122 8215.18781
5.40 12254.10422 12254.71090 12255.69184 12255.29854
5.60 18281.71463 18282.12354 18283.10271 18282.51163
5.80 272173.73722 27274.04166 27274.86449 27274.16893

6.00

40688.12376

40688.43354

40688.97011

40688.27990




TABLE 8.5 Shear, moment, slope, and deflection formulas for finite-length beams on elastic foundations

NOTATION: W = load (force); w = unit load (force per unit length); M, = applied couple (force-length); 0, = externally created concentrated angular displacement (radians); A, = externally created
concentrated lateral displacement (length); y = temperature coefficient of expansion (unit strain per degree); 7', and 7, = temperatures on top and bottom surfaces, respectively (degrees). R, and
Rp are the vertical end reactions at the left and right, respectively, and are positive upward. M, and Mp are the reaction end moments at the left and right, respectively, and all moments are positive
when producing compression on the upper portion of the beam cross section. The transverse shear force V is positive when acting upward on the left end of a portion of the beam. All applied loads,
couples, and displacements are positive as shown. All slopes are in radians, and all temperatures are in degrees. All deflections are positive upward and slopes positive when up and to the right.
Note that M, and R, are reactions, not applied loads. They exist only when necessary end restraints are provided.

The following constants and functions, involving both beam constants and foundation constants, are hereby defined in order to permit condensing the tabulated formulas which follow

k, = foundation modulus (unit stress per unit deflection); b, = beam width; and f = (bgk(,/zlEI)‘/4

cos fi{x — a), and sin fi{x — a) are also defined as having a value of zero if x < a.

. (Note: See page 131 for a definition of (x — a)".) The functions cosh fi{x — a), sinh {x — a),

F; = cosh fxcos fix C, = cosh flcos fl C,, = sinh® Bl — sin? pl
F, = cosh fix sin fix + sinh fx cos fix Cy = cosh plsin pl + sinh plcos fl C;, = cosh flsinh il + cos flsin I
Fy = sinh fxsin f§, C; = sinh lsin fl C,3 = cosh plsinh pl — cos Bl sin pl
F, = cosh fx sin fx — sinh fix cos fix C, = cosh plsin il — sinh flcos ffl Cpy= sinh? Bl+ sin2 Bl
F,; = (x — a)° cosh f(x — @) cos f{x — a) Cqy = cosh (I — a)cos f(l — a)
F,5 = cosh fi{x — a) sin f{x — a) + sinh f{x — a) cos f{x — a) Cyp = cosh (I — @) sin f(I — a) + sinh (I — a) cos f(l — @)
F,3 = sinh fi{x — a) sin fi{x — a) Co3 = sinh f(l — a)sin f(l — a)
F,, = cosh i(x — ay sin i(x — a) — sinh fi{x — @) cos f(x — ay Cq4 = cosh (I — a)sin f(l — a) — sinh f(I — @) cos f(l — @)
Fy=a-a’—F, Cos =1-Cy
Fle = 2B — a)(x — a)’ — Fy Cas = 2 —a) = Cao
1. Concentrated intermediate load Transverse shear = V = Ry F, — y,2EIf*F, — 0,2EIf*F5 — M, fF, — WF,,
Y . R, ) w
o Bending moment = M = M, F; + Z—BF2 —YA2EIf"Fs — 0,EIBF, — ﬁFaZ
My )/ w M, R, w
#Wﬁ%m_ l Slope:():ﬂAFl+mFZ+WF3—yAﬂF4—WFM
R 777 %
Ya . 1 ‘J\ Deflection = y =y, F, +%F2+2EA341732 F3+4§;/13F“ 7#FM

If Bl > 6, see Table 8.6
Expressions for Ry, My, 04, and y, are found below for several combinations of end restraints
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TABLE 8.5 Shear, moment, slope, and deflection formulas for finite-length beams on elastic foundations (Continued)

Right
end Free Guided Simply supported Fixed
Left | Ra=0 M,=0 R,=0 M,=0 Ri=0 M,=0 Ri=0 M,=—
d
o 0, — W CyCyp —2C5C, 0, — W CyCu3 — CyCa 0, = W CiCu+C3Cy __w 2C,Cu3 + C4Cyy
TR Cu ATeEl Gy ATeEI Cu ATomIP 240y
()
E y4 = W CiCy — C5Cy yao= —W CiCu +C5Cy Yo = —W CiCus+ CyCy Yo = W CiCu = CoCy
AT SEIf [on AT 9RIp Cyz AT 4EIf Ciy AT oRIf 2+Cy,
Ri=0 0,=0 R,=0 0,=0 Ri=0 0,=0 R,=0 0,=0
<
< M _ WCyCop —2C5Cy M _WCyCis — CiC M _ WG Cip +C5Cy _W2C,Cy5 +C4Cyy
& T Cis 47 3p Ciy 472 140y 47 op Cyp
=W 2C,Cy +CCyy _ =W CyCqy + CyCys W CCyy —C5Cyp Yo = W CyChy —2C5Cy5
YA = E Cry AR Gy YATUEIP 1+ A= 4EIp Cys
s | Ma=0  y4=0 My=0 y,=0 My=0 y,=0 My=0 y,=0
> 3
25| R =wSCe-CCa g, = wCiCa+CsCy R, = W CsCar + CiCus R — w C2Cas = C1Cas
- Cus ‘ 1+ Cy T2 . Cis
” 0, = W CiChp—CCh 0, — W CiCus = C3Ca 0, — W CyCuy— CiCu 0, = W C3Cuy — CyCo
AT 9RIp? Cus AT 9RIFE 1+Cy AT 4EIR [ AT 2RI Cs
0,=0 y,=0 0,=0 y,=0 0,=0 y,=0 0,=0 y,=0
:g R, = W2C10a1 +CyCos R, = WC4Ca3 +CoCu R, = WCSCa2 - CiCu R, = W2CBCa3 —CyCu
<) 2+Cy 12 13 Cn
wcC,Cy — CyC, WC,C, — CsC, wC,C,y — C,Cy wcsC,, — C,C,
M, = W CGiCa = Gl M, = W CiCa = CsCa M, = W CoCas = CyCop M, =V C3Cu = CiCay
4T 2+Cy 4 Cyy 47 2p Ci3 4 Cy
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TABLE 8.5 Shear, moment, slope, and deflection formulas for finite-length beams on elastic foundations (Continued)

2. Partial uniformly distributed load

My

it

A

Y
«—Qa
8y N
1 ]
RA

If Bl > 6, see Table 8.6
Expressions for R, My, 0, and y, are found below for several combinations of end restraints

Transverse shear = V = Ry F), — y,2EIf>F, — 0,2EIf*Fy — M,pF, — %Faz

Bending moment = M = M, F, + %Fz — yA2EIf*F; — 0,EIpF, —
Slope = 0 = 0,F, +

Deflection =y =y, F; +

M,

2EI

F,+

0a
ﬁF

w

2/;2F“3
R, w
A Ry — g pF, ——2F,
i TP P
M, R, w
4 A R4 A F, - _F,
oEIf> * 4RI ' 4EIpT

Right

end Free

Guided

Simply supported

Fixed

Left | Ra=0 M,=0 Ry=0 M,=0 Ry=0 M,=0 Ry=0 M,=0
end | w Gyl CiCa _ W GCu—CiCy __w GGy +CiCy _ W GCu+CiCy
47 2EI? Cy AT 4EIp C, AT R Crs AToEIF 240y
[
i - CiCup —2C3C0s P — CiCas +C3Cu — CiCus + CoC0 P 2C,Cy5 — CyCu4
AT 4EIp Cy AT 4EIgt Cy AT 4EIR [ AT UEIS 2+ Cyy
Ry=0 0,=0 Ry=0 0,=0 Ry=0 0,=0 Ry=0 0,=0
=
< _ W GG — C3Cy _ W GGy —CyC _w GG+ CCy M, =L CiCus +CiCys
8 4 24° Ciy 4 ap? Cy 4 24% 1+Cyy A 2% Cyy
yy=—2 CiCus +CyCy yy=—Y CyCas +CiCs O CiCus — C3Cas O CyCas — C3Cu
AT 4RI Cyy A SEIp Cyy AT UEIFT 1+ Cyy AT 4EIg* [
= | Ma=0  y4=0 My=0 y,=0 My=0 y4,=0 My=0 y,=0
13
—‘: E R, — w2CCh5 — CyCyp R, — w C Gy +C3Cy R, — w CyCa3 4+ CiCys R, — w CyCqy —2C,Cy5
22| TEw G AT2E 140y AT Oy 1T Oy
” _w 2C,Cu3 — CyCy 0, = w  C1Cyy — C3Cyy 0, = w  CyCys — CyCyy _w 2CGCy — C,Cy
AT 4EIf Cys ATL4EIPT 1+Cy 4T 4RI Cyy 47 agIp Cis
04=0 y,=0 04=0 y,=0 04=0 y,=0 0,=0 y,=0
?‘é R, = wC G+ CyCy3 R, — w CyCs + GGy R, — wC3Cu3 — CiCys R, =Y C3Cas — G305
= 478 2+Cyy A7 2p Cig a Ci3 47 B Cn
_ w 26,C3 — GC _w C1Cy = C3Cy _ W GCos —CiCys _ w 265Cy5 — C4Cyy
AT 24 Cy T AT Oy 4o Cu
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TABLE 8.5 Shear, moment, slope, and deflection formulas for finite-length beams on elastic foundations (Continued)

3. Partial uniformly increasing load

Y

My

]

E3

77777
1

>
~> p&a

R

If pl > 6, see Table 8.6

Transverse shear = V = Ry F, — y,2EIf°F, — 0,2EIf*Fy — M,pF, —

Bending moment = M = My F, + -4 Fy — y,2EIf*F; — 0, EIpF, —

Slope = 0 = 0, F, + M,

7A
2Ept

Deflection =y = y, Fy + -2 Fy +

Oa
2

R
2B

R,
A Fy — yaBF, -

2EIR?

&2 P+ 37A3
2EIf 4EIf

Expressions for Ry, My, 04, and y, are found below for several combinations of end restraints

wF 3
2% - a)
wF,,
4p’(1—a)

wk,;
4EIBY (I - a)
wF

F,——_~-a
4 SEIF( - a)

Right
end Free Guided Simply supported Fixed
Left | Ra=0 My=0 Ry=0 M,=0 Ry=0 M,=0 Ry=0 My=0
end ~ w(CyCyy — 2C5C,3) ~ w(CyCy5 — C4Cy3) ~ w(C;Cyy + C3C)  w(2C;Cys + C4Cp)
AT T4EIfNI - a)Cyy AT 4EIFN - a)Cyy AT T4EIBNI - a)Cyy AT URIFN (I — a)2 + Cyy)
fo
E ~w(CyCy3 — C3Cy) ~ —w(CCys + C5Cy5) ~ —w(CyCyy + CyCg) ~ w(CCys = CyCy5)
YA=—"F 5,7 A YA =" 5,7 YA= "o A YA = "7 57 e A L
4EIF (- a)Cyy 4EIf (- a)Cyy SEIF (I — a)Chy AEI(I— )2 + C1y)
Ry=0 0,=0 Ry=0 0,=0 Ry=0 0,=0 Ry=0 0,=0
o
7?3) = w(CyCqy — 2C5Cy3) = w(CyCos — C4Cay) = w(C, Cay + C3Cq) M, = w(2C, Cy5 + C4Cp)
& 4p°(1 - a)Cyy 4p°(1 - a)Cyy 4p°(1— a)(1 + Cyy) 4% - a)Cyy
yo = —w(2C,Cy3 + C4Co4) Y4 = —w(CyCys + C4Cy5) Y4 = w(C,Co6 — C3C44) y4 = w(CyCyp — 2C5Cys5)
A SEIF*(1— a)Cyy AT T 8EIf(-a)Cyy AT SEIf (- o)1+ Cyy) AT T SEIF (- a)Cyy
= My=0 Ya=0 My=0 ya=0 My=0 ya=0 My=0 ya=0
b @
g E Ry = w(C3Cqy — C4Cy3) = w(C,Co3 + C3Cys5) ) = w(CyCoy + C4C) R, = w(CyCy5 — C1Cyg)
& & 26*(~ a)Cyy 2f°(1 =~ o)1+ Cyy) 4f*(1 - a)Cy 2f°(1 = a)Cyy
K _ w(C,Coy — CyCy3) _ w(CyCys — C5Cy3) _ w(CyCys — C4Cas) 0, = w(C3Cys — C4Cys)
AT 4EIF (- a)Chy AT URIB (- a1+ Cyy) AT SEIFN - a)Cyy AT ARIBN I - a)Cy
04=0 ya=0 0,=0 ya=0 0y=0 Ya=0 04 =0 ya=0
§ = w(2C, Co3 + C4Cay) = w(CyCys + CyCy3) ) = w(C5Cyy — C1Cp) Ry = w(2C3Cq5 — C3C)
= 26°(1 - )2+ Cry) 261~ a)Cyy 2§°(1 - a)Cyy 2f*( - a)Cyy
_ w(C,Coy — CyCa3) _w(C,Cy5 = C3C3) _ w(CyCo6 — C4Ca) _ w(C3C6 — CyCos)
T2 U- e+ O T -y, AT - 0ty T 2pu-acy,
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TABLE 8.5 Shear, moment, slope, and deflection formulas for finite-length beams on elastic foundations (Continued)

4. Concentrated intermediate moment

Deflection =y = y,F; +

Y
M, ¢
%
0777777y
Ya !
RA

If I > 6, see Table 8.6

Expressions for Ry, My, 04, and y, are found below for several combinations of end restraints

Transverse shear = V = Ry F;

Bending moment = M = My F, + 2

Slope = 0 = 0,F, + ﬂF

2EIf 2

= YaBFy+ ot

fs b + 2 3
WPTIT: 2EIf

04
aplet

- yAZEIﬂSFZ — 042EIf°F5 — MapF, — M, pF,,

— yu2EIB?Fy — 0, EIBF, + M,F,,

2EI[3

Fay

end

=M, C;Cyy + C,Cyy

=M, Cy,Cypy + C,Cyy

=M, C,Cy + C3Cy

Right
end Guided Simply supported Fixed
Left | R4=0 My, =0 My=0 Ry=0 My=0 R,=0 M,=0

—M, C,Cos + CsCy3

= 04 = 0y =
47 EIp Cy Cy 47 EIp Cuy AT EIp 2+Cy,
@
E Y4 = M, 2C5Cy +CiCou M, C3Cp—CiCy Y= M, CiCy+CyCui yo= —M, 2C,Co3 — CyCyp
47 2EIp Cn Ci 4 TeEIf Ci ATREIfR 2+ Cy
Ry=0 0,=0 0,=0 Ry=0 0,=0 Ry=0 0,=0
<
3 My=-M CyCa + C3C0 _ =M, CyCas + CiCy M= -M, CiCa + C5Cys M, = -M Ci1Cop + CyCs
é’ ’ 12 Ciy o 1+Cy ? 12
ya= —M, C,Co —CiCy M, CyC—CyCu Y= M, C3Cpy —CiCu Yo = M, C3Cp—CyCu
47 2EIp? Ciz : Cyy AT oEIfE 1+ 0y AT ORI Co
- My =0 ya=0 Y4=0 My=0 y4=0 My =0 Ya=0
]
E« :o; R, = *Moﬁ2cgcalc+ CiCuy C@ izz Cclc(ﬂ R,=-M, ﬁcz w1+ CsCas R, =M, ﬁcz azc 2C,Cys
) 13 +0n 14 13
” _ —M, 2C,Cy; + CyCyy =M, C,Cyy + C5Cyy _ M, Cy,Co5 — C4Cyy _ —M, 2C5C,3 — C4Cyy
47 2EIp Cis 1+Cyy 47 2EIp Cyy AT 2EIp Cis
04=0 y,=0 y4=0 04=0 y,=0 0s=0 3,4=0
<
£ Ry=-M 2/304 a1 Cclca4 C4 w2 = CoCat R, =M, Zﬁcd alC CiCa Ry=-M 2/303 w2 — C3Cas
= 2+Cy 12 13 11
2C,C,, + C,C, C,Cye + C5C, C,C,3 — C,C, 2C;C,3 — C,Cy
M. = —pp 261Ca + CoCa . GGz + CsCa _ 2Ca3 = C4Car M, — —p 2C3Cas = CaCa
4 ’ 2+Cny ’ Cip My M, Ci3 8 ’ Cu
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TABLE 8.5 Shear, moment, slope, and deflection formulas for finite-length beams on elastic foundations (Continued)

5. Externally created concentrated angular
displacement

M Y/ﬂ
Y
6a
J?—ﬁ : -
Ya 1 gzo
Ra

If pl > 6, see Table 8.6

Transverse shear = V = RyF, — y,2EIf>F, — 0,2EIf*F; — M,fF, — 0,2EI(*F,,

Bending moment = M = My F, + %‘;Fg

My Ry
Slope =0 = 04 F) + =7 Fy + ——
P! Al 2FIp 2 ZEI[)"

M,
Deflection = F + Fy+——A
Y =Yaly Zﬁ 2EI/32

Expressions for Ry, My, 0,4, and y, are found below for several combinations of end restraints

— y,2EIB*F, — 0,EIpF, — 0,EIF,,

—YaBFy + 0,Fyy

Ry 0y
+—A R, +0F,
i gt

Right
end Free

Guided

Simply supported

Fixed

Left | R4=0 My=0

end | CaCu—2C;Cuy
=0, €20 = 2CsCy
C
% 11
8 0, CyCyps — C5C,
B | oy, = tolaCa = GiCa
ﬁ Cll

R,=0 M,=0
CCiy +CyCys
0, —+——=
12
Y= 0, C3Cay — C1Ca3
YT G

04=—

0 0,

4 C13

3 = P CiCa = CCus
T Ci3

Ry=0 M,=0
ZCIC,J1 +C,C,y
0, 2+ Cpy

_ =0,C1Cyy — C3Cyy
YAT T T a0y

0y =

Ry,=0 0,=0
MA — 0 EIﬂ CZ a4 — 2CBCu3
C12

=0, 2C,Cp3 + C4Cyy
Y498 Ciy

Guided

Ry=0 0,=0

Ry=0 0,=0

Cl a4_CSCa2
M, = 0,EIp—1-0t — Z3~a2
A b 1+Cpy
yo= =0, C,Cys + C3C,4
AT 1+ Cy

Ry=0 0,=0

2C,C + C4Cpp
&P

M, = —0,EIp

_ 0,2C;C1 = CyCoy
4728 Cps

My=0 y,=0
R, = OOZEI/FM
Cl‘d

Simply
supported

C1Cuy = CyCa
o

04 =0, T

M, =0 EI[ICZ w1+ CaCas
Ciy
12t CiCor = CoCag
zﬂ Cl/i
My=0 ya=0
R, = 0,2EIf? GG ad CCdCal
11
Cl Car + C3Ca3

0,4 =
4==0, 1+Cy

My=0 ya=0

5 CyCly — CyC
_ 2 UgLggq 4Caz

Ry = 0, Bl =el =t

—0, CyCy + C,Coy

0, =
4779 Cyy

My =0 ya=0

RA — ()OZEIﬂZ Clca2 - CZC(LI
Cl3
CiCas — C5Cp

04 =0, T

0,=0 y,=0

2C,C,3 + C,C,
— 2EI 2 1%a3 4%“a4
Ry = 0,215 2+Cp

CiCus = GGy
2+ Cp

Fixed

M, = 0,2EIp

04=0 y,=0
Caz = CsCar

Ry = 0,2EIp* G Cas
ClZ

M, =0 ZEI[iCl algcscad

12

0,=0 ya=0
Ry=0 2EI,;ZM
Ci3
CoCaz + CyCoy
13

M, = —0,EIp

04=0 y,=0

Cyps —2C5Cy

R, = 0,2EIf* CoCar
Cll

CiCi — C3Cp
C

11

M, = 0,2EIp
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TABLE 8.5 Shear, moment, slope, and deflection formulas for finite-length beams on elastic foundations (Continued)

6. Externally created concentrated lateral

displacement

My

Wa

?YA

If Bl > 6, see Table 8.6

Expressions for Ry, My, 0,, and y, are found below for several combinations of end restraints

Transverse shear = V = R, F;

Bending moment = M = M, F,

Slope = 0 = 0, F; +ﬂF2 +t—

2EIf

Deflection =y =y, F; + 2/))

AR, +

R,
AEIf

— YA2EIBFy — 0,2EIf*Fy — My SF, — A, 2EIf°F,,

+ %FZ — YA2EIf*Fy — 0,EIfF, — A, 2EIf*F,,

Fy = yaBF, — A BFoy

Fy+AFy

11

12

Right
end Free Guided Simply supported Fixed
Left | Ra=0 M, =0 Ry=0 M,=0 Ry=0 M,=0 Ry=0 M,=0
end
0y = 4,2 %l = 3Cin VIS 02— 8,29 €26~ oCo 0y = 8029 =
11 1 13 11
[
£ C,Cypy — 2C5C,ys C,Cys + C5C, C,Cyy — C,C, 2C; Cyy + CoC,
= _ 4Cas 3Cas _ 1Ca2 + G300 _ 1Ca1 — Gy Cas _ 1Ca + Gy Cay
ya=A4, oM ya=-4, o A, o Ya=—8—— 0,
Ri=0 0,=0 Ri=0 04=0 Ri=0 0,=0 Ri=0 0,=0
]
54 o ’ _ ) ; _
E | by o aomnp GO~ i My = 1y CeCos ~CiCa M= a2 o= i 1y = 21y Cios =i
5 12 14 1 12
_ C1Cas + CyCys _ A, CyC + C4Cyy _ C1Ca1 + C3Cq3 _ CyCa1 + C3Cy
}A__Anf yA—TT J’A——AOW yA__Aaf
| Ma=0  y4=0 My=0 y4=0 My=0 y4=0 My=0 y,=0
28 _ B
S E Ry = A2EIF 2C3Ce3 — CiCyp Ry = A2EIf (&) f::rCCaCat Ry = A2EIf Czcagc CiCa Ry = A2EIR CZCa/lgzcl Caur
@ 2 13 11 14 13
F
2C,C,5 — C,C, C,Cot — C4C, CyCo + C,C, 2C,Cy + C,C,
=ap25 ECN 2Cas 0,=ApB 114+le 2 0, =-Ap2 1C144 3 0, =—Aap2% 1cm 1Cas
0, =0 y4=0 0, =0 y4=0 0, =0 y4=0 0,=0 y4=0
o
_% Ry=A, 4E]ﬂiw Ry =A, ZE][;‘*% Ry =A, 4EI/15% Ry=A, 4EI[33%
= +0n 12 13 1
M, = A2EIf 201(;11*0(:20@ M, = A2EIf C1Coy = C3Cp M, = —A2EIf CZCQ]CJ:C/‘ Cus M, = —A,2EIf ancachr CiCuy
12

11

[£1'8 038
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TABLE 8.5 Shear, moment, slope, and deflection formulas for finite-length beams on elastic foundations (Continued)

7. Uniform temperature differential from

top

Ma

it

Ya

to bottom

Y

T,

(7777772
s —

R

Ra

If pl > 6, see Table 8.6
Expressions for Ry, My, 04, and y, are found below for several combinations of end restraints

Transverse shear = V = Ry F, — y,2EIf°F, — 0,2EIB*F, — M,fF, + i ; Ty yEIpF,

Bending moment = M = My F, +

Slope

0
Deflection = y =y, F; + =2 F, + F.
ellection y yaty zﬂ 92 ZEI/jZ :

Ry
2§

—0=0,F +

My

Fy — y42EIf*Fy — 0,EIPF, —

M, R, -
o Fy+—— 5 Fy —y fFy —————=
2EIf 2 2EI/52 3 — YaPFy

y—A g1 72,
4EIfP Y up?

T

t

Ry , T,-T,

=g, - 1)

Right
end Free Guided Simply supported Fixed
Left | Ry=0 M,=0 Ry=0 M,=0 Ry,=0 M,=0 Ry=0 M,=0
d )
en 0, = (T, = Ty)y C,Cy + C3C4 — Cy 0. (T =Toy C24C2 0. T =Toy C24+Cy—C, 0, = (T, _‘Tm C,Cy 4 C5Cy
Bt Cn A 2pt Chy A Bt Cig 26%t 2+Cyy
e 9 o
E _ —(Ty — Ty)y C? +2C,Cy — 2Cq Y= —(Ty, — Ty)y C,C5 — C, Cy Y= —(T, = T5)y C,C, + C3C, = Gy o= (Ty — Ty)72C,Cy — C}
4 2% Cy 4 267 (o 4 Bt Ciy AT o 24 Gy
Ry=0 0,=0 Ry=0 0,=0 Ry=0 6,=0 Ry=0 0,=0
=]
% M, = (T, = To)yEIC,Cy 4 C3C4 — Gy M, = (T, = Ty)yEI M, = (T, — To)yEI C2 + C3 — Cy M, = (T} = Ty)yEI
5 t (& t A t 1+Cyy t
ya = (T, = To)y Cy ya=0 (T =Ty Gy ya=0
AT TR O AT TR 140y
= My =0 ya=0 My=0 ya=0 My=0 ya=0 My=0 ya=0
> @
55 (Ty — Ty)yBEI2C, Cs + Cf — 2C; (T} — Ty)yBEI Cy,Cy — C,Cy (Ty = To)yBEIC,Cy + C3C, — Cy (Ty — To)yBEI C5 — 2C, Cy
BE | Fa= t @ Ba= t 1+C Ra= t [@ Bae——— 7,
0 g« 13 11 14 13
@« m m m m
(T, — Ty)y 2C2 4 C,C, — 2C, 0, - N =T GG + GG, 0, - L =To0 GG~ GG+ Gy (T) — Ty)y 2C% — C,C,4
0y = AT " 9sr 14C. A="om C O =123 =2
2/t Cy3 2t 1+Cy p 14 2t Cy3
04=0 y,=0 0, = ya=0 04=0 y,=0 0y = ya=0
g (T, — Ty)y2BEI —C, R,=0 (T, — Ty)yBEI —2C;4 R,=0
2] Ry = 1 3icC. R, = 5 .
= o 1. — (1= TopEI i 1. — (1= TopEl
1. - (11 = TopEI2CE + C,C, - 2Cy 4= t . — T = ToEICyCy — CiCy + €, 4T ¢
A= t 2+ Cp, A t Cis
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TABLE 8.6 Shear, moment, slope, and deflection formulas for semi-infinite beams on elastic foundations
NOTATION: All notation is the same as that for Table 8.5. No length is defined since these beams are assumed to extend from the left end, for which restraints are defined, to a length beyond that portion
affected by the loading. Note that M, and R, are reactions, not applied loads.

The following constants and functions, involving both beam constants and foundation constants, are hereby defined in order to permit condensing the tabulated formulas which follow

k, = foundation modulus (unit stress per unit deflection); b, = beam width; and f = (b,k,/4EI)"*. (Note: See page 131 for a definition of (x — a)".)

F,; = cosh pxcos fx A, =0.5¢7 cos fa B, = 0.5¢ " cos b

F, = cosh fx sin fx + sinh fx cos fx A, = 0.5¢7"(sin pa — cos fa) B, = 0.5¢ " (sin b — cos fib)

Fy = sinh fxsin fx Ay = —0.5e 7 sin fa By = —0.5¢ " sin b

F, = cosh fxsin fx — sinh fix cos fix A, = 0.5¢P(sin fia + cos fa)

B, = 0.5¢ " (sin b + cos fib)
Fy; = (x — b)° cosh fi(x — by cos féx — b)
Fy, = cosh f{x — by sin fi(x — b) + sinh (fx — b) cos f{x — b)
Fy3 = sinh f{x — b) sin f{x — b)
Fy,, = cosh fi{x — b) sin f — by — sinh f{x — b) cos f{x — b)
Fys =(x—b)" —Fy
Fis = 2B(x — b)x — B’ — Fy

F,=(— a)° cosh f(x — ay cos f(x — a)

F 5 = cosh f{x — a) sin f{x — a) + sinh f{x — a) cos f{x — a)
F,3; = sinh fi{x — a) sin f{x — a)

F,, = cosh f{x — a) sin f{x — a) — sinh {x — a) cos f{x — a)
F,

=@ —a)’ — Fy

Fos =2Bx—a)x—a)’ — Fp
Transverse shear = V = Ry I, — y,2EIf>F, — 0,2EIf*Fy — M,pF, + LTy,

[ Y
M, )/ Bending moment = M = M, F, +I;—2Fz — yu2EIf?Fy — 0,EIfF, + LTy,
L(LW?‘/'??%N v M R
T < 7 — Slope = 0 = 0,F, +WIAII 2+ﬁ1‘} —yaBFy + LT,
YA X
R Deﬂection:y:yAF1+0—AFz+ My F3+£.F4+LT‘
A 2p 2EIR* 4EIp® Y

Expressions for Ry, My, 04, and y, are found below for several combinations of loading and left end restraints. The loading terms LTy, LTy, LT,, and LT, are given for each loading condition.

[£1'8 038

Left end
restraint
Loading,
reference no. Free Guided Simply supported Fixed Loading terms
1. Concentrated Ry=0 M,=0 Ry=0 0,=0 My;=0 y,=0 0,=0 y,=0 LTy = —WF,,
intermediate load (if —w _w R, — 2WA R — 2WA —w
pa > 3, see case 10) Oy =——54, My =——A4y 4 ! 4 * LTy =—Fae
EIp B w oW 2p
04 =—=A My =—A
w Ya = - A Ya 7Wf 4 * EIf* ’ R LTy = iF(ﬂ
I“— a AT EIPT? 2EIR 2EIf
(if a = 0, see case 8) W

LT, =—"_F
YT aRIpT
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TABLE 8.6 Shear, moment, slope, and deflection formulas for semi-infinite beams on elastic foundations (Continued)

Left end
restraint
Loading,
reference no. Free Guided Simply supported Fixed Loading terms
2. Uniformly distributed Ry=0 My;=0 Ry=0 04=0 My=0 y,=0 04=0  32=0 LTy = ﬁ(Faz Fyy)
load from a to b —w —w w _ow
04 = o Bs — 49 My =" (By = 4y) By=p By —4y) Ba=—pBi=4) LTy = —2(Fyy — Fyy)

(
° - % B,-A w —A 04 = —— (B, — Ay) My =Y®B,-4A ﬂz
7 W T T B a=p G LT, = mﬁe(FM Fy0)
777777%/75

=——(F; - F
y 4EI/;‘4( w5 — Fyz)
3. Uniform increasing Ry=0 My=0 Ry=0 0,=0 My=0 y,=0 04,=0 y,=0 [ Fos —Fys bF
load from a to b B —A B, —A B. B, — A v 2p*\ b-a b2
=g (Tt o) | M= (Bt am) | R= (B o) | ma= (B am)
2EIf'\ b-a 2\ b-a B\ b- p\b-a LT, = —% Fu47Fb472 7,
b M Tap b—a BFys

w (B; —A; —w (By—A w (B —A w (B —A
,»( 2 3—ﬂBz) Ya= r( 2 2—2[331) 04 = ( ; l+ﬂB4) MA:*-}(%+BB4)

G-*, w Ya = — 5 _ 7 — : - _ _
2EI°\ b—a 4EIp b—a 2EIp b—a B a LT, = w4 (M*ﬁFm)
4EIp b-a

LT, = —wr (M_ 2.1ng5)
8EIp® b-a
4. Concentrated Ry=0 My=0 Ry=0 0, = My =0 y4=0 04=0 ya=0 LTy = —M,pF,,
intermediate moment —aM, M, = —2M,A, R, = —2M,fA, Ry =AM, pA, LTy = M,F,,
(if pa > 3, see case 11) 0y = EIp Ay
a —MA 0 —%A M, =2M,A, LT—ﬂF
M0 M, Ya = EIR 3 A= EIp 2 0= 2EIf a2
Ya =73 Ay
EIp M
o
. LT, = 72F a3
(if @ = 0, see case 9) 7 2EIp
5. Externally created Ry =0 My =0 Ry, =0 0,4=0 My=0 Ya=0 0,=0 ya=0 LTy = —ZBOEI/?ZFag
concentrated angular 5 5
04 =—20,A, M, = —20,EIBA = 2A. =— 2A, LTy = —0,EIpF,
displacement A 4 4 BA, Ry =40,EIf"Ay Ry 40,EIB~A, BE 4
a— Ya= =20, Ay ya= O—UAZ 04 = —20,4, M, = —40,EIBA, LT, =0,F,

[ ; .
o LT, = g4 Fen
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TABLE 8.6 Shear, moment, slope, and deflection formulas for semi-infinite beams on elastic foundations (Continued)

6. Externally created Ry=0 M;=0 Ry=0 My=0  y4=0 0a=0  y4=0 LTy = ~2A,EIf°F,
concentrated lateral ’ : :
0, = 4A,PA = 2 A, =— 5 A, = 3 =— 2F .
displacement A oPds My =4A,EIf"Aq n 48,1 Ay Ry =8AEIf°A, LTy 20,EI"F o3
Y4 =2A,A, Y4 =—204, 04 = —2A,BA, M, = —4A,EIf*A, LTy = —A,pFy
a
I‘__ _,1 A, LT, = AFy
7
7. Uniform temperature Ry=0 My = Ry=0 M, = y4=0 04 = ya=0 LTy = -1 JEIpF,
differential from top to T _T T_T R ¢
bott [ — M, Ry ="1""24EIp 4= —
ottom W= 4 4 . Ly =" -
=T Dopy 4
T, y 7T1—T2_1 Y4a=0 OA:TI—TZT A= P o
TIIIITIITI7 7777777 4 DY 2B LTy = ——5 -2 F,
T, b
T, -T.
LT, =--L 2%,
¥ Zt[fz T3

Simple loads on semi-infinite and on infinite beams on elastic foundations

Loading, reference no.

Shear, moment, and deformation equations

Selected maximum values

8. Concentrated end load
on a semi-infinite
beam, left end free

w

s

V = —We " (cos fix — sin fx)

M= —vae’/“‘ sin fix

= W 3 e "*(cos px + sin fx)
2EIf

e P cos fx

T T2EIp

Max 0 = ——
2EIp

Max y = — W3
2EIf

Max V=-Watx=0
Max M = —0.3224°  atx=—-

w

B 4
atx=0
atx=0

9. Concentrated end
moment on a
semi-infinite beam, left
end free

Cmmm

V = —2M, fe " sin px
M = M,e " (cos fix + sin fix)

M, o hx

0:—ﬁ cos fx

o

=— SEIf e P*(sin fx — cos fx)

Max M =M,
M,
Max 0 = “EIf
M: =—"
Y =R

Max V = —0.6448M,f atx =

4p
atx=0
atx=0
atx=0

[£1'8 038
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TABLE 8.6 Shear, moment, slope, and deflection formulas for semi-infinite beams on elastic foundations (Continued)

Loading, reference no.

Shear, moment, and deformation equations

Selected maximum values

10. Concentrated load on an

V:,Ke’ﬂ"cosﬁx MaxV:—K atx=0
infinite beam 2 2
w
W = %e’ﬁ"(cos Bx — sin fx) Max M = 5 atx=0
5 75 hr g Max 0 = 008062 atx= "
1 . { e P sin fx = 0. HIP =1
w
w . —_ _
= —We’ﬁx(cos/}x+sm/}x) Max y = SEI atx=0
11. Concentrated moment _ 7Moﬁe—/fx(cos fx + sin fix) Max V — 7M0[f atx— 0
on an infinite beam 2 2
KM cos fix MaxM:% atx=0
0
fa {
b 7 M, _ . __ M _
Ki‘—x_’( ﬁe P%(cos px — sin fx) MaXO—fW atx=0
M, n
P e sin px Max y = —0.0806 EIR atx = 5
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TABLE 8.7(a) Reaction and deflection coefficients for beams under simultaneous axial and transverse loading: cantilver end support

Axial compressive load, kl = /PI2/EI

Axial tensile load, kl = \/PI?/EI

Case no. in Table 8.1 Load location a/l Coefficient listed for 0.2 0.4 0.6 0.8 1.0 0.5 1.0 2.0 4.0 8.0
Ya 1.0163 1.0684 1.1686 1.3455 1.6722 0.9092 0.7152 0.3885 0.1407 0.0410
1a. Conc. load 0 04 1.0169 1.0713 1.1757 1.3604 1.7016 0.9054 0.7039 0.3671 0.1204 0.0312
Mpg 1.0136 1.0570 1.1402 1.2870 1.5574 0.9242 0.7616 0.4820 0.2498 0.1250
Ya 1.0153 1.0646 1.1589 1.3256 1.6328 0.9142 0.7306 0.4180 0.1700 0.0566
0.5 04 1.0195 1.0821 1.2026 1.4163 1.8126 0.8914 0.6617 0.2887 0.0506 0.0022
Mg 1.0085 1.0355 1.0869 1.1767 1.3402 0.9524 0.8478 0.6517 0.4333 0.2454
Ya 1.0158 1.0665 1.1638 1.3357 1.6527 0.9117 0.7228 0.4031 0.1552 0.0488
2a. Uniform load 0 04 1.0183 1.0771 1.1900 1.3901 1.7604 0.8980 0.6812 0.3243 0.0800 0.0117
Mp 1.0102 1.0427 1.1047 1.2137 1.4132 0.9430 0.8193 0.5969 0.3792 0.2188
YA 1.1050 1.0629 1.1548 1.3171 1.6161 0.9164 0.7373 0.4314 0.1851 0.0667
0.5 0y 1.0198 1.0835 1.2062 1.4239 1.8278 0.8896 0.6562 0.2794 0.0447 0.0015
Mp 1.0059 1.0248 1.0606 1.1229 1.2357 0.9666 0.8925 0.7484 0.5682 0.3773
YA 1.0155 1.0652 1.1604 1.3287 1.6389 0.9135 0.7283 0.4137 0.1662 0.0552
2a. Uniformly increasing 0 04 1.0190 1.0799 1.1972 1.4051 1.7902 0.8942 0.6700 0.3039 0.0629 0.0057
Mp 1.0081 1.0341 1.0836 1.1701 1.3278 0.9543 0.8543 0.6691 0.4682 0.2930
Ya 1.0147 1.0619 1.1523 1.3118 1.6056 0.9178 0.7415 0.4400 0.1951 0.0740
0.5 04 1.0200 1.0843 1.2080 1.4277 1.8355 0.8887 0.6535 0.2748 0.0419 0.0012
My 1.0046 1.0191 1.0467 1.0944 1.1806 0.9742 0.9166 0.8020 0.6489 0.4670
Ya 1.0159 1.0670 1.1650 1.3382 1.6578 0.9110 0.7208 0.3992 0.1512 0.0465
2a. Uniformly decreasing 0 04 1.0181 1.0761 1.1876 1.3851 1.7505 0.8992 0.6850 0.3311 0.0857 0.0136
Mg 1.0112 1.0469 1.1153 1.2355 1.4559 0.9374 0.8018 0.5609 0.3348 0.1817
Ya 1.0150 1.0633 1.1557 1.3189 1.6197 0.9159 0.7358 0.4284 0.1816 0.0642
0.5 0, 1.0198 1.0833 1.2056 1.4226 1.8253 0.8899 0.6571 0.2809 0.0456 0.0016
Mp 1.0066 1.0276 1.0676 1.1372 1.2632 0.9628 0.8804 0.7215 0.5279 0.3324
YA 1.0169 1.0713 1.1757 1.3604 1.7016 0.9054 0.7039 0.3671 0.1204 0.0312
3a. Conc. moment 0 0y 1.0136 1.0570 1.1402 1.2870 1.5574 0.9242 0.7616 0.4820 0.2498 0.1250
Mp 1.0203 1.0857 1.2116 1.4353 1.8508 0.8868 0.6481 0.2658 0.0366 0.0007
YA 1.0161 1.0677 1.1668 1.3418 1.6646 0.9101 0.7180 0.3932 0.1437 0.0409
0.5 0y 1.0186 1.0785 1.1935 1.3974 1.7747 0.8961 0.6754 0.3124 0.0664 0.0046
Mp 1.0152 1.0641 1.1575 1.3220 1.6242 0.9147 0.7308 0.4102 0.1378 0.0183
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TABLE 8.7(b) Reaction and deflection coefficients for beams under simultaneous axial and transverse loading: simply supported ends

Axial compressive load, kl = \/PI2/EI

Axial tensile load, kI = /PI?/EI

Case no. in Table 8.1 Load location a/l Coefficient listed for 0.4 0.8 1.2 1.6 2.0 1.0 2.0 4.0 8.0 12.0
Yo 1.0167 | 1.0702 | 1.1729 | 1.3546 | 1.6902 | 0.9069 | 0.7082 | 0.3751 | 0.1273 0.0596
Lo, Cone. load 0.95 0, 1.0144 | 1.0605 | 1.1485 | 1.3031 | 1.5863 | 0.9193 | 0.7447 | 0.4376 | 0.1756 0.0889
- bone. : 0 1.0185 | 1.0779 | 1.1923 | 1.3958 | 1.7744 | 0.8972 | 0.6805 | 0.3311 | 0.0990 0.0444
My, 1.0101 | 1.0425 | 1.1039 | 1.2104 | 1.4025 | 0.9427 | 0.8158 | 05752 | 0.3272 0.2217
Y 1.0163 | 1.0684 | 1.1686 | 1.3455 | 1.6722 | 0.9092 | 0.7152 | 0.3885 | 0.1407 0.0694
0.50 0, 1.0169 | 1.0713 | 1.1757 | 1.3604 | 1.7016 | 0.9054 | 0.7039 | 0.3671 | 0.1204 0.0553
My, 1.0136 | 1.0570 | 1.1402 | 1.2870 | 1.5574 | 0.9242 | 0.7616 | 0.4820 | 0.2498 0.1667
Y2 10165 | 1.0696 | 1.1714 | 1.3515 | 1.6839 | 0.9077 | 0.7107 | 0.3797 | 0.1319 0.0630
2e. Uniform load 0 0, 1.0163 | 1.0684 | 1.1686 | 1.3455 | 1.6722 | 0.9092 | 0.7152 | 0.3885 | 0.1407 0.0694
M, 1.0169 | 1.0713 | 1.1757 | 1.3604 | 1.7016 | 0.9054 | 0.7039 | 0.3671 | 0.1204 0.0553
Yo 1.0165 | 1.0696 | 1.1714 | 1.3515 | 1.6839 | 0.9077 | 007107 | 0.3797 | 0.1319 0.0630
0.50 0, 1.0180 | 1.0759 | 1.1873 | 1.3851 | 1.7524 | 0.8997 | 0.6875 | 0.3418 | 0.1053 0.0475
: 05 1.0149 | 1.0626 | 1.1540 | 1.3147 | 1.6099 | 0.9166 | 0.7368 | 0.4248 | 0.1682 0.0865
My, 1.0169 | 1.0713 | 1.1757 | 1.3604 | 1.7016 | 0.9054 | 0.7039 | 0.3671 | 0.1204 0.0553
Ve 1.0165 | 1.0696 | 1.1714 | 1.3515 | 1.6839 | 0.9077 | 07107 | 0.3797 | 0.1319 0.0630
, . , 0, 1.0172 | 1.0722 | 1.1781 | 1.3656 | 1.7127 | 0.9044 | 007011 | 0.3643 | 0.1214 0.0570
2e. Uniformly increasing 0 0y 1.0155 | 1.0651 | 1.1603 | 1.3280 | 1.6368 | 09134 | 0.7276 | 0.4097 | 0.1575 0.0803
My, 1.0169 | 1.0713 | 1.1757 | 1.3604 | 1.7016 | 0.9054 | 0.7039 | 0.3671 | 0.1204 0.0553
Y2 1.0167 | 1.0702 | 1.1720 | 1.3545 | 1.6899 | 0.9069 | 0.7084 | 0.3754 | 0.1278 0.0601
0.50 0, 1.0184 | 1.0776 | 1.1915 | 1.3942 | 17710 | 0.8976 | 0.6816 | 0.3329 | 0.1002 0.0450
: 0 1.0140 | 1.0588 | 1.1445 | 1.2948 | 1.5702 | 0.9215 | 0.7516 | 0.4521 | 0.1936 0.1048
My, 1.0183 | 1.0771 | 1.1900 | 1.3901 | 1.7604 | 0.8980 | 0.6812 | 0.3243 | 0.0800 0.0270
Y 1.0169 | 1.0713 | 1.1757 | 1.3604 | 1.7016 | 0.9054 | 0.7039 | 0.3671 | 0.1204 0.0553
3e. Conc. moment 0 0, 1.0108 | 1.0454 | 1.1114 | 1.2266 | 1.4365 | 0.9391 | 0.8060 | 0.5630 | 0.3281 0.2292
0 1.0190 | 1.0801 | 1.1979 | 1.4078 | 1.7993 | 0.8945 | 0.6728 | 0.3200 | 0.0932 0.0417
Yo 1.0161 | 1.0677 | 1.1668 | 1.3418 | 1.6646 | 0.9101 | 07180 | 0.3932 | 0.1437 0.0704
0.25 0, 1.0202 | 1.0852 | 1.2102 | 1.4318 | 1.8424 | 0.8873 | 0.6485 | 0.2595 | 0.0113 | —0.0244
0 10173 | 1.0728 | 1.1795 | 1.3682 | 1.7174 | 0.9035 | 0.6982 | 0.3571 | 0.1131 0.0512
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TABLE 8.7(c) Reaction and deflection coefficients for beams under simultaneous axial and transverse loading: left end simply supported,

right end fixed

Axial compressive load, kl = /PI2/EI

Axial tensile load, kI = \/PI2/EI

Case no. in Table 8.1 Load location a/! Coefficient listed for 0.6 1.2 1.8 2.4 3.0 1.0 2.0 4.0 8.0 12.0
Y2 1.0190 1.0804 1.2005 1.4195 1.8478 0.9507 0.8275 0.5417 0.2225 0.1108
1lc. Conc. load 0.25 04 1.0172 1.0726 1.1803 1.3753 1.7530 0.9553 0.8429 0.5762 0.2576 0.1338
My 1.0172 1.0728 1.1818 1.3812 1.7729 0.9554 0.8443 0.5881 0.3018 0.1940
0.50 i 1.0170 1.0719 1.1786 1.3718 1.7458 0.9557 0.8444 0.5802 0.2647 0.1416
04 1.0199 1.0842 1.2101 1.4406 1.8933 0.9485 0.8202 0.5255 0.2066 0.1005
My 1.1037 1.0579 1.1432 1.2963 1.5890 0.9642 0.8733 0.6520 0.3670 0.2412
Yije 1.0176 1.0742 1.1846 1.3848 1.7736 0.9543 0.8397 0.5694 0.2524 0.1323
2¢. Uniform load 0 0, 1.0183 1.0776 1.1933 1.4042 1.8162 0.9524 0.8334 0.5561 0.2413 0.1263
Mp 1.0122 1.0515 1.1273 1.2635 1.5243 0.9681 0.8874 0.6900 0.4287 0.3033
Yije 1.0163 1.0689 1.1709 1.3549 1.7094 9.9575 0.8502 0.5932 0.2778 0.1505
0.50 04 1.0202 1.0856 1.2139 1.4496 1.9147 0.9477 0.8179 0.5224 0.2087 0.1048
My 1.0091 1.0383 1.0940 1.1920 1.3744 0.9760 0.9141 0.7545 0.5126 0.3774
Yy 1.0170 1.0719 1.1785 1.3716 1.7453 0.9557 0.8444 0.5799 0.2637 0.1405
2¢. Uniformly increasing 0 04 1.0192 1.0814 1.2030 1.4255 1.8619 0.9502 0.8259 0.5394 0.2237 0.1136
Mp 1.0105 1.0440 1.1084 1.2230 1.4399 0.9726 0.9028 0.7277 0.4799 0.3504
Yy 1.0160 1.0674 1.1669 1.3463 1.6911 0.9584 0.8533 0.6003 0.2860 0.1571
0.50 04 1.0202 1.0855 1.2138 1.4499 1.9165 0.9478 0.8183 0.5245 0.2141 0.1105
My 1.0071 1.0298 1.0726 1.1473 1.2843 0.9813 0.9325 0.8029 0.5900 0.4573
Y2 1.0180 1.0762 1.1895 1.3957 1.7968 0.9532 0.8359 0.5608 0.2431 0.1256
2c¢. Uniformly decreasing 0 04 1.0177 1.0751 1.1868 1.3900 1.7857 0.9539 0.8383 0.5673 0.2531 0.1347
My 1.0142 1.0600 1.1489 1.3098 1.6207 0.9630 0.8698 0.6470 0.3701 0.2495
Y2 1.0165 1.0695 1.1725 1.3584 1.7169 0.9571 0.8490 0.5902 0.2743 0.1477
0.50 0, 1.0202 1.0856 1.2139 1.4495 1.9140 0.9477 0.8177 0.5216 0.2066 0.1026
Mp 1.0104 1.0439 1.1078 1.2208 1.4327 0.9726 0.9023 0.7232 0.4625 0.3257
Yije 1.0199 1.0842 1.2101 1.4406 1.8933 0.9485 0.8202 0.5255 0.2066 0.1005
3c. Conc. moment 0 0y 1.0122 1.0515 1.1273 1.2635 1.5243 0.9681 0.8874 0.6900 0.4287 0.3030
Mp 1.0183 1.0779 1.1949 1.4105 1.8379 0.9525 0.8348 0.5684 0.2842 0.1704
0.50 Yz 1.0245 1.1041 1.2613 1.5528 2.1347 0.9368 0.7812 0.4387 0.1175 0.0390
04 1.0168 1.0707 1.1750 1.3618 1.7186 0.9562 0.8452 0.5760 0.2437 0.1176
Mg 0.9861 0.9391 0.8392 0.6354 0.1828 1.0346 1.1098 1.1951 0.9753 0.7055
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TABLE 8.7(d) Reaction and deflection coefficients for beams under simultaneous axial and transverse loading: fixed ends

Axial compressive load, kl = /PI2/EI

Axial tensile load, kI = /PI?/EI

Case no. in Table 8.1 Load location a/! Coefficient listed for 0.8 1.6 2.4 3.2 4.0 1.0 2.0 4.0 8.0 12.0
Yie 1.0163 1.0684 1.1686 1.3455 1.6722 0.9756 0.9092 0.7152 0.3885 0.2228
1d. Cone. load 0.25 A 1.0007 1.0027 1.0064 1.0121 1.0205 0.9990 0.9960 0.9859 0.9613 0.9423
: : : My 1.0088 1.0366 1.0885 1.1766 1.3298 0.9867 0.9499 0.8350 0.6008 0.4416
My 1.0143 1.0603 1.1498 1.3117 1.6204 0.9787 0.9213 0.7583 0.4984 0.3645
Y2 1.0163 1.0684 1.1686 1.3455 1.6722 0.9756 0.9092 0.7152 0.3885 0.2228
0.50 M, 1.0136 1.0570 1.1402 1.2870 1.5574 0.9797 0.9242 0.7616 0.4820 0.3317
My, 1.0136 1.0570 1.1402 1.2870 1.5574 0.9797 0.9242 0.7616 0.4820 0.3317
Y2 1.0163 1.0684 1.1686 1.3455 1.6722 0.9756 0.9092 0.7152 0.3885 0.2228
2d. Uniform load 0 My 1.0108 1.0454 1.1114 1.2266 1.4365 0.9837 0.9391 0.8060 0.5630 0.4167
My, 1.0190 1.0801 1.1979 1.4078 1.7993 0.9716 0.8945 0.6728 0.3200 0.1617
Yie 1.0146 1.0667 1.1667 1.3434 1.6696 0.9741 0.9077 0.7141 0.3879 0.2224
0.50 Ry 0.9982 0.9927 0.9828 0.9677 0.9453 1.0027 1.0106 1.0375 1.1033 1.1551
: My 1.0141 1.0595 1.1473 1.3045 1.5999 0.9789 0.9217 0.7571 0.4868 0.3459
Mp 1.0093 1.0390 1.0950 1.1913 1.3622 0.9859 0.9470 0.8282 0.5976 0.4488
Yie 1.0163 1.0684 1.1686 1.3455 1.6722 0.9756 0.9092 0.7152 0.3885 0.2228
2d. Uniformly increasing 0 Ry 0.9995 0.9979 0.9951 0.9908 0.9845 1.0008 1.0030 1.0108 1.0303 1.0463
: My 1.0124 1.0521 1.1282 1.2627 1.5107 0.9814 0.9307 0.7818 0.5218 0.3750
Mp 1.0098 1.0410 1.1001 1.2026 1.3870 0.9853 0.9447 0.8221 0.5904 0.4445
Y2 1.0161 1.0679 1.1672 1.3427 1.6667 0.9758 0.9099 0.7174 0.3927 0.2274
0.50 Ry 0.9969 0.9875 0.9707 0.9449 0.9070 1.0047 1.0182 1.0648 1.1815 1.2778
: M, 1.0141 1.0595 1.1476 1.3063 1.6076 0.9790 0.9222 0.7602 0.4995 0.3647
My 1.0075 1.0312 1.0755 1.1507 1.2819 0.9887 0.9573 0.8594 0.6582 0.5168
Y2 1.0169 1.0713 1.1757 1.3604 1.7016 0.9746 0.9054 0.7039 0.3671 0.2001
Ry 0.9993 0.9972 0.9932 0.9867 0.9763 1.0010 1.0038 1.0122 1.0217 1.0134
3d. Conc. moment 0.25 M, 1.0291 1.1227 1.3025 1.6203 2.2055 0.9563 0.8376 0.4941 —0.0440 —0.2412
Mp 1.0151 1.0635 1.1571 1.3244 1.6380 0.9775 0.9164 0.7404 0.4517 0.3035
0ys 1.0054 1.0220 1.0515 1.0969 1.1641 0.9918 0.9681 0.8874 0.6900 0.5346
0.50 Ry 1.0027 1.0110 1.0260 1.0492 1.0842 0.9959 0.9842 0.9449 0.8561 0.7960
My 1.0081 1.0331 1.0779 1.1477 1.2525 0.9877 0.9525 0.8348 0.5684 0.3881
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TABLE 8.8 Shear, moment, slope, and deflection formulas for beams under simultaneous axial compression and transverse loading
NOTATION: P = axial compressive load (force); all other notation is the same as that for Table 8.1. P must be less than P, where P,. = K;n?>EI/I?> and where, for cases 1a-6a and 1f-6f, K; = 0.25; for
cases 1b—6b and le—6e; K; = 1; for cases 1lc—6¢c, K, = 2.046; and for cases 1d-6d, K; = 4.

The following constants and functions are hereby defined in order to permit condensing the tabulated formulas which follow. k = (P/EI)"/?. (Note: See page 131 for a definition of (x — a)".) The
function sin k(x — a) is also defined as having a value of zero if x < a

F, =coskx F=(— a)° cos k(x — a)

F, =sinkx F o = sink{x — a)

F3=1-coskx

Fy =kx—sinkx F, =k{x—a)—sink{x—a)

k? 9
Fos =§(JC—0) —Fa3

k3
Fu =€(x— ay’ —Foy

F3 = (x— a)°[1 — cos k(x — a)]

C, =coskl C,y cosk(l—a) (Note: M, and R, as well as My and Ry are reactions, not applied loads. They exist only when the
C, = sinkl C,y =sink(l—a) necessary end restraints are provided.)

Cy=1—coskl Cu=1—cosk(l—a)
Cy=kl—sinkl C, =k(l—a)—sink(l—a)

k? 5
Cos = 3(1 —a) = Cy

k3
Cos = g(l - 0)3 = Cas

1. Axial compressive load plus
concentrated intermediate

Transverse shear = V = Ry F, — M kF, — 0,PF, — WF

. R 0,P w
lateral load Bending moment = M = M, F, + ]—?FZ — ATFZ — ?Faz
Y
Myk R w
Yo ——a w MB g Slope = 0 = 0, F; +%F2 +TAFB—FF¢13
6 I TP T ion—y—y, tap Mip Fap W
P - A Deflection =y =y, + sz+ P F‘K+kPF4 kPF‘”
My E— Il—{Ry
RA
End restraints,
reference no. Boundary values Selected maximum values of moments and deformations
. WC,s . -W
la. Left end free, right end Ry,=0 Myu=0 0,= 70 Max M = Mpg; max possible value = Ttan klwhena =0
fixed (cantilever) 1
Ya = ﬂM Max 0 = 0,: max possible value = KLOSM when a =0
a W AT kP C, P coskl
P (& Rp=W 0 =0 yp=0 Max y = y,; max possible value = %(tan kl — kl) whena =0
3 .
-WCyCy3 +C,Cpy
Mp =———="%€ "%
BTk C,
. . W C,s . Wkl
1b. Left end guided, right end R,=0 My = N 0, =0 Max + M = M,; max possible value = ?tang whena =0
fixed 2
y :ﬂM Max — M = Mp; max possiblevalue:ﬂtang when a =0
AT kP C, k 2
. -w kl
Rp=W 0p=0 yp=0 Max y = y,; max possible value = 7 2tan5 —kl) whena =0
—W cos ka — cos kl
Mp=——"7"""""7"
BTk sin kl
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TABLE 8.8 Shear, moment, slope, and deflection formulas for beams under simultaneous axial compression and transverse loading

(Continued)

End restraints,

reference no.

Boundary values

Selected maximum values of moments and deformations

lc. Left end simply supported,
right end fixed

Gy
T

C3Cu3 — C1Cy4
C,C; — C,C,

—WC,yCus = C3Cay —0
P C,C—CC, AT

Ry =W —-Ry 0p=0 yp=0
—W klsin ka — kasin kl

Ry=W M, =0

04 =

Max — M = Mp; max possible value occurs when a = %cos’] mzlkl

If @ = I/2 (transverse center load), then

. .kl ORI
sinkl — sing —-cos kl

Ry =W k= hlcos kI

My=— " .kl k
B k  sinkl— klcoskl sin—(1-cos—
My — —Wlu
B sin kl — klcos kl
1d. Left end fixed, right end R, = WM Max—M =M, ifa < l
C2 - C,C,y 2
fixed 3
M, = =W CiCus = CsCus Ifa= I (transverse center load), then
AT TR T 2o G,C 2
w -W, ki
0,=0 y,=0 RA:RE:E MB:MA:WtanZ
Ry=W-R 0p=0 =0
B 4 B e Max+M_%tank—l atx_é
Mp =M, +Ryl—W(-a)
-w Rkl kL l
Maxy=—— WP (tan 4) atx:i
le. Left end simply supported, | R, = E(Z— a) My=0 y,=0 Max M = Wsinka atx=a 1f 5<e<g
. . l ksinkl 2k
right end simply supported
_ —W{(sink(l-a) I-a _ Wsink( -a) 1
a W OA_T[W_T] Max M == Skl aty=grifa>granda>g:
P kl !
1\—'/r— Rp = W% Mz=0 yg=0 max possible value ofM—ﬂtanf atx—awhena—§
O = % <SSIIII‘)]Z? - %) Max 0 =0pif a > é; max possible value occurs when a = %cos’1 suzlkl
_1 _1(I—a)sinkl £
Max y occurs at x kcos Tsnk(—a) if @ > oE

-w kl kI l l
max possible value = %P (tanf — §> atx=_- whena= 3

(1] %4
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TABLE 8.8 Shear, moment, slope, and deflection formulas for beams under simultaneous axial compression and transverse loading
(Continued)

1f. Left end guided, right end | £a=0 04=0
simply supported W sin k(I — a)
- W1—coskl

My=———7+—
47k coskl Max 0 = 0p; max possible value = —~——————whena =0

_é’(;(jw/e —W [sink(l — a) P coskl
P T Ya= ko |: cos kl —k(l—a):|

Ry=W My=0 yz=0

W (cos ka
Op = P (coskl - 1)

Max M = M,: max possible value = %tan klwhena=0

Max y = y,: max possible value = %(tan kl— kl) when a =0

[£1'8 038

I

w,
,JFQZ

Axial compressive load plus %

distributed lateral load

Transverse shear = V = R F, — M kF, — 0,PF, Yo o Faa

kz(l a)
Ry
k

0,P
Fz—ATFZ

w; —
e o i )F‘“

M,k R w
r—a W A | — Wy
¥ m Slope = 0 = 0, Fy + == F; + -4 F; — kPF -~ EPi— g e
y §P 1 M, . R, w, —

04 | — W
\ _ a
. Deflection =y =y, + 52 Fy + 5 Fy + 55 Fy - kZPF‘“ WPl a)FGS

MA<—1——"|

Ra

Y Bending moment = M = M, F, +—=

End restraints,

reference no. Boundary values

Selected maximum values of moments and deformations

2a. Left end free, right end
fixed (cantilever)

Wq Cag w —w, Cys

Ya=wpe, TRPI-aC,
Y4 = ~Wy CyCas — C1Cys LW w, CyCus — C1Cas
AT k2P [oA BP(l—a) C,
Ry =Ya +wl(zfa) —
M. = —Ya CoCus+CiCas  wy—w, CoCu5 + C1Coy
BT C B(l—a) C,
y8=0

If @ = 0 and w, = w, (uniform load on entire span), then

Max M = My =k—(1+kltani’l—7kl)

Max 0 =0, = ka (colzlkl - tankl)

k22 1
Max y =y, 7@(1 +kltankl—— m)
If @ = 0 and w, = 0 (uniformly increasing load), then
Max M = M = 5" (1 + kzltan k- ta}‘;‘lkl)
w (1 kL1
Max 0 =04 =75 (kl t Scoskl  klcoskl

kl kI?  tankl
2 6 kl

Maxy:yAkaP(lJr tankl — = —
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TABLE 8.8 Shear, moment, slope, and deflection formulas for beams under simultaneous axial compression and transverse loading

(Continued)

End restraints,

reference no.

Boundary values

Selected maximum values of moments and deformations

2b. Left end guided, right end Ry =0
fixed

0,=0

Wy Cas | Wi —wy Cos

Mi=32C, THiza G,
’<—0 y _ ~Wa C3Cas — CoCos _ wy—wy C3C5 — CyCi
_é AT k2P C, BP(—a) C,
P
Ry =W(1—a) 0p=0
M, = —Ya CyCaz — C1Cuy _ (w1 —wy) CyChq — C1Cys
BT C, B(l—a) C,
yp=0

If a = 0 and w, = w; (uniform load on entire span), then

w, (ki
Max+M:MA:k—2(sinkl—1>

Max — M = My = e (17 kil )

k2 tan k&l
Max y =y, =1Ifl(tan%—%l)

If @ = 0 and w, = 0 (uniformly increasing load), then

w, (kI tan(kl/2)
k2 \2sinkl kil

Mafo:MB:;wl<1 kl l—coskl)

Max + M = M, =

k2 " 2tankl klsinkl
—w, [(kl 2 Rl K22
Maxy =y, =kTPl|:<§_E)tan§_T+li|

2c. Left end simply supported, My =0
right end fixed

W1

Wa

a

03=0

T kP

Ya=0

_&CQCM -CCys + w) — wy CyCq5 — C1Cye
"k CyCy—CiCy " k2(l—a) C,C3—C,Cy

C,C, —C,C, | K*P(I—a) C,Cy—C,C,

~Wq [C4Ca4 -G Ca5:| w; —w, CyCh — C3C4

w, +Ww,
RB:"TZ(I—a)—RA

—Wa (CZCaﬁ — kiCyCy4

(e e Ca)

(W — wy) (CyCo — kIC,Cy5 )
KBl-a) \ C,Cy—CC, at

yp=0

If @ = 0 and w, = w; (uniform load on entire span), then

—w, 4 — 2klsinkl — (2 — k212 /2)(1 + cos ki)

Max 0=0,=7p sin ki — ki cos kl
] _ —w,ltanklftan(kl/2) — kl/2]
Max =M =My =— tankl — ki
R, - Y klsinkl — 1+ (1 — k*1%/2) cos kl
47, sin kI — ki cos kl

If @ = 0 and w, = 0 (uniformly increasing load), then
—w,;l 2kl + klcos kl — 3sin kl

Max 0 =04 = g~ ki — klcos ki
_ M, = "W =P/ tankl — k]
Max =M =My =3 tankl — ki
_wl( 2tankl 6
Ri=7% (tankl—kl eEt!

cee
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TABLE 8.8 Shear, moment, slope, and deflection formulas for beams under simultaneous axial compression and transverse loading
(Continued)

[£1'8 038

2d. Left end fixed, right end 04=0 ya=0 If @ = 0 and w, = w; (uniform load on entire span), then
fixed
Wy C3C, — CyChs . wy —w, C3C,5 — CyCyg —w, [ kl/2 ]
_ Wa G3C, a? o U3 Cas a Max—M =M, =Mpg="—3"|1-—1>~
R=3 @ ac TRi-a C-GC, ax a=Mp="73 tan(kl/2)
M, - —%a CiCas —C3Cos Wy —wy CyCys — C3C4 Max + M = J[SI:(Z}:ZZ/Z) 1] atx :%
ATTR T CI-C,C, E(-a) CI-C,C,
Maxy = —Wal tanﬂ—ﬂ atxf£
Ry = e +w’(l—a) Y= 5kP 11 2
w,l
Ry=Ry=22
MB:MA+RAI—7"(Z—<1)2 By 4 2
If @ = 0 and w, = O (uniformly increasing load), then
0 =0 =0
B B Moax— M — M wl | (kly2)sin ki = K*1/6 — (2 /3) cos ki
a 8= 2~ Zcoskl— klsinkl
M. — wyl3sinkl— kU2 + cos ki)
47 6k 2—2coskl— klsinkl
k2123 — 3coskl — klsinkl 1
AT k21 6 2 —2coskl— kisinkl
2e. Left end simply supported, My=0 ya=0 If a = 0 and w, = w; (uniform load on entire span), then
right end simply supported w w —w 1 1
Ry=—-2(l—a?+L"Caq_q? _ atx—t
A 21( ) 6l ( ) Max+ M = }’2 COS(kl/Z) 1 atx 5

w1
Wy _ "W lfcosk(l—a)7£ e [y
P L—U Oa kP sin kI Zl(l @ Maxﬂfegf—OAfﬁ)(tan E)
—_—

——

W —w, |:k(l—a)—sink(l—a)iﬁ(lia)z] —w 1 k212 ]
kP k(l — a)sin kl Maxy:w[m_T_I] atx=§
Ry = M(l —a)—Ry, If @ = 0 and w, = 0 (uniformly increasing load), then
My—=0 -0 o (sinkr xy max M occurs at x = lcos’1 sin k!
B= B = TR \sinkl 1) Tk kl
2 _ o2
05 = w |:coska —kcloskl R(l —la )] . -y 1 _l_ﬂ
sin 2 A= %P \sinkl k6
w;— 2 3
+ [ (Bal> — 2 —d®) + 1 w (1 k1
WP L6l Max 0 =05 =37 (5 =5 ~tan i
sin ka + k(I — a) cos kl:| i i
Iy —w [sin x7§773c 2
Y=%2p |:smkl l Gy
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TABLE 8.8 Shear, moment, slope, and deflection formulas for beams under simultaneous axial compression and transverse loading
(Continued)

End restraints,

reference no. Boundary values Selected maximum values of moments and deformations

2f. Left end guided, right end Ry=0 0,=0 If a = 0 and w, = w; (uniform load on entire span), then
simply supported

w,Cpy  w;—w, Cyy Wq 1
— Za a3 a “ad MaxM =My =—|—--1
Ma=%2C Toizac, ax 4 =72 \coskl

wy
w —w,[Cyy K Max 0 = 0 = 2 (tan kl — ki
o ¥ - yA:kZP[CTt?(Z*a)Z] ax0=0p =pp(tan )
P—é 1 w1 B

ulRIlS pue SS.IS 10} Se|NW.OS

Cwi—w, [Cy K Maxy:yA:T“< -1 )
7k3P(l—a)|:Cl 6([ a) k%p \coskl 2
If @ = 0 and w, = 0 (uniformly increasing load), then
w, +w,
Rp=—5—(1-a Mp=0 w; ki — sinkl
Max M =My = —————
. . k31 coskl
0y = Lo [snki—sinka ., o )
BTRPL coskl Max 0 = 0. = W0 (7 _FP _1—klsinkl
) T BT k2Pl 2 cos kl
4w k(lfa)sinkl—coska7k2(lfa)z+1 ] .
KP(-a) coskl 2 Max y = y, = 2t (BL=sinkl _F°F
AT kP \ kicoski ~ 6
yp=0
3. Axial compressive load plus concentrated Transverse shear = V = Ry F; — MykFy — 04PF; — M kF,,
intermediate moment R 0,P
Bending moment = M = My F, + TAFZ - ATFz +M,F,
Y
Myk R M,k
a N;B/” Slope = 6 = 0, F, + 1;‘ F2+?"F3+ 7 Far
M,
0, 8 . 0 M, R M,
;&—| <'\/ =19p X Deflection =y = y, +fF2 +?AF3 +§F4+?"Fa3
A —
Pﬁ«dﬁ% Re
My 1 -

RA
End restraints, reference no. Boundary values Selected maximum values of moments and deformations
3a. Left end free, right end Ry=0 My;=0 Max M = Mj; max possible value = M, when a = 0

fixed (cantilever) ) _M,ksink(l— a) C;; kl
r‘_ a A P cos kl Max 0 = 04; max possible value = - P" tan kIl when a = 0
P _‘1 M M, (coska
2 =P 005k171 Max y = y4; max possible value:% o 1| whena=0
A P \coskl
‘ Ry =0 0p=0 yp=0
cos ka
Mp =M, cos kl
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TABLE 8.8 Shear, moment, slope, and deflection formulas for beams under simultaneous axial compression and transverse loading

(Continued)

3b. Left end guided, right end
fixed

L

sin k(I — a)
sin ki

Ya=—75

~

sin kl

M, [sin k(I —a) +sinka _

Rp=0 03=0 yz=0

sin ka
My =M, G

|

Max + M = Mp; max possible value = M, whena =1
Max — M = Mj; max possible value = —M, whena =0

_ —M,ksink( - a) ~Mk kl 1

Max P sinkl at x = @; max possible value = op tanE when a = 5
. . M, 1 !
Max y = y,; max possible value = N3 [m - 1] when a = 3

3c. Left end simply supported,
right end fixed

LI*‘“*M
T L

My=0 ya=0

cos ka — cos kl

Ry =Mk~

04 =

Ryp=-Ry 03=0

sin kl — kl cos ka

My =M, T~ hlcoskl

sin kl — klcos

kl

_ M,k C3Cy5 — CyCop
P C,C,—C,C,

yp=0

If @ = 0 (concentrated end moment), then

1—coskl

Ra= Mok T Tcos kil
0. — —M,k2 — 2coskl — klsin kl
ATTP sin kl — klcos kl
kl — sinkl
My = =M T hicos

3d. Left end fixed, right end
fixed

ot

04=0 y,=0

Ry = M2
A P — GG

M, = —M, =2
A °TCZ- GG,

Ry=-Ry, 03=0
Mp = Ryl+ M, + M,

C3Cay — CyC0s

C3Ca3 — CyCoy

yg=0

If a = /2 (concentrated center moment), then
_ [1/cos(kl/2)] — 1
°" 2tan(kl/2) — kl
_ 1 — cos ki — klsin(kl/2)
2 — 2coskl — klsinkl \ 2coskl klsinkl
_ _ (MR 2 27 2
At the center, y =0 and 0 = (W) W
sing —5-cos 5

Ry =

M, =

[£1'8 038
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TABLE 8.8 Shear, moment, slope, and deflection formulas for beams under simultaneous axial compression and transverse loading
(Continued)

End restraints,

reference no. Boundary values Selected maximum values of moments and deformations
3e. Left end simply supported, My=0 ya=0 If a = 0 (concentrated moment at the left end), then
right end simply supported M M ki
= o 04 = (1 ———
Ra=— AT ( tan kl)

p a M M, [klcosk(l— a) M

— o _ o |RECosk(E—a) _M,( R
1\%”/1‘_ Oa= pl[ sinkl ! 05 ="pi \gnmi !

Ry=-R My =0 =0

B 4 B B M=M, coskx(l - ttan ’;’;)
M, <klcoska7 1) an

0p

P\ sinkl If @ = 1/2 (concentrated moment at the center), then

M, kl
04 7687ﬁ[m71:| and y =0 at the center
3f. L'eft end guided, right end Ry=0 0,=0 Max M = M,; max possible value = 71‘4};’1 when a =/
simply supported cosk(l - a) o8
M, =M, -
4 coskl Max 0 = 0p; max possible value = Mk tan kl when a =/

a
Pér _>|M° l yA:J[cusk(l—a)il] u L
—*(__ 14 cos kl Max y = y,: max possible value = —=* ( 1) whena =1

P \coskl
Rp=0 Mp=0 y5=0

ulRIlS pue SS.IS 10} Se|NW.OS

o _ ~Mksinka
BT7P coskl
4. Axial compressive load plus externally Transverse shear = V = Ry F, — MykF, — 0,PF, — 0,PF,
created concentrated angular displacement R 0.P 0P
Bending moment = M = M, F, + Tf*F2 - ATF2 - Fas
Myk R
Y 0 Slope = 0 = 04 Fy + =5~ Fy + =5 Fy + 0,Fy
a Mg 8
52 . 0 M, R 0,
-+ I 7p fx Deﬂectlon:y:yA-%—ng +TAF3 +k—I/;F4 +?Fa2
b/ _,,J————-”—/”Teo )TRB
P E F T o N
Ma 1 ‘
RA
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TABLE 8.8 Shear, moment, slope, and deflection formulas for beams under simultaneous axial compression and transverse loading
(Continued)

4a. Left end free, right end Ry =0 My=0 Max M = Mp; max possible value = %tan klwhena =1
fixed 0. ——0 cos k(I — a) 0
AT T coskl Max 0 = 0,; max possible value = — when a = [
i(_ a . coskl
P _ 0,sinka 0
YA =T coskl Max y = y,; max possible value = Eotan klwhena =1
Rp=0 0 =0 =0
g, / B B B
0,P sin ka
My = k coskl
4b. Left end guided, right end Ry=0 04=0 Max — M =Mpgifa < é; max possible value = ];?"il whena =0
R SIn
fixed 2, — ~OPeoshk—a) . o p
4 k sin kl Max — M = M, if a > 5; max possible value = ﬁ when a =1
sin
P r‘hu‘)‘ 5 _%cosk(l—a)—coska 0 kil
& } ATk sin kl Max +y = y,: max possible value = z" tang whena =1
6, Rp=0 03=0 y3=0 0 u
0P Max — y occurs at x = a; max possible value = —2tan— at x =0 when a =0
M. — —Pcos ka k 2
B= "k sinki
4c. Left end simply supported, My =0 ya=0
right end fixed sin ka
Ry=—0P—— 2%
sin kl — klcos kl
ooy CiCis —CiCyy
4T TG0 -GG,
Ry=-R, 03=0 y5=0 My=R,l
4d. Left end fixed, right end 0,=0 y4=0
fixed
xe Ry — —g,pCaCar = CaCar

G2 -GG,

P 4‘_""\ 7 v, = 0P C3Cr — C,Can
a ﬁgog TR =60

Ry=-R, 0p3=0 yp=0 My=M,+Ryl
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TABLE 8.8 Shear, moment, slope, and deflection formulas for beams under simultaneous axial compression and transverse loading

(Continued)
End restraints,
reference no. Boundary values Selected maximum values of moments and deformations
de. [feft end sifnply supported, | My =0 y,=0 Ry;=0 Max M = O,Psink(l — @) sin ka — @) sinka at x = @; max possible value = 0P when a = !
right end simply supported : sin kl kcos(kl/2) 2
0. — 0 sin k(I — a)
F A= "o T Gin Rl Max 0 = 0, if a < I/2; max possible value = —f, whena =0
ﬁ My=0 y3=0 Ry=0 —0, sin k(I — a)sin ka . -0, 1
Maxy=—2—"——""" at;x = @; max possible value=-——2%— whena =~
T 76‘0 T  sinka k sin kl kcos(kl/2) 2
B o sinki
4 Left end guided, right end Ry=0 04 =0 Max M = M,; max possible value = 0(;€P =0
simply supported _0,Psink(l—a) ,
o A7k coskl Max 0 = 0p; max possible value = ﬁ when a = 0
P é r;% y =0, sink(l —a) 0
6o ATk coskl Max y = y,; max possible value = %tan klwhena =0
Ry =0 My =0 yg=0
_, coska
B0 coskl
5. Axial compressive load plus externally Transverse shear = V = RyFy — MykF, — 0,PF, + A,PkF,,
created concentrated lateral displacement R 0,P
v Bending moment = M = M, F, +7AF2 ‘2 F, — A,PF,,
8,
— B M,
a ’ Slope = 0 = 0, F, + Pk F+ B Ay A
ly , T/ P %—x p R
A —“"1'9-_ Deflection =y = y, +fF2+?AF3+§F4 +AF,
Pm A 1
A I
RA
End restraints,
reference no. Boundary values Selected maximum values of moments and deformations
5a. Left end free, right end Ry=0 My =0 Max M = Mp; max possible value = ; whena =0
fixed (cantilever) : os kl
sin k(I — a)
0, = AokW Max 0 = 0,; max possible value = A ktankl/ whena =0
a _" - Ya=—4, CCOOSS]ZZI Max y = y,; max possible value = 7Akl whena=0
T Tl Rg=0 605=0 y5=0
cos ka
My ==AP cos kl
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TABLE 8.8 Shear, moment, slope, and deflection formulas for beams under simultaneous axial compression and transverse loading

(Continued)

5b. Left end guided, right end
fixed

.

P EYN%

Ry=0 0,=0

sink(l — a)
My =AP—F——
4 ° sin kl
-~ sink(l — a) + sinka
M=

sin ka

Ry=0 05=0 y;=0 My=-AP——y

Max + M = M,; max possible value = A,P when a = 0

Max — M = Mp; max possible value = —A,P when a =

Max y = y,; max possible value =

_Ao
cos(kl/2)

when a :i

2

5c. Left end simply supported,
right end fixed

Y —
Tl

’

My=0 y,=0

cos ka
Ra= AP T Flcos il

_ C3Ca1 + CyCyp
ba=-AkG 600,

Ry=-R, 03=0 yp=0 My=R,l

5d. Left end fixed, right end
fixed

o

04=0 y,=0

C3Cup + C3Cx
C2 - G,C,

C3Cu + CiCop
CZ - C,C,

Rgy=-Ry 05=0 yp=0 My=M,+Ryl

R, = APk

M, = —-AP

5e. Left end simply supported,
right end simply supported

p o
T

Ry=0 My=0 y,=0
cosk(l—a)

sin kl
Rp=0 Mp=0 yp=0

04 = Ak

05 = —AnkCOSka

sin kl

Max +M = A,P 514n }Z; cos k(I — a) at x just left of a; max possible value = A,P when a = [
s
coska . . . .
Max — M = 7A0Pmsm k(I — a) at x just right of a; max possible value = —A,P when a =0
coska . . . .
Max +y=A, Sing S0 k(l — a) at x just right of a; max possible value = A, when a =0
sin ka . .
Max —y = —A, mcos k(I — a) at x just left of @; max possible value = —A, whena =1
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TABLE 8.8 Shear, moment, slope, and deflection formulas for beams under simultaneous axial compression and transverse loading

(Continued)

End restraints,

reference no.

Boundary values

Selected maximum values of moments and deformations

5f. Left end guided, right end
simply supported

TS

_ cosk(l—a)
My =AP cos kl
_ 4 Cos k(l—a)
Ya = "B skl
sin ka
Rp=0 Mp=0 yp=0 Akcoskl

AP
Max M = M,; max possible value = —— whena =1

os kl

Max 0 = 0p; max possible value = A ktankl whena =1

Max y = y,: max possible value = 7}; whena =1

6. Axial compressive load plus a uniform

Transverse shear = V = Ry F}

temperature variation from top to bottom

in the portion from a to [; ¢ is the

thickness of the beam

LF*ﬂ

Myk

Slope = 0 = 0, F, + —A"F, +}§;4F +

P
E/‘Lga

7 P TX Deflection =y =y, + O

?F2+
8

0

— M, kF, — 0,PF, —

M,

W - TP
L

Bending moment = M = M, F; + %Fz - ATFZ

0uP . (T —tT1 B,
Wy = Ty)
/ Zkt 1 Faz

By
kP

W(Ty — T,
Fy+54 F4+%Fa3

End restraints,

reference no.

Boundary values

Selected maximum values of moments and deformations

6a. Left end free, right end
fixed

Nty ¥

_ =Ty = Ty)sink(l —a)

kt coskl
/Ty = Ty) (coska 1
TRt coskl

Rp=0 0 =0 yg=0 Mp = Py,

Max M = Mp max possible value = 1Ty = TET ( !

. cosklil) whena =0

Max 0 = 0,; max possible value = tankl whena =0

—(Te = T)
kt

Max y = y,; max possible value = % <coikl - 1) whena =0

6b. Left end guided, right end
fixed

R,=0 0,=0

—(Ty, — Ty)EI sink(l — a)
t sin ki

_ (T = T1) C5Cog — CyCos

T k% Cy

M, =

Ry=0 03=0 yp=0

_ Ty —T)EI (sinka
My = t (sin w !

whena =1

Max — M = M,; max possible value = M

(Note: There is no positive moment in the beam)

—(Ty — Ty)sinka .

Max 0 = i Sl sink(l—a)atx=a;

=Ty —Ty) kL _!

T‘canE when a = 3

WI-TH[ 1
k2t cos(kl/2)

max possible value =

. !
Max y = y,: max possible value = l] when a = 3
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TABLE 8.8 Shear, moment, slope, and deflection formulas for beams under simultaneous axial compression and transverse loading

(Continued)

6¢. Left end simply supported,
right end fixed

P o,

TZ g

My=0 y,=0

Ry

—y(Ty — T1)P coska — coskl
kt sinkl — klcos ki

0, = —)(Ty = Ty) C3Cy3 — C4Cop
)y =

Kt C,Cy — G, C,

Ry 65=0 yz=0 My=Ryl

If @ = 0 (temperature variation over entire span), then
—(Ty —T)Pl 1 —coskl

Max =M = My = Wt sinkl — klcos kil
_, =Ty =T)2—2coskl—kisinkl
Max 0 =01 =—— sinkl — klcos kl

6d. Left end fixed, right end
fixed

0 y4a=0

_ =Ty — TP C3Chg — CyCyy

kL C2 - G,C,

— —)(Ty — T))EI C3C,3 — C4Coy

t C2 - C,C,

-Ry 0p=0 yp=0

My = My + Ryl

If @ = 0 (temperature variation over entire span), then
Ry=Rp=0

_ Ty~ THEI
t

M everywhere in the span

0=0 and y = 0 everywhere in the span

6e. Left end simply supported,
right end simply supported

p 0T,
T

Ry=0 My=0 y,=0

—9(Ty — Ty)1 —cosk(l — a)
kt sin kI

Rp=0 Mp=0 y5=0

0p =

Ty — Ty) cos ka — cos kI

1 _11—cosklcoska
Max y occurs at x = ];tan _

sin kI
. —(Ty — T}) 1 !
ble value = —~-2-——1| - —1|atx = whena=
max possible value W costkl/2) at x B whena =0

Max M = P(max y)

- WTy =T,
kt sinkl Max 0 = 0p; max possible value = '(Qkitl)tang whena =0
6f. L_eft end guided, right end Ry=0 0, =0 Max M = M,; max possible value = WTy *tll)EI (coikl _ 1) whena =0
simply supported " ATy — T)EI1 — cos k(I — a)
= — T, —
a T, ¢ coski Max y = y,; max possible value = %( livl - 1) whena =0
P i‘:’l_,l/ =Ty —Ty)1 —cosk(l—a) ¢ cos
£ T, A= coskl i ATy —Ty)
Max 0 = 0p; max possible value = ‘T tan kl when a = 0
Ry=0 My=0 yz=0

0=

kt cos kl
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TABLE 8.9 Shear, moment, slope, and deflection formulas for beams under simultaneous axial tension and transverse loading

NOTATION: P = axial tensile load (force); all other notation is the same as that for Table 8.1; see Table 8.8 for loading details.

The following constants and functions are hereby defined in order to permit condensing the tabulated formulas which follow. k = (P/EI)"/?. (Note: See page 131 for a definition of (x — a)".) The

function sinh k(x — a) is also defined as having a value of zero if x < a

F, = cosh kx
F, = sinh kx

Fy =coshkx—1
F, = sinh hx — kx

F,y = (x—a)° cosh k(x — a)
F, = sinh k(x — a)

F,y = (x— a)°[cosh k(x —a) — 1]

F,
»2
Fops =Fy *@(x*(ﬁz

k3
Fog=Fyy —€<x—a)3

e = sinh k(x — a) — k(x — a)

C; =coshkl C,, =coshk(l—a)

Cy, = sinh kl C,, = sinhk(l - a)

Cy3 =coshkl—1 C,3 =coshk(l—a)—1

C, =sinhkl —kl C,y =sinh k(I —a) — k(I — a)

2
Cos =Cas — %(l - a}z

3
Cis = Cas — %(l— a)g

(Note: Load terms LTy, LTy, LT,, and LT, are found at

y

the end of the table for each of the several loadings.)

Axial tensile load plus lateral loading

Y

4
P*HS

S
‘_&"’ﬁ‘\ ’TRB *
}R 1

L

Transverse shear = V = Ry F; + MykF, + 0,PF, + LTy,

Bending moment = M = M, F, Jr%F2 +()AT:3F2 + LTy

(Note: For each set of end restraints the two initial parameters not
listed are zero. For example, with the left end free and the right end
fixed, the values of R, and M, are zero.)

Slope = 0 = 0, F, +MF2 +

Deflection =y =y, +

Ba
P
My

Fy + LT,

F+Map  Bap +LT,

A P Pk
Lateral
load | Case 1, Concentrated Case 2, Distributed Case 3, Concentrated | Case 4, Concentrated | Case 5, Concentrated Case 6, Uniform
End lateral load lateral load moment angular displacement | lateral displacement temperature variation
restraints
Left end Oy |WCy wy Coy | (W —w,)Cys —M,kCoy _p Ca _p pCa —)(Ty — T1) Cog
free, right P C, kP C, ~ k2P(l—a)C, P °C SroN kt C,
end fixed
(a) Ya W (CyCus _ —w, (CoCuy R M, (CoCap _ 0, (CoCar A CoCus YTy —Ty) (CoCas
&P\ C o e\ ¢, G plc G R\c G \Te, G k2t c, ~Ce
—(w; —w,) (CoCs
tepica\ ¢ G
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TABLE 8.9 Shear, moment, slope, and deflection formulas for beams under simultaneous axial tension and transverse loading (Continued)

Left end My | WCy Wo Cay | w1 —wy Cs M Caz —0,P Cax _A P% =Ty — TP Cpp
guided, k Cy k2 Cy  R3(l—a) Cy °Cy k Cy Gy k2t C,
right end
fixed (b) Ya ﬂ C3Cas _c —Wy (C3Ca4 _c % CsCas _c ‘ia CsCar _c A CsCa _c /Ty = T1) (C3Ca _c
kP \ C, ot P\ G, @ P G o E\ G, o '\ G o Kt Cy @
—(w; —w,) (C3C5 _
tEPi—ay \ ¢, e
Left end Ry CyCus — C1Cuy W, C3Cos — C1Cys _Mbk CyCop — C1Cs ) Pczca1 —CiCy A RP CiCau = CyChp | =0Ty — TP CyCpp — C1C
simply CyC3 — C,Cy k CyC3—CiCy 7 CyCy — CCy o CyCy—CiCy ° CyCs3 — C,Cy kt CyCs — C,Cy
supported, w; — Wy CyCq5 — C1Cys
right end k2(l—a) C,C5—CCy
fixed (c
© o | WG -G | 0, G0 GG M CiC~ i |y CoCun = CiCan CiCip— CiCy | =Ty~ T1) CoCy— C,Ci
—0, Ak
P C,Cy—C,Cy kP C,Cy—C,C, P C,C3—CCy * CyCy—C,Cy " CyCy — CCy kt CyCy — C,C,y
—(w; —wy) C4Cys — C3C4
k2P(l—a) CyC;—C,C,
Left end Ry WC3 Caz = C3Cu4 We C3Cyy — CyCys _MFE C3Caz — CyC3 9 Pcsca1 — GGy A PE CoCai — C3Cap —)(Ty — TP C3Cqs — CyCy3
fixed, right C? - CyCy k C}-CyCy T2 -GGy ° C2 - CyC, ¢ C2 - C,C, kt C2 - CyC,
end fixed w; —wy C3Cu5 — CoC
(d k(l—a) C2-CyC,
My | —WCyCuy— C3Cy4 —Wq C4Cas — C3C,5 M C3Ca3 — CyCag | —0,P C3Cy5 — C4Cy A PC4 Caz — C5Cy —)(Ty — TP C3Cy3 — CyCye
ko C%-CyC, k2 C2—CyC, ° C2-CyC,y k CZ - C,C, ¢ CZ - C,C, k%t CZ - C,C,
—(w; —w,y) C4Cys — C3Cy
B(l-a) C2-CyC,
. 5 | W — W, ; _
Left end Ry V—lV(l —a) %(1 —a)’+ IT(Z -a ]lw" 0 0 0
simply
supported, | 6, | W (C,Cpy —wg [kl =a)® _ Cas Mok (1 Car g, G —a e 2T = T) Ca
right end Prl\ C, “ Ph 20 Gy P \kl G, °°C, o7 C, kt C,
simply )
supported + —(w —wy) | (- @)’ _Cas
(e) Pr2(1 - a) 61 C,

[£1'8 038
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TABLE 8.9 Shear, moment, slope, and deflection formulas for beams under simultaneous axial tension and transverse loading (Continued)

Lateral
load | Case 1, Concentrated Case 2, Distributed Case 3, Concentrated | Case 4, Concentrated | Case 5, Concentrated Case 6, Uniform
End lateral load lateral load moment angular displacement | lateral displacement temperature variation
restraints
Left end My | WCe Wy Cud 4 W= Wa Cus M Ca —0,PCop A, PC =Ty —T})PCyy
guided, k Cy ®C k3 (l—a) C °C ko C C, k2t C,
right end
simply Y4 -w (Cic‘“ C ) —w, [Fl-a)® Cu Mo < - Cal) =0, Caz A Car T = T1) Cus
supported P\ G o k2P 2 e P C, E C °°C, =N C,
® —w —w) [l -0 Cus
k3P(l — a) 6 C,
Load terms | LTv | =WFa TWa “Wap, Wq Y=g, M,kF 0,PF,, APEKF,, W(Ty — TI)PF
for all end k kz(l ) kt @
restraints LTy ,WF —W, w; — Wi—Wa g M,F,, GoPF A,PF,, Ty — TI)P
(2)—(f) TR e k2T B -a) ) T Fa e )
LT, | -W W, (w; —w,) M,k 0,F, A kF W(Ty —Th)
P Fo3 Pk 7, Far sz(l,*a)Faﬁ P Fp T Fp
LT, | -W —Wq M, 0, AF,, WTy —Ty)
? | gy Fas P2 Fos ~ Pki(l ale P Faa % Fer o e s
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SEC. 8.17] Beams; Flexure of Straight Bars 245
TABLE 8.10 Beams restrained against horizontal displacement at the ends
Case no., manner of
loading and support Formulas to solve for y,,, and P
1. Ends pinned to rigid 3 2WiP
s + Y = gz (Solve fOr Yy
supports, concentrated Y a7’ ntEl ( Ymax)
center load W mEA ,
P= a2 Ymax
Use case le from Table 8.7(b) or Table 8.9 to determine maximum slopes and
moments after solving for P
2. Ends fixed to rigid s we
max T Ymax = 5o Solve for yax
supports, concentrated Y 161” 2n*El ( Ymax)
center load W n2EA ,
P= Fymax
Use case 1d from Table 8.7(d) or Table 8.9 to determine maximum slopes and
moments after solving for P
3. Ends pinned to rigid A 4 swlt
max + 5 Ymax = 107 Solve for y ..
supports, uniformly Y ar’ 4n'ET ( Fmax)
distributed transverse m2EA
load w on entire span P= a2 Ymax
Use case 2e from Table 8.7(b) or Table 8.9 to determine maximum slopes and
moments after solving for P
4. Ends fixed to rigid A 4 wl*
max T 727 Ymax = T 157 Solve for Y.«
supports, uniformly Ymax T g7 max = Ay ( Yimax)
distributed transverse EA
load w on entire span P= Wymax
Use case 2d from Table 8.7(d) or Table 8.9 to determine maximum slopes and

moments after solving for P

5. Same as case 1, except

tan@—sin@:l orif 0 <12°,0 =

w3
(&)

beam is perfectly flexible 2EA
like a cable or chain and
has an unstretched P w P [W { 8 P
length [ 2tan0 /[ : % i T
1
6. Same as case 3, except . 3wl \ 3
beam is perfectly flexible Imax <m)
like a cable or chain and
has an unstretched _ wr? P w Ib/in P
length [ 8Ymax M
1
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TABLE 8.11(a) Reaction and deflection coefficients for tapered beams
Moments of inertia vary as (1 + Kx/I)", where n = 1.0

Ip/1y
Case no. in Load Multiplier
Table 8.1 location a/l listed for 0.25 0.50 2.0 4.0 8.0
0 ya 2.525 1.636 0.579 0.321 0.171
04 2.262 | 1.545 | 0.614 | 0.359 | 0.201
0.95 Ya 2.663 1.682 0.563 0.303 0.159
: 04 2.498 | 1.631 | 0.578 | 0.317 | 0.168
la
0.50 YA 2.898 | 1.755 | 0.543 | 0.284 | 0.146
: 0,4 2.811 1.731 0.548 0.289 0.149
075 ya 3.289 1.858 0.521 0.266 0.135
: 04 3.261 1.851 0.522 0.267 0.135
0.95 Ry 1.055 1.028 0.972 0.946 0.926
: 04 1.492 1.256 0.744 0.514 0.330
lc
0.50 Ry 1.148 1.073 0.936 0.887 0.852
) 04 1.740 | 1.365 | 0.682 | 0.435 | 0.261
0.95 R, 1.046 | 1.026 | 0.968 | 0.932 | 0.895
: My 1.137 1.077 0.905 0.797 0.686
1d
0.50 Ry 1.163 1.085 0.915 0.837 0.771
: My, 1.326 | 1.171 | 0.829 | 0.674 | 0.542
0.95 04 1.396 1.220 0.760 0.531 0.342
) Y2 1.563 | 1.301 | 0.703 | 0.452 | 0.268
le
0.50 04 1.524 1.282 0.718 0.476 0.293
' Yi2 1.665 1.349 0.674 0.416 0.239
2a. Uniform 0 Ya 2.711 1.695 0.561 0.302 0.158
load 04 2.525 | 1.636 | 0.579 | 0.321 | 0.171
0.95 Ya 2.864 1.742 0.547 0.289 0.149
' 04 2.745 1.708 0.556 0.296 0.154
0.50 YA 3.091 1.806 | 0.532 | 0.275 | 0.140
: 04 3.029 1.790 0.535 0.278 0.142
075 ya 3.435 1.890 0.516 0.262 0.132
: 04 3.415 | 1.886 | 0.516 | 0.263 | 0.133
2¢. Uniform 0 R, 1.074 1.036 0.968 0.941 0.922
load 04 1.663 1.326 0.710 0.473 0.296
0.50 Ry 1.224 1.104 0.917 0.858 0.818
’ 04 1.942 | 1.438 | 0.653 | 0.403 | 0.237
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Reaction and deflection coefficients for tapered beams (Continued)

Ip/Iy
Case no. in Load Multiplier
Table 8.1 location a/! listed for 0.25 0.50 2.0 4.0 8.0
2d. Uniform 0 R, 1.089 | 1.046 | 0.954 | 0.911 | 0.872
load My 1.267 | 1.137 | 0.863 | 0.733 | 0.615
0.50 R, 1.267 | 1.130 | 0.886 | 0.791 | 0.717
’ M, 1.481 1.234 | 0.794 | 0.625 | 0.491
2e. Uniform 0 04 1.508 | 1.271 | 0.729 | 0.492 | 0.309
load Yie 1.678 | 1.352 | 0.676 | 0.420 | 0.243
0.50 04 1.616 | 1.320 | 0.700 | 0.454 | 0.275
) Y 1.765 | 1.389 | 0.658 | 0.398 | 0.225
2a. Uniformly 0 ya 2.851 1.737 | 0.549 | 0.291 | 0.150
increasing 04 2.711 | 1.695 | 0.561 | 0.302 | 0.158
load
0.95 Ya 3.005 | 1.781 | 0.538 | 0.280 | 0.143
’ 04 2.915 | 1.757 | 0.543 | 0.285 | 0.147
0.50 Ya 3.220 | 1.839 | 0.525 | 0.270 | 0.137
’ 04 3.172 1.827 | 0.527 | 0.272 | 0.138
075 Ya 3.526 | 1.910 | 0.513 | 0.260 | 0.131
’ 04 3.511 1.907 | 0.513 | 0.260 | 0.131
2¢. Uniformly 0 R, 1.129 | 1.062 | 0.948 | 0.907 | 0.878
increasing 04 1.775 | 1.372 | 0.686 | 0.442 | 0.269
load
0.50 R, 1.275 | 1.124 | 0.907 | 0.842 | 0.799
’ 04 2.063 | 1.479 | 0.639 | 0.388 | 0.225
2d. Uniformly 0 R, 1.157 | 1.079 | 0.926 | 0.860 | 0.804
increasing My 1.353 | 1.177 | 0.833 | 0.685 | 0.559
load
0,50 R, 1.334 | 1.157 | 0.870 | 0.767 | 0.690
’ M, 1.573 | 1.269 | 0.777 | 0.601 | 0.468
2e. Uniformly 0 04 1.561 | 1.295 | 0.714 | 0.472 | 0.291
increasing Y2 1.722 | 1.370 | 0.667 | 0.409 | 0.234
load
0.50 04 1.654 | 1.335 | 0.693 | 0.447 | 0.269
: Y 1.806 | 1.404 | 0.651 | 0.392 | 0.221
0 ya 2.262 1.545 | 0.614 | 0.359 | 0.201
04 1.848 | 1.386 | 0.693 | 0.462 | 0.297
0.95 Ya 2.337 | 1.575 | 0.597 | 0.337 | 0.182
: 04 2.095 | 1.492 | 0.627 | 0.367 | 0.203
3a
0.50 Ya 2.566 | 1.658 | 0.566 | 0.305 | 0.159
’ 04 2.443 | 1.622 | 0.575 | 0.313 | 0.164
075 ya 3.024 | 1.795 | 0.532 | 0.275 | 0.140
’ 04 2985 | 1.785 | 0.534 | 0.277 | 0.141
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Reaction and deflection coefficients for tapered beams (Continued)

Ip/14
Case no. in Load Multiplier
Table 8.1 location a/! listed for 0.25 0.50 2.0 4.0 8.0
0 Ry 0.896 | 0.945 1.059 1.118 1.173
04 1.312 1.166 | 0.823 | 0.645 | 0.482
3c
0.50 Ry 1.016 1.014 | 0.977 | 0.952 | 0.929
: 04 1.148 1.125 | 0.794 | 0.565 | 0.365
0.25 Ry 0.796 | 0.890 1.116 1.220 1.298
’ My 1.614 1.331 0.653 | 0.340 | 0.106
3d
0.50 Ry 0.958 | 0.988 | 0.988 | 0.958 | 0.919
: M, 0.875 | 0.965 | 0.965 | 0.875 | 0.758
0 04 1.283 1.159 | 0.818 | 0.631 0.460
Y2 1.524 1.282 0.718 | 0.476 | 0.293
3e
0.25 04 1.628 1.338 | 0.666 | 0.393 | 0.208
: Vi 1.651 1.345 | 0.671 0.408 | 0.229
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TABLE 8.11(b) Reaction and deflection coefficients for tapered beams
Moments of inertia vary as (1 + Kx/I)", where n = 2.0

Ip/1y
Case no. in Load Multiplier
Table 8.1 location a/l listed for 0.25 0.50 2.0 4.0 8.0
0 Ya 2.729 1.667 0.589 0.341 0.194
04 2.455 | 1.577 | 0.626 | 0.386 | 0.235
0.95 Ya 2.872 1.713 0.572 0.320 0.176
: 04 2.708 | 1.663 | 0.588 | 0.338 | 0.190
la
0.50 Ya 3.105 | 1.783 | 0.549 | 0.296 | 0.157
: 04 3.025 1.761 0.555 0.301 0.161
075 Ya 3.460 1.877 0.525 0.272 0.140
: 04 3.437 1.872 0.526 0.273 0.140
0.95 Ry 1.052 1.028 0.970 0.938 0.905
: 04 1.588 1.278 0.759 0.559 0.398
lc
0.50 Ry 1.138 1.070 0.932 0.867 0.807
) 04 1.867 | 1.390 | 0.695 | 0.468 | 0.306
0.5 Ry 1.049 1.027 0.969 0.934 0.895
: My 1.155 1.082 0.909 0.813 0.713
1d
0.50 Ry 1.169 1.086 0.914 0.831 0.753
: M, 1.358 | 1.177 | 0.833 | 0.681 | 0.548
0.95 04 1.509 1.246 0.778 0.586 0.428
: Yis 1.716 | 1.334 | 0.721 | 0.501 | 0.334
le
0.50 04 1.668 1.313 0.737 0.525 0.363
' Yi2 1.840 1.385 0.692 0.460 0.294
2a. Uniform 0 Ya 2.916 1.724 0.569 0.318 0.174
load 04 2.729 | 1.667 | 0.589 | 0.341 | 0.194
0.95 Ya 3.067 1.770 0.554 0.301 0.161
: 04 2.954 1.737 0.563 0.311 0.169
0.50 Ya 3.282 1.830 0.537 0.283 0.148
: 04 3.226 | 1.816 | 0.540 | 0.287 | 0.150
075 Ya 3.5680 | 1.906 | 0.518 | 0.266 | 0.136
: 04 3.564 1.902 0.519 0.267 0.136
2¢. Uniform 0 Ry 1.068 | 1.035 | 0.965 | 0.932 | 0.899
load 04 1.774 1.349 0.723 0.510 0.351
0.50 Ry 1.203 | 1.098 | 0.910 | 0.831 | 0.761
' 04 2.076 1.463 0.664 0.430 0.271
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Reaction and deflection coefficients for tapered beams (Continued)

Ip/Iy
Case no. in Load Multiplier
Table 8.1 location a/! listed for 0.25 0.50 2.0 4.0 8.0
2d. Uniform 0 R, 1.091 | 1.046 | 0.954 | 0.909 | 0.865
load My 1.290 | 1.142 | 0.866 | 0.741 | 0.628
0.50 R, 1.267 | 1.129 | 0.833 | 0.779 | 0.689
’ M, 1.509 | 1.239 | 0.795 | 0.625 | 0.486
2e. Uniform 0 04 1.645 | 1.301 | 0.747 | 0.542 | 0.382
load Yie 1.853 | 1.387 | 0.694 | 0.463 | 0.298
0.50 04 1.774 | 1.352 | 0.718 | 0.500 | 0.339
’ Y2 1.955 | 1.426 | 0.675 | 0.438 | 0.274
2a. Uniformly 0 ya 3.052 1.765 | 0.556 | 0.304 | 0.163
increasing 04 2.916 | 1.724 | 0.569 | 0.318 | 0.174
load
0.95 Ya 3.199 | 1.807 | 0.543 | 0.290 | 0.153
’ (N 3.116 | 1.784 | 0.550 | 0.297 | 0.158
0.50 Ya 3.395 | 1.860 | 0.529 | 0.276 | 0.143
’ 04 3.354 | 1.849 | 0.532 | 0.279 | 0.144
075 YA 3.653 | 1.923 | 0.515 | 0.263 | 0.134
’ 04 3.641 1.921 | 0.515 | 0.263 | 0.134
2¢. Uniformly 0 R, 1.119 | 1.059 | 0.944 | 0.890 | 0.841
increasing 04 1.896 | 1.396 | 0.698 | 0.475 | 0.315
load
0.50 R, 1.244 | 1.116 0.898 | 0.810 | 0.736
' 04 2.196 | 1.503 | 0.649 | 0.411 0.255
2d. Uniformly 0 Ry 1.159 | 1.079 | 0.925 | 0.854 | 0.789
increasing My 1.379 | 1.182 | 0.836 | 0.691 | 0.565
load
0,50 R, 1.328 | 1.154 | 0.866 | 0.752 | 0.656
’ M, 1.596 | 1.272 | 0.777 | 0.598 | 0.457
2e. Uniformly 0 04 1.708 | 1.326 | 0.732 | 0.521 | 0.360
increasing Vi 1.904 | 1.407 | 0.684 | 0.451 | 0.286
load
0.50 04 1.817 | 1.368 | 0.711 0.491 | 0.331
: Y2 2.001 | 1.442 | 0.668 | 0.430 | 0.268
0 7 2.455 | 1.577 | 0.626 | 0.386 | 0.235
04 2.000 | 1.414 | 0.707 | 0.500 | 0.354
0.95 Ya 2.639 | 1.608 | 0.609 | 0.363 | 0.211
: (N 2.286 | 1.526 | 0.641 | 0.400 | 0.243
3a
0.50 YA 2.786 | 1.691 | 0.575 | 0.323 | 0.177
’ 04 2.667 | 1.657 | 0.586 | 0.333 | 0.185
075 ya 3.234 | 1.821 | 0.538 | 0.284 | 0.148
’ 04 3.200 | 1.812 | 0.540 | 0.286 | 0.149
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Reaction and deflection coefficients for tapered beams (Continued)

Ip/14
Case no. in Load Multiplier
Table 8.1 location a/! listed for 0.25 0.50 2.0 4.0 8.0
0 Ry 0.900 | 0.946 1.062 1.132 1.212
04 1.375 1.181 0.835 | 0.688 | 0.558
3c
0.50 Ry 1.021 1.015 | 0.977 | 0.946 | 0.911
: 04 1.223 1.148 | 0.814 | 0.622 | 0.451
0.25 Ry 0.785 | 0.888 1.117 1.230 1.333
’ M, 1.682 1.347 | 0.660 | 0.348 | 0.083
3d
0.50 Ry 0.966 | 0.991 0.991 0.966 | 0.928
: M, 0.890 | 0.972 0.974 | 0.905 | 0.807
0 04 1.364 1.179 | 0.833 | 0.682 | 0.549
Y2 1.668 1.313 | 0.737 | 0.525 | 0.363
3e
0.25 04 1.801 1.376 | 0.686 | 0.441 | 0.263
: Yi2 1.826 1.382 0.690 | 0.454 | 0.284
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TABLE 8.11(c) Reaction and deflection coefficients for tapered beams
Moments of inertia vary as (1 + Kx/I)", where n = 3.0

Ip/1y
Case no. in Load Multiplier
Table 8.1 location a/l listed for 0.25 0.50 2.0 4.0 8.0
0 Ya 2.796 1.677 0.593 0.349 0.204
04 2.520 | 1.587 | 0.630 | 0.397 | 0.250
0.95 Ya 2.939 1.722 0.575 0.327 0.184
: 04 2.777 | 1.674 | 0.592 | 0.346 | 0.200
la
0.50 Ya 3.169 | 1.791 | 0.551 | 0.300 | 0.162
: 04 3.092 1.770 0.558 0.307 0.167
075 Ya 3.509 1.883 0.526 0.274 0.142
: 04 3.488 1.878 0.527 0.275 0.143
0.95 Ry 1.051 1.027 0.969 0.936 0.899
: 04 1.626 1.286 0.764 0.573 0.422
lc
0.50 Ry 1.134 1.068 0.930 0.860 0.791
) 04 1.916 | 1.399 | 0.700 | 0.480 | 0.322
0.5 Ry 1.050 1.027 0.969 0.934 0.895
: My 1.161 1.084 0.911 0.818 0.724
1d
0.50 Ry 1.171 1.086 0.914 0.829 0.748
: M, 1.378 | 1.179 | 0.834 | 0.684 | 0.553
0.95 04 1.554 1.256 0.784 0.605 0.460
: Yis 1.774 | 1.346 | 0.728 | 0.519 | 0.362
le
0.50 04 1.723 1.324 0.743 0.543 0.391
' Yi2 1.907 1.397 0.699 0.477 0.318
2a. Uniform 0 Ya 2.981 1.734 0.572 0.324 0.182
load 04 2.796 | 1.677 | 0.593 | 0.349 | 0.204
0.95 Ya 3.130 1.779 0.556 0.306 0.167
' 04 3.020 1.747 0.566 0.317 0.176
0.50 Ya 3.338 | 1.837 | 0.538 | 0.287 | 0.151
: 04 3.285 1.823 0.542 0.291 0.154
075 Ya 3.620 1.911 0.519 0.268 0.137
) 04 3.606 | 1.097 | 0.520 | 0.269 | 0.138
2¢. Uniform 0 Ry 1.066 1.034 0.965 0.928 0.891
load 04 1.817 1.357 0.727 0.522 0.370
0.50 Ry 1.194 1.096 0.908 0.821 0.741
’ 04 2.125 | 1.471 | 0.668 | 0.439 | 0.284
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TABLE8.11(c) Reaction and deflection coefficients for tapered beams (Continued)

Ip/Iy
Case no. in Load Multiplier
Table 8.1 location a/! listed for 0.25 0.50 2.0 4.0 8.0
2d. Uniform 0 R, 1.092 | 1.046 | 0.954 | 0.908 | 0.863
load My 1.297 | 1.144 | 0.867 | 0.745 | 0.635
0.50 R, 1.266 | 1.128 | 0.882 | 0.776 | 0.680
’ M, 1.517 | 1.240 | 0.796 | 0.626 | 0.487
2e. Uniform 0 04 1.697 | 1.311 | 0.753 | 0.560 | 0.411
load Yie 1.919 | 1.400 | 0.700 | 0.480 | 0.322
0.50 04 1.833 | 1.363 | 0.724 | 0.517 | 0.365
: Yo 2.025 | 1.438 | 0.680 | 0.453 | 0.296
2a. Uniformly 0 ya 3.115 1.773 | 0.559 | 0.309 | 0.169
increasing N 2.981 | 1.734 | 0.572 | 0.324 | 0.182
load
0.95 Ya 3.2568 | 1.815 | 0.545 | 0.294 | 0.157
’ 04 3.178 | 1.792 | 0.552 | 0.301 | 0.163
0.50 Ya 3.446 | 1.866 | 0.531 | 0.279 | 0.146
) 04 3.407 | 1.856 | 0.533 | 0.282 | 0.148
075 Ya 3.687 | 1.927 | 0.516 | 0.264 | 0.135
’ 04 3.676 | 1.925 | 0.516 | 0.265 | 0.135
2¢. Uniformly 0 R, 1.114 | 1.058 | 0.942 | 0.885 | 0.829
increasing 04 1.942 | 1.404 | 0.702 | 0.486 | 0.332
load
0.50 Ry 1.233 | 1.113 0.895 | 0.800 | 0.713
’ N 2.244 | 1.511 0.652 | 0.419 | 0.266
2d. Uniformly 0 Ry 1.159 | 1.078 | 0.925 | 0.853 | 0.785
increasing My 1.386 | 1.183 | 0.837 | 0.694 | 0.596
load
0,50 Ry 1.325 | 1.153 | 0.865 | 0.747 | 0.645
’ M, 1.602 1.273 | 0.777 | 0.598 | 0.456
2e. Uniformly 0 04 1.764 | 1.337 | 0.738 | 0.538 | 0.387
increasing Yi2 1.972 | 1.419 | 0.690 | 0.466 | 0.309
load
0.50 04 1.878 | 1.379 | 0.717 | 0.508 | 0.356
: Yo 2.072 | 1.454 | 0.674 | 0.445 | 0.288
0 ya 2.520 | 1.587 | 0.630 | 0.397 | 0.250
04 2.054 | 1.424 | 0.712 | 0.513 | 0.375
0.95 ya 2.607 | 1.619 | 0.613 | 0.373 | 0.224
: 04 2.352 | 1.537 | 0.646 | 0.412 | 0.260
3a
0.50 Ya 2.858 | 1.702 | 0.579 | 0.330 | 0.185
’ 04 2.741 1.668 | 0.590 | 0.342 | 0.194
075 Ya 3.296 | 1.829 | 0.539 | 0.288 | 0.152
’ 04 3.264 | 1.821 | 0.542 | 0.290 | 0.153
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TABLE8.11(c) Reaction and deflection coefficients for tapered beams (Continued)

Ip/14
Case no. in Load Multiplier
Table 8.1 location a/! listed for 0.25 0.50 2.0 4.0 8.0
0 Ry 0.901 0.947 1.063 1.136 1.223
04 1.401 1.186 | 0.839 | 0.701 0.583
3c
0.50 R, 1.022 1.015 | 0.977 | 0.945 | 0.906
: 04 1.257 1.157 | 0.820 | 0.642 | 0.483
0.25 Ry 0.781 0.887 1.117 1.233 1.343
’ My 1.705 1.352 0.663 | 0.355 | 0.088
3d
0.50 Ry 0.969 | 0.992 0.992 | 0.969 | 0.932
: My 0.897 | 0.975 | 0.977 | 0.916 | 0.828
0 04 1.397 1.186 | 0.838 | 0.699 | 0.579
Y2 1.723 1.324 | 0.743 | 0.543 | 0.391
3e
0.25 04 1.868 1.389 | 0.693 | 0.460 | 0.289
: Yi2 1.892 1.394 | 0.697 | 0.471 | 0.308




SEC. 8.17] Beams; Flexure of Straight Bars 255

TABLE 8.11(d) Reaction and deflection coefficients for tapered beams
Moments of inertia vary as (1 + Kx/I)", where n = 4.0

Ip/1y
Case no. in Load Multiplier
Table 8.1 location a/l listed for 0.25 0.50 2.0 4.0 8.0
0 Ya 2.828 1.682 0.595 0.354 0.210
04 2.5562 | 1.593 | 0.632 | 0.402 | 0.258
0.95 Ya 2.971 1.727 0.576 0.330 0.188
: 04 2.811 1.679 | 0.593 | 0.350 | 0.206
la
0.50 Ya 3.200 | 1.796 | 0.553 | 0.303 | 0.165
: 04 3.124 1.774 0.559 0.310 0.170
075 ya 3.532 1.886 0.527 0.276 0.143
: 04 3.511 1.881 0.528 0.277 0.144
0.95 Ry 1.051 1.027 0.969 0.935 0.896
: 04 1.646 1.290 0.767 0.581 0.434
lc
0.50 Ry 1.131 1.068 0.929 0.857 0.784
) 04 1.941 1.404 | 0.702 | 0.485 | 0.331
0.5 Ry 1.051 1.027 0.969 0.935 0.896
: M, 1.164 1.085 0.912 0.821 0.730
1d
0.50 Ry 1.172 1.086 0.914 0.828 0.746
: My 1.373 | 1.180 | 0.835 | 0.686 | 0.556
0.95 04 1.578 1.260 0.787 0.615 0.476
) Y2 1.805 | 1.351 | 0.731 | 0.528 | 0.376
le
0.50 04 1.752 1.329 0.746 0.552 0.406
' Yie 1.941 1.404 0.702 0.485 0.331
2a. Uniform 0 Ya 3.013 1.738 0.573 0.328 0.187
load 04 2.828 | 1.682 | 0.595 | 0.354 | 0.210
0.95 ya 3.161 1.783 0.558 0.309 0.170
' 04 3.052 1.751 0.568 0.320 0.180
0.50 Ya 3.365 | 1.841 | 0.539 | 0.289 | 0.154
: 04 3.314 1.827 0.543 0.293 0.157
075 Ya 3.639 1.913 0.520 0.269 0.138
: 04 3.625 | 1.910 | 0.521 | 0.270 | 0.139
2¢. Uniform 0 Ry 1.065 1.034 0.964 0.927 0.888
load 04 1.839 | 1.361 | 0.729 | 0.528 | 0.380
0.50 Ry 1.190 1.095 0.907 0.817 0.731
’ 04 2.151 1.476 | 0.670 | 0.443 | 0.290
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Reaction and deflection coefficients for tapered beams (Continued)

Ip/Iy
Case no. in Load Multiplier
Table 8.1 location a/! listed for 0.25 0.50 2.0 4.0 8.0
2d. Uniform 0 R, 1.092 | 1.046 | 0.954 | 0.908 | 0.862
load My 1.301 1.145 | 0.867 | 0.747 | 0.639
0.50 R, 1.266 | 1.128 | 0.882 | 0.774 | 0.676
’ M, 1.521 1.241 | 0.796 | 0.627 | 0.488
2e. Uniform 0 04 1.724 | 1.316 | 0.756 | 0.569 | 0.426
load Yie 1.953 | 1.406 | 0.703 | 0.488 | 0.335
0.50 04 1.864 | 1.396 | 0.727 | 0.526 | 0.379
’ Yo 2.061 | 1.445 | 0.683 | 0.461 | 0.307
2a. Uniformly 0 ya 3.145 | 1.778 | 0.560 | 0.312 | 0.173
increasing N 3.013 | 1.738 | 0.573 | 0.328 | 0.187
load
0.95 Ya 3.287 | 1.819 | 0.546 | 0.297 | 0.160
’ 04 3.207 | 1.796 | 0.553 | 0.304 | 0.166
0.50 Ya 3.470 | 1.869 | 0.532 | 0.281 | 0.147
: 04 3.432 | 1.859 | 0.534 | 0.284 | 0.150
075 Ya 3.703 | 1.929 | 0.516 | 0.265 | 0.136
’ 04 3.692 1.927 | 0.517 | 0.266 | 0.136
2¢. Uniformly 0 R, 1.112 | 1.057 | 0.942 | 0.882 | 0.823
increasing 04 1.966 | 1.408 | 0.704 | 0.492 | 0.340
load
0.50 Ry 1.227 | 1.111 0.894 | 0.794 | 0.701
' N 2.269 | 1.515 | 0.653 | 0.423 | 0.271
2d. Uniformly 0 Ry 1.159 | 1.078 | 0.924 | 0.852 | 0.783
increasing My 1.390 | 1.184 | 0.837 | 0.695 | 0.572
load
0,50 Ry 1.323 | 1.153 | 0.864 | 0.744 | 0.639
’ M, 1.605 | 1.274 | 0.777 | 0.598 | 0.456
2e. Uniformly 0 04 1.793 | 1.343 | 0.741 | 0.547 | 0.402
increasing Yi2 2.007 | 1.425 | 0.693 | 0.475 | 0.321
load
0.50 04 1.909 | 1.385 | 0.719 | 0.516 | 0.369
: Yo 2.108 | 1.461 | 0.677 | 0.453 | 0.299
0 ya 2.552 1.593 | 0.632 | 0.402 | 0.258
04 2.081 | 1.428 | 0.714 | 0.520 | 0.386
0.95 ya 2.641 1.624 | 0.615 | 0.378 | 0.231
: 04 2.386 | 1.543 | 0.648 | 0.419 | 0.270
3a
0.50 Ya 2.893 | 1.707 | 0.581 | 0.334 | 0.190
: 04 2.778 | 1.674 | 0.592 | 0.346 | 0.200
075 Ya 3.326 | 1.833 | 0.540 | 0.290 | 0.154
’ 04 3.295 | 1.825 | 0.543 | 0.292 | 0.155
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TABLE 8.11(d) Reaction and deflection coefficients for tapered beams (Continued)

Ip/14
Case no. in Load Multiplier
Table 8.1 location a/! listed for 0.25 0.50 2.0 4.0 8.0
0 Ry 0.902 | 0.947 1.063 1.138 1.227
04 1.414 1.189 | 0.841 0.707 | 0.595
3c
0.50 Ry 1.023 1.015 | 0.976 | 0.944 | 0.904
: 04 1.275 1.161 0.823 | 0.652 | 0.499
0.25 Ry 0.780 | 0.887 1.117 1.234 1.347
’ My 1.716 1.354 | 0.665 | 0.359 | 0.092
3d
0.50 Ry 0.971 0.993 | 0.993 | 0.971 0.935
: My 0.902 | 0.976 | 0.979 | 0.922 | 0.839
0 04 1.414 1.189 | 0.841 0.707 | 0.595
Y2 1.752 1.329 | 0.746 | 0.552 | 0.406
3e
0.25 04 1.903 1.396 | 0.697 | 0.470 | 0.304
: Yo 1.927 1.401 0.700 | 0.480 | 0.321
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TABLE 8.12 Position of flexural center Q for different sections

Form of section

Position of @

1. Any narrow section
symmetrical about
the x axis; centroid
atx=0,y=0

dx—

_ 1+3v[xt’dx
T 14y [fdx

For narrow triangle (with v =0.25), e = 0.187a (Refs. 32 and 52)

2. Beam composed of n
elements of any form,
connected of separate,
with common neutral axis
(e.g., multiple-spar
airplane wing)

T,
D;j_l

e m———— X

o Eylyxy + Eglyxs +--- + E, I,x,
T E\L +E), +El; +---+E,I,

where I}, I,, etc., are moments of inertia of the several elements about the X axis
(that is, @ is at the centroid of the products EI for the several elements)

3. Semicircular area

}}

o 8 3+ 4v
T 15m 14w

R (Qis to right of centroid) (Refs. 1 and 64)

For any sector of solid or hollow circular area, see Ref. 32

4. Angle

Leg 1 = rectangle w, h;; leg 2 = rectangle wyh,
I, = moment of inertia of leg 1 about Y;
I, = moment of inertia of leg about Y,
_h_ 4
YT+,

(central axis)
(central axis)

(for e, use X, and X, central axes) (Ref. 31)

If w, and w, are small, e, = e, = 0 (practically) and @ is at 0

Ly
e= hT

x

where I, = product of inertia of the half section (above X) with respect to axes X
and Y, and I, = moment of inertia of whole section with respect to axis X
If ¢ is uniform, e = (b — £2/4)h?t/4AL,

1 1
=—( o) ———
o=t Tt g

For a T-beam of ordinary proportions, @ may be assumed to be at 0
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7. I with unequal flanges
and thin web

e

1,

_ 2
e=bi71,

and 2

where I; and I,, respectively, denote moments of inertia about X axis of flanges 1

8. Hollow thin-walled
triangular section

peat

e

e 1
h~ 2tan0(1 + tsin 0/t;,)

9. Hollow thin-walled section
bounded by a circular arc
and a straight edge

Note: Expressions are valid
for0<0<n

I, =tR® (0 —sinfcos 0 + %Sin3 0)

e _ 24, R%sin0(cos 0 + /1))
R e e
If0=n/2
tR? 4ty
L= ( + ﬁ)
e 4(6 + 7ty /1)

R~ @+ aty/DBn+ 42, /1)

. t,0 .
— )+ —— )
T.(sin 0+ 4,0/0) (sm() Ocos 0+ 57 S0 0

10. Hollow thin-walled
rectangular section

[

i

R

IE
I = otz Tis)+

e bh? [Qt +t3h 12(b + t,h/ts)
1

t,bh?

b~ 12l

b 2b/t, + bty + h/ty

]

11. For thin-walled sections, such as lipped channels, hat sections, and sectors of circular tubes, see Table 9.2. The
position of the flexural centers and shear centers coincide.
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TABLE 8.13 Collapse loads with plastic hinge locations for straight beams
NOTATION: M,, = fully plastic bending moment (force-length); x; = position of a plastic
hinge (length); W, = concentrated load necessary to produce plastic collapse of the beam
(force); w, = unit load necessary to produce plastic collapse of the beam (force per unit
length); M, = applied couple necessary to produce plastic collapse (force-length). The
fully plastic bending moment M, is the product of the yield strength of the matieral g,
and the plastic section modulus Z found in Table A.1 for the given cross sections

Reference no., end restraints Collapse loads with plastic hinge locations
la. Left end free, right end i M,

fixed (cantilever) ‘T l-a

X =
w
ie a

1b. Left end guided, right end - _2M,

fixed ¢ l-a

0<x =a Xpp =1

. Left end simply supported, _ M,(+a)
right end fixed ¢ al-a)
Xp1 =@ xpg =1

1

o

W

1d. Left end fixed, right end — 2M,1
fixed ‘al-a)
=0 xp=a x=I
/
a—W
le. Left end simply supported, _ Mpl
right end simply supported ‘T al-a)
X, =a
k- a —>iw
1f. Left end guided, right end _ M,
simply supported ‘l-a
O<x, <a

.
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TABLE 8.13 Collapse loads with plastic hinge locations for straight beams

(Continued)

Reference no., end restraints

Collapse loads with plastic hinge locations

2a. Left end free, right end
fixed (cantilever)

If w; = w, (uniform load), then
_ M,
C-a

Wee x, =1

If w, = 0 (uniformly increasing load), then

6M,
Wi = - 5] x, =1
(-
If w; = 0 (uniformly decreasing load), then
3M
Wee = L x, =1
(-a)

2b. Left end guided, right end
fixed

If w; = w, (uniform load), then
4M,

I Xy =a Xpo =1
= of n h2
If w, = 0 (uniformly increasing load), then
12M,
wy, = 2 Xpp=a Ay =1
1 (—ay n h2
If w; = 0 (uniformly decreasing load), then
6M,
Wye = L Xy =a X =1
= af n h2

2c. Left end simply supported,
right end fixed

wi

Wg

k—a

If w; = w, (uniform load), then
v = 2M,(1 + xp1) ‘

a (= 2y ), — a?)
where x;,; = [2(2 +a®)]V2 =1  xpy =1

If w, = 0 (uniformly increasing load), then

6K, M,
wy, = 5 X =Kyl Xpo =1
Ie (-a? n1 2 h2
a/l| 0 0.2 0.4 0.6 0.8

K, | 4000 3.324 2.838 2481 2211
K, | 0.500 0.545 0.616 0.713 0.838

If w; = 0 (uniformly decreasing load), then
— 6K3Mp
T (-a?

Wee X =Kyl Xy =1

a/l| 0 0.2 0.4 0.6 0.8
K, | 8596 2.227 1.627 1.310 1.122
K, | 0.347 0.387 0.490 0.634 0.808

o
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(Continued)
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Reference no., end restraints

Collapse loads with plastic hinge locations

2d. Left end fixed, right end
fixed

If w; = w, (uniform load), then

_ 16Mpl2 -0
Wqe = m Xp1 =

P +a?
Xpg =
If w, = 0 (uniformly increasing load), then
B 12M,( - )

(= x2)(xG, — Baxyy + by + ab/])

; 2 oa\"?
x; =0 xh2=a+(al—al+§—g)

Wie

If w; = 0 (uniformly decreasing load), then

21

xpg =1

Xy =1

xpg =1

2e. Left end simply supported,
right end simply
supported

wi

12M,(l — @)
Wy =
9T (1= xpe)@lxyy — 3az — x3, + 207 /1)
2 203\ "*
Xy =0 xhz=l—(§— 2+7)
If w; = w, (uniform load), then
_ 8M, 2 P+
Woe =@ g T
If w, = 0 (uniformly increasing load), then
6M, (1 —
Wie o~ a)

U= x,)(x% — Baxy, + Ix, + a? /1)

2 3\ 1/2
X, :a+(azfal+f a)

2f. Left end guided, right end
simply supported
!
)

&

33l
If w; = 0 (uniformly decreasing load), then
B 6M,(l— a)
Wae = (0= )2y, — 30% — a5 + 2 /)
2 ,  2d° 1/2
x,=1— (g—a +§>
If w; = w, (uniform load), then
2M,
Woe = —— 0<x,<a
(-0

If w, = 0 (uniformly increasing load), then

wy, = 6M, 0<x,<a

‘T d-a '
If w; = 0 (uniformly decreasing load), then
Wee 3M, <x, <a

o
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TABLE 8.13 Collapse loads with plastic hinge locations for straight beams

(Continued)

Reference no., end restraints

Collapse loads with plastic hinge locations

3a. Left end free, right end

M, =M,

oc p
fixed (cantilever) a<x, <l
j—a
Mo
2
3b. Left end guided, right end | M, =2M,
fixed O<xp<a  a<xpy <l

(=2,

7.

3c. Left end simply supported,
right end fixed

a—-IMo

.

1f 1/3 < a <, then M, = 2M,
and two plastic hinges form, one on each side of and adjacent to the loading M,
If 0 < a<1/3, then
M,(l+a)

l—a
xp,1 = a just to the right of the loading M,

M, =

oc

Xpo =1

3d. Left end fixed, right end
fixed

M, =2M, and two plastic hinges form, one on each side of and adjacent to the
loading M,

If 0 < @ < I/2, then a third hinge forms at the right end

If 1/2 < a < [, then the third hinge forms at the left end

If a = 1/2, two hinges form at any two locations on one side of the load and one at
any location on the other side

3e. Left end simply supported,
right end simply supported

-

e

If 0 < @ < 1/2, then

m, = !
“ l-a

x;, = a just to the right of the loading M,

If 1/2 < a < [, then
M,

M, =—-
oo =7y

x5, = a just to the right of the loading M,
If a =1/2, then
M, =2M,

and two plastic hinges form, one on each side of and adjacent to the loading M,

3f. Left end guided, right end
simply supported

gﬂmz

M, =M,
O<x, <a

8.18 References

1. Timoshenko, S. P., and J. N. Goodier: “Theory of Elasticity,” 3rd ed., McGraw-Hill,

1970.

2. Frocht, M. M.: A Photoelastic Investigation of Shear and Bending Stresses in
Centrally Loaded Simple Beams, Eng. Bull., Carnegie Inst. Technol., 1937.
3. Timoshenko, S.: “Strength of Materials,” D. Van Nostrand, 1930.



264 Formulas for Stress and Strain [cHAP. 8

4. Bach, C.: Zur Beigungsfestigkeit des Gusseisens, Z. Vereines Dtsch. Ing., vol. 32,
p- 1089, 1888.

5. Schlick, W. J., and B. A. Moore: Strength and Elastic Properties of Cast Iron, Towa
Eng. Exp. Sta., lIowa State College, Bull. 127, 1930.

6. Symposium on Cast Iron, Proc. ASTM, vol. 33, part II, p. 115, 1933.

7. Roark, R. J., R. S. Hartenberg, and R. Z. Williams: The Effect of Form and Scale on
Strength, Eng. Exp. Sta., Univ. Wis., Bull. 82, 1938.

8. Newlin, J. A., and G. W. Trayer: Form Factors of Beams Subjected to Transverse
Loading Only, Natl. Adv. Comm. Aeron, Rept. 181, 1924.

9. “Wood Handbook,” Forest Products Laboratory, U.S. Dept. of Agriculture, 1987.

10. Ashwell, D. G.: The Anticlastic Curvature of Rectangular Beams and Plates, J. R.
Aeron. Soc., vol. 54, 1950.

11. Ketchum, M. S., and J. O. Draffin: Strength of Light I-beams, Eng. Exp. Sta., Univ.
1ll., Bull. 241, 1932.

12. Wendt, K. F., and M. O. Withey: The Strength of Light Steel Joists, Eng. Exp. Sta.,
Univ. Wis., Bull. 79, 1934.

13. American Institute of Steel Construction: “Specifications for the Design, Fabrication
and Erection of Structural Steel for Buildings,” 1978.

14. Younger, J. E.: “Structural Design of Metal Airplanes,” McGraw-Hill, 1935.

15. Lyse, 1., and H. J. Godfrey: Investigation of Web Buckling in Steel Beams, Trans. Am.
Soc. Civil Eng., vol. 100, p. 675, 1935.

16. Moore, H. F.: The Strength of I-beams in Flexure, Eng. Exp. Sta., Univ. Ill., Bull. 68,
1913.

17. Dumont, C., and H. N. Hill: The Lateral Instability of Deep Rectangular Beams, Nat.
Adv. Comm. Aeron., Tech. Note 601, 1937.

18. Trayer, G. W., and H. W. March: Elastic Instability of Members having Sections
Common in Aircraft Construction, Natl. Adv. Comm. Aeron., Rept. 382, 1931.

19. Newlin, J. A., and G, W. Trayer: Deflection of Beams with Special Reference to Shear
Deformation, Natl. Adv. Comm. Aeron., Rept. 180, 1924.

20. McCutcheon, William J.: Deflections and Stresses in Circular Tapered Beams and
Poles, Civ. Eng. Pract. Des. Eng., vol. 2, 1983.

21. Timoshenko. S.: Mathematical Determination of the Modulus of Elasticity, Mech.
Eng., vol. 45, p. 259, 1923.

22. Holl, D. L: Analysis of Thin Rectangular Plates Supported on Opposite Edges, Iowa
Eng. Exp. Sta., lIowa State College, Bull. 129, 1936.

23. Westergaard, H. M.: Computation of Stress Due to Wheel Loads, Public Roads, U.S.
Dept. of Agriculture, Bureau of Public Roads, vol. 11, p. 9, 1930.

24. Morris, C. T.: Concentrated Loads on Slabs, Ohio State Univ. Eng. Exp. Sta. Bull. 80,
1933.

25. Kelley, E. F.: Effective Width of Concrete Bridge Slabs Supporting Concentrated
Loads, Public Roads, U.S. Dept. of Agriculture, Bureau of Public Roads, vol. 7, no. 1,
1926.

26. MacGregor, C. W.: Deflection of Long Helical Gear Tooth, Mech. Eng., vol. 57, p. 225,
1935.

27. Holl, D. L.: Cantilever Plate with Concentrated Edge Load, ASME Paper A-8, J. Appl.
Mech., vol. 4, no. 1, 1937. .

28. Miller, A. B.: Die mittragende Breite, and Uber die mittragende Breite, Luftfahrt-
forsch., vol. 4, no. 1, 1929.

29. Hetényi, M.: Application of Maclaurin Series to the Analysis of Beams in Bending,
J. Franklin Inst., vol. 254, 1952.

30. Kuhn, P,, J. P. Peterson, and L. R. Levin: A Summary of Diagonal Tension, Parts I and
II, Natl. Adv. Comm. Aeron., Tech. Notes 2661 and 2662, 1952.

31. Schwalbe, W. L. S.: The Center of Torsion for Angle and Channel Sections, Trans.
ASME, vol. 54, no. 11, p. 125, 1932.

32. Young, A. W., E. M. Elderton, and K. Pearson: “On the Torsion Resulting from Flexure
in Prisms with Cross-sections of Uniaxial Symmetry,” Drapers’ Co. Research
Memoirs, tech. ser. 7, 1918.

33. Maurer, E. R., and M. O. Withey: “Strength of Materials,” John Wiley & Sons, 1935.

34. Peery, D. J.: “Aircraft Structures,” McGraw-Hill, 1950.



SEC. 8.18] Beams; Flexure of Straight Bars 265

35.

36.
37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

59.

60.
61.

62.

63.

64.

Sechler, E. E., and L. G. Dunn: “Airplane Strudural Analysis and Design,” John Wiley
& Sons, 1942.

Griffel, W.: “Handbook of Formulas for Stress and Strain,” Frederick Ungar, 1966.
Reissner, E.: Least Work Solutions of Shear Lag Problems, JJ. Aeron. Sci., vol. 8, no. 7,
p. 284, 1941.

Hildebrand, F. B., and E. Reissner: Least-work Analysis of the Problem of Shear Lag
in Box Beams, Natl. Adv. Comm. Aeron., Tech. Note 893, 1943.

Winter, G.: Stress Distribution in and Equivalent Width of Flanges of Wide, Thin-
wall Steel Beams, Natl. Adv. Comm. Aeron., Tech. Note 784, 1940.

Tate, M. B.: Shear Lag in Tension Panels and Box Beams, lowa Eng. Exp. Sta. Iowa
State College, Eng. Rept. 3, 1950.

Vlasov, V. Z., and U. N. Leontév: “Beams, Plates and Shells on Elastic Foundations,”
transl. from Russian, Israel Program for Scientific Translations, Jerusalem, NASA
TT F-357, US., 1966.

Kameswara Rao, N. S. V., Y. C. Des, and M. Anandakrishnan: Variational Approach
to Beams on Elastic Foundations, Proc. Am. Soc. Civil Eng., J. Eng. Mech. Div., vol.
97, no. 2, 1971

White, Richard N.: Rectangular Plates Subjected to Partial Edge Loads: Their Elastic
Stability and Stress Distribution, doctoral dissertation, University of Wisconsin,
1961.

Chow, L., Harry D. Conway, and George Winter: Stresses in Deep Beams, Trans. Am.
Soc. Civil Eng., vol. 118, p. 686, 1963.

Kaar, P. H.: Stress in Centrally Loaded Deep Beams, Proc. Soc. Exp. Stress Anal., vol.
15, no. 1, p. 77, 1957.

Saad, S., and A. W. Hendry: Stresses in a Deep Beam with a Central Concentrated
Load, Exp. Mech., J. Soc. Exp. Stress Anal., vol. 18, no. 1, p. 192, 1961.

Jaramillo, T. J.: Deflections and Moments due to a Concentrated Load on a Cantilever
Plate of Infinite Length, ASME <J. Appl. Mech., vol. 17, no. 1, 1950.

Wellauer, E. J., and A. Seireg: Bending Strength of Gear Teeth by Cantilever-plate
Theory, ASME J. Eng. Ind., vol. 82, August 1960.

Little, Robert W.: Bending of a Cantilever Plate, master’s thesis, University of
Wisconsin, 1959.

Small, N. C.: Bending of a Cantilever Plate Supported from an Elastic Half Space,
ASME J. Appl. Mech., vol. 28, no.3, 1961.

Hetényi, M.: Series Solutions for Beams on Elastic Foundations, ASME J. Appl.
Mech., vol. 38, no. 2, 1971.

Duncan, W. J.: The Flexural Center or Center of Shear, J. R. Aeron. Soc., vol. 57,
September 1953.

Hetényi, Miklos: “Beams on Elastic Foundation,” The University of Michigan Press,
1946.

O’Donpell, W. J.: The Additional Deflection of a Cantilever Due to the Elasticity of the
Support, ASME J. Appl. Mech., vol. 27, no. 3, 1960.

“ANC Mil-Hdbk-5, Strength of Metal Aircraft Elements,” Armed Forces Supply
Support Center, March 1959.

. Kleinlogel, A,: “Rigid Frame Formulas,” Frederick Ungar, 1958.
. Leontovich, Valerian: “Frames and Arches,” McGraw-Hill, 1959.
. Lee, G, C.: A Survey of Literature on the Lateral Instability of Beams, Bull. 63 Weld.

Res. Counc, August 1960.

Kelley, B. W., and R. Pedersen: The Beam Strength of Modern Gear Tooth Design,
Trans. SAE, vol. 66, 1950.

Beedle, Lynn S.: “Plastic Design of Steel Frames,” John Wiley & Sons, 1958.

“The Steel Skeleton,” vol. II, “Plastic Behaviour and Design,” Cambridge University
Press, 1956.

Johnston, B. G., F. J. Lin, and T. V. Galambos: “Basic Steel Design,” 3rd ed., Prentice-
Hall, 1986.

Weigle, R. E., R. R. Lasselle, and J. P. Purtell: Experimental Investigation of the
Fatigue Behavior of Thread-type Projections, Exp. Mech., vol. 3, no. 5, 1963.

Leko, T.: On the Bending Problem of Prismatical Beam by Terminal Transverse Load,
ASME J. Appl. Mech., vol. 32, no. 1, 1965.



266 Formulas for Stress and Strain [cHAP. 8

65. Thomson, W. T.: Deflection of Beams by the Operational Method, JJ. Franklin Inst.,
vol. 247, no. 6, 1949.

66. Cook, R. D., and W. C. Young: “Advanced Mechanics of Materials,” 2nd ed., Prentice-
Hall, 1998.

67. Cook, R. D.: Deflections of a Series of Cantilevers Due to Elasticity of Support, ASME
J. Appl. Mech., vol. 34, no. 3, 1967.

68. Yu, Wei-Wen: “Cold-Formed Steel Design,” John Wiley & Sons, 1985.

69. White, R. N., and C. G. Salmon (eds.): “Building Structural Design Handbook,” John
Wiley & Sons, 1987.

70. American Institute of Steel Construction: “Manual of Steel Construction-Load and
Resistance Factor Design,” 1st ed., 1986.

71. Salmon, C. G., and J. E. Johnson: “Steel Structures: Design and Behavior,” 2nd ed.,
Harper & Row, 1980.

72. Budynas, R. G.: “Advanced Strength and Applied Stress Analysis,” 2nd ed., McGraw-
Hill, 1999.



Chapter

Curved Beams

9.1 Bending in the Plane of the Curve

In a straight beam having either a constant cross section or a cross
section which changes gradually along the length of the beam, the
neutral surface is defined as the longitudinal surface of zero fiber
stress when the member is subjected to pure bending. It contains the
neutral axis of every section, and these neutral axes pass through the
centroids of the respective sections. In this section on bending in the
plane of the curve, the use of the many formulas is restricted to those
members for which that axis passing through the centroid of a given
section and directed normal to the plane of bending of the member is a
principal axis. The one exception to this requirement is for a condition
equivalent to the beam being constrained to remain in its original
plane of curvature such as by frictionless external guides.

To determine the stresses and deformations in curved beams satis-
fying the restrictions given above, one first identifies several cross
sections and then locates the centroids of each. From these centroidal
locations the curved centroidal surface can be defined. For bending in
the plane of the curve there will be at each section (1) a force N normal
to the cross section and taken to act through the centroid, (2) a shear
force V parallel to the cross section in a radial direction, and (3) a
bending couple M in the plane of the curve. In addition there will be
radial stresses ¢, in the curved beam to establish equilibrium. These
internal loadings are shown in Fig. 9.1(a), and the stresses and
deformations due to each will be evaluated.

Circumferential normal stresses due to pure bending. When a curved
beam is bent in the plane of initial curvature, plane sections remain
plane, but because of the different lengths of fibers on the inner and
outer portions of the beam, the distribution of unit strain, and there-
fore stress, is not linear. The neutral axis does not pass through the
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Figure 9.1

centroid of the section and Eqgs. (8.1-1) and (8.1-2) do not apply. The
error involved in their use is slight as long as the radius of curvature is
more than about eight times the depth of the beam. At that curvature
the errors in the maximum stresses are in the range of 4 to 5%. The
errors created by using the straight-beam formulas become large for
sharp curvatures as shown in Table 9.1, which gives formulas and
selected numerical data for curved beams of several cross sections and
for varying degrees of curvature. In part the formulas and tabulated
coefficients are taken from the University of Illinois Circular by
Wilson and Quereau (Ref. 1) with modifications suggested by Neuge-
bauer (Ref. 28). For cross sections not included in Table 9.1 and for
determining circumferential stresses at locations other than the
extreme fibers, one can find formulas in texts on advanced mechanics
of materials, for example, Refs. 29 and 36.
The circumferential normal stress g, is given as

My
= 9.1-1

% Aer ( )
where M is the applied bending moment, A is the area of the cross
section, e is the distance from the centroidal axis to the neutral axis,
and y and r locate the radial position of the desired stress from the

neutral axis and the center of the curvature, respectively. See Fig.
9.1(b).

e:R—rn:R—L forE<8 (9.1-2)

J aayr @
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Equations (9.1-1) and (9.1-2) are based on derivations that neglect the
contribution of radial normal stress to the circumferential strain. This
assumption does not cause appreciable error for curved beams of
compact cross section for which the radial normal stresses are small,
and it leads to acceptable answers for beams having thin webs where,
although the radial stresses are higher, they occur in regions of the
cross section where the circumferential bending stresses are small.
The use of the equations in Table 9.1 and of Egs. (9.1-1) and (9.1-2) is
limited to values of R/d > 0.6 where, for a rectangular cross section, a
comparison of this mechanics-of-materials solution [Eq. (9.1-1)] to the
solution using the theory of elasticity shows the mechanics of materi-
als solution to indicate stresses approximately 10% too large.

While in theory the curved-beam formula for circumferential bend-
ing stress, Eq. (9.1-1), could be used for beams of very large radii of
curvature, one should not use the expression for e from Eq. (9.1-2) for
cases where R/d, the ratio of the radius of the curvature R to the depth
of the cross section, exceeds 8. The calculation for e would have to be
done with careful attention to precision on a computer or calculator to
get an accurate answer. Instead one should use the following approx-
imate expression for e which becomes very accurate for large values of
R/d. See Ref. 29.

e%é—z for§> 8 (9.1-3)
where I, is the area moment of inertia of the cross section about the
centroidal axis. Using this expression for e and letting R approach
infinity leads to the usual straight-beam formula for bending stress.

For complex sections where the table or Eq. (9.1-3) are inappro-
priate, a numerical technique that provides excellent accuracy can be
employed. This technique is illustrated on pp. 318-321 of Ref. 36.

In summary, use Eq. (9.1-1) with e from Eq. (9.1-2) for 0.6 < R/d < 8.
Use Eq. (9.1-1) with e from Eq. (9.1-3) for those curved beams
for which R/d > 8 and where errors of less than 4 to 5% are desired,
or use straight-beam formulas if larger errors are acceptable or if
R/d > 8.

Circumferential normal stresses due to hoop tension N(M=0). The
normal force N was chosen to act through the centroid of the cross
section, so a constant normal stress N/A would satisfy equilibrium.
Solutions carried out for rectangular cross sections using the theory of
elasticity show essentially a constant normal stress with higher values
on a thin layer of material on the inside of the curved section and lower
values on a thin layer of material on the outside of the section. In most
engineering applications the stresses due to the moment M are much
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larger than those due to N, so the assumption of uniform stress due to
N is reasonable.

Shear stress due to the radial shear force V. Although Eq. (8.1-2) does
not apply to curved beams, Eq. (8.1-13), used as for a straight beam,
gives the maximum shear stress with sufficient accuracy in most
instances. Again an analysis for a rectangular cross section carried
out using the theory of elasticity shows that the peak shear stress in a
curved beam occurs not at the centroidal axis as it does for a straight
beam but toward the inside surface of the beam. For a very sharply
curved beam, R/d = 0.7, the peak shear stress was 2.04V/A at a
position one-third of the way from the inner surface to the centroid.
For a sharply curved beam, R/d = 1.5, the peak shear stress was
1.56V /A at a position 80% of the way from the inner surface to the
centroid. These values can be compared to a peak shear stress of
1.5V /A at the centroid for a straight beam of rectangular cross section.

If a mechanics-of-materials solution for the shear stress in a curved
beam is desired, the element in Fig. 9.2(b) can be used and moments
taken about the center of curvature. Using the normal stress distribu-
tion oy = N/A 4+ My/AeR, one can find the shear stress expression to
be

_V(R—e)
Tpy = W(RAr - Q) (9.1-4)

where ¢, is the thickness of the section normal to the plane of
curvature at the radial position r and
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Figure 9.2
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Equation (9.1-4) gives conservative answers for the peak values of
shear stress in rectangular sections when compared to elasticity
solutions. The locations of peak shear stress are the same in both
analyses, and the error in magnitude is about 1%.

Radial stresses due to moment Mand normal force N. Owing to the radial
components of the fiber stresses, radial stresses are present in a
curved beam; these are tensile when the bending moment tends to
straighten the beam and compressive under the reverse condition. A
mechanics-of-materials solution may be developed by summing radial
forces and summing forces perpendicular to the radius using the
element in Fig. 9.2.

- R_e[(M—NR)(Jr%—RArJ+¥(RA'"_Q'")] (9.1-6)

 tAer b T —

Equation (9.1-6) is as accurate for radial stress as is Eq. (9.1-4) for
shear stress when used for a rectangular cross section and compared
to an elasticity solution. However, the complexity of Eq. (9.1-6) coupled
with the fact that the stresses due to IV are generally smaller than
those due to M leads to the usual practice of omitting the terms
involving N. This leads to the equation for radial stress found in
many texts, such as Refs. 29 and 36.

R—e_(["dA, A,
7= G der ( Lr—l_R——e) ®1-7

Again care must be taken when using Eqgs. (9.1-4), (9.1-6), and (9.1-7)
to use an accurate value for e as explained above in the discussion
following Eq. (9.1-3).

Radial stress is usually not a major consideration in compact
sections for it is smaller than the circumferential stress and is low
where the circumferential stresses are large. However, in flanged
sections with thin webs the radial stress may be large at the junction
of the flange and web, and the circumferential stress is also large at
this position. This can lead to excessive shear stress and the possible
yielding if the radial and circumferential stresses are of opposite sign.
A large compressive radial stress in a thin web may also lead to a
buckling of the web. Corrections for curved-beam formulas for sections
having thin flanges are discussed in the next paragraph but correc-
tions are also needed if a section has a thin web and very thick flanges.
Under these conditions the individual flanges tend to rotate about
their own neutral axes and larger radial and shear stresses are
developed. Broughton et al. discuss this configuration in Ref. 31.
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EXAMPLES

1. The sharply curved beam with an elliptical cross section shown in Fig. 9.3(a)
has been used in a machine and has carried satisfactorily a bending moment of
2(108) N-mm. All dimensions on the figures and in the calculations are given in
millimeters. A redesign does not provide as much space for this part, and a
decision has been made to salvage the existing stock of this part by machining
10mm from the inside. The question has been asked as to what maximum
moment the modified part can carry without exceeding the peak stress in the
original installation.

Solution. First compute the maximum stress in the original section by using
case 6 of Table 9.1. R=100,c¢=50,R/c=2,A =n(50)(20) = 3142, e/c=
0.5[2 — (22 — 1)/%]1 = 0.1340, e = 6.70, and r, = 100 — 6.7 = 93.3. Using these
values the stress o; can be found as

My 2(10°)(93.3 —50) )
%= der —  31426.7)50) 2o N/mm

Alternatively one can find g; from o; = k;Mc/I,, where k; is found to be 1.616 in
the table of values from case 6

__ (1616)2)(10°)(50) _

; (20)(50)°/4 82.3 N/mm?

Next consider the same section with 10 mm machined from the inner edge as
shown in Fig. 9.3(b). Use case 9 of Table 9.1 with the initial calculations based
on the equivalent modified circular section shown in Fig. 9.3(c). For this
configuration o = cos~1(—40/50) = 2.498 rad (143.1°), sina = 0.6, cos o = —0.8,
R, =100, a =50, a/c = 1.179, ¢ = 42.418, R = 102.418, and R/c = 2.415. In
this problem R, > a, so by using the appropriate expression from case 9 one
obtains e/c = 0.131 and e = 5.548. R, ¢, and e have the same values for the
machined ellipse, Fig. 9.3(b), and from case 18 of Table A.1 the area is found to
be A = 20(50)(x — sinacosa) = 2978. Now the maximum stress on the inner
surface can be found and set equal to 82.3 N/mm?.

ggg_ My _ M(102.42 — 5.548 — 60)
0T O80T Aoy T T 2978(5.548)(60)

82.3 = 37.19(10M, M =2.21(10°)N-mm

One might not expect this increase in M unless consideration is given to the
machining away of a stress concentration. Be careful, however, to note that,

! T
50 50 50
X X X X X X
40 40
50 100
i A
13).‘0 L IOJ’O i
T 40 T I
(a) (b) (c)

Figure 9.3
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——L Figure 9.4

although removing the material reduced the peak stress in this case, the part
will undergo greater deflections under the same moment that it carried before.

2. A curved beam with a cross section shown in Fig. 9.4 is subjected to a
bending moment of 107 N-mm in the plane of the curve and to a normal load of
80,000 N in tension. The center of the circular portion of the cross section has a
radius of curvature of 160 mm. All dimensions are given and used in the
formulas in millimeters. The circumferential stresses in the inner and outer
fibers are desired.

Solution. This section can be modeled as a summation of three sections: (1)
a solid circular section, (2) a negative (materials removed) segment of a circle,
and (3) a solid rectangular section. The section properties are evaluated in the
order listed above and the results summed for the composite section.

Section 1. Use case 6 of Table 9.1. R=160, b =200, ¢ =100, R/c=1.6,
[dA/r = 200[1.6 — (1.6% — 1)/*] = 220.54, and A = n(100%) = 31,416.

Section 2. Use case 9 of Table 9.1. a==n/6 (30°), R, =160, a = 100,
R./a=1.6, a/c=18.55, ¢ =5.391, R=252.0, [dA/r = 3.595, and from case
20 of Table A.1, A = 905.9.

Section 3. Use case 1 of Table 9.1. R =160+ 100cos30° + 25 = 271.6,
b =100, ¢=25 R/c=10.864, A=5000, [dA/r=100In(11.864/9.864)=
18.462.

For the composite section; A = 31,416 —905.9+ 5000 = 35,510, R =
[31,416(160) — 905.9(252)+ 5000(272.6)]/35,510 = 173.37, ¢ = 113.37, [dA/r =
220.54 — 3.595 + 18.462 = 235.4, r, = A/(| dA/r) = 35,510/235.4 = 150.85, ¢ =
R—r, =2252.

Using these data the stresses on the inside and outside are found to be

My N 107(150.85 — 60) 80,000

%= Aer T A~ 35,510(22.52)(60) ' 35,510
=18.93+2.25 = 21.18 N/mm?

__ 107(150.85 — 296.6) | 80,000
° = 35,510(22.52)(296.6) | 35,510

= —6.14+ 2.25 = —3.89 N/mm?

Curved beams with wide flanges. In reinforcing rings for large pipes,
airplane fuselages, and ship hulls, the combination of a curved sheet
and attached web or stiffener forms a curved beam with wide flanges.
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Formulas for the effective width of a flange in such a curved beam are
given in Ref. 9 and are as follows.

When the flange is indefinitely wide (e.g., the inner flange of a pipe-
stiffener ring), the effective width is

b = 1.56V Rt

where b’ is the total width assumed effective, R is the mean radius of
curvature of the flange, and ¢ is the thickness of the flange.

When the flange has a definite unsupported width b (gross width
less web thickness), the ratio of effective to actual width &'/b is a

function of ¢b, where
431 =)
1= R2¢2

Corresponding values of gb and b'/b are as follows:

qb 1 2 3 4 5 6 7 8 9 10 11
b'/b 10.980 0.850 0.610 0.470 0.380 0.328 0.273 0.244 0.217 0.200 0.182

For the curved beam each flange should be considered as replaced by
one of corresponding effective width &', and all calculations for direct,
bending, and shear stresses, including corrections for curvature,
should be based on this transformed section.

Bleich (Ref. 10) has shown that under a straightening moment
where the curvature is decreased, the radial components of the fiber
stresses in the flanges bend both flanges radially away from the web,
thus producing tension in the fillet between flange and web in a
direction normal to both the circumferential and radial normal stres-
ses discussed in the previous section. Similarly, a moment which
increases the curvature causes both flanges to bend radially toward
the web and produce compressive stresses in the fillet between flange
and web. The nominal values of these transverse bending stresses ¢’ in
the fillet, without any correction for the stress concentration at the
fillet, are given by |o’| = |f0,,|, where g,, is the circumferential bending
stress at the midthickness of the flange. This is less than the maxi-
mum value found in Table 9.1 and can be calculated by using Eq.
(9.1-1). See the first example problem. The value of the coefficient f
depends upon the ratio c?/Rt, where c is the actual unsupported
projecting width of the flange to either side of the web and R and ¢
have the same meaning they did in the expressions for b and g. Values
of f may be found from the following table; they were taken from Ref.
10, where values of b’ are also tabulated.
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¢Z/Rt=0 0.1 0.2 0.3 0.4 0.5 0.6 0.8
=0 0.297 0.580 0.836 1.056 1.238 1.382 1.577
Z/Rt=1 1.2 1.4 1.5 2 3 4 5
p=1.677 1.721 1.732 1.732 1.707 1.671 1.680 1.700

Derivations of expressions for &'/b and for f§ are also found in Ref. 29.
Small differences in the values given in various references are due to
compensations for secondary effects. The values given here are conser-
vative.

In a similar way, the radial components of the circumferential
normal stresses distort thin tubular cross sections of curved beams.
This distortion affects both the stresses and deformations and is
discussed in the next section.

U-shaped members. A U-shaped member having a semicircular inner
boundary and a rectangular outer boundary is sometimes used as a
punch or riveter frame. Such a member can usually be analyzed as a
curved beam having a concentric outer boundary, but when the back
thickness is large, a more accurate analysis may be necessary. In Ref.
11 are presented the results of a photoelastic stress analysis of such
members in which the effects of variations in the several dimensions
were determined. See case 23, Table 17.1

Deflections. If a sharply curved beam is only a small portion of a
larger structure, the contribution to deflection made by the curved
portion can best be calculated by using the stresses at the inner and
outer surfaces to calculate strains and the strains then used to
determine the rotations of the plane sections. If the structure is
made up primarily of a sharply curved beam or a combination of
such beams, then refer to the next section.

9.2 Deflection of Curved Beams

Deflections of curved beams can generally be found most easily by
applying an energy method such as Castigliano’s second theorem. One
such expression is given by Eq. (8.1-7). The proper expression to use
for the complementary energy depends upon the degree of curvature
in the beam.

Deflection of curved beams of large radius. If for a curved beam the
radius of curvature is large enough such that Eqs. (8.1-1) and (8.1-2)
are acceptable, i.e., the radius of curvature is greater than 10 times
the depth, then the stress distribution across the depth of the beam is
very nearly linear and the complementary energy of flexure is given
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with sufficient accuracy by Eq. (8.1-3). If, in addition, the angular span
is great enough such that deformations due to axial stress from the
normal force NV and the shear stresses due to transverse shear V can be
neglected, deflections can be obtained by applying Egs. (8.1-3) and
(8.1-7) and rotations by Eq. (8.1-8). The following example shows how
this is done.

EXAMPLE

Figure 9.5 represents a slender uniform bar curved to form the quadrant of a
circle; it is fixed at the lower end and at the upper end is loaded by a vertical
force V, a horizontal force H, and a couple M. It is desired to find the vertical
deflection ¢,, the horizontal deflection d,, and the rotation 0 of the upper end.

Solution. According to Castigliano’s second theorem, ¢, =dU/aV, 0, =
dU/0H, and 0 = 0U/dM,. Denoting the angular position of any section by x,
it is evident that the moment there is M = VRsinx+ HR(1 — cosx) + M,,.
Disregarding shear and axial stress, and replacing ds by Rdx, we have [Eq.
(8.1-3)]

™2 [VRsinx + HR(1 — cos x) + M,>R dx
. oK1

Instead of integrating this and then carrying out the partial differentiations,
we will differentiate first and then integrate, and for convenience suppress the
constant term EI until all computations are completed. Thus

Y
YTV

0

/2
= [ [VRsinx + HR(1 — cos x) + Myl(R sinx)R dx
Jo

n/2
= VR*(x — Jsinxcosx) — HR?(cosx —|—%sin2 x) — MyR? cos x .
_ (x/HVR® + LHR® + M,R?
- EI
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U
(3x - ﬁ
/2
= J [VRsinx + HR(1 — cos x) + MylR(1 — cosx)R dx
0
/2
= VR*(—cosx — %sin2 x) + HR?(3x — 2 sinx + § sinx cos x) + MyR?(x — sin x)
0
_ 3VR® 4+ (§n — 2)HR® + (/2 — 1)M,R*
- EI
U
0 —_ TZW()

/2
= J [VRsinx + HR(1 — cosx) + My]R dx
0

/2
= —VR? cosx + HR?(x — sinx) + M,Rx

0
_ VR%+ (/2 — DHR? + (n/2)M,R
- EI

The deflection produced by any one load or any combination of two loads is
found by setting the other load or loads equal to zero; thus, V alone would
produce 6, =3 VR3/EI, and M alone would produce 6, = MyR?/EI. In this
example all results are positive, indicating that J, is in the direction of H, 6, in
the direction of V, and 6 in the direction of M.

Distortion of tubular sections. In curved beams of thin tubular section,
the distortion of the cross section produced by the radial components of
the fiber stresses reduces both the strength and stiffness. If the beam
curvature is not so sharp as to make Egs. (8.1-1) and (8.1-4) inap-
plicable, the effect of this distortion of the section can be taken into
account as follows.

In calculating deflection of curved beams of hollow circular section,
replace I by KI, where

9
10 + 12(tR/a2)*

(Here R =the radius of curvature of the beam axis, a =the outer
radius of tube section, and ¢ =the thickness of tube wall.) In calculat-
ing the maximum bending stress in curved beams of hollow circular
section, use the formulas

Ma 2
Gy = o aty = —— if£§< 1.472
I 3K./3p a

N
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or
_Mal-p

Gmax - I K

LR
aty=a if — > 1.472
a

where

6

b= eura?

and y is measured from the neutral axis. Torsional stresses and
deflections are unchanged.

In calculating deflection or stress in curved beams of hollow square
section and uniform wall thickness, replace I by

1+40.0270n
14 0.0656n

where n = b*/R?t?. (Here R =the radius of curvature of the beam axis,
b =the length of the side of the square section, and ¢ = the thickness of
the section wall.)

The preceding formulas for circular sections are from von Karman
(Ref. 4); the formulas for square sections are from Timoshenko (Ref. 5),
who also gives formulas for rectangular sections.

Extensive analyses have been made for thin-walled pipe elbows with
sharp curvatures for which the equations given above do not apply
directly. Loadings may be in-plane, out-of-plane, or in various combi-
nations (Ref. 8). Internal pressure increases and external pressure
decreases pipe-bend stiffness. To determine ultimate load capacities of
pipe bends or similar thin shells, elastic-plastic analyses, studies of the
several modes of instability, and the stabilizing effects of flanges and
the piping attached to the elbows are some of the many subjects
presented in published works. Bushnell (Ref. 7) included an extensive
list of references. Using numerical results from computer codes,
graphs of stress indices and flexibility factors provide design data
(Refs. 7, 19, and 34).

Deflection of curved beams of small radius. For a sharply curved beam,
1.e., the radius of curvature is less than 10 times the depth, the stress
distribution is not linear across the depth. The expression for the
complementary energy of flexure is given by

M? M?
U=|——=Rdx=|-—4d 9.2-1

f JZAEeR x J2AEe * (9.2-1)
where A is the cross-sectional area, E is the modulus of elasticity, and e
is the distance from the centroidal axis to the neutral axis as given in
Table 9.1. The differential change in angle dx is the same as is used in
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the previous example. See Fig. 9.1. Also keep clearly in mind that the
bending in the plane of the curvature must be about a principal axis or
the restraints described in the first paragraph of Sec. 9.1 must be
present.

For all cross sections the value of the product AeR approaches the
value of the moment of inertia I when the radius of curvature becomes
greater than 10 times the depth. This is seen clearly in the following
table where values of the ratio AeR/I are given for several sections
and curvatures.

R/d
Case
no. Section 1 3 5 10
1 Solid rectangle 1.077 1.008 1.003 1.001
2 Solid circle 1.072 1.007 1.003 1.001
5 Triangle (base inward) 0.927 0.950 0.976 0.988
6 Triangle (base outward) 1.268 1.054 1.030 1.014

For curved beams of large radius the effect on deflections of the shear
stresses due to V and the circumferential normal stresses due to N
were small unless the length was small. For sharply curved beams the
effects of these stresses must be considered. Only the effects of the
radial stresses o, will be neglected. The expression for the comple-
mentary energy including all but the radial stresses is given by

M? FV’R N’R MN

where all the quantities are defined in the notation at the top of Table
9.2.

The last term, hereafter referred to as the coupling term, involves
the complementary energy developed from coupling the strains from
the bending moment M and the normal force N. A positive bending
moment M produces a negative strain at the position of the centroidal
axis in a curved beam, and the resultant normal force N passes
through the centroid. Reasons have been given for and against
including the coupling term in attempts to improve the accuracy of
calculated deformations (see Refs. 3 and 29). Ken Tepper, Ref. 30,
called attention to the importance of the coupling term for sharply
curved beams. The equations in Tables 9.2 and 9.3 have been modified
and now include the effect of the coupling term. With this change, the
formulas given in Tables 9.2 and 9.3 for the indeterminate reactions
and for the deformations are no longer limited to thin rings and arches
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but can be used as well for thick rings and arches. As before, for thin
rings and arches « and f can be set to zero with little error.

To summarize this discussion and its application to the formulas in
Tables 9.2 and 9.3, one can place a given curved beam into one of three
categories: a thin ring, a moderately thick ring, and a very thick or
sharply curved ring. The boundaries between these categories depend
upon the R/d ratio and the shape of the cross section. Reference to the
preceding tabulation of the ratio AeR/I will be helpful.

For thin rings the effect of normal stress due to N and shear stress
due to V can be neglected; i.e., set « and f equal to zero. For
moderately thick rings and arches use the equations as they are
given in Tables 9.2 and 9.3. For thick rings and arches replace the
moment of inertia I with the product AeR in all equations including
those for o and f. To illustrate the accuracy of this approach, the
previous example problem will be repeated but for a thick ring of
rectangular cross section. The rectangular cross section was chosen
because a solution can be obtained by using the theory of elasticity
with which to compare and evaluate the results.

EXAMPLE

Figure 9.6 represents a thick uniform bar of rectangular cross section having a
curved centroidal surface of radius R. It is fixed at the lower end, and the
upper end is loaded by a vertical force V, a horizontal force H, and a couple M,.
It is desired to find the vertical deflection J,, the horizontal deflection J,, and
the rotation 0 of the upper end. Note that the deflections §, and ¢, are the
values at the free end and at the radial position R at which the load H is
applied.

First Solution. Again Castigliano’s theorem will be used. First find the
moment, shear, and axial force at the angular position x.

M, = VRsinx + HR(1 — cosx) + M,
V,=Vcosx+ Hsinx
N,=—Hcosx+ Vsinx

Since the beam is to be treated as a thick beam the expression for comple-
mentary energy is given by

M? FV2R N2ZR M_N,
U+j2AEedx+j 9AG dx+J2Ade—J AT dx

ok
—

(a) (b) Figure 9.6
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The deflections can now be calculated

aw (P M, . "2 FV.R "2N.R .
oy = e Jo E(R sin x)dx + Jo G (cosx)dx + L) ﬁ(sm x)dx
Y2 M, . ™2 N, .
— ,[0 E(sm x)dx — Jo E(R sin x)dx
_ (n/4)VR? + 0.5HR® + M,R? N 0.5R(nV/2 4+ H)2F(1+v)—1] - M,
- EAeR AE
aU  ("*M,R "2FV.R . "2 N.R
NS H L A_Ee(l — cosx)dx + Jo A (sinx)dx + Jo AR (—cosx)dx
/2 Mx /2 NxR
- L E(_ cos x)dx — L AR (1 — cosx)dx
_ 0.5VR® + (3n/4 — 2)HR? + (n/2 — 1)M,R*
- EAeR
N 0.5VR[2F(1 +v) — 1]+ (n/4)HR[2F(1 +v) + 8/n — 1] + M,
EA
U (Y2 M, "2FV.R "2 N.R "2 M,
0= oM, = Jo AEe(l)dx—l— L yYe (0)dx + L AR O)dx — Iy E(O)dx
/2 N

_ VR (n/2 ~ VHE® + (i/2M,R | H -V
- EAeR AE

There is no need to reduce these expressions further in order to make a
numerical calculation, but it is of interest here to compare to the solutions in
the previous example. Therefore, let « = ¢/R and ff = FEe/GR = 2F(1 +v)/R
as defined previously

5 = (n/4)VR*(1 — a4 p) + 0.5HR3*(1 — o+ B) + M,R*(1 — )

Y EAeR
5 — 0.5VR3(1 — a4 ) + HR?[(3n/4 — 2) + (2 — n/4)o + (n/4)f]
e EAeR
M,R*(n/2 — 1 + o)
EAeR
o VR2(1 — o) + HR*(n/2 — 1 + ) + (n/2)M,R

EAeR

Up to this point in the derivation, the cross section has not been specified. For
a rectangular cross section having an outer radius a and an inner radius b and
of thickness ¢ normal to the surface shown in Fig. 9.6(b), the following
substitutions can be made in the deformation equations. Let v = 0.3.

a+b
o
e 2(a — b)

a===1

R~ (a+b)ln(a/b)’

R=

A =(a- b, F =12 (see Sec.8.10)

B =3.124
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In the following table the value of a/b is varied from 1.1, where R/d = 10.5, a
thin beam, to a/b = 5.0, where R/d = 0.75, a very thick beam. Three sets of
numerical values are compared. The first set consists of the three deformations
d,, 0, and 0 evaluated from the equations just derived and due to the vertical
load V. The second set consists of the same deformations due to the same
loading but evaluated by applying the equations for a thin curved beam from
the first example. The third set consists of the same deformations due to the
same loading but evaluated by applying the theory of elasticity. See Ref. 2. The
abbreviation MM in parentheses identifies the values from the mechanics-of-
materials solutions and the abbreviation EL similarly identifies those found
from the theory of elasticity.

From thick-beam theory From thin-beam theory

0, (MM) 6, (MM) O(MM) 0,(MM) 6,(MM) 6(MM)
a/b R/d o,(EL) 0,.(EL) 0(EL) 0,(EL) o.(EL) O(EL)
1.1 10.5 0.9996 0.9990 0.9999 0.9986 0.9980 1.0012
1.3 3.83 0.9974 0.9925 0.9991 0.9900 0.9852 1.0094
1.5 2.50 0.9944 0.9836 0.9976 0.9773 0.9967 1.0223
1.8 1.75 0.9903 0.9703 0.9944 0.9564 0.9371 1.0462
2.0 1.50 0.9884 0.9630 0.9916 0.9431 0.9189 1.0635
3.0 1.00 0.9900 0.9485 0.9729 0.8958 0.8583 1.1513
4.0 0.83 1.0083 0.9575 0.9511 0.8749 0.8345 1.2304
5.0 0.75 1.0230 0.9763 0.9298 0.8687 0.8290 1.2997

If reasonable errors can be tolerated, the strength-of-materials solutions are
very acceptable when proper recognition of thick and thin beams is given.

Second Solution. Table 9.3 is designed to enable one to take any angular
span 20 and any single load or combination of loads and find the necessary
indeterminate reactions and the desired deflections. To demonstrate this use of
Table 9.3 in this example the deflection ¢, will be found due to a load H. Use of
case 12d, with load terms from case 5d and with 0 = n/4 and ¢ = n/4. Both
load terms LFy and LFy are needed since the desired deflection ¢, is not
in the direction of either of the deflections given in the table. Let c = m =
s=n=0.7071.

ky[m

LFy :H{ 0.7071 45

[ 0.7071 — 0.70713(2)] - k22(0.7071)}

LF, = H{—go.7071 _k [E 0.7071 + 0.70713(2)] + k24(0.70713)}

it
212

8, = (Oyq — 054)0.7071 = (LFV LF})0.7071

EAeR
~RH [ n kym R3H [3n n T
_EAeR(_E_E§+2k2> EAR[ 2+(2_Z>°‘+Zﬁ]

This expression for J, is the same as the one derived directly from Castigliano’s
theorem. For angular spans of 90 or 180° the direct derivation is not difficult,
but for odd-angle spans the use of the equations in Table 9.3 is recommended.
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Figure 9.7

The use of the equations in Table 9.3 is also recommended when deflections
are desired at positions other than the load point. For example, assume the
deflections of the midspan of this arch are desired when it is loaded with the end
load H as shown in Fig. 9.7(a). To do this, isolate the span from B to C and find
the loads Hp, V3, and Mp which act at point B. This gives Hz = V5 = 0.7071H
and My = HR(1 — 0.7071). Now, superpose cases 12¢, 12d, and 12n using these
loads and 0 = ¢ = 7/8. In a problem with neither end fixed, a rigid-body motion
may have to be superposed to satisfy the boundary conditions.

Deflection of curved beams of variable cross section and/or radius. None
of the tabulated formulas applies when either the cross section or the
radius of curvature varies along the span. The use of Egs. (9.2-1) and
(9.2-2), or of comparable expressions for thin curved beams, with
numerical integration carried out for a finite number of elements
along the span provides an effective means of solving these problems.
This is best shown by example.

EXAMPLE

A rectangular beam of constant thickness and a depth varying linearly along
the length is bent such that the centroidal surface follows the curve x = 0.25y?
as shown in Fig. 9.8. The vertical deflection at the loaded end is desired. To
keep the use of specific dimensions to a minimum let the depth of the curved
beam at the fixed end = 1.0, the thickness = 0.5, and the horizontal location of
the load P =1.0. The beam will be subdivided into eight segments, each
spanning 0.25 units in the y direction. Normally a constant length along the
span is used, but using constant Ay gives shorter spans where moments are
larger and curvatures are sharper. The numerical calculations are also easier.
Use will be made of the following expressions in order to provide the tabulated

Figure 9.8
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information from which the needed summation can be found. Note that y; and
x; are used here as the y and x positions of the midlength of each segment

2
x = 0.25y2, Z—;C — 0.5y, Z—Z; — 05,  Al=Ay1+x)"2
g 1+ (dx/dyy?
B d%x/d2y
e_E — 2 for R <8
c ¢ In[R/c+1)/(R/c—1)] 2¢
[see Eq. (9.1-1) and case 1 of Table 9.1] or
e I. #(2¢)® _c R
¢~ RAc 12(Ri2¢%) 3R for 5.>8

[see Eq. (9.1-3)].

The desired vertical deflection of the loaded end can be determined from
Castigliano’s theorem, using Eq. (9.2-2) for U in summation form rather than
integral form. This reduces to

. oU P _[M/P) V\? N\? MN]|Al
O=5P~ & [eR HE\p) 200+ (5) 2pp|a

P _ Al

“EX4

where [B] and [B]Al/A are the last two columns in the following table. The
internal forces and moments can be determined from equilibrium equations as

(B]

—=—(1—-x), Gi:tan_lg—;, V =Psin0;, and N = —Pcos0;

In the evaluation of the above equations for this problem, F' = 1.2 and v = 0.3.
In the table below one must fill in the first five columns in order to find the
total length of the beam before the midsegment depth 2c¢ can be found and the
table completed.

Element
no. ¥; X; R Al c R/c
1 0.125 0.004 2.012 0.251 0.481 4.183
2 0.375 0.035 2.106 0.254 0.442 4.761
3 0.625 0.098 2.300 0.262 0.403 5.707
4 0.875 0.191 2.601 0.273 0.362 7.180
5 1.125 0.316 3.020 0.287 0.320 9.451
6 1.375 0.473 3.574 0.303 0.275 13.019
7 1.625 0.660 4.278 0.322 0.227 18.860
8 1.875 0.879 5.151 0.343 0.176 29.243

2.295




sec. 9.3] Curved Beams 285

Element Al
no. e/c M/P V/P N/P [B] [B]Z
1 0.0809 —0.996 0.062 —0.998 11.695 6.092
2 0.0709 —0.965 0.184 —0.983 13.269 7.627
3 0.0589 —0.902 0.298 —0.954 14.370 9.431
4 0.0467 —0.809 0.401 -0.916 14.737 11.101
5 0.0354 —0.684 0.490 —0.872 14.007 12.569
6 0.0256 —0.527 0.567 —0.824 11.856 13.105
7 0.0177 —0.340 0.631 -0.776 8.049 11.431
8 0.0114 —0.121 0.684 —0.730 3.232 6.290
77.555

Therefore, the deflection at the load and in the direction of the load is
77.56P/E in whatever units are chosen as long as the depth at the fixed end
is unity. If one maintains the same length-to-depth ratio and the same shape,
the deflection can be expressed as § = 77.56P/(E2t,), where ¢, is the constant
thickness of the beam.

Michael Plesha (Ref. 33) provided a finite-element solution for this configura-
tion and obtained for the load point a vertically downward deflection of 72.4
units and a horizontal deflection of 88.3 units. The 22 elements he used were
nine-node, quadratic displacement, Lagrange elements. The reader is invited
to apply a horizontal dummy load and verify the horizontal deflection.

9.3 Circular Rings and Arches

In large pipelines, tanks, aircraft, and submarines the circular ring is
an important structural element, and for correct design it is often
necessary to calculate the stresses and deflections produced in such a
ring under various conditions of loading and support. The circular
arch of uniform section is often employed in buildings, bridges, and
machinery.

Rings. A closed circular ring may be regarded as a statically indeter-
minate beam and analyzed as such by the use of Castigliano’s second
theorem. In Table 9.2 are given formulas thus derived for the bending
moments, tensions, shears, horizontal and vertical deflections, and
rotations of the load point in the plane of the ring for various loads and
supports. By superposition, these formulas can be combined so as to
cover almost any condition of loading and support likely to occur.
The ring formulas are based on the following assumptions: (1) The
ring is of uniform cross section and has symmetry about the plane of
curvature. An exception to this requirement of symmetry can be made
if moment restraints are provided to prevent rotation of each cross
section out of its plane of curvature. Lacking the plane of symmetry
and any external constraints, out-of-plane deformations will accom-
pany in-plane loading. Meck, in Ref. 21, derives expressions concern-
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ing the coupling of in-plane and out-of-plane deformations of circular
rings of arbitrary compact cross section and resulting instabilities.
(2) All loadings are applied at the radial position of the centroid
of the cross section. For thin rings this is of little concern, but for
radially thick rings a concentrated load acting in other than a radial
direction and not at the centroidal radius must be replaced by a
statically equivalent load at the centroidal radius and a couple. For
case 15, where the loading is due to gravity or a constant linear
acceleration, and for case 21, where the loading is due to rotation
around an axis normal to the plane of the ring, the proper distribu-
tion of loading through the cross section is accounted for in the
formulas. (3) It is nowhere stressed beyond the elastic limit. (4)
It is not so severely deformed as to lose its essentially circular
shape. (5) Its deflection is due primarily to bending, but for thicker
rings the deflections due to deformations caused by axial tension or
compression in the ring and/or by transverse shear stresses in the
ring may be included. To include these effects, we can evaluate
first the coefficients « and f, the axial stress deformation factor, and
the transverse shear deformation factor, and then the constants £; and
ky. Such corrections are more often necessary when composite or
sandwich construction is employed. If no axial or shear stress correc-
tions are desired, o and f are set equal to zero and the values of k
are set equal to unity. (6) In the case of pipes acting as beams
between widely spaced supports, the distribution of shear stress
across the section of the pipe is in accordance with Eq. (8.1-2), and
the direction of the resultant shear stress at any point of the cross
section is tangential.

Note carefully the deformations given regarding the point or points
of loading as compared with the deformations of the horizontal and
vertical diameters. For many of the cases listed, the numerical values
of load and deflection coefficients have been given for several positions
of the loading. These coefficients do not include the effect of axial and
shear deformation.

No account has been taken in Table 9.2 of the effect of radial
stresses in the vicinity of the concentrated loads. These stresses
and the local deformations they create can have a significant effect
on overall ring deformations and peak stresses. In case 1 a reference
is made to Sec. 14.3 in which thick-walled rollers or rings are
loaded on the outer ends of a diameter. The stresses and deflections
given here are different from those predicted by the equations in
case 1. If a concentrated load is used only for purposes of super-
position, as is often the case, there is no cause for concern, but if an
actual applied load is concentrated over a small region and the ring is
sharply curved with thick walls, then one must be aware of the
possible errors.
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EXAMPLES

1. A pipe with a diameter of 13 ft and thickness of%in is supported at intervals
of 44 ft by rings, each ring being supported at the extremities of its horizontal
diameter by vertical reactions acting at the centroids of the ring sections. It is
required to determine the bending moments in a ring at the bottom, sides, and
top, and the maximum bending moment when the pipe is filled with water.

Solution. We use the formulas for cases 4 and 20 of Table 9.2. Taking the
weight of the water as 62.41b/ft? and the weight of the shell as 20.41b/ft?, the
total weight W of 44 ft of pipe carried by one ring is found to be 401,1001b.
Therefore, for case 20, W = 401,1001b; and for case 4, W = 250,5501b and
0 = /2. Assume a thin ring, o« = = 0.

At bottom:

M = M, = 0.2387(401,100)(6.5)(12) — 0.50(200,550)(78)
= 7.468(10%) — 7.822(10%) = —354,000 1b-in

At top:

M = M, = 0.0796(401,100)(78) — 0.1366(200,550)(78) = 354,000 Ib-in
N = N, =0.2387(401,100) — 0.3183(200,500) = 31,900 1b
V = VA . 0

At sides:

where for x=n/2, wu=0, z=1, and LTy =WR/n)(1—u—xz/2)=
[401,100(78)/n] (1 — /4) = 2.137(10%) for case 20, and LT, =0 for case 4
since z — s = 0. Therefore

M = 354,000 — 31,900(78)(1 — 0) + 0 + 2.137(10°%) = 2800 Ib-in

The value of 2800 1b-in is due to the small differences in large numbers used in
the superposition. An exact solution would give zero for this value. It is
apparent that at least four digits must be carried.

To determine the location of maximum bending moment let 0 < x < 7/2 and
examine the expression for M:

R .
M =M, — N,R(1 — cosx) -|-WT (1 _ COSx_xs;nx)

aM

X
_— cosx
dx

. R . R .
= —NARs1nx+W—s1nx—W—s1nx—
m 2n

= 31,950R sin x — 63,800Rx cos x
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At x=x;, let dM/dx=0 or sinx; =2x;cosx;, which yields x; =
66.8°(1.166 rad). At x = x; = 66.8°,

401,1
M = 354,00 — 31,900(78)(1 — 0.394) + 401,100(78)
Y

[1 0894 1.166(0.919)]

2

= —455,0001b-in (max negative moment)

Similarly, at x = 113.2°, M = 455,000 1b-in (max positive moment).

By applying the supporting reactions outside the center line of the ring at a
distance a from the centroid of the section, side couples that are each equal to
Wa/2 would be introduced. The effect of these, found by the formulas for case
3, would be to reduce the maximum moments, and it can be shown that the
optimum condition obtains when a = 0.04R.

2. The pipe of Example 1 rests on soft ground, with which it is in contact over
150° of its circumference at the bottom. The supporting pressure of the soil
may be assumed to be radial and uniform. It is required to determine the
bending moment at the top and bottom and at the surface of the soil. Also the
bending stresses at these locations and the change in the horizontal diameter
must be determined.

Solution. A section of pipe 1in long is considered. The loading may be
considered as a combination of cases 12, 15, and 16. Owing to the weight of the
pipe (case 15, w = 0.14161b/in), and letting Ky =k, =ky =1, and a = f =0,

~0.1416(78)°

M, — 4301b-in
0.1416(78
VA - O

and at x = 180 — 130 = 105° = 1.833 rad,
LTy = —0.1416(782)[1.833(0.966) — 0.259 — 1] = —440lb-in
Therefore

M5 = 430 — 5.52(78)(1 + 0.259) — 440 = —5521b-in
M, = 1.5(0.1416)(78) = 1292 1b-in

Owing to the weight of contained water (case 16, p = 0.03611b/in®),

3

My = 00T _ o i
2

N, = QO gy,

VAZO
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and at x = 105°,

= 64001b-in/in

LT, = 0.0361(783)[1 +0.259 — W]

Therefore

M5 = 4283 — 164.7(78)(1 + 0.259) + 6400 = —5490Ib-in/in

3
M, - %78)(3) — 12,8501b-in/in

Owing to earth pressure and the reversed reaction (case 12, 0 = 105°),

2wRsin § = 21R(0.1416) + 0.03617R% = 7591b (w = 5.041b/in)

M, = M[o.%e + (m — 1.833)(=0.259) — 1(n — 1.833 — 0.966)]
= —2777in-lb
N, = %4(78)[0.966 + (n — 1.833)(—0.259)] = —78.51b
V,=0
LTy =0

M,y = —2777 4 78.5(78)(1.259) = 49301b-in
1.833(1 — 0.2
M = —5.04(782)M = —13,2601b-in
T

Therefore, for the 1in section of pipe

M, =430+ 4283 — 2777 = 1936 1b-in

M, .
04 = Gt;‘ = 46,5001b/in”

M p5. = —552 — 5490 4+ 4930 = —11121b-in
0105 = 26,7001b/in’
My = 1292 + 12,850 — 13,260 = 8821b-in
oo = 21,2001b/in’
The change in the horizontal diameter is found similarly by superimposing
the three cases. For E use 30(10%)/(1 — 0.2852%) = 32.65(10)1b/in%, since a

plate is being bent instead of a narrow beam (see page 169). For I use the
moment of inertia of a 1-in-wide piece, 0.51n thick:

I =1(1)(0.5%) = 0.0104in", EI = 340,0001b-in?
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From case 12:

_ —5.04(78%) [(n — 1.833)(—0.259) + 0.966 2

ADy = — 157500 5 —~(n—1.833 — 0.966)
_ —5.04(78)* B .
= —340.000 (*-0954) = —52.37in

From case 15:

0.4292(0.1416)784
AD,; =
H 340,000

= 6.6161n

From case 16:

_0.2146(0.0361)78°

ADy = 340,000 =65.791n

The total change in the horizontal diameter is 201in. It must be understood at
this point that the anwers are somewhat in error since this large a deflection
does violate the assumption that the loaded ring is very nearly circular. This
was expected when the stresses were found to be so large in such a thin pipe.

Arches. Table 9.3 gives formulas for end reactions and end deforma-
tions for circular arches of constant radius of curvature and constant
cross section under 18 different loadings and with 14 combinations of
end conditions. The corrections for axial stress and transverse shear
are accomplished as they were in Table 9.2 by the use of the constants
o and . Once the indeterminate reactions are known, the bending
moments, axial loads, and transverse shear forces can be found from
equilibrium equations. If deformations are desired for points away
from the ends, the unit-load method [Eq. (8.1-6)] can be used or the
arch can be divided at the position where the deformations are desired
and either portion analyzed again by the formulas in Table 9.3.
Several examples illustrate this last approach. Note that in many
instances the answer depends upon the difference of similar large
terms, and so appropriate attention to accuracy must be given.

EXAMPLES

1. A WT'4 x 6.5 structural steel T-beam is formed in the plane of its web into a
circular arch of 50-in radius spanning a total angle of 120°. The right end is
fixed, and the left end has a pin which is constrained to follow a horizontal slot
in the support. The load is applied through a vertical bar welded to the beam,
as shown in Fig. 9.9. Calculate the movement of the pin at the left end, the
maximum bending stress, and the rotation of the bar at the point of attach-
ment to the arch.

Solution. The following material and cross-sectional properties may be used
for this beam. E = 30(10°) Ib/in?, G = 12(10%)1b/in%, I, = 2.90in* A = 1.92in?
flange thickness =0.2541in, and web thickness =0.2301in. The loading on the
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Figure 9.9

arch can be replaced by a concentrated moment of 8000 1b-in and a horizontal
force of 10001b at a position indicated by ¢ = 20° (0.349 rad). R = 50in and
0 = 60° (1.047 rad). For these loads and boundary conditions, cases 9b and 9n
of Table 9.3 can be used.

Since the radius of 501in is only a little more than 10 times the depth of 41in,
corrections for axial load and shear will be considered. The axial-stress
deformation factor o = I/AR? = 2.9/1.92(50%) = 0.0006. The transverse-shear
deformation factor = FEI/GAR?, where F will be approximated here by
using F =1 and A = web area = 4(0.23) = 0.92. This gives f = 1(30)(10%)
(2.90)/12(10%)(0.92)(50%) = 0.003. The small values of o and f indicate that
bending governs the deformations, and so the effect of axial load and trans-
verse shear will be neglected. Note that s = sin 60°, ¢ = cos 60°, n = sin 20°,
and m = cos 20°.

For case 9b,

1.0472 + 0.3491 in 60° cos 60°
LFy = 1000[+(1 1 2cos 20° cos 60°) — %
_ sin 20° cos 20°

2
= 1000(—0.00785) = —7.851b

— co0s 20° sin 60° — sin 20° cos 600:|

Similarly,
LFy =1000(—0.1867) = —186.7lb and LFj; = 1000(—0.1040) = —104.01b
For the case 9n,

LFy = %(—0.5099) = —81.591b

LF, = %(_1.6489) — —263.81b

8000

Also,

Byy = 1.0472 + 2(1.0472) sin? 60° — sin 60° cos 60° = 2.18501b
By = 0.59311b
By = 1.81381b
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Therefore,
186.7 263.8
Vy=- 91850  2.1850 — —85.47 — 120.74 = —206.21b
503

St = —— _0.5931(—206.2) + 7.85 + 81.59] = —0.0472i
HA = 30(106)2.9) ( )+ 785+ 81.59] n

The expression for the bending moment can now be obtained by an
equilibrium equation for a position located by an angle x measured from the
left end:

M, = V,R[sin 0 — sin(0 — x)] + 8000({x — (8 — ¢))°
— 1000R[cos(0 — x) — cos ¢](x — (0 — ¢))°
At x = 40°— —206.2(50)[sin 60° — sin(60° — 40°)] = —5403 1b-in
At x = 40°+ —5403 + 8000 = 2597 Ib-in
At x = 60° M, = —206.2(50)(0.866) 4+ 8000 — 1000(50)(1 — 0.940)

= —39441b-in
At x=120° M, =12,1301b-in

M, =
M, =

The maximum bending stress is therefore

12,130(4 — 1. .
o= w = 12,420 1b/in?

To obtain the rotation of the arch at the point of attachment of the bar, we
first calculate the loads on the portion to the right of the loading and then
establish an equivalent symmetric arch (see Fig. 9.10). Now from cases 12a,
12b, and 12n, where 0 = ¢ = 40°(0.698 rad), we can determine the load terms:

For case 12a LF,; = —148[2(0.698)(0.643)] = —1331b

For case 12b  LF,; = 1010[0.643 + 0.643 — 2(0.698)(0.766)] = 2181b

2597
For case 12n LFy = W(—04698 —0.698) = -72.51b

Therefore, the rotation at the load is

—502

We would not expect the rotation to be in the opposite direction to the
applied moment, but a careful examination of the problem shows that the
point on the arch where the bar is fastened moves to the right 0.0128in.
Therefore, the net motion in the direction of the 1000-1b load on the end of the

8-in bar is 0.0099in, and so the applied load does indeed do positive work on
the system.

25971b-in
1000lb 2597 lb-in
20°%; 10101b -
l\i 60° g 40""‘*40“ Vi
206.21b Z '
1481b

Figure 9.10
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Figure 9.11

2. The deep circular arch of titanium alloy has a triangular cross section and
spans 120° as shown in Fig. 9.11. It is driven by the central load P to produce
an acceleration of 40g. The tensile stress at A and the deformations at the
extreme ends are required. All dimensions given and used in the formulas are
in centimeters.

Solution. This is a statically determinate problem, so the use of information
from Table 9.3 is needed only to obtain the deformations. Superposing the
central load and the forces needed to produce the acceleration on the total span
can be accomplished readily by using cases 3a and 3h. This solution, however,
will provide only the horizontal and rotational deformations of the ends. Using
the symmetry one can also superpose the loadings from cases 12h and 12i on
the left half of the arch and obtain all three deformations. Performing both
calculations provides a useful check. All dimensions are given in centimeters
and used with expressions from Table 9.1, case 5, to obtain the needed factors
for this section. Thus, =10, d =30, A=150, ¢ =10, R=30, R/c =3,
e/c =0.155, e = 1.55 and for the peak stresses, k; = 1.368 and k, = 0.697.
The titanium alloy has a modulus of elasticity of 117 GPa [11.7(10%N/cm?], a
Poisson’s ratio of 0.33, and a mass density of 4470 kg/m?, or 0.00447 kg/cm?®.
One g of acceleration is 9.81m/s% and 1cm of arc length at the centroidal
radius of 30 cm will have a volume of 150 cm?® and a mass of 0.6705kg. This
gives a loading parallel to the driving force P of 0.6705(40)(9.81) =263 N/cm of
centroidal arc length. Since this is a very sharply curved beam, R/d = 1, one
must recognize that the resultant load of 263 N/cm does not act through the
centroid of the cross-sectional area but instead acts through the mass center of
the differential length. The radius to this point is given as R, and is found
from the expression R,,/R = 1+ 1/AR? where I is the area moment of inertia
about the centroidal axis of the cross section. Therefore, R /R =1+ (bd?/36)/
(bd/2)R? = 1.056. Again due to the sharp curvature the axial- and shear-stress
contributions to deformation must be considered. From the introduction to
Table 9.3 we find that « = A/R = 0.0517 and § = 2F(1 + v)h/R = 0.1650, where
F =1.2 for a triangular cross section as given in Sec. 8.10. Therefore,
ky=1—o+pf=1.1133, and ky = 1 — o = 0.9483.

For a first solution use the full span and superpose cases 3a and 3h. To
obtain the load terms LPj and LP;; use cases la and 1h.

For case 1la, W = —263(30)(2%/3) = —16,525N, 0 = 60°, ¢ = 0°, s = 0.866,
¢ =0.500, n =0, and m = 1.000.

1.1133

5 (0.5% — 1.0%)

LP, = —16,525[% (0.866)(0.5) — 0 +

+0.9483(0.5)(0.5 — 1.0)]

= —16,525(—0.2011) = 3323 N

Similarly, LPy; = 3575N.
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For case 1h, w = 263N/cm, R = 30, R.,/R = 1.056, 0 = 60°, s = 0.866, and
¢ = 0.5000.

LPy = 263(30)(—0.2365) = —1866 N
and
LP,, = 263(30)(—0.2634) = —2078 N

Returning now to case 3 where M, and H, are zero, one finds that V, = 0 by
superposing the loadings. To obtain dz4 and 4, we superpose cases a and h
and substitute AAR for I because of the sharp curvature

3323 — 1866
11.7(105)(150)(1.55)(30)
(23575 — 2078 _

8.161(1010)

—482(10"%) cm

Spar = —30°

Wa=—3 —16.5(10"%)rad

Now for the second and more complete solution, use will be made of cases
12h and 12i. The left half spans 60°, so 6§ = 30°, s = 0.5000, and ¢ = 0.8660. In
this solution the central symmetry axis of the left half being used is inclined at
30° to the gravitational loading of 263 N/cm. Therefore, for case 5h, w =
263 cos 30° = 227.8 N/cm

1.1133

LFy, = 227. 8(30){ [ (g)(0.8662) - % - 0.5(0.866)]

+0.9483(1.056 + 1)[— — 0.5(0. 866)] + 1.056(2)(0. 866)( 0.866 — 0. 5)}
— 227.8(30)(~0.00383) = —26.2N
Similarly
LF, = 227.8(30)(0.2209) = 1510N and LF,; = 227.8(30)(0.01867) = 1276 N
For case 51, w = —263sin 30° = —131.5 N/cm and again 6 = 30°

LFy = —131.5(30)(0.0310) = —122.3N
LF, = —131.5(30)(—0.05185) = 204.5N
LFy, = —131.5(30)(—0.05639) = 222.5N

Using case 12 and superposition of the loadings gives

_926.2-122.3
Spaz = —30° ——— "= —49.1(10°
maz = =80" — e oty — 49110 em

51510 +204.5
8.161(1010)
51276 42225

—g3p2 =2 =22t

8.161(1010)

Syae = —30 —567(10"%) cm

Yo = —16.5(107%) rad

Although the values of 4 from the two solutions check, one further step is
needed to check the horizontal and vertical deflections of the free ends. In the
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last solution the reference axes are tilted at 30°. Therefore, the horizontal and
vertical deflections of the left end are given by

Spa = 0142(0.866) + 91,45(0.5) = —241(10~%) cm
Oya = Opgaz(—0.5) + 91,45(0.866) = —516(10~) cm

Again the horizontal deflection of —0.000241cm for the left half of the arch
checks well with the value of —0.000482 cm for the entire arch. With the two
displacements of the centroid and the rotation of the end cross section now
known, one can easily find the displacements of any other point on the end
cross section.

To find the tensile stress at point A we need the bending moment at the
center of the arch. This can be found by integration as

/2 /2
M = J —263Rd0(R.4 cos ) = —263RR ,sin0| = —125,000N-cm
n/6 /6

Using the data from Table 9.1, the stress in the outer fiber at the point A is
given by

o _ koMec _ 0.697(125.000)(20)
AT T T 10(30%)/36

= 232 N/cm?

9.4 Elliptical Rings

For an elliptical ring of semiaxes a and b, under equal and opposite
forces W (Fig. 9.12), the bending moment M, at the extremities of the
major axis is given by M; = K; Wa, and for equal and opposite outward
forces applied at the ends of the minor axis, the moment M; at the
ends of the major axis is given by M; = —Ky;Wa, where K; and K, are
coefficients which depend on the ratio a/b and have the following
values:

a/b 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7

K, 0.318 0.295 0.274 0.255 0.240 0.227 0.216 0.205
K, 0.182 0.186 0.191 0.195 0.199 0.203 0.206 0.208

a/b 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5

K; 0.195 0.185 0.175 0.167 0.161 0.155 0.150 0.145
K, 0.211 0.213 0.215 0.217 0.219 0.220 0.222 0.223

Burke (Ref. 6) gives charts by which the moments and tensions in
elliptical rings under various conditions of concentrated loading can be
found; the preceding values of K were taken from these charts.
Timoshenko (Ref. 13) gives an analysis of an elliptical ring (or other
ring with two axes of symmetry) under the action of a uniform
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Figure 9.12

outward pressure, which would apply to a tube of elliptical section
under internal pressure. For this case M = Kpa?, where M is the
bending moment at a section a distance x along the ring from the end
of the minor axis, p is the outward normal pressure per linear inch,
and K is a coefficient that depends on the ratios b/a and x/S, where S
is one-quarter of the perimeter of the ring. Values of K are given in the
following table; M is positive when it produces tension at the inner
surface of the ring:

b/a
0.3 0.5 0.6 0.7 0.8 0.9
x/S
0 —0.172 —0.156 —0.140 —0.115 —0.085 —0.045
0.1 —-0.167 —-0.152 —0.135 —0.112 —0.082 —0.044
0.2 —0.150 —0.136 —0.120 —0.098 —0.070 —0.038
0.4 —0.085 —-0.073 —0.060 —0.046 —0.030 —-0.015
0.6 0.020 0.030 0.030 0.028 0.022 0.015
0.7 0.086 0.090 0.082 0.068 0.050 0.022
0.8 0.160 0.150 0.130 0.105 0.075 0.038
0.9 0.240 0.198 0.167 0.130 0.090 0.046
1.0 0.282 0.218 0.180 0.140 0.095 0.050

Values of M calculated by the preceding coefficients are correct only
for a ring of uniform moment of inertia I; if I is not uniform, then a
correction AM must be added. This correction is given by

M
—J —dx
AM = o1

.7
o1

The integrals can be evaluated graphically. Reference 12 gives charts
for the calculation of moments in elliptical rings under uniform radial
loading; the preceding values of K were taken from these charts.
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9.5 Curved Beams Loaded Normal to Plane of
Curvature

This type of beam usually presents a statically indeterminate problem,
the degree of indeterminacy depending upon the manner of loading
and support. Both bending and twisting occur, and it is necessary to
distinguish between an analysis that is applicable to compact or
flangeless sections (circular, rectangular, etc.) in which torsion does
not produce secondary bending and one that is applicable to flanged
sections (I-beams, channels, etc.) in which torsion may be accompanied
by such secondary bending (see Sec. 10.3). It is also necessary to
distinguish among three types of constraints that may or may not
occur at the supports, namely: (1) the beam is prevented from sloping,
its horizontal axis held horizontal by a bending couple; (2) the beam is
prevented from rolling, its vertical axis held vertical by a twisting
couple; and (3) in the case of a flanged section, the flanges are
prevented from turning about their vertical axes by horizontal second-
ary bending couples. These types of constraints will be designated here
as (1) fixed as to slope, (2) fixed as to roll, and (3) flanges fixed.

Compact sections. Table 9.4 treats the curved beam of uniform cross
section under concentrated and distributed loads normal to the plane
of curvature, out-of-plane concentrated bending moments, and concen-
trated and distributed torques. Expressions are given for transverse
shear, bending moment, twisting moment, deflection, bending slope,
and roll slope for 10 combinations of end conditions. To keep the
presentation to a reasonable size, use is made of the singularity
functions discussed in detail previously and an extensive list of
constants and functions is given. In previous tables the representative
functional values have been given, but in Table 9.4 the value of f
depends upon both bending and torsional properties, and so a useful
set of tabular values would be too large to present. The curved beam or
ring of circular cross section is so common, however, that numerical
coefficients are given in the table for f = 1.3 which will apply to a solid
or hollow circular cross section of material for which Poisson’s ratio is
0.3.

Levy (Ref. 14) has treated the closed circular ring of arbitrary
compact cross section for six loading cases. These cases have been
chosen to permit apropriate superposition in order to solve a large
number of problems, and both isolated and distributed out-of-plane
loads are discussed. Hogan (Ref. 18) presents similar loadings and
supports. In a similar way the information in Table 9.4 can be used by
appropriate superposition to solve most out-of-plane loading problems
on closed rings of compact cross section if strict attention is given to



298 Formulas for Stress and Strain [cHAP. 9

the symmetry and boundary conditions involved. Several simple
examples of this reasoning are described in the following three cases.

1. If a closed circular ring is supported on any number of equally
spaced simple supports (two or more) and if identical loading on
each span is symmetrically placed relative to the center of the span,
then each span can be treated by boundary condition f of Table 9.4.
This boundary condition has both ends with no deflection or slope,
although they are free to roll as needed.

2. If a closed circular ring is supported on any even number of equally
spaced simple supports and if the loading on any span is antisym-
metrically placed relative to the center line of each span and
symmetrically placed relative to each support, then boundary
condition f can be applied to each full span. This problem can
also be solved by applying boundary condition g to each half span.
Boundary condition g has one end simply supported and slope-
guided and the other end simply supported and roll-guided.

3. If a closed circular ring is supported on any even number of equally
spaced simple supports (four or more) and if each span is symme-
trically loaded relative to the center of the span with adjacent spans
similarly loaded in opposite directions, then boundary condition 1
can be applied to each span. This boundary condition has both ends
simply supported and roll-guided.

Once any indeterminate reaction forces and moments have been
found and the indeterminate internal reactions found at at least one
location in the ring, all desired internal bending moment, torques, and
transverse shears can be found by equilibrium equations. If a large
number of such calculations need be made, one should consider using a
theorem published in 1922 by Biezeno. For details of this theorem see
Ref. 32. A brief illustration of this work for loads normal to the plane of
the ring is given in Ref. 29.

A treatment of curved beams on elastic foundations is beyond the
scope of this book. See Ref. 20.

The following examples illustrate the applications of the formulas in
Table 9.4 to both curved beams and closed rings with out-of-plane
loads.

EXAMPLES

1. A piece of 8-in standard pipe is used to carry water across a passageway 40 ft
wide. The pipe must come out of a wall normal to the surface and enter normal
to a parallel wall at a position 16.56ft down the passageway at the same
elevation. To accomplish this a decision was made to bend the pipe into two
opposite arcs of 28.28-ft radius with a total angle of 45° in each arc. If it is
assumed that both ends are rigidly held by the walls, determine the maximum
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combined stress in the pipe due to its own weight and the weight of a full pipe
of water.

Solution. An 8-in standard pipe has the following properties: A = 8.4in?,
I=725in', w=238lb/in, E =30(10%1b/in?, v=0.3, J =145in%
0D =8.6251n, ID=7.9811in, and ¢t = 0.3221in. The weight of water in a 1-in
length of pipe is 1.811b. Owing to the symmetry of loading it is apparent that
at the center of the span where the two arcs meet there is neither slope nor
roll. An examination of Table 9.4 reveals that a curved beam that is fixed at the
right end and roll- and slope-guided at the left end is not included among the
10 cases. Therefore, a solution will be carried out by considering a beam that is
fixed at the right end and free at the left end with a uniformly distributed load
over the entire span and both a concentrated moment and a concentrated
torque on the left end. (These conditions are covered in cases 2a, 3a, and 4a.)

Since the pipe is round, J = 2I; and since G = E/2(1 + v), f = 1.3. Also note
that for all three cases ¢ = 45° and 0 = 0°. For these conditions, numerical
values of the coefficients are tabulated and the following expressions for the
deformations and moments can be written directly from superposition of the
three cases:

M,R? T, R? (2.38 + 1.81)R*
Ya = 030582 — 0.0590 —2- — 0.0469-
B M,R T.R 4.19R?
©, = —0.82822 — 0.0750 - + 0.0762 =~
M,R T,R 4.19R3
V4 = 0.0750 ==+ 0.9782 =0 + 0.0267 ————

Vg =0+ 0—4.19R(0.7854)
My = 0.7071M, — 0.70717T, — 0.2929(4.19)R2
Ty = 0.7071M, + 0.7071T, — 0.0783(4.19)R?
Since both ®, and ¥, are zero and R = 28.28(12) = 339.41n,
0 =-0.8282M, — 0.0750T, + 36,780
0= 0.0750M, + 0.9782T, + 12,888

Solving these two equations gives M, = 45,9201b-in and 7, = —16,700 lb-in.
Therefore,

ya =—0.40in, My = —97,1001b-in
Ty = —17,0001b-in,  Vyz=—11201b

The maximum combined stress would be at the top of the pipe at the wall
where o = Mc/I = 97,100(4.3125)/72.5 = 55751b/in% and t = Tr/J = 17,100
(4.3125)/145 = 5091b/in”

7 ? :
max = % + (@) +5092 = 58191b/in?

2. A hollow steel rectangular beam 4in wide, 8in deep, and with 0.1-in wall
thickness extends over a loading dock to be used as a crane rail. It is fixed to a
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warehouse wall at one end and is simply supported on a post at the other. The
beam is curved in a horizontal plane with a radius of 15ft and covers a total
angular span of 60°. Calculate the torsional and bending stresses at the wall
when a load of 3000 1b is 20° out from the wall. Neglect the weight of the beam.

Solution. The beam has the following propertles R =180in; qb =
60°(n/3 rad); 0=40° ¢—0=20°(n/9rad); I==[4(8%)— 3 8(7.8%)]=20.391n"
K =2(0.12)(7.9)(3. 92)/[8(0 1) + 4(0.1) — 2(0.1%)] = 16.09in* (see Table 10. 1
case 16); E =30(10°%); G = 12(10%); and B = 30(10%)(20.39)/12(108)(16.09) =
3.168. Equations for a curved beam that is fixed at one end and simply
supported at the other with a concentrated load are found in Table 9.4, case
1b. To obtain the bending and twisting moments at the wall requires first the
evaluation of the end reaction V,, which, in turn, requires the following
constants:

1+3.168
2

Coy = —3.168(% —5in20°) - C,y = 0.006867

Cy = —3.168(% — sin 600) - (g cos 60° — sin 60°> —0.1397

Similarly,
C6 - Cl - 03060, Cll6 - Clll - 0.05775
Cy=C,=-0.7136, Cy=C, =—0.02919
Therefore,
V, = 3000 —0.02919(1 — cos 60°) — 0.05775 sin 60° + 0.006867 — 359.31b

—0.7136(1 — cos 60°) — 0.3060 sin 60° + 0.1397
Mp = 359.3(180)(sin 60°) — 3000(180)(sin 20°) = —128,7001b-in
Ty = 359.3(180)(1 — cos 60°) — 3000(180)(1 — cos 20°) = —230 Ib-in

At the wall,
_ Mc  128,700(4) L
0= ="5039 = 25:2401b/in
VA’ (3000 — 359.3)[4(4)(2) — 3.9(3.8)(1.95)] _ .
b 20.39(0.2) = 20081b/in

(due to transverse shear)

T B 230
2t(a—t)(b—1t)  2(0.1)(7.9)(3.9)

= 37.31b/in®

(due to torsion)

3. A solid round aluminum bar is in the form of a horizontal closed circular
ring of 100-in radius resting on three equally spaced simple supports. A load of
10001b is placed midway between two supports, as shown in Fig. 9.13(a).
Calculate the deflection under this load if the bar is of such diameter as to
make the maximum normal stress due to combined bending and torsion equal
to 20,0001b/in%. Let E = 10(105)1b/in® and v = 0.3.

Solution. The reactions Rg, R, and Ry are statically determinate, and a
solution yields Rz = —333.31b and Ry = Rp = 666.71b. The internal bending
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666.71b

RA
66671
(a) (b)

Figure 9.13

and twisting moments are statically indeterminate, and so an energy solution
would be appropriate. However, there are several ways that Table 9.4 can be
used by superimposing various loadings. The method to be described here is
probably the most straightforward.

Consider the equivalent loading shown in Fig. 9.13(b), where Rp=
—333.31b and R4, = —10001b. The only difference is in the point of zero
deflection. Owing to the symmetry of loading, one-half of the ring can be
considered slope-guided at both ends, points A and B. Case 1f gives tabulated
values of the necessary coefficients for ¢ = 180° and 0 = 60°. We can now solve
for the following values:

V, = —666.7(0.75) = —5001b
M, = —666.7(100)(—0.5774) = 38,490 1b-in

 —666.7(100?) _ 1.815(10%)
Va= g (F0.2722) =~

TA =0 YA = 0 ®A =0
My = —666.7(100)(—0.2887) = 19,250 Ib-in
My, = —666.7(100)(0.3608) = —24,050 Ib-in

The equations for M and 7T can now be examined to determine the location of
the maximum combined stress:

M, = —50,000 sin x + 38,490 cos x + 66,667 sin(x — 60°){x — 60°)°
T, = —50,000(1 — cos x) + 38,490 sin x + 66,667[1 — cos(x — 60°)](x — 60°)°

A careful examination of the expression for M shows no maximum values
except at the ends and at the position of the load The torque, however, has a
maximum value of 13,100in-1b at x=37.59° and a minimum value of
—87901in-1b at x = 130.9°. At these same locations the bending moments are
zero. At the position of the load, the torque 7T = 83301b-in. Nowhere is the
combined stress larger than the bending stress at point A. Therefore,

B _ Myc 38,490d/2 392,000
7a=20000="7"="Ceqar =

which gives

d=270in and I=2.609in*
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To obtain the deflection under the 1000-1b load in the original problem, first
we must find the deflection at the position of the load of 666.71b in Fig. 9.13(b).
At x = 60°,

38,490(100%)

1.815(106)(100)
10(106)(2.609) " !

10(10%)2.609
—500(1003)

Y. =0+0+ (1 —cos60°) +

[ Rt Sehi A
T 1009 @.609) " ?
where
1+1. .
F, = +1.3 T in 60° — 1.3(1 — cos60°) = 0.3029 and F;=0.1583
Therefore,

Yeo = 3.478 + 5.796 — 3.033 = 6.24in

If the entire ring were now rotated as a rigid body about point B in order to
lower points C and D by 6.24in, point A would be lowered a distance of
6.24(2)/(1 + cos 60°) = 8.321in, which is the downward deflection of the 1000-1b
load.

The use of a fictitious support, as was done in this problem at point A, is
generalized for asymmeric loadings, both in-plane and out-of-plane, by Barber
in Ref. 35.

Flanged sections. The formulas in Table 9.4 for flangeless or compact
sections apply also to flanged sections when the ends are fixed as to
slope only or when fixed as to slope and roll but not as to flange
bending and if the loads are distributed or applied only at the ends. If
the flanges are fixed or if concentrated loads are applied within the
span, the additional torsional stiffness contributed by the bending
resistance of the flanges [warping restraint (see Sec. 10.3)] may
appreciably affect the value and distribution of twisting and bending
moments. The flange stresses caused by the secondary bending or
warping may exceed the primary bending stresses. References 15 to 17
and 22 show methods of solution and give some numerical solutions for
simple concentrated loads on curved I-beams with both ends fixed
completely. Brookhart (Ref. 22) also includes results for additional
boundary conditions and uniformly distributed loads. Results are
compared with cases where the warping restraint was not considered.

Dabrowski (Ref. 23) gives a thorough presentation of the theory of
curved thin-walled beams and works out many examples including
multispan beams and beams with open cross sections, closed cross
sections, and cross sections which contain both open and closed
elements; an extensive bibliography is included. Vlasov (Ref. 27) also
gives a very thorough derivation and discusses, among many other
topics, vibrations, stability, laterally braced beams of open cross
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section, and thermal stresses. He also examines the corrections
necessary to account for shear deformation in flanges being warped.
Verden (Ref. 24) is primarily concerned with multispan curved beams
and works out many examples. Sawko and Cope (Ref. 25) and Meyer
(Ref. 26) apply finite-element analysis to curved box girder bridges.



9.6 Tables

TABLE 9.1 Formulas for curved beams subjected to bending in the plane of the curve

NOTATION: R =radius of curvature measured to centroid of section; ¢ = distance from centroidal axis to extreme fiber on concave side of beam; A = area
of section; e = distance from centroidal axis to neutral axis measured toward center of curvature; I = moment of inertia of cross section about centroidal
axis perpendicular to plane of curvature; and k; = 0;/0 and k, = 6,/c where o; =actual stress in exteme fiber on concave side, 6, =actual stress in
extreme fiber on convex side, and ¢ =fictitious unit stress in corresponding fiber as computed by ordinary flexure formula for a straight beam

Form and dimensions of cross section,
reference no.

Formulas

R
Values ofg,kl, and k&, for various values of <

(Note : e/c, k;, and k&,

=0.403 0.318 0.267 0.232 0.206 0.134 0.100 0.067 0.050 0.040

1. Solid rectangular section e R 2 R
T Rierl are independent of .= 1.20 1.40 1.60 1.80 2.00 3.00 4.00 6.00 8.00 10.00
[ 4 :
b the width b)
- _‘1 . 1 Rjc—1 2:0.366 0.284 0.236 0.204 0.180 0.115 0.085 0.056 0.042 0.033
c 1 1—e/c
—é— e __(X;_ 3 f _%R/c— 1 [ dA_ Rjci1 k; =2.888 2.103 1.798 1.631 1.523 1.288 1.200 1.124 1.090 1.071
| ¥ _ 1 l+e/c aea 7 Rjc—1 k, = 0.566 0.628 0.671 0.704 0.730 0.810 0.853 0.898 0.922 0.937
" 3e/cRjc+1
2. Trapezoidal section é _ 3(1 +b1/b) a_ é -1 1
¢ 1+2b/b° ¢ ¢ (When b, /b =3)
kb R
e E B %(1 + bl/b)(d/c)z = 1.20 1.40 1.60 1.80 2.00 3.00 4.00 6.00 8.00 10.00
%y c ¢ e
c

R ¢, b (R R/c+c/c b\ d
[?*?7(;*9]“(%)*(“?);
k_Llfe/c1+4b1/b+(l>1/b)Z

"7 2e/cR/c—1 (14 2b,/b)*

e/ erfethjc1+dby/b+ (b /b)
° 7 2efc Rjctci/e (24 by/b)?

(Note: while e/c, k;, k, depend upon the width ratio b, /b,
they are independent of the width b)

k; =3.011 2.183 1.859 1.681 1.567 1.314 1.219 1.137 1.100 1.078

k, =0.544 0.605 0.648 0.681 0.707 0.790 0.836 0.885 0.911 0.927

ujelIlS pue SSa4]S 10} SejNuWLIoS

6 "dvHO]



TABLE 9.1 Formulas for curved beams subjected to bending in the plane of the curve (Continued)

3. Triangular section, e_ E _ 4.5 c= g R
base inward c ¢ (§+2> 1n(§§2t?)— 3 ?:1.20 1.40 1.60 1.80 2.00 3.00 4.00 6.00 8.00 10.00
g:0.434 0.348 0.296 0.259 0.232 0.155 0.117 0.079 0.060 0.048

L b= 1 1-e/c ¢
S g = SecRjie—1 [ dA R 2\, (Rjc+2 k; = 3.265 2.345 1.984 1.784 1.656 1.368 1.258 1.163 1.120 1.095

Ly (242 -1
B i o= Germ(Ee ) 1) -

) L&‘b—’l _ 1 2+e/c k, =0.438 0.497 0.539 0.573 0.601 0.697 0.754 0.821 0.859 0.883

° " 4e/cR/c+2

(Note: e/c, k;, and k, are independent of the width b)

[9'6 038

4. Triangular section, base e R 1125 ¢ 2d

outward ¢ ¢ W’ -3

R/c—1
=0.151 0.117 0.097 0.083 0.073 0.045 0.033 0.022 0.016 0.013

b
lff 14‘1)_( i 1 1-e/c k; = 3.527
1
d

=120 1.40 1.60 1.80 2.00 3.00 4.00 6.00 8.00 10.00

e oX

< 7 8e/cR/c—1 dA 9 /R R/c+05 i 2.362 1.947 1.730 1.595 1.313 1.213 1.130 1.094 1.074
—:b{l——(——l)ln—']

1 2e/c+1 Lrea r 3\c Rje—1 k, =0.636 0.695 0.735 0.765 0.788 0.857 0.892 0.927 0.945 0.956

. k°=4e/c2R/c+1
T { l (Note: e/c, k;, and k, are independent of the width b;)

5. Diamond €_ E _ 1 R
¢c ¢ R 2 Rjc+1 —=1.200 1.400 1.600 1.800 2.000 3.000 4.000 6.000 8.000 10.000

7ln|i17(7) ]+ln ¢

—E_T R, R/c—1 e
-=0.175 0.138 0.116 0.100 0.089 0.057 0.042 0.028 0.021 0.017

d c

¢ [ 1 1-e/c
R ﬂ,_l_l ‘T 6e/cR/c—1 k; =3.942 2.599 2.118 1.866 1.709 1.377 1.258 1.159 1.115 1.090
b

‘ 1 1+e/c k, =0.510 0.572 0.617 0.652 0.681 0.772 0.822 0.875 0.904 0.922

° = 6e/cRjc+1

5= emf - @] e mgretd]

(Note: e/c, k;, and k, are independent of the width b)
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TABLE 9.1

Formulas for curved beams subjected to bending in the plane of the curve (Continued)

Form and dimensions of cross section,
reference no.

Formulas

. R
Values ofg, k;, and k&, for various values of -

6. Solid circular or

elliptical section e 1 |:R (R)Z 1} ?: 120 1.40 1.60 1.80 2.00 3.00 4.00 6.00 8.00 10.000
c 2| V)™
¢ _0.268 0.210 0.176 0.152 0.134 0.086 0.064 0.042 0.031 0.025
b _ 1 1-e/c ¢
" %_'_r "~ 4e/cRjc—1 k; = 3.408 2.350 1.957 1.748 1.616 1.332 1.229 1.142 1.103 1.080
c _ 5
d poo 1 1defe j aa_ I B_ (5)271 k, = 0.537 0.600 0.644 0.678 0.705 0.791 0.837 0.887 0.913 0.929
R c ° " 4e/cR/c+1’ area T c c
' . .
(Note: e/c, k;, and k, are independent of the width b)
7. Solid semicircle or d 3n R
semiellipse, base inward R=R.+c <=7 —=1.200 1.400 1.600 1.800 2.000 3.000 4.000 6.000 8.000 10.000
(Note: e/c, k; and k, are independent of the width b) g: 0.388 0.305 0.256 0.222 0.197 0.128 0.096 0.064 0.048 0.038
f 0.3879 1 —
/A“,__\ !°1 § = ele k; = 3.056 2.209 1.878 1.696 1.579 1.321 1.224 1.140 1.102 1.080
/ + \ S 1 i e/c Rjc—1
_ 0.2860 ¢/c +1.3562 k, = 0.503 0.565 0.609 0.643 0.671 0.761 0.811 0.867 0.897 0.916
R b ——l °~ "e/c R/c+1.3562

|
T

(Note: For a semicircle,

b/2 = d)

For R, > d:R/c > 3.356 and

J dA_mRb b —dz(g—sin’li>

r 2d d
R (d/c)*/2

c ¢ 2 2
R R d 2. 4 dfe
?—2.5— (;—1) 7(5) (17;sm R/c—l)
For R, <d:R/c < 3.356 and

2 _ R2
[ N
. .

rea r

R (@/c)’/2
c

c R/c—1

R 2 (d)2 (R 1>21 dfe+(d/eP - (Rje—1)
2 [(d\ _(B_ |\ Hetyid/or - /e 17
c s c
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TABLE 9.1 Formulas for curved beams subjected to bending in the plane of the curve (Continued)

8. Solid semicircle or R=R —c¢ d __3n a_ 4 R
cemiellipse, base outward e e el wy <=1.200 1.400 1.600 1.800 2:000 3.000 4.000 6.000 8.000 10.000
(Note: e/c, k;, and k, are independent of the width b) %: 0.244 0.189 0.157 0.135 0.118 0.075 0.055 0.036 0.027 0.021
"
| dAinRxb b 7 7(™ .4, d k; = 3.264 2.262 1.892 1.695 1.571 1.306 1.210 1.130 1.094 1.073
s s = S B Rk s A BT AL
T ¢ d k, =0.593 0.656 0.698 0.730 0.755 0.832 0.871 0.912 0.933 0.946
_I_L e_R_ (d/c)?/2
c

e a N
} c nsm Rjc+cy/c

R,__10 (R o)
‘ c 3n—4 c ¢
021091 —e/c
' e/c Rjc—1

(Note: for a semicircle, b/2 = d)

_0.2860 e/c +0.7374
°= "e/c RJc+0.7374

[9'6 03s
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TABLE 9.1 Formulas for curved beams subjected to bending in the plane of the curve (Continued)

Form and dimensions of cross section,

reference no. Formulas Values ofg, k;, and &, for various values of§
9. Segment of a solid circle, R=R,+c+acosa :
base inward s For o« = 60>:
a_ 30— 3sinocoso 07173o<—351n9<cosa72sin o R
¢ 3sino— S3xcosy —sin’a ¢ 3sino— 3xcosy —sin®a == 1.200 1.400 1.600 1.800 2.000 3.000 4.000 6.000 8.000 10.000
k; :Li 1=ejc E:0.401 0.317 0.266 0.232 0.206 0.134 0.101 0.067 0.051 0.041
Ac?e/cR/c—1 c
where expressions for I and A are found in Table A.1, case 19 k; =3.079 2.225 1.891 1.707 1.589 1.327 1.228 1.143 1.104 1.082
I 1 e/c+c/c
R e i it Vi _ .
k, A (ejoer /o) Rjct crc k, =0.498 0.560 0.603 0.638 0.665 0.755 0.806 0.862 0.893 0.913
l For R, > a:R/c> (a/c)(1+cosa)+ 1 and For o = 30°:
dA . 5 - R R
J —= 2R.0 — 2asino — 2y/ R — a2 (g —sin”! %) = 1.200 1.400 1.600 1.800 2.000 3.000 4.000 6.000 8.000 10.000
Note: R, c,e/c, k;, and k, are all area . * e
independent of the width of the e_R_ (x —sinacoswa/c .= 0.407 0.322 0.271 0.236 0.210 0.138 0.103 0.069 0.052 0.042
segment provided all horizontal ¢ ¢ 20R, 94 9 R, 1™ i 1+ (R,/a)coso _
elements of the segment change g 2sma- o) “Hg—sn “R.Ja+cosa k; =3.096 2.237 1.900 1.715 1.596 1.331 1.231 1.145 1.106 1.083
idth 1 ly. There-
width proportionately. There - _ k, = 0.495 0.556 0.600 0.634 0.662 0.752 0.803 0.860 0.891 0.911
fore to use these expressions for (Note: Values of sin™" between —n/2 and n/2 are to be taken in above
a segment of an ellipse, find the expressions.)
mlrcle vs{hlch has the same radial For R, < a:R/c < (a/c)(1+cosz)+1 and
dimensions R,, r;, and d and
evaluate e/c, k;, and k, which J dA_2R % — 2asing 5 51 v/a? —Risina+a+ R, cosa
: ° —= - +2ya? - RZIn
have the same values for both area I * - R, +acoso
the circle and ellipse. To find e R
dA/r for the ellipse, multiply c ¢
the value of dA/r for the _ (o — sina cos a)a/c
Clrc}e by the ratlo‘ of the ) 9oR B2 \/1 —(R,/a)’ sina+ 1+ (R,/a) cos
horizontal to vertical semi- =X _2sina+2,/1— (—*) In 7
axes for the ellipse. See the a a w/@+cosa
example.
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TABLE 9.1 Formulas for curved beams subjected to bending in the plane of the curve (Continued)

10. Segment of a solid
circle, base outward

Note: R, c,e/c, k;, and k, are
all independent of the width of
the segment provided all hori-
zontal elements of the segment
change width proportionately.
To use these expressions for a
segment of an ellipse, refer to
the explanation in case 9.

R=R,+c—a

a 30— 3sinucoso c 3sina — Bcos o — sin® o

¢ 3y 3sinocoss—2sin« € 30— 3sinocoss — 2sin’ «
I 1 1-e/c
' T Ac?e/cR/c—1

where expressions for I and A are found in Table A.1, case 19
k _ I 1 e/c+cy/c
° 7 Ac2 (e/c)(cy/c)R/c+cy/c

dA . 5 ~(n . _ja—R,cosu
'Lre — =2R,x+ 2asina — 2y/R2 — a? <é+ sin lm)

r
R (o — sinocosa)a/c
c

B 2
20(Rx+2sin“_2 & i E+Sin,,1—(Rx/a)cosx
a a 2 R,/a—coso

e
c

(Note: Values of sin™' between —n/2 and ©/2 are to be taken in above
expressions.)

For « = 60°:

=1.200 1.400 1.600 1.800 2.000 3.000 4.000 6.000 8.000 10.000

=0.235 0.181 0.150 0.129 0.113 0.071 0.052 0.034 0.025 0.020

e ol

k; = 3.241 2.247 1.881 1.686 1.563 1.301 1.207 1.127 1.092 1.072

k, =0.598 0.661 0.703 0.735 0.760 0.836 0.874 0.914 0.935 0.948

For o = 30°:
g: 1.200 1.400 1.600 1.800 2.000 3.000 4.000 6.000 8.000 10.000
e

=0.230 0.177 0.146 0.125 0.110 0.069 0.051 0.033 0.025 0.020

o

k; =3.232 2.241 1.876 1.682 1.560 1.299 1.205 1.126 1.091 1.072

k, =0.601 0.663 0.706 0.737 0.763 0.838 0.876 0.916 0.936 0.948

11. Hollow circular section

S ENCEN TR
b=t e @]

IR E7] AT
k"_4e/cR/c+1|:1+(c) ]

(Note: For thin-walled tubes the discussion on page 277 should
be considered)

(When ¢;/c=1)

g: 1.20 1.40 1.60 1.80 2.00 3.00 4.00 6.00 8.00 10.00
k; =3.276 2.267 1.895 1.697 1.573 1.307 1.211 1.130 1.094 1.074

2:0.323 0.256 0.216 0.187 0.166 0.107 0.079 0.052 0.039 0.031

k, =0.582 0.638 0.678 0.708 0.733 0.810 0.852 0.897 0.921 0.936

[9'6 038
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TABLE 9.1 Formulas for curved beams subjected to bending in the plane of the curve (Continued)

Form and dimensions of cross section,

reference no. Formulas Values ofg, k;, and &, for various values of§
1 —
12. Hollow elliptical section €_ E — 31 = (01/b)e1/€)] (When b,/b=2,c;/c=1%)
¢ ¢ R R\? b,/b| R R\® /c\? > >
12a. Inner and outer ——./(=) -1- —— /= 7(7)
perimeters are ellipses, ¢ ¢ c/e|c ¢ ¢ =120 1.40 1.60 1.80 2.00 3.00 4.00 6.00 8.00 10.00

wall thickness is not
constant

Lo
R _'_11_L
| by

b—h

=0.345 0.279 0.233 0.202 0.178 0.114 0.085 0.056 0.042 0.034

ale ol

_ 1 1—e/c1—(by/b)er/0)
"~ 4e/cRjc—1 1— (b, /b)(c;/c)

k; =3.033 2.154 1.825 1.648 1.535 1.291 1.202 1.125 1.083 1.063

1 1+4e/c1=(by/b)ci/c)’
k, = _
o = Te/eRjc+ 1 1= by /b)c)/0) k, =0.579 0.637 0.677 0.709 0.734 0.812 0.854 0.899 0.916 0.930

(Note: While e/c, k;, and k, depend upon the width ratio b, /b,
they are independent of the width b)

12b. Constant wall thickness,
midthickness perimeter is
an ellipse (shown dashed)

Note: There is a limit on the
maximum wall thickness
allowed in this case. Cusps will
form on the inner perimeter

at the ends of the major axis if
this maximum is exceeded. If
p/q < 1, then t,,,, = 2p?/q. If
p/q =1, then t,,,, = 2¢°/p

There is no closed-form solution for this case, so numerical solutions were run for the ranges 1.2 < R/c < 5;0 <t < t,,.: 0.2 < p/q < 5. Results are
expressed below in terms of the solutions for case 12a for which c =p +¢/2,¢; =p —t/2,b=2q +t, and b, = 2q — t.
Z: K, (g from case 123). k; = Ky(k; from case 12a)

k, = K3(k, from case 12a)

where K, K,, and K; are given in the following table and are essentially independent of ¢ and R/c.

p/q 0.200 0.333 0.500 0.625 1.000 1.600 2.000 3.000 4.000 5.000
K, 0.965 0.985 0.995 0.998 1.000 1.002 1.007 1.027 1.051 1.073
K, 1.017 1.005 1.002 1.001 1.000 1.000 1.000 0.998 0.992 0.985
K, 0.982 0.992 0.998 0.999 1.000 1.002 1.004 1.014 1.024 1.031
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TABLE 9.1 Formulas for curved beams subjected to bending in the plane of the curve (Continued)

13. T-beam or channel section

b~ 3bAp b
Gy

.j_(l:.d - _L

Rt o7

d_2b/b+(1=by/b)t/d)] o _d
¢ by /b+(1=by/b)/d? T ¢ ¢

e R (d/c)[by/b + (1 = b,/b)(t/d)]
c ¢ bf‘ln d/c+R/c—1 n(d/C)(t/d)‘FR/C*l
b (d/o)(t/d)+R/c—1 R/c—1

b 1, 1—e/c
P T AR(R/c—1) efc

c

L 1(d\*[by/b+ (1 —by/b)t/d)’
where Ast( ) [bi/bm—b,/b)(t/d) !
ho— I, djc+e/c—1 1

° " Ac2(e/c)R/c+d/c—1d/c—1

(Note: While e/c, k;, and k, depend upon the width ratio b, /b,
they are independent of the width b)

(When by /b=1,t/d =1

=1.200 1.400 1.600 1.800 2.000 3.000 4.000 6.000 8.000

sle ol

=0.502 0.419 0.366 0.328 0.297 0.207 0.160 0.111 0.085
k; =3.633 2.538 2.112 1.879 1.731 1.403 1.281 1.176 1.128

k, = 0.583 0.634 0.670 0.697 0.719 0.791 0.832 0.879 0.905

10.000

0.069

1.101

0.922

14. Symmetrical I-beam
or hollow rectangular
section

t

b~} b

ol
=

L

—D0

e_R_ 2[t/c + (1 = t/c)(by /b)]
¢ ¢ R+ Rt Dt/ -1 by Rje—tje+l
(R/e) —=(R/c—1)t/c)—1 b  Rjc+tje—1

B 1, 1—e/c
T Ac%(R/c—1) e/c

I,  11-(1-by/b)d -t/
where 3 =31 -a=b,/0)1=t/0)
b 1, 1+e/c

° T A2(R/c+1) e/c

(Note: While e/c, k;, and k, depend upon the width ratio b, /b,
they are independent of the width b)

(When by /b=1.t/d=13)

sle ol

=0.489 0.391 0.330 0.287 0.254 0.164 0.122 0.081 0.060
k; =2.156 1.876 1.630 1.496 1.411 1.225 1.156 1.097 1.071

k, =0.666 0.714 0.747 0.771 0.791 0.853 0.886 0.921 0.940

=120 140 1.60 1.80 2.00 3.00 4.00 6.00 8.00 10.00

0.048

1.055

0.951

[9'6 038
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TABLE 9.1 Formulas for curved beams subjected to bending in the plane of the curve (Continued)

Form and dimensions of cross section,
reference no.

. R
Values ofg,k,, and k, for various values of -

15. Unsymmetrical I-beam
section

1y kb,
Il'*i

: —
[ be~E d

Formulas
A =0bd[b;/b+ (1 —by/b)(t/d) — (b1 /b —by/b)(1 — t,/d)]
d_ 24/bd
¢ (by/b—by/b)2 —t;/d)(t,/d) + (1 — by/b)(t/d)* + by /b
e_R_ (A/bd)(d/c)
© e 1nR/;?76t1617 - +%lnR/Bc’/t«cf1{/cciti/C %1 nR/CRJch:r/zl—/ctl/c
1, 1—e/c

ki :Ac2(R/c —1) e/c

A2~ 3\c

where e _1 (g)z[blxbﬂl—bz/bxt/d)“—<b1/b—bz/b>(1—z1/d>“}_l

b1/b + (1 = by/b)(t/d) — (b1 /b — by/b)(1 — t,/d)

h o I, djct+e/c—1 1
°Ac%(e/c)R/c+d/c—1d/c—1

(Note: While e/c, k;, and k, depend upon the width ratios b,/b and b, /b,
they are independent of the width b)

(When b, /b=2,by/b=1.t,/d=1t/d=1)

=120 1.40 1.60 1.80 2.00 3.00 4.00 6.00 8.00 10.00

ale ol

=0.491 0.409 0.356 0.318 0.288 0.200 0.154 0.106 0.081 0.066
k; = 3.589 2.504 2.083 1.853 1.706 1.385 1.266 1.165 1.120 1.094

k, =0.671 0.721 0.754 0.779 0.798 0.856 0.887 0.921 0.938 0.950
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TABLE 9.2 Formulas for circular rings

NOTATION: W =load (force); w and v =unit loads (force per unit of circumferential length); p = unit weight of contained liquid (force per unit volume); M, = applied couple
(force-length). My, Mg, M, and M are internal moments at A, B, C, and x, respectively, positive as shown. Ny, N, V,, and V are internal forces, positive as shown.
E = modulus of elasticity (force per unit area); v =Poisson’s ratio; A = cross-sectional area (length squared); R =radius to the centroid of the cross section (length); I = area
moment of inertia of ring cross section about the principal axis perpendicular to the plane of the ring (length?). [Note that for a pipe or cylinder, a representative segment of
unit axial length may be used by replacing EI by Et®/12(1 — v2).] e = positive distance measured radially inward from the centroidal axis of the cross section to the neutral
axis of pure bending (see Sec. 9.1). 0,x, and ¢ are angles (radians) and are limited to the range zero to = for all cases except 18 and 19; s =sin0, ¢ = cos0,
z =sinx, u = cosx, n = sin ¢, and m = cos ¢.

ADy, and ADy are changes in the vertical and horizontal diameters, respectively, and an increase is positive. AL is the change in the lower half of the vertical diameter or
the vertical motion relative to point C of a line connecting points B and D on the ring. Similarly ALy is the vertical motion relative to point C of a horizontal line connecting
the load points on the ring. ALy is the change in length of a horizontal line connecting the load points on the ring. ¥ is the angular rotation (radians) of the load point in the
plane of the ring and is positive in the direction of positive 0. For the distributed loadings the load points just referred to are the points where the distributed loading starts,
i.e., the position located by the angle 6. The reference to points A, B, and C and to the diameters refer to positions on a circle of radius R passing through the centroids of the
several sections; i.e., diameter = 2R. It is important to consider this when dealing with thick rings. Similarly, all concentrated and distributed loadings are assumed to be
applied at the radial position of the centroid with the exception of the cases where the ring is loaded by its own weight or by dynamic loading, cases 15 and 21. In these two
cases the actual radial distribution of load is considered. If the loading is on the outer or inner surfaces of thick rings, an equivalent loading at the centroidal radius R must
be used. See the examples to determine how this might be accomplished.

The hoop-stress deformation factor is « = I/AR? for thin rings or « = e/R for thick rings. The transverse (radial) shear deformation factor is f = FEI/GAR? for thin rings
or f = 2F(1 + v)e/R for thick rings, where G is the shear modulus of elasticity and F'is a shape factor for the cross section (see Sec. 8.10). The following constants are defined
to simplify the expressions wheih follow. Note that these constants are unity if no correction for hoop stress or shear stress is necessary or desired for use with thin rings.
ki=1-a+pf ky=1—0.

N M General formulas for moment, hoop load, and radial shear
‘ M =M, —N,R(1—u)+ VyRz+ LTy,

~ % N =Nyu+Vyz+ LTy
V=—-Nyz+ Vyu+ LTy

i
| where LTy, LTy, and LTy, are load terms given below for several types of load.

Note: Due to symmetry in most of the cases presented, the loads beyond 180° are not included in the load terms. Only for cases 16, 17,
and 19 should the equations for M, N, and V be used beyond 180°.

Note: The use of the bracket (x — 0)° is explained on page 131 and has a value of zero unless x > 0

[9'6 038
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TABLE 9.2 Formulas for circular rings (Continued)

Reference no., loading, and load terms

Formulas for moments, loads, and deformations and some selected numerical values

L w = Bk Max+ M = M, — 0.3183WRk,
ks
Max — M = My = —(0.5 — 0.3183%ky) WR
N, =0
Ifa=p=0.
B V=0
WR? WR?
Ay RS (b ADy =0.1366—-— and ADy = ~0.1488——
w H=Er \2 T
LT, — —WRz LT W Note: For concentrated loads on thick-walled rings, study the material
MT e M —WR (nhy 2k} in Sec. 14.3 on hollow pins and rollers. Radial st der th
ADy = (71 _ 72) in Sec. 14.3 on hollow pins and rollers. Radial stresses under the
W EI 4 n concentrated loads have a significant effect not considered here.
LT, =
' 2
2. _ WRs(ky — c?)
My =" o)1 ) stk, — o) Max + M = =225 atx=0
n
-WR M, ifo<
M 77[0(1+C)7s(kz +0)] Max — M = i
Mo if6 > 5

LTy = —WR(c — u){x — 0)°
LTy = Wulx — 0)°
LTy = —Wz(x — 0)°

NA:¥[7570+SC]

Vy=0
_WpR3
#[Oﬁnkl(() — s¢) + 2ky0c — 2k2s] if0 <
ADy = T
—WR?
Elrn
WR? [k, s? 20c\ | 2k3s
ADy *W[T*’%(l *”7) S
WR3[0c  ky(0 — sc) Oc s
Bl [5*7271 *kZ(?i)
AL =

EI 2 2n

3
ALy = WE [(m — 0)0sc + 0.5k;5%(0 — sc) + ky(20s® — ns* — Oc — 0) + k3s(1 + ¢)]
n

EI

—WR?
Eln

ALy =

_WR?
Ay = 7325 [(m — 0)0c — kys(sc + m — 20)]

[0.5nky (1 — 0 + sc) — 2ky(n — O)c — 2k3s] if 0 >

]

4+ 22
n

WR? |:(7[ —0)c k(0 —sc—nc?) 7k2(1

If o= f=0,M =Ky WR, N = KyW,AD = K,,WR* /I,
AY = Ky, WR2/EI, etc.

0 30° 45° 60°
Ky, —0.0903 ~0.1538 ~0.1955
Ky, 0.0398 0.1125 0.2068
Ky, —0.9712 —0.9092 —0.8045
Kap, —0.0157 —0.0461 —0.0891
Kyp, 0.0207 0.0537 0.0930
). 0.0060 0.0179 0.0355
Ky, 0.0119 0.0247 0.0391
Kar,, —0.0060 —0.0302 —0.0770
Ky, 0.0244 0.0496 0.0590

[( — 0)20¢? — ky(nsc + s%c — 20s¢ — 10 + 0%) — 2kysc(n — 20) — 2k3s?]
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TABLE 9.2 Formulas for circular rings (Continued)

MA:;M’(R,Q,
n

M, 2sky
me =S (0-58)

_ M, (2sky
n=ge (i)

V=0

2skqy
ky

MR, (20 ifo<?
LTy = My(x — 0)° EI "\ x T2
LTy =0 ADp = :
T MR, (20 5 s T
v=0 EI 2\ 7 ¥ 3
M,R® (20
ADy == k2(7—1+c)
_ 2
MR2[0 ky(0+5) o< ®
EI 2 T 2
AL = i
~M, R’ n767k2(9+s+nc) if(?ZE
EI 2 7 2
— 2 P
ALy = MR [(m — 0)0s — ky(s® + 0 + 0c)]

Eln
M,R?
ALyy = ﬁ[ﬂ)c(n — 0) + 2ky5(20 — 7 — sc)]

M,R 25213
M= [9(” -0- T]

Max+M:%<0+ZSCk2

n Ry

Mafo:7M0<n707%
s

If o = p =0, M = KyyM,. N = KyM, /R, AD = KypM,R? /EI,

AW = Ky, M,R/EI, etc.

Fy

7> at x just greater than 0

) at x just less than 0

0 30° 45° 60° 90°
Ky, ~0.5150 ~0.2998 ~0.1153 0.1366
Ky, 0.3183 0.4502 0.5513 0.6366
Ky, —0.5577 —0.4317 ~0.3910 —0.5000
Kup, ~0.1667 —0.2071 ~0.1994 0.0000
Kyp, 0.1994 0.2071 0.1667 0.0000
Ky, 0.0640 0.0824 0.0854 0.0329
Ky, 0.1326 0.1228 0.1022 0.0329

Ky, —0.0488 —0.0992 ~0.1180 0.0000
Ky, 0.2772 0.2707 0.2207 0.1488

[9'6 038
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TABLE 9.2 Formulas for circular rings (Continued)

Reference no., loading, and load terms Formulas for moments, loads, and deformations and some selected numerical values
4. —WR L _ T .
M, = [s(s — 7+ 0) + ko(1 + )] Max + M occurs at an angular position x; = tan 2 if 0 < 106.3
n
u _WR ) Max + M occurs at the load if 0 > 106.3°
c=— [s0 — s° + ky(1 + ©)]
Max — M = M,
Ny=We :
A= Ifo=f=0,M =Ky WR, N = KyW.AD = K,, WR®*/EI,
Vi—o Ay = Ky, WR?/EI etc.
)=
—WR? 52 5 . n
S [nkl (1 - E) — 2ky(n — 0s) + 2k3(1 + c)] if0< 3 0 00 60° 90° 120° 150°
2w APE= s s
_ [n 19 ey — ) 2031+ C)] o> " Ky, ~ -02569  —0.1389  —0.1366  —0.1092  —0.0389
LTy = WR(z — s)x — 0)° Eln [ 2 Ky, ~0.0796  —0.2387  —0.3183  —0.2387  —0.0796
LTy = Wa(x — 0y° WE® Tk 0 KMc —0.5977 —0.5274 —0.5000 —0.4978 —0.3797
LTy = Wulx — 6)° ap, =% [M 4 Ry — 20) — 2031 + c)] Ky, ~ —0.2462  —-0.0195 0.1817 0.2489 0.1096
T Kup, —0.2296 —0.1573 —0.1366 —0.1160 —0.0436
WR? S 90 Kup, 0.2379 0.1644 0.1488 0.1331 0.0597
m[@erkl (5—7) —ky (1 —c+7> Kyr 0.1322 0.1033 0.0933 0.0877 0.0431
KALW 0.2053 0.1156 0.0933 0.0842 0.0271
_ 2K+ C)] o< ™ K, ~ —0.0237 00782  -0.1366  —0.1078  —0.0176
AL = n 2 Ky 0.1326 0.1022 0.0329 —0.0645 —0.0667
| wre s 20s
=T |:s(n—0)+k1(n—0—sc—;) —k2(1+c+T>
2
72]32(1+c):| o> "
n 2
WR3T nky(n — 0 —sc—s/m)
ALy 7m|:03 (=) + =
+ kys(me — 20 — 20c) — k3(1 + 0)2:|
—-WR?
ALyy = e [20sc(n — 0) + kys2(0 — s¢)
—2ky(ns® — 0% + Oc + 0c?) + 2k2s(1 + ¢)]
2
Ay = @[—Hs(n —0) + ky(0 + Oc + 5%)]
Eln
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TABLE 9.2 Formulas for circular rings (Continued)

2W cos @

LTy = —WRsin(x — 0)(x — 0)°
LTy = —Wsin(x — 0){x — 0)°
LTy = —W cos(x — 0)(x — 0)°

—WR
My =——[s(n~ 0) ~ k(1 + 0]
M = 7:}:@ [80 — ky(1 + )]

Ny :%s(n —0)

V,=0
—WR3 0s 2k3(1+c¢)] . n
il [kl(g—c>+2k2c—Ti| 1f(-)<§
U7 —wRS Thyst—6) 2R2(1L+ o) o
_ ifo> -
EI 2 n 2
_ WR3 [ky(s — mc + 0c) 2k3(1 + c)
ADV—W[ R k- }
WR3 0s mc 2k5(1+0)] .
() s 2050

WR? 0s
AL={—— = . —
okl |:k1(n nc+00>+kz(1+c 2s)

+ 2k3(1 + c)]
T

3
ALy :@{k]

2

LB+’
n

—WR? S
ALy = ﬂ[kls(n — 0)(0 — sc) + 20cky(1 +¢) — Zské(l +0)]

WR?

M= T

[rs? — 0(1 + ¢ + s%)]ky

NI

if 6 >

)

—s3(1 — — —
s—s*(1—0/n) —c(n 0)+k2|:03(1n+c)—sj|

Max + M = M, if0 < 60°
Max + M occurs at the load if 6 > 60° where
M, = @[kz(l +6) = se(z — 0)]
M. if6 > 90°
T M, if60° <0< 90°
Max — M occurs at an angular

Max — M

position x; = tan~! %;C if 0 < 60°
Ifa=p=0,M=Ky,WR N=KyW,AD = K,,,WR®/EI,
Ay = Ky, WR*/EI etc.

0 30° 60° 90° 120° 150°
Ky, 01773  —0.0999  -0.1817  -0.1295  —0.0407
Ky, ~ —04167 -05774  —0.5000  —0.2887  —0.0833
Ky, 0.5106 01888  —0.1817  —0.4182  —0.3740
Ky, 0.2331 0.1888 0.3183 0.3035 0.1148
Kap, 0.1910 0.0015  —0.1488  —0.1351  —0.0456
Kap,  —0.1957  —0.0017 0.1366 0.1471 0.0620
Ky, —0.1115  —0.0209 0.0683 0.0936 0.0447
Ky, ~— —01718  —0.0239 0.0683 0.0888 0.0278

Kar,, 0.0176 ~ —0.0276  -0.1488  —0.1206  —0.0182
Ky —0.1027 0.0000 0.0000 0.0833  —0.0700

[9'6 038
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TABLE 9.2 Formulas for circular rings (Continued)

Reference no., loading, and load terms

Formulas for moments, loads, and deformations and some selected numerical values

2Wsing

LTy, = —WR[1 — cos(x — 0)]¢x — 0)°
LTy = W cos(x — 0)¢x — 0)°
LTy = —W sin(x — 0)¢x — 0)°

WR
My =—ls(1+ k) = (1= O)(1 ~c)]
M = ’ZVR [s(ky — 1)+ 0(1 +c)]

N, :ﬂ[sﬂn —0)]

T

V=0

—WRS [k, (s + 0c) 0\  2ks . n
polj [T*%(s*;)*T] if0<g

— 3 - — ¢ 2
WR |:k1(s+m 9()_2k2<1_g)+2l;23i| 0>

EI 2

WR3 [kys(n — 0) 20\ 2kZs
ADy :ﬁ[%Jrkz(l—c—?) 772]

2

o

WR?[0  ky(n®s + 20c — 2s) s 0 k3s] .
£l [T’ in _k2( )_T] it0<
WR3 |:7r 0 ky(ns—0s+0c/n—s/n—c)

AL = r ¢
EI

272" 2

2
7k2(9+f+c)7@] if0> 2
T 2 T
3
ALy :%[Os(n—ow

kys(0sc — 8% — sen + 12 — On)

2

— kyO(1 + 5% +¢) — k3s(1 +c):|

_ 3
ALyy = ELIf[Z()c(n —0) — ky(sc®m — 20sc? + s%¢ — Ocn
+ 0%c — 05%) — 2kys(n — 0 + Oc) + 2k3s?)]

~WR?
Ay = E—IT[[G(TL —0) — kys(0 4 s + mc — 0c)]

Max +M = ?[Tl&‘ sinx; — (s — 0c)cosx, — kys — 0]
. —ms
s—0c

at an angular positionx; = tan™

(Note : x; > 0 and x; > 1/2)

Max - M = M,

If u=f=0,M =Ky WR,N = KyW,AD = K,,,WR® /EI

AY =Ky, WR?/EI, etc.

0 30° 60° 90° 120° 150°
Ky, —0.2067 —0.2180 —0.1366 —0.0513 —0.0073
Ky, —0.8808 —0.6090 —0.3183 —0.1090 —0.0148
Ky, —0.3110 —0.5000 —0.5000 —0.3333 —0.1117
Kap, —0.1284 —0.1808 —0.1366 —0.0559 —0.0083
Kup, 0.1368 0.1889 0.1488 0.0688 0.0120
Ky 0.0713 0.1073 0.0933 0.0472 0.0088
Ky, 0.1129 0.1196 0.0933 0.0460 0.0059
KLy, —0.0170 —0.1063 —0.1366 —0.0548 — 0.0036
Ky 0.0874 0.1180 0.0329 —0.0264 —0.0123
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TABLE 9.2 Formulas for circular rings (Continued)

7. Ring under any number of For0<x <0 M= WR(u/s — ky/0) N = @ _ —Wz
equal radial forces equally 2 2s 2s
spaced _ B .
Max+M = M, M Max - M = I;VR (%z — E) at each load position

_ 2
Radial displacement at each load point = ARy = @ [M Fye kz]

EI 457 2s 20

— 3 —Oc 2
Radial displacement atx =0, 20,... = AR, = % [M - ? + }2%]
. 52 s
Ifo=p$=0,M=KyWR,AR = K,y WR?/EI
0 15° 30° 45° 60° 90°

KMA 0.02199 0.04507 0.07049 0.09989 0.18169
KME —0.04383 —0.08890 —0.13662 —0.18879 —0.31831
Kyr, 0.00020 0.00168 0.00608 0.01594 0.07439
Kyg, —0.00018 —0.00148 —0.00539 —0.01426 —0.06831

[9'6 038

8. w.

R? sc— 2 iti .17
M, = n |:n(sz —05)— sc2 0 & (9 N Es) hy@stse—n+ H)] Max + M occurs at an angular positionx; where x; > 0,x, > 123.1°, and

3n(s — sinx,)

tanx; + 3 =0
— 2 3
R If = =0,M=KywR? N =KywR,AD = K,,wR*/EI, etc.
—WIS"
Ny = 3n
V,=0 0 90° 120° 135° 150°
—wR* [ kys® , ) Ky, —0.0494 —0.0329 —0.0182 ~0.0065
APn = 5E T [ g T ha(n—2ns” = 04205 4 sc) Ky, ~0.1061 ~0.0689 —0.0375 ~0.0133
2 ) Ku, ~0.3372 ~0.2700 ~0.1932 ~0.1050
+2k3(2s + s —m )] K, ~0.0533 ~0.0362 ~0.0204 ~0.0074
Kup, 0.0655 0.0464 0.0276 0.0108
R? &
L u; (o— 8 — ) ADy = 2}5 [k,n(ns COs—ioc4 ) by +sc— 04 2052) Ky, 0.0448 0.0325 0.0198 0.0080
LTy = —wRz(z — s){x — 0y° .
LTy = —wRu(z — s){x — 0y° ~ 2@t se 0)]
AL = x —0)28 “1_TC k(2 ms ot 05— S 45
4EI (m 9 Ut 3 s c S 3 37

—kz(ss+n—0+2952+an—n2+n0+nsc)72k§(28+sc—7r+0):|
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TABLE 9.2 Formulas for circular rings (Continued)

Reference no., loading, and load terms

Formulas for moments, loads, and deformations and some selected numerical values

2
LTy = %(z — )% x— 0)°

LTy = ’”sz(z —8)%(x — 0)°

wRu

LTy =~ (z—s)*(x—0)°

R? ;
M, = 3w6ns {( — 0)(65° — 9s) — 35 + 8 + 8¢ — Bs?c — 6ky[3s(s — 7 + 0) + s%¢ + 2 + 2c]}
—wR? 3 4 2 2
M. :m{f)s(ﬂfe)JrGGs' —3s" —8—8c+5s”c+ 6ky[3s(s — m+ 0) + s7c + 2 + 2c]}
7L
—wRs?
Na= 12n
V,=0
—wR* (3kyns® 5 8(1+c) 5 2(1+c¢)
ADy = 18EIT[{ y —k2|:(71—6)(6s —9)+T—osc:| +6k2|:sc+T—3(n—H—s)“

wR* s 1 13c s?c 1 5 2y, 8(1+0) 2 2(1+¢)
ADV7m{18nk1|:(z+ﬁ>(n—0)——7—77]+k2[(n—0)(3s —9) — 3s 0+Tf5sc]76k2|isc+T—3(n—0—s)]}

48 24 3

wR* s2 1 14+c¢ bsc (n — 0)(125 4 3/s) — 13¢c — 2s%¢c — 16 — 25%/n
AL—W[‘”“”(E‘@) CRE TR i

L (1+0)@n —8)/s — 3(n — O)(n — 1) + 20s% + 3ns + sc(n + 5) k23(s—n+0)+2(1+c)s+sc
— R —R2

127

67n(s — sinx; ) _

st 0

Max + M occurs at an angular position x; where x; > 0,x, > 131.1°, and tanx; +
Max - M = M.

If o = f = 0, M = KyywR? N = KywR, AD = K,,wR"/EI etc.

0 90° 120° 135° 150°
Ky, —0.0127 —0.0084 —0.0046 —0.0016
Ky, ~0.0265 —0.0172 ~0.0094 ~0.0033
Ky, ~0.1263 ~0.0989 ~0.0692 ~0.0367
Ko, ~0.0141 —0.0093 —0.0052 ~0.0019
Kap, 0.0185 0.0127 0.0074 0.0028
K, 0.0131 0.0092 0.0054 0.0021

67

]
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TABLE 9.2 Formulas for circular rings (Continued)

o R2 2
10. M, =Z}7f|:(n—9)(4c+282 - 1)+s<4—%—0) —2k2(n—9+sc)]

M = 7’ZR [3n+0+49c7205 —4s—sc+—72k (nfﬁ+sc)i|
_ 3
Ny = (nc+s—()c—7)
Vi=0
—wR* 5 5 N n
m[nkl (s” + 30c + 4 — 3s) + 3ky(n — 0 + 20c” — sc) — 6k5(n — 0 + sc)] for6 < 3
R? ADy = wR* 5% n
_TWhT 2, 0 —wn _ 2 Bl — 00252 — 1) — scl — 22 (5t — x
LTy = 5 (c — u)*¢x — 0) SFTn {nkl[c(n 0)+s 3] + ky[(n — 0)(2s 1) — sc] — 2k5(n 0+sc)] for6 > 3
LTy = wRu(c — u){x — 0y° .
LTy = —wRz(c — u){x — 0)° ADy = 35 (k1 (2 — ¢ 4 3c) + 3ky[205% — 0 4 sc — n(1 + 2¢ 4 87)] + 6kZ(n — 0 + sc)}
12EI [1 5m(0 — 20s% — sc) 4 2k1 (21 4 8° + 30c — 3s) + 3ky(sc + On + 205 — 31 — 0 — nsc) + 6k3(n — 0 + sc)] for6 <
AL =
ll;}l};I {(L.5a[(m — 0)(1 — 25%) + sc] + 2k (21 + 8 + 30c — 3s — nc®) + 3ky[(n 4+ 1)(n — 0 + s¢) + 205% — 4n(1 + ¢)] + 6k3(n — 0 + sc)} for 0 >
3 _
Max + M occurs at an angular position x, where x; > 0,x, > 90°, and x; = cos™ $/3+0e=s
e
Max — M = M.
If o = f = 0, M = Kj;wR? N = KywR, AD = K, ,wR*/EI etc.
0 0° 30° 45° 60° 90° 120° 135° 150°
Ky, —0.2500 —0.2434 —0.2235 —0.1867 —0.0872 —0.0185 —0.0052 —0.00076
KNA —1.0000 —0.8676 —0.7179 —0.5401 —0.2122 —0.0401 —0.0108 —0.00155
KML- —0.2500 —0.2492 —0.2448 —0.2315 —0.1628 —0.0633 —0.0265 —0.00663
Kup, —0.1667 —0.1658 —0.1610 —0.1470 —0.0833 —0.0197 —0.0057 —0.00086
Ky, 0.1667 0.1655 0.1596 0.1443 0.0833 0.0224 0.0071 0.00118
K, 0.0833 0.0830 0.0812 0.0756 0.0486 0.0147 0.0049 0.00086

[9'6 038
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TABLE 9.2 Formulas for circular rings (Continued)

Reference no., loading, and load terms

Formulas for moments, loads, and deformations and some selected numerical values

3

s
27372

_Bse_, (mc_Oc & sc?
2\2 273" 2

TP 2s% 2 T
2) kz[c(n 9)+?+sc for(-)<5

forg >

7(n79)c+2s201| 7k§[c(n—9)+s7§]}

6

72>+k§c(n70);s—83/3}

1-53 c(3+scf0)+300+6032c73375331| Jrkzc(rz—())/ZJrscz/ZJrSS/S
- 2

] for0 <

4 36m k3

11. M _ —wR? ( 70)3+12c2+20+4csz73330—33—533 Bsc , (mc Oc s
AT A+on|" 24 36 g
—wR? —3—12¢% + 2¢ +4cs>  n(14¢)® 3sPc+ 3s 4 bs?
MC*(Hc)n[(”*O) 24 T T 36
—wR 1+4c* bBsc sic
NA*(Hc)n[( 03 ?75]
V,y=0
—wR! 0 + 40c* — 5sc 4 s3c+ 16¢ bk 5sc? + 30c + 60s%c — 8s _me
EId+or|™ 16 24 2 18
LT, —wk (c —u)’x — 0y’ ADg = wR* 1+4c? bBsc sc 5s¢% — 8s
M= - - o _ i —
GSRJ;C) Fator|™ [(’T S TIAST: 24] kz[ 18
LTy = m(c —u)?(x— 0)°
wR; AD wR* { |:(1+c)2 s4i| k (5302+300+60325783 s?
mo_ = IR YN v =mrr a1k —57 o\l ——— a5
LTy 72(1+C)(c u)“(x — 0 EI(1+c¢) 6 24 18n 2 3
wR* 3s + 5s® + 60c® — 90c — 16 c 1 120c* + 30+ 2s%c — 15sc
EI(1+c¢) 72 "\3"16 487
o
AL =

wR* —(n—())c(1+2s2)_£_j+ [
EI(1+c¢) 24 24 9 " "1\3716 24

2s — 2+ sc? c(n—97372c)+386+66320—33—533

c 1 ¢t 120c* + 30+ 2s%c — 15sc
48n

e

Max — M = M.
Ifo=pf=0M=KywR? N = KywR, AD = K,p,wR*/EI, etc.

", ; 0
Max + M occurs at an angular positionx; wherex; > 0, x, > 96.8°, and x; = arccos[c - |:(cz + 0.25)(1 - 7) +
n

5 3c(n — 0) + 2s + sc? n
2 —
1 361 ] +k 61 for0 >3
se(5 — 2s2/3) 2
4n

0 0° 30° 45° 60° 90° 120° 135° 150
Ky, —0.1042 —0.0939 —0.0808 —0.0635 —0.0271 — 0.0055 —0.0015 —0.00022
Ky, —0.3125 —0.2679 —0.2191 —0.1628 —0.0625 —0.0116 —0.0031 —0.00045
Ky, —0.1458 —0.1384 —0.1282 —0.1129 —0.0688 —0.0239 —0.0096 —0.00232
Kyp, —0.8333 —0.0774 —0.0693 —0.0575 —0.0274 — 0.0059 —0.0017 —0.00025
Kyp, 0.0833 0.0774 0.0694 0.0579 0.0291 0.0071 0.0022 0.00035
Kur, 0.0451 0.0424 0.0387 0.0332 0.0180 0.0048 0.0015 0.00026
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TABLE 9.2 Formulas for circular rings (Continued)

12.

LTy = —wR*[1 — cos(x — 0))¢x — 0)°
LTy = —wR[1 — cos(x — 0))(x — 0)°

LTy, = —wRsin(x — 0)(x — 0)°

“wR?
M, = "T’r [s + 7 — Oc — ky(m — 0 — 5)]
_WwR?
My = H;IR [t —s+0c—ky(n—0—5)]
N, = 7L:R(s + mc — Oc)
Vy=0
—wR* [ky(s + 0c) 2k3(n — 0 — ) n
El [TJF 2ky(1 —s) — f} for0 < 3
ADg . )
—wR* [ky(s +mnc—0c) 2k5(n—0—s) n
ol [ 2 T for6>3
wR* [kys(n — 0) 2k3(n — 0 — s)
ADy 7E[T—k2(l+c)+f
wR* s 5
L m[k1(7—s+00) +k2n(0—s—2)+2k2(n—07s)i|

wR*

for0 <

[k (n®s — 10s — mc — 5 + 0c) + kym(n — 0 — 5 — 2 — 2¢) + 2k%(n — 0 — )] for6) >

2EIn

Max + M occurs at an angular positionx; where x; > 0, %, > 90°, and x; = tan™!

Max — M = M.

Ifo=p=0M=KywR? N=KywR,AD = K,pwR*/EI, etc.

—Ts

s—0c

0 30° 60° 90° 120° 150°
Ky, —0.2067 —0.2180 —0.1366 —0.0513 —0.0073
Ky, —0.8808 —0.6090 —0.3183 —0.1090 —0.0148
Ky, —0.3110 —0.5000 —0.5000 —0.3333 —0.1117
Kap, —0.1284 —0.1808 —0.1366 —0.0559 —0.0083
Kyp, 0.1368 0.1889 0.1488 0.0688 0.0120
K, 0.0713 0.1073 0.0933 0.0472 0.0088

[9'6 038

sweag paAing

€2¢



TABLE 9.2 Formulas for circular rings (Continued)

Reference no., loading, and load terms

Formulas for moments, loads, and deformations and some selected numerical values

13.

The radial pressure w, varies linearly
with x from 0 at x =0 to w at x = 7.

LTy =%

2
IZ(.’XI*G*ZC‘FMS)(X*())“

LTy =

WR(x—Hfchrus)(xf())“
n—0

LTy = %};(1 — uc —zs){x — 0)°

o —wR2 I 0 arl (m—0)? Max + M occurs at an angular position x;
A7 2(n—0) +2—sm—0)+hy 14c- 2 wherex; > 0, x; > 103.7°, and x, is found from
1+C+SH sinx; +ccosx; —1=0
—wR® (n—0)* 9 1 1— 1=
Mcfm[7‘[(7‘!76)727267394’}82[1‘#677
Max - M = M,
Ny=—%F 191 9c— s -0
LR r— c —s(n
Vy=0
—wR* s0 5242 —(n—0)° T
m|k1(1—5>+k2(n—20—20)+sz for()éi
ADy = wR* s(x—0) 24 2¢— (n— 0) n
_ 8- s (- n
7E1(n70)ikl|il+c 3 :|+kz - ] for();z
wR! s+c(n—0) 5242 —(n—0)
ADV_mlle—kz(n—H—s)—kzi
4 2 2 2
%[kl(%c72c+2n—2—ﬂs)7k27t|:2(n—6)71+67%+%:|—k§[2+20—ﬂ70)2} for0< 2
AL =
wR* (m—0)?

e _ _ _9_ _ _ _ T 2 _ _ 02
2EIn(n—0)[k1[nc(n 0) + 2ns — 2¢ — 2 — 0s] k2n|:2(rz 0)+1+c—2s 5 :| k5[2+ 2¢ — (n ())]} for 0 >
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TABLE 9.2 Formulas for circular rings (Continued)

14. M. = _wR? 9 0 s kol 2 0 Max + M occurs at an angular position x;
4T n(m — 0)% (=02 =0 =65tk 2An—0-5) where x; > 0,x; > 108.6°, and x, is found from
7(71—0)3:“ (x; — 0+ scosx;) +(3s — 2n+ 20 — Oc) sinx; =0
3
Max - M =M.
_WR?
M. :(wiRO)z!20(2—0)+63—67{+n(n—0)z
o —
(@—0°
+ky|2m—0—5) ——F7—
AwR(T~ 0 = 5)/ (- )2 [ 3
C —wR
Ny = m[Z(n —0)(2—c)— 6s]
w
Vy=0
The radial pressure w, varies with R
P _ Rt 2 . 2 =0 — 6 — 0 —
(x— 0" from O atx =0 tow at Wl Eh ha 7Lf67023+33—BI)CJrEJchrOszO + ky T 4445 — 20+ 20 72k§7(n O —6x—6-5) for0 < =
x=n AD EI(n — 0y 4 2 2 3n 2
H= 4 3
_wR? —wR B e 5 (m—0)" —6(mn—0—5s) m
LTy, = E— [(x—0)?%—2 71«71(71 e {kl[(z c)(n — 0) — 3s] — 2k5 — for 0 > 3
+ 2uc + 2zs](x — 0)° . N
ADy =B Vhi2 4 2e — stn— 0] + ko2 + 2 — (n— 0)2) 4 223 "D 8@ =079
—wR 2 EI(n — 0) 3n
LTy = Sk - 07?2
(m—0)
+2uc+22$](x70)°
—2wR
LTy :m(x—e—zcurus)
x (x — 0)°

[9'6 03s
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TABLE 9.2 Formulas for circular rings (Continued)

Reference no., loading, and load terms

Formulas for moments, loads, and deformations and some selected numerical values

14. Continued R* 20 — 0 3 0° on? —0)° — 6(n— 0 — ¢
ontinue “’72[ 1M+n—2()—%s)+k2 2450+ + G- — (=0 +k§(")3¢] foro <7
AL — EI(n — 0) T 4
- 4 _ — 03 . —0)? - —0—
El(lfi o7 =k1[33+2no ocfs(nf())+30:| +k2|:%7(n70)2 7n+0+s+2+20:| T kﬁw for0 > g
15. Ring supported at base and loaded My = wR?| hy — 0.5 — Ky — DB where Kp = 1 +—— Max+M =M, .
by own weight per unit length of ky AR? Max — M occurs at an angular position x; where
circumference w n__ 054 (Kp — 1)
tanx,; ky

M = wR? [kz +05+ (I{Tk;l)ﬂ]
1

w N, = wR[O.5+7(KT — 1)k2] 5
ky Max — M = —wR*(1.6408 — k,) atx = 105.23°
V=0 fo=p=0,
wR® (kyn 5 WwR?
ADHfE—Ae(?—kzn+2kz) My ="
C - 5
—wR® (kyn? o, N, = VR
2rRw ADV=W( v —2k2> A b}
—wRP[,  3kyn?  hyn ADy = 0.4292 %
LTy = ~wR?az + Kp(u - 1)) Ain[ 1 7ifk§+(KT—1)a] = 0.4292 5
LTy = —wRxz EAe 6 2
LTy = —wRxu wR*
v Note: The constant K; accounts for the radial ADy = _0-4674ﬁ
distribution of mass in the ring.
AL = -0 2798w—R4
- EI

For a thin ring where K ~ 1,

Max + M = 3wR? at C
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TABLE 9.2 Formulas for circular rings (Continued)

16. UAnit a‘\xia?l segme.nt of pipe ﬁlled M, = pR® (0.75 _ &)
with liquid of weight per unit 2
volume p and supported at the base

My = pR3(1,25 - %2)

N, =0.75pR?
Vy=0
-~ pRO12(1 —v?) [kym b 5
ADy =g T e (2-5) — 1
—pR512(1 —v?) (ky7® 5
ADV:T S —2ky + k3

- —pR°12(1 —v?) [k, 372 | k2
AL= Et3 EDR (0'5 + 4) 2

Note: For this case and case 17,

Max + M = M.
Max — M = —pR? (%2 - 01796) atx = 105.23°

Ifa=p4=0,

pR%12(1 —v?)
ADp =0.2146—— ——
H Ef

pR?12(1 —v?)
ADy = 70.2337T
9 pR%12(1 —v?)

AL = —0.139 -
Et?

2
YT R1 )
2 . .
p= m where t = pipe wall thickness
17. Unit axial segment of pipe partly Note: see case 16 for expressions for « and
filled with liquid of weight per unit oR?
volume p and supported at the base | My = e (20s% + 3sc — 30 + 1 + 2nc? + 2ky[sc — 25 + (1 — 0)(1 — 2¢)]}
pR? 2
Ny = ﬂ[Ssan(n —0)(1 4+ 2¢%)]
Vy=0
pR?3(1 —»*) 2 L4 2 L4
e {kln(sc + 27 — 30 +20c%) + San(zc —se—5+ 0) + 83 — 0)(1 — 2¢) + s¢ — 2s]} for < 3
=
R3(1 —v?) b
pzW {kyl(m — 0)(1 + 2¢2) + 3sc] + 8Kk3[(n — 0)(1 — 2¢) + sc — 2s]} for0 > 5
_OR93(1 — 12
ADy = ZPEBUL V) 16?4 (= 0)(m — 0+ 250)] — 4kym(1 + ) — 8E2[(x — 0)(1 — 2¢) + s — 2s])

2Et3n

[9'6 038
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TABLE 9.2 Formulas for circular rings (Continued)

Reference no., loading, and load terms

Formulas for moments, loads, and deformations and some selected numerical values

17. Continued
3
LTy = %[ZC —2z(x— 0+ sc)
—u(l+c*)x - 0)°
2
LTy :%[Zcfz(x— 0+ sc)
—u(1 4 A)x - 0)°

2
LTy = %[zc2 — u(x — 0+ sc)]
x {x — 0)°

—pR3(1 —v
2Et3n

—pR73(1 —v?)
2Et3n

AL =

3
Max+M = M, :%(47{04’”4’2062 + 0 — 3sc + 2ky[(m — 0)(1 — 2¢) + sc — 2s]}
7

Max — M occurs at an angular position where x; > 0, x; > 105.23°, and x, is found from
(04 20¢* — 3sc — m) tanx, + 2n(0 — sc — x,) = 0

If o = =0, M = Ky pR®, N = KxypR?, AD = K,,pR°12(1 —V?)/Et®, etc.

2
){kl[zoc2 +0—3sc+nz(sc—0+3f>] + 2k m[2 4 20c — 25 — 4c — 1+ 0 — sc] — 4k3[(n — 0)(1 —20)+sc—25]} for0 <

ki
2

(k1[20c% 4 0 — 3sc + n(n — O)(n — 0 + 2s¢) — 3nc?] + 2kyn[25 — 2(1 4 ¢)? —sc— (n— 0)(1 — 2¢)] — 4k3[(n — 0)(1 — 2¢) + sc — 2s]} for0 >

0 0° 30° 45° 60° 90° 120° 135° 150°
Ky, 0.2500 0.2290 0.1935 0.1466 0.0567 0.0104 0.0027 0.00039
Ky, 0.7500 0.6242 0.4944 0.3534 0.1250 0.0216 0.0056 0.00079
Ky, 0.7500 0.7216 0.6619 0.5649 0.3067 0.0921 0.0344 0.00778
Kap, 0.2146 0.2027 0.1787 0.1422 0.0597 0.0115 0.0031 0.00044
Kip, —0.2337 —0.2209 —0.1955 —0.1573 —0.0700 —0.0150 —0.0043 —0.00066
K, —0.1399 —0.1333 —0.1198 —0.0986 —0.0465 —0.0106 —0.0031 —0.00050

b
2
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TABLE 9.2 Formulas for circular rings (Continued)

18.

W .
v= ﬁ(sm(ﬁ —sin0)

WR

LTy = 7ﬂ(n —s)(x—2)
+ WR(z — s)(x — 0)°
— WR(z — n)(x — §)°

LTy = 27Wn(n —8)z
+ Wa(x — 0)°
- Watx — ¢)°

-w

LTy =4 —(n=s)1-u)
+ Wux — 0)°
- Wugx — ¢)°

_WE

My=-—"[n" 5" —(n—p)n+(m—0)s — ky(c — m)]

21

W e
NA?Zn(n s%)

w
VA:ﬂ(67¢+s—n+sc—nm)

Ifo=p=0M=KyWRN=KyW,V=K,W

0 ¢—0 30° 45° 60° 90° 120° 135° 150° 180°
Ky, —0.1899 —0.2322 —0.2489 —0.2500 —0.2637 —0.2805 —0.2989 —0.3183
0° Ky, 0.0398 0.0796 0.1194 0.1592 0.1194 0.0796 0.0398 0.0000
Ky, —0.2318 —0.3171 —0.3734 —0.4092 —0.4022 —0.4080 —0.4273 —0.5000
Ky, —0.0590 —0.0613 —0.0601 —0.0738 —0.1090 —0.1231 —0.1284 —0.1090
30° Ky, 0.0796 0.1087 0.1194 0.0796 —0.0000 —0.0291 —0.0398 —0.0000
Ky, —0.1416 —0.1700 —0.1773 —0.1704 —0.1955 —0.2279 —0.2682 —0.3408
Ky, —0.0190 —0.0178 —0.0209 —0.0483 —0.0808 —0.0861 —0.0808 —0.0483
45° Ky, 0.0689 0.0796 0.0689 0.0000 —0.0689 —0.0796 —0.0689 —0.0000
Ky, —0.0847 —0.0920 —0.0885 —0.0908 —0.1426 —0.1829 —0.2231 —0.2749
Ky, —0.0011 —0.0042 —0.0148 —0.0500 —0.0694 —0.0641 —0.0500 —0.0148
60° Ky, 0.0398 0.0291 —0.0000 —0.0796 —0.1194 —0.1087 —0.0796 0.0000
Ky, —0.0357 —0.0322 —0.0288 —0.0539 —0.1266 —0.1668 —0.1993 —0.2243
Ky, —0.0137 —0.0305 —0.0489 —0.0683 —0.0489 —0.0305 —0.0137 0.0000
90° Ky, —0.0398 —0.0796 —0.1194 —0.1592 —0.1194 —0.0796 —0.0398 0.0000
Ky, 0.0069 0.0012 —0.0182 —0.0908 —0.1635 —0.1829 —0.1886 —0.1817

[9'6 038
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TABLE 9.2 Formulas for circular rings (Continued)

Reference no., loading, and load terms

Formulas for moments, loads, and deformations and some selected numerical values

-M, 2kys
19. M= (n—o——kf>

_ M, (ks

m=2 ()
-M, 2kyc
Va=om (1+ T )

M,

2

Atx=0+180°, M =0

-M,
LTy = 2710 (x —2)+ M,(x— 0)° Other maxima are, foro = =0
J - —0.1090M,  atx=0+120°
27R 0.1090M,  atx=0+240°

_Mu
LTy =5 2(1-w

Max + M =—_% forx just greater than 6

Max — M = IZW" for x just less than 0

Ifo=f=0,M=kyM, N =KyM,/R, V =K,M,/R

0 0° 30° 45° 60° 90° 120° 135° 150° 180°
Ky, —0.5000 —0.2575 —0.1499 —0.0577 0.0683 0.1090 0.1001 0.0758 0.0000
Ky, 0.0000 0.1592 0.2251 0.2757 0.3183 0.2757 0.2250 0.1592 0.0000
Ky, —0.4775 —0.4348 —0.3842 —0.3183 —0.1592 0.0000 0.0659 0.1165 0.1592
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TABLE 9.2 Formulas for circular rings (Continued)

20. Bulkhead or supporting ring
in pipe, supported at bottom and
carrying total load W transferred
by tangential shear v distributed
as shown

LTy = %xz

LTy = %(z — xu)

for 0 < x < 180°

1)
k3

LR
n

WR
My ==~ (ky = 05)
WR
M =~ (ky +0.5)
0.75W
A= x
V,=0
WR? (ky ks
ADi =7 (Zfi
~WR? (kyn
ADy = 1
VT EI ( 8
ALfiR3 PR
" 4EIn o

TEZ
g e +2) - 2k§]

Max +M = M.

Max — M = #(342815 —2k,) atx=105.2°
T

Ifa=p4=0,
M, = 0.0796WR
N, =0.2387W
V,=0
ADy =0 0683W—R3
o= EI
WR3
ADy = ~0.0744
WR3

AR = —0,0445ﬁ

[9'6 038
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TABLE 9.2 Formulas for circular rings (Continued)

Reference no., loading, and load terms

Formulas for moments, loads, and deformations and some selected numerical values

21. Ring rotating at angular rate
 rad/s about an axis perpendicular
to the plane of the ring. Note the
requirement of symmetry of the
cross section in Sec. 9.3.

Sw227 RRLA

J§ = mass density of ring material

LTy = 60?AR? (KT(l —u)
R,
g e~ Krp(1- u)]}

LTy = 0w*AR? |:Kr,~(1 —u)— %xz]

LTy = 0*AR? |:2KT(2u —1)— %xui|

M, = észR3{KTa + % [k2 -0.5

M = 6w’AR® {KToc + % |:k2 +0.5+

N, = 00?AR{ Ky +& 0.5+ (K — 1)’12
R ky

V=0

dw’R*

ADy = 17

Ee 4

AL

dw’RY R, (k3%
= TR2% —

Ee R

Note: The constant K; accounts for the radial

distribution of mass in the ring.

& - Df

R, (k )
T [ZKTkzoc +7 (7 — ko4 2k§)]

2 2
AD, =R [2K7vk2a - % (k‘” - 2k§]

16 Ty

Max +M = M

Max — M occurs at an angular position x; where
X

Ky — DB
tanx; 0.5+ 3

For a thin ring where K ~ 1,

Max — M = —6w?AR® [%(16408 —ky) — a:| atx = 105.23°
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TABLE 9.3 Reaction and deformation formulas for circular arches

NOTATION: W =load (force); w =unit load (force per unit of circumferential length); M, = applied couple (force-length). 0, = externally created concentrated angular
displacement (radians); A, = externally created concentrated radial displacement; T — 7, = uniform temperature rise (degrees); T; and 7, = temperatures on outside and
inside, respectively (degrees). H, and Hp are the horizontal end reactions at the left and right, respectively, and are positive to the left; V, and Vj are the vertical end
reactions at the left and right ends, respectively, and are positive upward; M, and My are the reaction moments at the left and right, respectively, and are positive
clockwise. E = modulus of elasticity (force per unit area); v = Poisson’s ratio; A is the cross-sectional area; R is the radius ot the centroid of the cross section; I =area
moment of inertia of arch cross section about the principal axis perpendicular to the plane of the arch. [Note that for a wide curved plate or a sector of a cylinder, a
representative segment of unit axial length may be used by replacing EI by Et?/12(1 — v2).] e is the positive distance measured radially inward from the centroidal axis of
the cross section to the neutral axis of pure bending (see Sec. 9.1). 0 (radians) is one-half of the total subtended angle of the arch and is limited to the range zero to 7. For an
angle 0 close to zero, round-off errors may cause troubles; for an angle 0 close to 7, the possibility of static or elastic instability must be considered. Deformations have been
assumed small enough so as to not affect the expressions for the internal bending moments, radial shear, and circumferential normal forces. Answers should be examined to
be sure that such is the case before accepting them. ¢ (radians) is the angle measured counterclockwise from the midspan of the arch to the position of a concentrated load or
the start of a distributed load. s = sin 0, ¢ = cos 0, n = sin ¢, and m = cos ¢. 7y = temperature coefficient of expansion.

The references to end points A and B refer to positions on a circle of radius R passing through the centroids of the several sections. It is important to note this carefully
when dealing with thick rings. Similarly, all concentrated and distributed loadings are assumed to be applied at the radial position of the centroid with the exception of
cases h and i where the ring is loaded by its own weight or by a constant linear acceleration. In these two cases the actual radial distribution of load is considered. If the
loading is on the outer or inner surfaces of thick rings, a statically equivalent loading at the centroidal radius R must be used. See examples to determine how this might be
accomplished.

The hoop-stress deformation factor is & = I/AR? for thin rings or o = e/R for thick rings. The transverse- (radial-) shear deformation factor is f = FEI/GAR? for thin rings
or f = 2F(1 + v)e/R for thick rings, where G is the shear modulus of elasticity and F'is a shape factor for the cross section (see Sec. 8.10). The following constants are defined
to simplify the expressions which follow. Note that these constants are unity if no correction for hoop stress or shear stress is necessary or desired for use with thin rings.
ki=1—oa+pky=1-ua.

General reaction and expressions for cases 1-4; right end pinned in all four cases, no vertical motion at the left end
Deformation equations:

3
Horizontal deflection at A = 6y, = % (AHHHA + Ay % - LPH)

. R?
Angular rotation at A =y, = =

M,
i <AMHHA +Aum fA - LPM)

where Agy = 20¢® + k(0 — sc) — ky2sc
Aun = Apy = kys — Oc

1
Ay = 4—82[20s2 + k(0 + sc) — ky2sc]

and where LPy and LP); are loading terms given below for several types of load.

(Note: If desired, V,, Vp, and Hy can be evaluated from equilibrium equations after calculating H, and M,)

[9'6 038
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TABLE 9.3 Reaction and deformation formulas for circular arches (Continued)

1. Left end pinned, right end
pinned

Since dyy =0 and My =0,

_LPy

Ha He HAfA
-HH

Va Ve

The loading terms are given below.

R?
and wA:ﬁ(AMHHA—LPM)

Reference no., loading

Loading terms and some selected numerical values

la. Concentrated vertical load LPy = W[Hsc — ¢ne +k§1(62 — m®) + kyelc — m):| Fora=p=0
W B 0 30° 60° 90°
LPy = - [q{)n —0s+ ﬁ(ﬁn — ¢s + snc — snm) — ky(c — m):|
/WLI\ 3 0° 15° 0° 30° 0° 45°
‘(4,4{ LPy  _00143 —0.0100 -0.1715 —0.1105 —0.5000 —0.2500
w
I
LPy  _0.0639 —0.0554 —0.2034 —0.1690 —0.2854 —0.1978
w
1b. Concentrated horizontal LPy = W|:902 + pme +ﬁ(0+ & — sc— nm) — kye(s + n)] Fora=4=0
load 2 o o ]
w k ‘ 0 30 60 90
LPy =— |:—0c —¢pm+ —12(00 — O0m +sm? — scm) + ky(s + n)]
W 2 28 ¢ 0° 15° 0 30° 0° 45°
[ LPy 00050 00057 0.1359  0.1579  0.7854  0.9281
[ W
\
| LPy 0.0201  0.0222  0.1410  0.1582  0.3573  0.4232
W
lc. Concentrated radial load LPy = W[Oc(cn +sm) +%(0n+ dn — sen — s2m) — kye(1 + sn — cm)] Foro=4=0
w k 0 30° 60° 90°
W LPy, :E[—(l(cn+sm)+2—12(()cn — psm) + ky(1 +sn — cm)]
f & ) 0 15° 0 30° 0 45°
\‘ ¢ LPy  _00143 —0.0082 —0.1715 —0.0167 —0.5000 0.4795
R w
Vo LPy  _0.0639 —0.0478 —0.2034 —0.0672 —0.2854 0.1594
w
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TABLE 9.3 Reaction and deformation formulas for circular arches (Continued)

[9'6 03s

1d. Concentrated tangential LPy = W[Oc(cm —sn)+ ¢c+%(0m 4 ¢m —scm — c?n) — kyc(sm +cn)] Fora=p4=0
load w 0 0 30° 60° 90°
LPy =— [(;(Sn —cm) — ¢ + 5 (Ocm — 0+ psn — sc + sm) + ky(sm + cn)]
| 2 2s ® 0° 15° 0° 30° 0° 45°
W
\4,4 LPy 0.0050 0.0081 0.1359 0.1920 0.7854 0.8330
w
\ ‘ LPy 0.0201 0.0358  0.1410 0.2215 0.3573 0.4391
W
le. Unif rtical load , , Fora=f=0
© Unltlorlm vertieal Joad on LPy = W—R |:00(1 + 4sn 4 25%) + d)c(m2 - nz) — c(sc + mn) or &= f
partial span 4 0 30° 60° 90°
2k
+ ?l(n‘% — 3ns? — 25%) + 2kyc(2cn +cs — 0 — ¢ — mn)i| ) 0 15° 0° 30° 0° 45°

LPy  _0.0046 —0.0079 —0.0969 —0.1724 —0.3333 —0.6280
R ; ;
LPy = % ‘mn +sc — 0(4sn + 257 + 1) — p(m? — n?)

w LPy  _0.0187 —0.0350 —0.1029 —0.2031 —0.1667 —0.3595
RifO0 o, o 2(c3 3 2 _ g2 wR
)\¢ t ;(n +5%)+2(c—m)—2(c® —m?) +c(n® — s*) — 2én
\

1 +2k2(0+¢+mn—sc—2cn)}
\‘ If ¢ = 0 (the full span is loaded)
LPy = %R[3c(20s2 40— s¢) — 4ky5° + Bkyc(sc — 0)]

LPy = %[sc — 0 — 205% + 2ky(0 — sc)]

1f. Uniform horizontal load on LPy = w—R[3()c(l — 6¢2 + 4c) + 3sc? + &y (60 — 6sc — 120c + 12¢ — 85°) Foroa==0
left side only 12 0 300 60° 90
+ 6kyc(3sc — 2s — 0)]
W= T R X LPy 0.0010 0.0969 1.1187
LPy = % [6902 —0—40c — sc + 2 [s(2 — 8¢+ ¢*) — 30(1 - 0% whR
i LPy 0.0040 0.1060 0.5833
wR

+ 2ky(0 + 25 — 3sc)

sweag paAIn)

GEE



TABLE 9.3 Reaction and deformation formulas for circular arches (Continued)

Reference no., loading

Loading terms and some selected numerical values

lg. Uniform horizontal load on | 1p, — “Ria0.1 4 92— 40) 4+ 35¢% + 2, (26 — 30 + Bs0) + 6hye(25 — s¢ — 0} Fora=f=0
right side only 12 0 30° 60° 90°
wR 2 ky 3 9
w LPy; =—{40c — 20c® — 0 — sc — —[s(2 — 3¢+ ¢’) — 30(1 — ¢)°]
/’_\E M8 i 3s? LPy —0.0004 —0.0389 —0.4521
wR
+ 2k (0 — 25 + SC)} LPy —0.0015 —0.0381 —0.1906
wR
i i 5 R —f= _
1h. Vetjtlcalloac{hng' LPH:wR{Z(?zsc+(ﬁ+k2)(2002—Hfsc)+ﬁ[k2(ﬂfsc)72c(s—Gc)]} For « = =0 and for R, =R
uniformly distributed 2 R
. 0 30° 60° 90°
along the circumference R
(by gravity or linear LPy = WR[( T k2>(s — ) - st] LPy, ~0.0094 ~0.2135 —0.7854
acceleration) wR
w where R, is the radial distance to the center of mass for a differential length % —0.0440 —0.2648 —0.4674
of the circumference for radially thicker arches. R.,/R=1+1./(AR?). I, is w
) . the area moment of inertia about the centroidal axis of the cross section.
(Note: The full span is N . S . .
loaded) For radially thin arches let R, = R. See the discussion on page 333.
1i. Horizontal loading LPy; = wRO[20¢* + k(0 — sc) — 2kqsc] For o =f =0 and for Ry =R
uniformly distributed wR o Ry oo 9 2 o o o
along the circumference LPy = R |:—29 sc+ %(20 c+0s+s°c) + ky(20s* — 0 — sc) 0 30 60 90
(by gravity or linear Ry LPy 0.0052 0.2846 2.4674
acceleration) - f(k‘ —hka)(0 + sc)] wR ' ’ '
ﬁ See case 1h for a definition of the radius R, % 0.0209 0.2968 1.1781
w w.
(Note: The full span is
loaded)
1. Parltial uniformly distributed LPy = ch|:0(1 —em+sn) +h(scm +e2n— 0m — dpm) + ky(sm+cn— 0 — 4’)] Foroa=f=0
radial loading 2¢ 0 30° 60° 90°
LPy, :w—R[O(cmf 1 7sn)+k—12[070cm — ¢sn +sc—sm)+ky(0+ —sm — cn)]
)\¢ l‘ If ¢ = 0 (the full span is loaded) LP}g —0.0050 —0.0081 —0.1359 —-0.1920 —0.7854 —0.8330
D ; w.
LPy; = wRc[20s* — k1 (0 — sc) — 2ky (0 —
\ | = wRA208™ = 1y (0= 50) = 2hy(0 = sc)] LPy 00201 -0.0358 —0.1410 —02215 —0.3573 —0.4391
LPy; = wR[—05 + ky(0 — s¢)] wR
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TABLE 9.3 Reaction and deformation formulas for circular arches (Continued)

1k. Partial uniformly increasing Foro=f=0
distributed radial loading LPy = 74) [OC(O +d—cn—sm) + 2 [n(sc —0= ) +s*m+2c—2m] §
0 30° 60° 90°
+hy[sen+5'm — SO0+ )" +c—m] - - 5
/\)(,’:—‘FLLQ/ w o |scn +s°m B c—m ) 0° 15° 0° 30° o 45°
)\ ) _ WwR Q k B LPy 00018 -0.0035 —0.0518 —0.0915 —0.3183 —0.5036
\ LPy, = i1é ) [ 5 152 [(0 + ¢)(O + sc) + psm — Ocn wR
\ s LPy  _0.0072 —0.0142 —0.0516 —0.0968 —0.1366 —0.2335
=25% = 2sn] + "2 [0 + ¢)° + 20m — 25 — 2]] wR
If ¢ = 0 (the full span is loaded)
LP, = LRC [0(0 —es)— %(0 — s0) — ky(0% — 32)]
LPy, —f [Osc — 0%+ 12 (0% + Osc — 252) + k(0% — sz)]
11. Partial second-order wRe 9 ky Fora=$=0
increase in distributed LPy = 0+ ¢)* i()({) +¢)" 200 —cm +sn) + ?[(0 + e+ m)
: : 0 30° 60 90°
radial loading
—c(sm+cn) —2n — 2s] + 7[6(9 +¢—sm—cn)—(0+ ) ]] & o 15° o0 30° 0° 45°
W
wR 0 2 LPy  _0.0010 -0.0019 —0.0276 —0.0532 —0.1736 —0.3149
LPy =—1{0(1 —cm+sn) — - (0 + — :
/)\‘;‘FLLL(/ v =Gt a7 | ) =50 +9) o
! LPy  _0.0037 —0.0077 —0.0269 —0.0542 —0.0726 —0.1388

\J

+ %[(0 + $)*(0 + s¢) + 25(¢pn + 3m — 3¢) — 45%(0 + ) — 20(1 — cm))
+k2|:sm+cn 0— ¢+(6+¢) i“
If ¢ = 0 (the full span is loaded)
LPy = g’—;f[eo% — 60s%c + 3k, (30c — 3s + s%) + 2ky(30c — 20°¢ — 3sc?)]

wR o 0, B 20°
LP, :ﬁ[()sz—() +k1@(0 + Osc — 25%) + ky sc—()+?

wR
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TABLE 9.3 Reaction and deformation formulas for circular arches (Continued)

Reference no., loading

Loading terms and some selected numerical values

1m. Partial uniformly LPy = w—R(Zﬁc(cn T sm)— (0% — ¢2) Fora=f=0
distributed tangential 2 5 . .
loading +k1[0(0 + ¢) + c(cm — sn — 2) + e] + ky2c(cm — sn — 1)} 0 30 60 90
w . B - . - B
A LPy = %3 [02 — ¢? — 20(cn + sm) 4 0 15 0 30 0 45
N
;\qﬁ F i LPy 00010  0.0027  0.0543 01437 05000  1.1866
! + sle[ﬂ(cnfcs—97(b)f¢os(c+m)+23(s+n)]+k22(1+sn—cm) wR
X LPy 00037 00112 00540  0.1520  0.2146  0.5503
\ If ¢ = 0 (the full span is loaded) wR
LPy; = wR[20¢%s + kys(0 — s¢) — 2kycs?]
LPy, = wR[—()sc +2%(252 — 0sc— 0%) + kzsz]
1n. Concentrated couple LPy = %(4)0 — kyn) Fora=p4=0
0 30° 60° 90°
LPy = = 2R[ 252 — ky (0 + sc) + ky2sm]
) 0° 15° 0° 30° 0° 45°
/GJ\ LPyR 00000 -0.0321 0.0000 —0.2382 0.0000 —0.7071
\*¢ o M,
' LPyR 00434 —0.1216 0.0839 —0.2552 0.1073 —0.4318
M,
0,E1
1p. Concentrated angular LPy = = (m—c)

displacement

—%
-
¥
om

0,EI n
LPy = R? (2 + 23)

1q. Concentrated radial
displacement

ﬂfﬁj\
|

AEI
LPy; = ;23 n
AEI m
LPy =" (’%)
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TABLE 9.3 Reaction and deformation formulas for circular arches (Continued)

1r. Uniform temperature rise
over that span to the right
of point @

/jf!y\

\

VET
LPy = ~(T' = T)) (s + )

yEI (m—c)
s

LPM:(T*TO)W

T =uniform temperature
T, =unloaded temperature

1s. Linear temperature
differential through the
thickness ¢ for that span
to the right of point @

Q T
m

1

\

vEI
LPy = (7 = Ty) - (05 = Oc — o)
VEI

LPy =Ty ~- T g

Os+ps—m+c)

where ¢t is the radial thickness and 7}, the unloaded temperature, is the temperature at the radius of the centroid

2. Left end guided horizontally,
right end pinned

Va

Since 4, =0 and Hy =0

N R?

“LPvp  and oHA:ﬁ<AHM%—LPH>

Ma= Ao

Use load terms given above for cases la—1s

[}

. Left end roller supported in
vertical direction only, right
end pinned

Since both M, and H, are zero, this is a statically determinate case:

_R3 _R2

dua="pLPy  and Yy = LPy

Use load terms given above for cases la—1s
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TABLE 9.3 Reaction and deformation formulas for circular arches (Continued)

4. Left end fixed, right
end pinned

Hy =

Since dy4 =0 and ¥, =0,

_AwvLPy—ApyLPy o My _ ApyLPy —AuyLPy

AHHAMM - A%IM R AHHAMM - A%IM

Use load terms given above for cases la—1s

General reaction and deformation expressions for cases 5-14, right end fixed in all 10 cases.

Deformation equations:

3
Horizontal deflection at A = 64 = % (BHHHA + By V4 + By % - LFH)

R® M,
Vertical deflection at A = dyy = 7 (BvHHA +Byy V4 + By TA - LFV>
2

R M,
7 (BMH Hy + Byy Vi + Byy f/‘ - LFM)

Angular rotation at A =y, =

where Byy = 20c% + k(0 — sc) — ky2sc

Byy = Byy = —20sc + ky2s?

Bynr = By = —20c + ky2s

Byy = 20s? + k1 (0 + sc) — ky2sc

Byy = By = 20s

By =20
and where LFy, LFy, and LF), are loading terms given below for several types of load

(Note: If desired, Hp, Vp, and Mp can be evaluated from equilibrium equations after calculating Hy, V,, and My)

5. Left end fixed, right end fixed

Since dgy = 0,0y4 =0, Y, = 0, these equations must be solved simultaneously for H,, V,, and M, /R
The loading terms are given in cases ba—bs

ByyHy + Byy Vs + By My /R = LFy
By Hy + By Vy + Byy My /R = LFy
By Hy + Byy Va + Byy My /R = LEy
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TABLE 9.3 Reaction and deformation formulas for circular arches (Continued)

Reference no., loading

Loading terms and some selected numerical values

; k Foro=f=
5a. Concentrated vertical load LFy = W|:—(H + d)en +§1(52 —m®) 4 hy(1+ sn— cm)] ora=F=0
W 0 30° 60° 90°
ky
LFy = W|:(6+¢)sn+§(9+¢+sc+nm)—kz(Zsc—strcn)] ¢ o 15 0 300 0 a5
V’ | LFy = W[(0 + ¢p)n + ky(m — )] LFy 00090 00253 01250  0.3573  0.5000  1.4571
w
LFy 0.1123 0.2286  0.7401 1.5326 1.7854  3.8013
w
LFy  0.1340  0.3032 05000 1.1514  1.0000  2.3732
w
5b. ;}or:{centrated horizontal LFy = W|:(0+ Pyme +%(0+ & — sc— nm) — ky(sm + cn)] Foro=4=0
oa 0 30° 60° 90°
k , ;
W 7(_:]_\ LFy = W[—(H +@)sm 45 (¢ = m®) + ky(1 = 26" + em + sn)] P 0 15° 0 30° 0 45°
T ¢ LFy = WI=(0+ ¢)m + kos + 1)] LfVH —~0.0013  0.0011 —0.0353  0.0326 —0.2146  0.2210
|
LFy 00208 -0.0049 —0.2819 —0.0621 —1.0708 —0.2090
w
LFy  —0.0236  0.0002 —0.1812  0.0057 —0.5708  0.0410
W
5c. Concentrated radial load LFy = W|:kf‘((~)n T n — sen — §*m) + ko(m — c):| Fora==0
2
W 0 30° 60° 90°
/\rj»\ LFy = W[%(Bm + ¢dm +sem + c2n) + ky(s +n — 2scm — 2c2n):| 3 0° 15° 0° 30° 0° 45°
e LF,
Y | Ly = Wiky(1 + 51 — cm)] WH 0.0090  0.0248  0.1250  0.3257  0.5000  1.1866
LFy 01123 02196  0.7401  1.2962  1.7854  2.5401
w
LFy 01340 02929  0.5000  1.0000  1.0000  1.7071
W
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TABLE 9.3 Reaction and deformation formulas for circular arches (Continued)

Reference no., loading

Loading terms and some selected numerical values

5d. Concentrated tangential
load

LFy = W[(G +¢)c +kz—1(0m + ¢m —sem — c?n) — ky(s + n)] Fora=f=0
. 0 30° 60° 90°
LFy = W|:—(0 +d)s — ?I(On + ¢n 4 scn + s2m) + ky(252m + 2scn + ¢ — m)]
¢ 0° 15° 0° 30° 0° 45°

LFy = W[—0 — ¢ + ky(sm + cn)]
LFy  _0.0013 —0.0055

—0.0353 —0.1505 —-0.2146 —0.8741

U "
| LFy —0.0208 —-0.0639 —-0.2819 —0.8200 —1.0708 —2.8357
w
LFy 00236 -0.0783 -0.1812 —0.5708 —0.5708 —1.6491
w
5e. Uniform vertical load on wR 2 2k o 2 3 Fora=$=0
partial span LFy = - ic[(l —2n°)(0+ ¢) — sc — mn] — ?(23 + 3s“n —n°)
0 30° 60° 90°
» + 2ky[s +2n +sn® —c(0+ ¢ + mn)]} ¢ o 15° o 30° o 45°
TN R o T
ﬂ_r‘\ LF, = wT is[(l —2m3)(0 + ¢) + sc + mn] +Tll3n(0 ++s0) w};l 0.0012 0.0055 0.0315 0.1471 0.1667 0.8291

\

LEy 00199  0.0635
+3m — m® — 2¢%] + 2ky[s(0 + § — 2s¢ + nm — 4cn) — an]] wR

2 LFy 00226 00778

LFy = wT[(l —2m%)(0 + ¢) + nm + sc 4 2ky(0 4 ¢ + nm — sc — 2cn)] whk

0.2371 0.7987 0.7260 2.6808

0.1535 0.5556 0.3927 1.5531

If ¢ = 0 (the full span is loaded)
ky4s®

LFy = %R |:00(1 —2s%) —sc? — + ke 2(s® + 5 — c(l)]
LFy = wR|:%((9s2 — 0% + 5¢) + kys(0 + s¢) + kys(0 — 330)]

LFy; = wR[L(0s* — 0c® + s¢) + ky(0 — sc)]
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TABLE 9.3 Reaction and deformation formulas for circular arches (Continued)

5f. Uniform horizontal load on wR ; 2s% Fora=4=0
left side only LFy = e |:Hc(4s2 — 1)+ sc? + 2k, (6 — 20c — sc 4 2s¢? + ?) + 2ky(sc? — 55 — Hc):|
0 30° 60° 90°
w % wR 2 2, 2k 2 3 2
LFy == = 0s(45° = 1) = s% = =21 (1= 3¢ + 2¢%) + 2[5 + 2(1 = 0)(1 = 2¢*)] LFy 0.0005 0.0541 0.6187
wR
wR B LFy 0.0016 0.0729 0.4406
LFy, =T[—0(4s — 1) — sc + 2ky(2s — 3sc + 0)] WR
LFy 0.0040 0.1083 0.6073
wR
5g. Unifor@ horizontal load on LFy :W7R|:3627ec+%(233+336739)+2k2(8700):| Fora==0
right side only 4 3
0 30° 60° 90°
W LF, = ’”TR [03 Csfet 2P _ 362 4 ac) — aky(2 - de? 1 26" — 03)]
/\E 3 LFy 0.0000 0.0039 0.0479
wR wR
LEy =710 = s+ 20,0 = 25 + 50)] LFy 0.0009 0.0448 0.3448
wR
LFy 0.0010 0.0276 0.1781
wR
5h. \/iert%cal loading uniformly LFy, = wR[ki(ZGCZ —0—50)+ky (& + 1)«]. —so)+ &20(00 _ s)] Foro=f=0and R, =R
distributed along the 2 R R
circumference (by gravity R. 0 30° 60° 90°
or linear acceleration) LFy = WR|:k10(0 + s¢) 4 2kys(s — 20c) — ég 2s(0c — S)]
LFy 0.0149 0.4076 2.3562
w LBy = 2wr(Fe ) wht
= 2WR| o4 ks ) (5 = 0c) LFy 0.1405 1.8294 6.4674
(Note: The full span is wk
loaded) See case 1h for a definition of the radius R, LFy, 0.1862 1.3697 4.0000
wR
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TABLE 9.3 Reaction and deformation formulas for circular arches (Continued)

Reference no., loading Loading terms and some selected numerical values
5i. Horizontal loading LFy = wR[kIG(H —s0) +&2S((}C _ kzs):| Forao=f=0and R, =R
uniformly distributed along R
i R R . o o o
the circumference (by LFy = wr[ " 20 — 0 - 50)+ (B8 4 1) ytse - 0) + (2R, - 2 )20 0 30 60 %
gravity or linear 2 R R
acceleration) Ry, LFy 0.0009 0.0501 0.4674
LFy = wR| ky — Vil 20s wR
ﬁ LFy —0.0050 —0.1359 ~0.7854
See case 1h for a definition of the radius R, wR
(Note: The full span is LFy 0.0000 0.0000 0.0000
loaded) wR
5j. Partial uniformly distributed LFy = wR[h(scm +2n— 0m — dm) + ky(s +n— Oc — ¢C)] Foro=f=0
radial loading 2
LFy, :wR[%(()n+(ﬁn+scn+s2m)+k2(()s+¢s—230n+2czm—c—m):| 0 30 60 90
" 0° 15° 0° 30° 0° 45°

LFy; = wR[ky(0 + ¢ — sm — cn)]

w
LF = =
W If ¢ = 6 (the full span is loaded) w;‘: 0.0013 0.0055 0.0353 0.1505 0.2146 0.8741
LFy = wR[k c(sc — 0) + 2ky(s — Oc)]

LEy 0.0208 0.0639 0.2819 0.8200 1.0708 2.8357

ulRIlS pue SS.IS 10} Se|NW.OS

\
\ | LFy = wRkys(0+ s¢) + 2ky5(0 — 250)] ok
l LFy = wR(2ky (0 = s0)] LFy 00236 00783  0.1812 05708 05708  1.6491
wR
5k. Partial uniformly increasing wR | ky 5 Forao==0
distributed radial loading LFn =55 { glsen = O+ @t 2c—m = cim]
X 0 30° 60° 90°
+ 2210 + ¢)(2s — Oc — pe) + 2¢ — 2m]}
2 ¢ 0° 15° 0° 30° 0° 45°
wR | ky 5
/‘;“L.;LL((/ w LEy =55 2 Bt 2n -0+ dm—sme—c'n) LFy  0.0003 00012  0.0074 00330  0.0451  0.1963
wR
A "
" + 5‘[(0 + ¢)(0s + ¢s — 2¢) — 25 — 2n + dsme + 4c2n]} LEFy 0.0054  0.0169  0.0737  0.2246  0.2854  0.8245
wR
\ wR (&
l LFy = 14 [52[(0 +)° +2(cm — sn — 1)]] LFy 00059 00198 00461  0.1488  0.1488  0.4536
wR

If ¢ = 0 (the full span is loaded)
LFy = ";—f [ys(sc — 0) + 2k, 0(s — 00)]
wR 2 2 2
LFy = %[kl(z‘s —sc” — 0c) + 2ky(25¢ 4 50 — s — Oc)]

wR 5 5
LFy =55 [ks(0" = 5°)]
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TABLE 9.3 Reaction and deformation formulas for circular arches (Continued)

51. Partial second-order wR 9 Foroa=4=0
increase in distributed H= 0+ ¢)* {kl[(o + )2t m) =28 —2n—n —sem]
radial loading k 0 30° 60° 90°
2 3
2[3(0 + ¢)(0s + 2¢) — 6s — 61 — c(0
. + G130+ )(Os + bs +2¢) — 65 — 6n — (0 + ) 1] p o - o 0 o =
/‘;_LLLW LFy =B 1[0+ ¢)(@s — n) + me® — 3m — sen + 2] LFy 00001  0.0004  0.0025 00116  0.0155  0.0701
)\ 0+ ) wR
| ky s LFy 00022 00070  0.0303  0.0947  0.1183  0.3579
\\ _ E[3(() + $)(0c + pc + 2s) — 6¢ — 6m + 12¢(mce — sn) — s(0 + ¢)°] wR
} wR (h LFy 00024 0.0080 0018  0.0609  0.0609  0.1913
=—— 12[6(sm+cn—0—¢)+ (0 + )3] wR
T 3! )+ (0+ )]
If ¢ = 0 (the full span is loaded)
wR 5 2c0°
LFy = 20 [k1(390 —3s+5%) + 2k2<90 —s+s0” — =
wR 5 2s0°
LF, = 20 |:kls(() — 5¢) + 2k, (2s2c =05 —c0” + =
wR 20°
LFy = e |:kz (sc -0 +?>:|
5m. Partial uniformly LFy = ﬂ%[(() + )2+ ki (0n + ¢pn — sen — s*m + 2m — 2¢) + 2ky(m — ¢ — 0s — $s)] Foroa=f=0
distributed tangential 2R R
loading LFy :%[—(()+¢)zs+kl(0m+¢m+czn+scm — 25 —2n) 0 30 60 90
+ 2ky(0c + pc + 25%n — n — 2scm + )] ¢ 0° 15° 0° 30° 0° 45°
w
R
Zgﬁl:\‘ LFy, = %He + $)? + 2ky (1 + sn — cm)] LFy  _0.0001 —0.0009 —0.0077 —0.0518 —0.0708 —0.4624
wR
)\‘ ! If ¢ = 0 (the full span is loaded) LFy  _0.0028 —0.0133 —0.0772 —0.3528 —0.4483 —1.9428
' LFy = wR[20%¢ + kys(0 — sc) — ky20s] wR
\ LFy = wR[—20%s + ky(0c — 5 — 8°) + 2ky(0c + 5 — 25¢%)] LEy  —0.0031 —0.0155 —0.0483 —0.2337 —0.2337 —1.0687
wR

LFy; = wR(—20° + ky25)
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TABLE 9.3 Reaction and deformation formulas for circular arches (Continued)

Reference no., loading

Loading terms and some selected numerical values

5n. Concentrated couple LFy = %[(0 +d)e — ky(s + )] Fora=p=0
M, 0 30° 60° 90°
M, LFy =2 [=(0+ ¢)s + ky(c — m)]
0° 15° 0° 30° 0° 45°
L o LEy =" 0 9) v °
Y ’1 LFyR  _0.0466 -0.0786 —0.3424 —0.5806 —1.0000 —1.7071
MO
LEyR  _0.3958 —0.4926 —1.4069 —1.7264 —2.5708 —3.0633
MD
LFyR  _05236 —0.7854 —1.0472 —1.5708 —1.5708 —2.3562
Mo
5p. Concentrated angular LFy = 0,EI (m—c)
displacement R?
0,EI
LFy = ' (s—n)
0,EI
b LEy =" ()
\eo -
1 ]
5q. Concentrated radial LE, — AEI n)
. H= p3
displacement Al
LEy = ;23 (m)
LFy =0

Ao;)%/_j.\
T

5r. Uniform temperature rise
over that span to the right of
point @

Q |

0
|

LFy = —(T — T,,)%(Hs)

LFy =@ -1y Z ()

RZ
LFy =0

T =uniform temperature
T, =unloaded temperature
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TABLE 9.3 Reaction and deformation formulas for circular arches (Continued)

5s. Linear temperature
differential through the
thickness ¢ for that span
to the right of point @

Q T

4\ ¢ T2

VEI
LFy =(T, - Tz)'ITt(n +5—0c— ¢c)
LFy = (T, — Tz)%(mfc+05+¢s)

yEI
LEy = (T, = T) 5o (0+ ¢)

Note: The temperature at the centroidal axis is the initial unloaded temperature

6. Left end pinned, right
end fixed

Ha
Va

Since dyy = 0,0y, =0, and M, =0,

Use load terms given above for cases 5a—5s

1, = BrvLFu = BuvLFy
BHHBVV - B%{V
v,  BunLFy — BuyLFy
BHHBVV - B;{V

RZ
Va =77 Burr Ha + Byy Va = LFy)

7. Left end guided in horizontal

direction, right end fixed

M
A V

Since dyy =0,¢4 =0, and Hy =0,

Use load terms given above for cases 5a—5s

v. _ BunLFy —~ ByyLFy
4 BVVBMM - B%JV

M, _ByyLFy — ByyLFy,

R Byy By — By

N R? M,
OHA :E(BHVVA +BHM7A*LFH>

8. Left end guided in vertical
direction, right end fixed

Since dgy =0,9, =0, and V, =0,

Use load terms given above for cases 5a—5s

~ BymLFy — By LFy

H,
47 BugByy — Bhy

M, _BuyLFy — BuyyLFy

R BHHBMM - B%IM

< R? M,
ova=g7 (BVHHA + Byy fA - LFV)
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TABLE 9.3 Reaction and deformation formulas for circular arches (Continued)

9. Left end roller supported
in vertical direction only,
right end fixed

Y

Va

Since dy, =0,H, =0, and My =0,

Use load terms given above for cases 5a—b5s

LFy, . _R®
Vy="Y  ys == (ByyVy — LFy)
A BVV HA EI HV YA H

RZ
Va =7 BuvVa — LFy)

10. Left end roller supported in
horizontal direction only,
right end fixed

Since dyy =0,V, =0, and M, =0,

Use load terms given above for cases 5a—5s

_LFy
BHH '

RZ
Va = 37 By Ha — LEy)

R
H, va = g7 (ByuHy — LEy)

11. Left end restrained against
rotation only, right end fixed

Ma

Since 4, =0,H, =0, and V, =0,

Use load terms given above for cases 5a—5s

My LFy N R} M,

T =By Ona = 57 (BHM & LF, H)
. R? M,

Oya = El (BVM fA - LFV)

12. Left end free, right end fixed

T T

Since Hy =0, V, =0, and M, = 0, this is a statically determinate problem. The deflections at the free end are given by

Use load terms given above for cases 5a—5s

_R® _R3

6HA:ﬁLFHV 6VA:ﬁLFV
_R?

'//A :ﬁLFM

ujelIlS pue SSa4]S 10} SejNuWLIoS

6 "dvHO]



TABLE 9.3 Reaction and deformation formulas for circular arches (Continued)

13. Left end guided along an
inclined surface at angle (,
right end fixed

8

Pa

Since there is no deflection perpendicular to the incline, the following three equations must be solved for M, P,, and d;:

5 EI;T;SQ = P,y(Byy cos ¢ — Byy sin0) + Byy % —LFy,
5 EI;;“‘ = P,(Byy cos{ — Byy sin{) + Byy % —LFy
. s My
0= P4(Byy cos{ — By sin{) +BMMf —LFy

Use load terms given above for cases 5a—b5s

14. Left end roller supported
along an inclined surface
at angle (, right end fixed

3
r m
5 ;
p

A

Since there is no deflection perpendicular to the incline and M, = 0, the following equations give P,, 6;, and y:

LFy cos{ — LFy sin(

P, = _
By sin® { — 2By sin { cos { + Byy cos? {

3
o7 = % {P4[Bpy(cos® { — sin® {) + (Byy — Byp) sin{ cos {] — LFy cos { — LFy sin(}

R? . sy
Yy = E[PA(BMV cos { — By sin{) — LFy]

Use load terms given above for cases 5a—5s
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TABLE 9.4 Formulas for curved beams of compact cross section loaded normal to the plane of curvature

NOTATION: W =applied load normal to the plane of curvature (force); M, =applied bending moment in a plane tangent to the curved axis of the beam (force-length);
T, = applied twisting moment in a plane normal to the curved axis of the beam (force-length); w = distributed load (force per unit length); ¢, = distributed twisting moment
(force-length per unit length); V, =reaction force, M, =reaction bending moment, 7, =reaction twisting moment, y, = deflection normal to the plane of curvature,
©, =slope of the beam axis in the plane of the moment M, and 4, = roll of the beam cross section in the plane of the twisting moment 7, all at the left end of the beam.
Similarly, Vg, My, T, yg, ©p, and Y5 are the reactions and displacements at the right end: V, M, T, y, ©, and y are internal shear forces, moments, and displacements at an
angular position x rad from the left end. All loads and reactions are positive as shown in the diagram; y is positive upward; @ is positive when y increases as x increases; and
¥ is positive in the direction of 7.

R =radius of curvature of the beam axis (length); E = modulus of elasticity (force per unit area); I =area moment of inertia about the bending axis (length to the fourth
power) (note that this must be a principal axis of the beam cross section); G = modulus of rigidity (force per unit area); v =Poisson’s ratio; K = torsional stiffness constant of
the cross section (length to the fourth power) (see page 383); 0 = angle in radians from the left end to the position of the loading; ¢ = angle (radians) subtended by the entire
span of the curved beam. See page 131 For a definition of the term (x — 0)".

The following constants and functions are hereby defined to permit condensing the tabulated formulas which follow. f = EI/GK.

Py = i — 1 o) ¢ = psing— g1 —cosg)
Fzzlgﬁ(xcosxfsinx) C, = Hﬁ«ﬁcossbfsmaﬁ)

F, = (e — sin®) — 28 (xeosx — sinx) Co= (6 —sin )~ pcos g —sin )
F4:1;ﬁxcosx+1;ﬁsinx 04:1;ﬂ¢c05¢+1;ﬁsin</>

Fy =~ rcins ¢ =2l g sing

Fs=F, Cs=C

F;=F Cr=Gs

Fo= T sine -1 oo e Rl

Fy = F, Cy=C,

Fa,={“’}<x—9>sm(x 0) = 1 — costx — 0) [¢x — 0)° Cu =6~ ysin(@ — 0) — 1 — costs — o)
Fpy= Hﬂ [(x — 0) cos(x — 0) — sin(x — O)Kx — 0)° Cas :ﬂ[(qb 0) cos(¢ — 0) — sin(¢ — 0)]
Fas={—/f[x—9—sin<x—9)]—Faz><x—e>° Ca.a:—ﬁw—efsmw—e]—c

R = [ e costc -0+ 15 Leinte -0 e 0 Cu =36~ 0costo 0+ S Lsines - 0)
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TABLE 9.4 Formulas for curved beams of compact cross section loaded normal to the plane of curvature (Continued)

148 . N0
Fp=— 3 (x — 0) sin(x — 0)¢x — 0) Ca5:71+/3(¢ 0) sin( — 0)
Fu=F, Cus = Ca
Fy =Fy5 Cu1=Cys
F= |:1 3 ﬂsm(x —0)— ﬂ(x 0) cos(x — ())] (x—0)° Cus = - ﬁSiD(d’ -0)— ﬂ(d’ 0) cos(¢ — 0)
Fog=Fy Cug =Cpo
7 + B 0 +[

e = [(x — 0) sin(x — 0) — 2 + 2 cos(x — 0)Kx — 0 Copz =———(¢p — 0)sin(¢p — 0) — 2 + 2 cos(¢p — 0)]
Fooy = [ﬂi 1 cos(x — 0) - ") } - Fa12:|<x — 0y Cans = /3[1 —cos(9— 0) — @} —Co
Fos=Fop Cars = Caz
Foe="Fo Cuis = Cu3
Fag= |:1 — cos(x — 0) — 1+ /}( — 0) sin(x — 9)](95 -0y Cys =1—cos(¢p —0)— —ﬂ(d) — 0)sin(¢p — 0)
Fog=Faz Carg = Carz

1. Concentrated intermediate lateral load

Transverse shear = V = V, — W(x — 0)°
Bending moment = M = V,Rsinx + M, cos x — T4 sin x — WRsin(x — 0){x — 6)°
Twisting moment = 7' = V4 R(1 — cosx) + M, sinx + T4 cos x — WR[1 — cos(x — 0))(x — 0)°

L . M,R? TyR? VAR WR?
Deflection =y =y, + O4Rsinx + 4 R(1 — cosx) + i F+ BT —F, + Vi ———F3 — i —F,3
. . MR T,R V,R? WR?
Bending slope = © = @4 cosx + |, sinx + Bl Fy+-4 i Fs+ i Fs—ﬁFae
o . MR TR VAR? . WR?

Roll slope = = 4 cosx — Oy sinx + Bl F; + Bl Fg + i Fy 7 Fa Fo
2 2

For tabulated values: V =Ky W, M =KyWR, T=K;WR, y=K, % 0 =Ky % V=K, %
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TABLE 9.4 Formulas for curved beams of compact cross section loaded normal to the plane of curvature (Continued)

End restraints, reference no. Formulas for boundary values and selected numerical values
. _WR3 2
la. Right end fixed, left end free ya= 2’? [Cussing — Cpo(1 — cosd) — Cogl, @4 = Vg; (Cy5 008§ — Cog sin )
W 2
WR .
Va = (Cagcosd + Cogsin )
If B = 1.3 (solid or hollow round cross section, v = 0.3)
Vp=-W
¢ 45° 90° 180°
Mp = —WRsin(¢ — 0)
Vy=0 My=0 Ty=0 0 0° 0° 30° 60° 0° 60° 120°
_ _ _ Tg = —WR[1 — cos(¢ — 0)]
=0 Op=0 yp=0 K, 0.1607 1.2485 0.6285 0.1576 7.6969 3.7971 0.6293
A —0. —1. —0. —0. -7 —-3. —0.
Koa 0.3058 1.1500 0.3938 0.0535 2.6000 —0.1359 —0.3929
Kya 0.0590 0.5064 0.3929 0.1269 3.6128 2.2002 0.3938
Kyp —1.0000 —1.0000 —1.0000 —1.0000 —1.0000 —1.0000 —1.0000
Kyp —0.7071 —1.0000 —0.8660 —0.5000 —0.0000 —0.8660 —0.8660
Krp —0.2929 —1.0000 —0.5000 —0.1340 —2.0000 —1.5000 —0.5000
1b. Right end fixed, left end simply VieW Ca9(1 —cos @) — Cygsing + Cyg
A= -
supported Co(1 —cosp) — Cgsing + Cy
0, = WR? (C45Co — CagC3) sin § + (Cag Cs — CagCo)(1 — 08 §) + (Co C5 — Ca3Ce) cos ¢
W AT EI Co(1 —cosdp) — Cgsin + Cy
WRZ [Ca6(Cs + Cg) — Cs(Cag + Cag)lsin d + (Cg C5 — C3Cy) cos ¢
A= Cy(1 —cos ) — Cgsing + Cy
Vp=V,-W
v, Mg = V,Rsin ¢ — WRsin(¢ — 0) If p = 1.3 (solid or hollow round cross section, v = 0.3)
Ty = VoR(1 — cos ¢) — WR[L — cos(¢p — 0)] ¢ 45° 90° 180°
My=0 Ty=0 y,=0 0 15° 30° 30° 60° 60° 120°
yp=0 Op=0 yYyp=0
Ky, 0.5136 0.1420 0.5034 0.1262 0.4933 0.0818
Koy —0.0294 —0.0148 —0.1851 —0.0916 —1.4185 —0.6055
Kya 0.0216 0.0106 0.1380 0.0630 0.4179 0.0984
Kyp —0.1368 —0.1584 —0.3626 —0.3738 —0.8660 —0.8660
Kpp 0.0165 0.0075 0.0034 —0.0078 —0.5133 —0.3365
Ko 0.1329 0.0710 0.2517 0.1093 0.4272 0.0708
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TABLE 9.4 Formulas for curved beams of compact cross section loaded normal to the plane of curvature (Continued)

lc. Right end fixed, left end supported

W(CQ9C4 = CasCr)(1 — €08 ) + (CyCy — Co3Cy)cos ¢ + (Cy3Cr — CygCy) sin

Vy= B
and slope guided 4 (C4Cy — CsCr)(1 = cos ) + (€, Cs — C3Cy) cos ¢ + (C3C7 — C, Co) sin g
w M. — WR(Cascs = Ca9Cs)(1 — cos ) + (Cy3Cs — Co C3) €08 ¢ + (Cog C3) — Co3Cy) sin ¢
4 (C4Cy — CsCr)(1 = cos ) + (C; C5 — C3Cy)cos ¢ + (C3C7 — C, Cg) sin
M
A v, = WR? Ca3(C4Cy — CsCq) + Co(C3C7 — C1Cy) + Cog(C1 C — C3Cy)
C AT EI (C,Cy — C4Cq)(1 = cos d) + (C;Cg — C5Cy) cos  + (C3C; — C;Cy) sin ¢
v Vg=Vyi—W If f = 1.3 (solid or hollow round cross section, v = 0.3)
A ° o o
Mp =V, Rsin ¢ + My cos ¢ — WRsin(¢p — 0) [ 45 90 180
Ty=0 y4=0 0,=0 o o o o o o
_ ; 0 15 30 30 60 60 120
yp=0 @p=0 Yp=0 Ty = VaR(1 — cos ¢) + M, sin ¢ — WR[1 — cos(¢p — 0)]
Ky, 0.7407 0.2561 0.7316 0.2392 0.6686 0.1566
Kya —0.1194 —0.0600 —0.2478 —0.1226 —0.5187 —0.2214
Kyu —0.0008 —0.0007 —0.0147 —0.0126 —0.2152 —0.1718
Kyp —0.0607 —0.1201 —0.1344 —0.2608 —0.3473 —0.6446
Krp —0.0015 —0.0015 —0.0161 —0.0174 —0.1629 —0.1869
Ky 0.0764 0.0761 0.1512 0.1458 0.3196 0.2463
1d. Right end fixed, left end supported V= 1w (Cas + Ca9)Cs = Cu(Cy + Co)lsind + (Cus Cs = Cap Cy) cos ¢
and roll guided [C5(C3 + Cy) — C4(Cy + Cy)lsin +(C5Cs — Cy Cy) cos
W T, = WR[C:JS(CS + Cy) = C6(Caz + Cag)lsin g +(Cog C3 — Cy3C) cos ¢
4 [C5(C5 + Cg) — C6(Cy + Cy)lsin ¢ + (C3Cy — CyCq) cos
0, = WR? Cy3(C5Cy — CsCs) + Ca6(C5Cs — CyCy) + Cog(CyCs — C5C5)
£ AT EI [C5(C3 + Cg) — C4(Cy + Cg)]sin ¢ + (C3Cg — CyCy) cos ¢
T
A
Vp=V,—-W
A B=Va
Mg = VyRsin¢ — Ty sin¢ — WRsin(¢ — 0) If B = 1.3 (solid or hollow round cross section, v = 0.3)
My=0 y4=0 Yy =0
yp=0 Op=0 =0 Tg = V,R(1 — cos ¢p) + T4 cos o — WR[1 — cos(¢p — 0)] b 45° 90° 180°
0 15° 30° 30° 60° 60° 120°
Ky, 0.5053 0.1379 0.4684 0.1103 0.3910 0.0577
Kpy —0.0226 —0.0111 —0.0862 —0.0393 —0.2180 —0.0513
Koa —0.0252 —0.0127 —0.1320 —0.0674 —1.1525 —0.5429
Kyp —0.1267 —0.1535 —0.3114 —0.3504 —0.8660 —0.8660
Krp —0.0019 —0.0015 —0.0316 —0.0237 —0.5000 —0.3333
Ky 0.1366 0.0745 0.2773 0.1296 0.5274 0.0944
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TABLE 9.4 Formulas for curved beams of compact cross section loaded normal to the plane of curvature (Continued)

End restraints, reference no.

Formulas for boundary values and selected numerical values

le. Right end fixed, left end fixed

Ca3(CyCs — C5Cq) + Cyg(Cy.C7 — €1 Cg) + Cg(C1 G5 — C,Cy)

Vi=W
W 4 Ci(C5Cy — CsCg) + Cy(C3C5 — C5.Cg) + C7(CyCg — C3.C5)
M, = WRC“3(05C9 — CsCs) + Cup(C3Cy — C3Cy) + Cog(Cy Cs — C3C5)
C1(C5Cy — C5Cg) + Cy(C3Cs — CyCy) + C(C,.Cs — C3Cs)
T, — WRCas(C6C7 — CyCy) + Cu6(C1Cy — C3C7) + Cog(C3C4 — C1 C)
“ C1(C5Cy — CsCg) + C4(C3C5 — Cy.Cg) + C7(Cy G — C3.C5)
ya=0 ©,=0 y,=0 V=V, - W - -
yp=0 Og=0 Yp=0 If f = 1.3 (solid or hollow round cross section, v = 0.3)
Mp = V,Rsin ¢ + M, cos ¢ - - -
', sing - WRsin(p— 0) é 45 90° 180 270 360
. 0 15° 30° 60° 90° 90° 180°
Tg = V4R(1 — cos ¢p) + My sin ¢
+ Ty cos ¢ — WR[1 — cos(¢ — 0)] Ky, 0.7424 0.7473 0.7658 0.7902 0.9092 0.5000
Kya —0.1201 —0.2589 —0.5887 —0.8488 —0.9299 —0.3598
Kpy 0.0009 0.0135 0.1568 0.5235 0.7500 1.0000
Kyp —0.0606 —0.1322 —-0.2773 —0.2667 0.0701 —0.3598
Krp —0.0008 —0.0116 —0.1252 —0.3610 —0.2500 —1.0000
Ky 0.0759 0.1427 0.2331 0.2667 0.1592 0.3598
1f. Right end supported and V. — W[—Cl sin ¢ + C,4(1 — cos $)][1 — cos(p — 0)] + Cyg sin” ¢ — Cyg sin (1 — cos ¢)
slope-guided, left end supported A C,4(1 —cos 4))2 +Cy sin’ ¢ —(Cy + Cg)(1 —cos¢p)sing
and slope-guided
C,6(1 —cos ¢)? — Cy3(1 —cos ¢)sin g + [Cy sin ¢ — Cg(1 — cos P)][1 — cos(¢p — 0)]
M, =+WR : ki :
Ve C,(1 —cos $)* + Cysin® ¢ — (C; + Cg)(1 — cos ) sin ¢
W Va= WR? (Cy3Cy — CogC1)(1 — cos ) — (Ca3Cs — Ca6Cs) sin ¢ — (C5C4 — C1 Cg)[1 — cos(¢p — 0)]
A EI C,4(1 = cos $)* + Cy sin ¢ — (C, + Cg)(1 — cos p) sin ¢
M MB If = 1.3 (solid or hollow round cross section, v = 0.3)
A
Vg=Vy—W
C ¢ 45° 90° 180° 270°
Mp = V,Rsin¢ + M, cos p — WRsin(¢p — 0)
v, 0 15° 30° 60° 90°
A M,R V,R? WR?
o v —0 60 Ve =vacosd+pr Crt—pr G~ Cos Ky 0.7423 0.7457 0.7500 0.7414
R Ja= 0 6 o Ky —0.1180 —0.2457 —0.5774 —1.2586
5=0 ¥p=0 Op= Ky —0.0024 ~0.0215 ~0.2722 ~2.5702
Kus ~0.0586 ~0.1204 —0.2887 —0.7414
Kyp —0.0023 —0.0200 —0.2372 —2.3554
Ky 0.0781 0.1601 0.3608 0.7414
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TABLE 9.4 Formulas for curved beams of compact cross section loaded normal to the plane of curvature (Continued)

1g. Right end supported and slope-
guided, left end supported and roll-
guided

VB
1 )
T, ( Mg
VA

Vyi=W

(C5 sin ¢ — Cy cos )[1 — cos(¢p — 0)] + Cyg cos® ¢p — Cyq sin ¢ cos ¢

T, = WR

(C5sin¢ — Cy cos ¢p)(1 — cos ¢) + C3 cos? ¢ — Cg sin ¢ cos ¢

(C5cos ¢ — Cgsin)[1 — cos(¢p — 0)] — (Cyz cos p — Cyg sin ¢)(1 — cos ¢)

(Cj sin ¢ — Cy cos ¢)(1 — cos p) + C; cos? ¢ — Cg sin ¢ cos ¢

_ WR? (C;,Cs — C3C5)[1 — cos(¢p — 0)] + (Ca3C5 — Co Co)(1 — c0s ) + (Cos C3 — C3Cs) cos

0, =

EI (C;5 sin ¢ — Cy cos ¢p)(1 — cos Pp) + Cs cos? ¢ — Cg sin ¢ cos ¢
Vg=Vy-W If f = 1.3 (solid or hollow round cross section, v = 0.3)
Mp =V, Rsin¢$ — T sin¢p — WRsin(¢ — 0) ¢ 45° 90° 180°
Mi=0 =0 4,=0 o TR, ViR WR 0 15° 30° 30° 60° 60° 120°
. Vg = ®Asm¢+7EI Cg+7EI Cy E C,
Tp=0 yp=0 05=0 Kua 0.5087 0.1405 0.5000 0.1340 0.6257 0.2141
Kry —0.0212 —0.0100 —0.0774 —0.0327 —0.2486 —0.0717
Koa —0.0252 —0.0127 —0.1347 —0.0694 —1.7627 —0.9497
Kyp —0.1253 —0.1524 —0.2887 —0.3333 —0.8660 —0.8660
Kyp —0.0016 —0.0012 —0.0349 —0.0262 —0.9585 —0.6390
L) 0.1372 0.0753 0.2887 0.1443 0.7572 0.2476
1h. Right end supported and slope- V=W 1 —cos(¢ — 0)
guided, left end simply supported 1—cos¢
Vg o, WR? (C,3sin ¢ + Cg[1 — cos(¢p — 0)] ~ Cysing[l —cos(¢ —0)] c
A EI 1—cos¢ (1= cos p)? “
Y ) WR? [Cygsin ¢ — C, [ (¢ — 0)
w6 SIn ¢ — Cy5 cos . 1 —cos(¢p —
=— | — (Cgsing — C3c08 p) —————
Mg Ya EI { 1—cos¢ (Cosing 3cos ¢) (1 — cos ¢)* }
Vp=Va-W If # = 1.3 (solid or hollow round cross section, v = 0.3)
v Mp = V,Rsin ¢ — WRsin(¢ — 0) ® 45° 90° 180°
A 2 2
My=0 T,=0 y,=0 WE=WACOS¢_®ASin¢+V2:}; Cg_%ca9 0 15° 30° 30° 60° 60° 120°
4= a= A=
Tp=0 yp=0 Op=0 Ky, 0.4574 0.1163 0.5000 0.1340 0.7500 0.2500
Koa —0.0341 —0.0169 —0.1854 —0.0909 —2.0859 —1.0429
Ky 0.0467 0.0220 0.1397 0.0591 0.4784 0.1380
Kyp —0.1766 —0.1766 —0.3660 —0.3660 —0.8660 —0.8660
Kyp 0.0308 0.0141 0.0042 —0.0097 —0.9878 —0.6475
Ky 0.1184 0.0582 0.2500 0.1160 0.6495 0.2165
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TABLE 9.4 Formulas for curved beams of compact cross section loaded normal to the plane of curvature (Continued)

End restraints, reference no.

Formulas for boundary values and selected numerical values

1i. Right end supported and roll-guided,

_ W(C"S + Cy9)sin ¢ + (Cy + Cg) sin(¢p — 0)

V, -
left end supported and roll-guided 4 (Cy + C3 + Cg + Cy)sing
Vg T, = WR(CaJB + Cag)sin ¢ — (Cy + Cy) sin(¢ — 0) If B = 1.3 (solid or hollow round cross section, v = 0.3)
(Cy + Cy+ Cg + Cy)sing
w Y) ¢ 45° 90° 270°
_ WRZ Cy5(Cs + Cy) = Cug(Cy + C3) + (C,Cg — C5Cg) sin(¢p — 0)/ sin
Ts ATTEI (C, + Cy + Cg + Cy)sin 0 15° 30° 90°
T ( V=V, - W Kya 0.6667 0.6667 0.6667
A Ky —0.0404 —0.1994 0.0667
v Ty = V4,R(1 — cos ¢) + Ty cos ¢ — WR[1 — cos(¢ — 0)] Kou —0.0462 —0.3430 —4.4795
A v TR w Krp 0.0327 0.1667 ~1.3333
M,=0 y,=0 y,=0 O = O cos+ At Cot AT, -Gl Kop 0.0382 0.3048 1.7333
Mp=0 yp=0 yp=0 Ko 0.1830 0.4330 0.0000
1j. Right end supported and roll-guided, V, = WSin(_¢ —0)
left end simply supported sin ¢
V, 2 ;
B _ WR? [Cy3c08 ¢ — Cog(1 — cos ) sin(¢ — 0)
W ®A7ﬁ[Tf[cgcosqﬁ—cg(lfcostﬁ)]m
) WR? sin(¢ — 0)
Tg Va= EL |:Ca:3 +Ca9 = (C3+ Cg)w]
v Vio_w If f = 1.3 (solid or hollow round cross section, v = 0.3)
B=Va—
45° 90° 270°
Va Ty = V,R(1 — cos ¢) — WR[L — cos(¢ — 0)] ¢
0 15° 30° 30° 60° 90° 180°
My=0 Ty=0 y,=0 Op = O, cos g+ si ¢+VARQC WRQC ’
= S Y4 SN T =
Mp=0 yp=0 yp=0 B= A A EI ° EI 7 Kya 0.7071 0.3660 0.8660 0.5000 0.0000  —1.0000
Koa —0.0575 —0.0473 —0.6021 —0.5215 —3.6128 0.0000
Kyu 0.0413 0.0334 0.4071 0.3403 —4.0841 —8.1681
Kpp 0.0731 0.0731 0.3660 0.3660 —2.0000 —2.0000
Kop 0.0440 0.0509 0.4527 0.4666 6.6841 14.3810
Ky 0.1830 0.1830 0.4330 0.4330 0.0000 0.0000
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TABLE 9.4 Formulas for curved beams of compact cross section loaded normal to the plane of curvature (Continued)

2. Concentated intermediate bending
moment

Transverse shear = V =V,

Bending moment = M = V,Rsinx + M, cosx — T, sinx 4+ M, cos(x — 0){x — 0)°

Twisting moment = T = V,R(1 — cosx) + My sinx + T, cos x + M, sin(x — 0){x — 6)°

Vertical deflection =y =y, + ©4Rsinx+ y, R(1 — cosx) + M,

Bending slope = ® = @, cosx + /4 sinx +

Roll slope =y = 4 cosx — @4 sinx +

For tabulated values V = Ky, %

M,R
EI

M =Ky M,,

M,R
EI

T4R

F+

TR . VAR® . M,R?
T R 7] TR 7
T.R. VR . MR
AT+ AL By + SRy
ViR: . MR
Fy+ A0 Fy+ 20,
M,R? M, MR
T=KM, y=K Vel 0=Kyel u=K,"y

End restraints,reference no.

Formulas for boundary values and selected numerical values

2a. Right end fixed, left end free

Mo

Vyo=0 My=0 T,=0
yp=0 Op=0 yYyp=0

M, R? .
Ya = ﬁ[cm sin¢ — Cyr(1 —cos¢) — Cyl

MR . .
04 =77 (Carsing — Cyy cos §)

M,R .
Va=——g7 (Cusing + Cyrcos9)
V=0, Mpy=M,cos(¢—0)

Ty =M, sin(¢ — 0)

If f = 1.3 (solid or hollow round cross section, v = 0.3)

® 45° 90° 180°

0 0° 0 30° 60° 0 60° 120°
K 0.3058 1.1500 1.1222 0.6206 2.6000 4.0359 1.6929
Ko ~0.8282 ~1.8064 ~1.0429 ~0.3011 —3.6128 ~1.3342 0.4722
Ky 0.0750 0.1500 —0.4722 —0.4465 0.0000 ~2.0859 ~1.0429
Kyn 0.7071 0.0000 0.5000 0.8660 —1.0000 —0.5000 0.5000
Krp 0.7071 1.0000 0.8660 0.5000 0.0000 0.8660 0.8660
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TABLE 9.4 Formulas for curved beams of compact cross section loaded normal to the plane of curvature (Continued)

End restraints, reference no.

Formulas for boundary values and selected numerical values

2b. Right end fixed, left end simply
supported

Mo

Va

_ =M, Cy7(1 —cos ) — Coy sin ¢ + Cyy

Va= R Cy(1—cos¢p)— Cgsing + Cy

0, = ~ M,R(Cyy Cy — CyrCy)sinp + (Cy7Cs — Cuy Co)(1 — cos §) + (Cyy Cg — Cyy Cg) cos ¢
AT TEI Co(1—cos ) — Cgsin g + Cy

vy = M, R[(Cos(Cy + C3) — Cs(Cay + Cap)Isin @ + (Coy C5 — Cyy Cg) cos ¢
AT TR Co(1 —cos ) — Cgsing + Cy

V="V,

Mp = V,Rsin ¢ + M, cos(¢ — 0)

My=0 Ty=0 y,=0 If f = 1.3 (solid or hollow round cross section, v = 0.3)
_ _ _ Ty = V4R(1 — cos ¢) + M, sin(¢p — 0)
yg=0 Op=0 WB*O N N
¢ 45° 90° 180°
0 0° 0° 30° 60° 0° 60° 120°
Ky, —1.9021 —0.9211 —0.8989 —0.4971 —0.3378 —0.5244 —0.2200
Koa —0.2466 —0.7471 —0.0092 0.2706 —2.7346 0.0291 1.0441
Kya 0.1872 0.6165 —0.0170 —0.1947 1.2204 —0.1915 —0.2483
Kyp —0.6379 —0.9211 —0.3989 0.3689 —1.0000 —0.5000 0.5000
Kpp 0.1500 0.0789 —0.0329 0.0029 —0.6756 —0.1827 0.4261
2c. Right end fixed, left end supported V, = 7Mo (Ca7Cy — CaCr)(1 — cos ¢) +(Cay €y — C11 Cy) 08§ + (Cyy C7 — C7Cy) sin ¢
and slope-guided R (C,Cy— CCr)(1 —cos ) +(C,Cq — C3Cy)cos dp +(C5C; — €, Cy) sin g
M. —-M (CasCy — Ca7C6)(1 — cos ¢) + (Co1 Cs — Cay C3) c0s  + (Co7C5 — Coy Cy) sin
M, 4 ¢ (C4Cy — C5C7)(1 —cos ) + (C,C5 — C3Cy) cos ¢ + (C3C; — C, Cy) sin ¢
M
A Uy = MR Ca1(C4Cy — C4Cy) + Cy(C5C7 — €1 Cg) + C7(C, Cg — C5Cy)
C 4 EI (C,Cy — CsCr)(1 —cos ¢) +(C,Cs — C3Cy)cos § +(C5C; — C Cy) sin g
Vg =V, If = 1.3 (solid or hollow round cross section, v = 0.3)
V,
A o o o
My = V,Rsin ¢ + My cos ¢ + M, cos(¢ — 0) ¢ 45° 90 180
Ta=0 74=0 06,=0 Ty = V4R(1 — cos ¢) + M, sin ¢ + M, sin(¢ — 6) 0 15° 30° 30° 60° 60° 120°
yp=0 Op=0 yYp=0 BT A A °
Ky, —1.7096 —1.6976 —0.8876 —0.8308 —0.5279 —0.3489
Ky ~0.0071 0.3450 ~0.0123 0.3622 0.0107 0.3818
Kya —0.0025 0.0029 —0.0246 0.0286 —0.1785 0.2177
Kyp —0.3478 0.0095 —0.3876 0.0352 —0.5107 0.1182
Kyp —0.0057 0.0056 —0.0338 0.0314 —0.1899 0.1682
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TABLE 9.4 Formulas for curved beams of compact cross section loaded normal to the plane of curvature (Continued)

2d. Right end fixed, left end supported
and roll-guided

¢

Ta
Va

Mo

_ M, [(Ca1 + Ca7)C5 = Ca(Cy + Cy)lsin ¢ + (Cy Cs — Cor Cp) cos ¢

VA= "R [Cs(C; + Cy) — CalCy + Co)lsin § 1 (C3Cs — CoCo)cos
T —_M [Caa(Cs + Cg) — (Cyg + Car)Celsin g + (Cy7 C — Cyy Co) cos ¢
AT T IGHC + Cy) = Co(Cy + Cylsin g+ (CCs — CyCy)cos
_ M, RCu;i(C5Cy — C6Cg) + Cua(C3Cs — C3Cy) + Cor(C2Cs — C3C5)
4 EI  [C5(C3+ Cy) — C4(Cy + Cy)lsin ¢ + (C5C5 — C,Cy) cos ¢
Vp=V,

Mp =V, Rsin¢ — Ty sin¢

If f = 1.3 (solid or hollow round cross section, v = 0.3)

My=0 y,=0 y,=0 + M, cos(¢p — 0) _ C N
Yam0 On=0 Ya=0 & 45 90 180
Tp = V4R(1 —cos §p) + Ty cos ¢ 0 0° 0 30° 60° 0 30° 60°
+ M, sin(¢ — 0)
Ky, —1.9739 —1.0773 —0.8946 —0.4478 —0.6366 —0.4775 —0.1592
Kpa —0.1957 —0.3851 0.0106 0.1216 —0.6366 0.0999 0.1295
Koa —0.2100 —0.5097 —0.0158 0.1956 —1.9576 —0.0928 0.8860
Kyp —0.5503 —0.6923 —0.4052 0.2966 —1.0000 —0.5000 0.5000
Kip —0.0094 —0.0773 —0.0286 0.0522 —0.6366 —0.1888 0.4182
2e. Right end fixed, left end fixed V, = M, Cy (C4Cg — C5C7) + Coa(CoC7 — Gy Cg) + Coq(C, G5 — C,Cy)
R C(C5Cy — CsCy) + C4(C5Cy — Cy.Cy) + C1(CyCs — C3C5)
Mo M, = — Car(C5Cy — CsCy) + Cos(C3Cs — CyCy + Cyr(Cy G — C3C5)
8 7 C1(C5Cy — C4Cg) + C4(C3Cg — C3.Cy) + C1(CyC — C3C5)
T — M Ca1(CeC7 — C4C) + Cuy(C1Cy — C3C7) + Cyr(C3C4 — €1 C)
4 7 Cy(C5Cy — CCg) + C4(C3Cs — CyCy) + C7(CoC — C5Cs)
ya=0 0,=0 y,=0 V=V,
y; -0 @2 —0 ,/,2 -0 s 4 If f = 1.3 (solid or hollow round cross section, v = 0.3)
Mp =V Rsin¢$ + M, cos ¢ — Ty sin¢ . N . . .
+ M, cos(é — 0) ¢ 45 90 180 270 360
. 0 15° 30° 60° 90° 90° 180°
Tg = V4R(1 — cos ¢) + My sin ¢ + Ty cos ¢
+ M, sin(¢ — 0) Ky, —1.7040 —0.8613 —0.4473 —0.3115 —0.1592 —0.3183
Kya —0.0094 —0.0309 —0.0474 0.0584 —0.0208 0.5000
Ky 0.0031 0.0225 0.1301 0.2788 0.5908 —0.3183
Kyp —0.3477 —0.3838 —0.4526 —0.4097 —0.0208 —0.5000
Krp —0.0036 —0.0262 —0.1586 —0.3699 —0.4092 —0.3183
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TABLE 9.4 Formulas for curved beams of compact cross section loaded normal to the plane of curvature (Continued)

End restraints, reference no.

Formulas for boundary values and selected numerical values

2f. Right end supported and slope-

guided, left end supported and
slope-guided

Ty=0 y,=0 ©4=0
=0 yp=0 Oz=0

M [C, sin ¢ — Cy(1 — cos )] sin(p — 0) — Cyy sin® ¢ + Cyy sin (1 — cos P)

V=

R C4(1 = cos §)* + Cy sin® ¢ — (C; + Cg)(1 — cos p) sin
M. — [Cd sin ¢ — Cg(1 — cos ¢)]sin(¢p — 0) — Cyy (1 — cos ¢) sin ¢ + C,y(1 — cos ¢)?
AT C,4(1 = cos $)* + Cy sin’ ¢ — (C; + Cg)(1 — cos p) sin ¢
v MoR (C5C, — C; Cg)sin(¢p — 0) + (Cy1 Cs — Cas Cs)sinp — (Cy1 Cy — Coy C1)(1 —cos ¢) | 1f f=1.3 (solid or hollow round cross section, v = 0.3)
A= G — 7 PRIy — -
Cy(1 —cos¢)” + Cysin” ¢ — (Cy + Cg)(1 — cos ) sin ¢ 45° 90° 180° 270°
Va="Va . - 0 p .
My =V yRsing + M M -
s = VaBisin ¢ + My cos ¢ + M, cos( —0) Ky, | —-17035  —0.8582  —0.4330  —0.2842
M.R MR Kya | —0.0015  —0.0079  —0.0577  —0.2842
Yp=vacosd+—prCr + YAl Ce +57 Car Ky,a | —0.0090 00388  —0.2449  —1.7462
Kyp —0.3396 —0.3581 —0.4423 —0.7159
Kyp —0.0092 —0.0418 —0.2765 —1.8667

2g. Right end supported and slope-

guided, left end supported and
roll-guided

¢

Va

My=0 y4=0 Y, =0
Tp=0 yp=0 Op=0

M, C,; cos? ¢ — C,ysin¢cos ¢ + (Cs sin g — C, cos ¢) sin(¢p — 0)

Va=- R (C5sin¢ — Cycos ¢)(1 — cos ¢) + C; cos? ¢ — Cy sin ¢ cos ¢
oM (Cpysin ¢ — Cyy cos P)(1 — cos @) + (Cy cos ¢ — Cg sin @) sin(¢p — 0)
A= ° (Cssing — Cycos dp)(1 — cos ) + Cs cos? ¢ — Cg sin ¢ cos ¢
o, — —M,R(Cyy C5 — Cay Co)(1 — cos ) + (Cy C3 — Cyy Cg) c0s ¢ + (Cy Cg — C3C;) sin(¢p — 0)
A EI (C5sin ¢ — Cy cos P)(1 — cos ¢p) + Cg cos? ¢ — Cg sin cos ¢
V=V,
If f = 1.3 (solid or hollow round cross section, v = 0.3)
Mp =V Rsin¢g — T,y sin¢ -
+ M, cos(¢p— 0) ¢ 45 90° 180
) T,R 0 0° 0° 30° 60° 0° 60° 120°
Yp=—0ysing +—— 71 Cg
V.R? MR Ky, —1.9576 —1.0000 —0.8660 —0.5000 —0.3378 —0.3888 —0.3555
+ = A Cy +—— 7T C,; Kry —0.1891 —0.3634 0.0186 0.1070 —0.6756 0.0883 0.1551
Kou —0.2101 —0.5163 —0.0182 0.2001 —2.7346 —0.3232 1.3964
Kyp —0.5434 —0.6366 —0.3847 0.2590 —1.0000 —0.5000 0.5000
Ky —0.0076 —0.0856 —0.0316 0.0578 —1.2204 —0.3619 0.8017
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TABLE 9.4 Formulas for curved beams of compact cross section loaded normal to the plane of curvature (Continued)

[9'6 038

2h. Right end supported and slope- V, = 7%5“1(4) - 0)
guided, left end simply supported R 1-cos¢
Vg 6. — MR|: C,; sin ¢ + Cg sin(¢p — 0) Cssind)sin(di—(-))_c ]
AT Rl 1—cos¢ (1 — cos §)* ot
MB
Mo 4) vy = MR |:Ca4 sin¢ — C,,; cos ¢ . (C3 cos ¢ — Cgsin¢) sin(¢p — ()):|
AT EI 1—cos¢ (1 — cos p)?
V=V, - -
If = 1.3 (solid or hollow round cross section, v = 0.3)
My =V Rsind + M, —0
v 5 = VaRsing +M, cos(¢ = 0) ® 45° 90° 180°
A ) V.R?
My=0 T,=0 0 U =¥acosg = Oasind + o 0 o 0 30° 60° 0° 60° 1200
A= A= Ya=
Tp=0 yp=0 Op=0 +% Cu Ky, —2.4142 —1.0000 —0.8660 —0.5000 0.0000 —0.4330 ~0.4330
Koa —0.2888 —0.7549 —0.0060 0.2703 —3.6128 —0.2083 1.5981
Kyu 0.4161 0.6564 —0.0337 —0.1933 1.3000 —0.1700 —0.2985
Kyp —1.0000 —1.0000 —0.3660 0.3660 —1.0000 —0.5000 0.5000
Kyp 0.2811 0.0985 —0.0410 0.0036 —1.3000 —0.3515 0.8200
2i. Right end supported and roll-guided, V. — M, (Cu+ C,7)sin® ¢ + (Cy + Cg) cos(¢p — ) sin ¢
left end supported and roll-guided AT R (Cy 4 C3 4 Cg + Cy) sin? ¢
\ 7, = _pg, Can + Cor) sin® ¢ — (Cy + Cy) cos(¢p — 0) sin §
4 (Cy + Cy + Cs + Cy) sin” ¢
Mo ) 0, = - MoRICus(Cs + Co) = Cur(Cy + Gyl +(CoCy — CsCcosts — )
Ty A EI (Cy 4 C5 4 Cg + Cg) sin® ¢
( Vg =Vy
TA If f = 1.3 (solid or hollow round cross section, v = 0.3)
v Ty = V,R(1 — cos ¢p) + T cos ¢ + M, sin(¢p — 0)
A
R VR M,R o o o
My=0 y4=0 y,=0 O =0 cong+ 2R, V¢ MR ¢ 4 % 210
Mp=0 yp=0 yp=0 0 0° 15° 0° 30° 0° 90°
Ky, —1.2732 —1.2732 —0.6366 —0.6366 —0.2122 —0.2122
Ky —0.2732 —0.0485 —0.6366 —0.1366 —0.2122 0.7878
Koa —0.3012 —0.0605 —0.9788 —0.2903 —5.1434 0.1259
Kpp 0.1410 0.0928 0.3634 0.2294 —1.2122 —0.2122
Kop 0.1658 0.1063 0.6776 0.3966 0.4259 2.0823
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TABLE 9.4 Formulas for curved beams of compact cross section loaded normal to the plane of curvature (Continued)

End restraints, reference no.

Formulas for boundary values and selected numerical values

2j. Right end supported and roll-guided, V= 7Mo CO§(¢ -0
left end simply supported Rsin¢
V. M,R | C, cos¢p — Cyy(1 —cosp) [Cycosp — Cy(1 — cos )] cos(¢p — 0)
B 04 =" : - _—
sin ¢ sin” ¢
Mo ‘) oo MR[o o (Gt Ceos(~0)
T AT TEI al af sin ¢ If f = 1.3 (solid or hollow round cross section, v = 0.3)
B
V=V, ¢ 45° 90°
v Ty = V4R(1 — cos §) + M, sin(¢ — 0) 0 0° 15° 30° 0° 30° 60°
A
R? M,R K —1.0000 —1.2247 —1.3660 0.0000 —0.5000 —0.8660
Va VA
My=0 Ty=0 y,=0 O = O cos¢+asiné + = Cs + 5 Cas Kon —0.3774 ~0.0740 0.1322 ~1.8064 ~0.4679 0.6949
Mp=0 yp=0 Yyp=0 Ky 0.2790 0.0495 —0.0947 1.3000 0.2790 —0.4684
Krp 0.4142 0.1413 —0.1413 1.0000 0.3660 —0.3660
Kop 0.2051 0.1133 —0.0738 1.1500 0.4980 —0.4606
3. Concentrated intermediate twisting
moment (torque) Transverse shear = V =V,
Bending moment = M = V,Rsinx + M, cosx — T4 sinx — Ty sin(x — 0)¢x — 0)°
Twisting moment = 7' = V4 R(1 — cosx) + My sinx 4 T cos x + T cos(x — 0)¢x — 0)°
. . . M,R? T4R? V,R? T,R?
Vertical deflection =y =y, + ®4Rsinx + 4, R(1 — cosx) + }/';I F + %I Fy + 2‘[ Fy + 2,1 F,,
MR T.,R_ V,R*_ TR
Bending slope = ©® = ©,4 cosx + 1/, sinx + —5— Bl F,+ &I —Fs + ok ———Fs + Bl ——F,
. MR TR V,R? T,R
Roll slope = =4 cosx — @y sinx + BT F,+ i —“—Fg+—— i Fy+ T —2—F.
T, T,R? T,R T, R
For tabulated values: V/ :va", M=KyT, T=K;T, y=K,~—— T 0 =Ky T V= K,/,
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TABLE 9.4 Formulas for curved beams of compact cross section loaded normal to the plane of curvature (Continued)

3a. Right end fixed, left end free

T,R* .
Ya = ﬁ[caé sin¢ — Cyg(1 — cos ¢) — Cyol

T,R .
0, =- EO‘I (Cy5 cos  — Cog sin )
T,R .
T Va= ’ﬁ(cas cos ¢ + Cys sin¢) If B = 1.3 (solid or hollow round cross section, v = 0.3)
o
Vi=0 M,=0 T,=0 V=0 b 45° 90° 180°
yp=0 Op=0 Yp=0 My = T, sin(¢ — 0) 0 0° 0° 30° 60° 0 60° 120°
Tg =T, cos(¢p — 0) K, —0.0590 —0.5064 0.0829 0.3489 —3.6128 0.0515 1.8579
Kou —0.0750 —0.1500 —0.7320 —0.5965 0.0000 —2.0859 —1.0429
Kya 0.9782 1.8064 1.0429 0.3011 3.6128 1.0744 —0.7320
Kyp —0.7071 —1.0000 —0.8660 —0.5000 0.0000 —0.8660 —0.8660
Ky 0.7071 0.0000 0.5000 0.8660 —1.0000 —0.5000 0.5000
3b. Right end fixed, left end simply V= T, Cus(1—cosp) — Cpssing + Cyp
supported R Cy(1—cos¢) — Cgsing + Cy
0, — _T,R(CyyCy — CysCs3)sin ¢ + (CoCs — Cy5 Co)(1 — €08 §) + (C5Cs — CoCg) cos ¢
4 EI Cy(1 —cos§p) — Cgsing + Cy
vy =— ToR[Cus5(Co + C3) — Ce(Cuz + Cuglsin g + (Cyg C3 — Cp Co) cos ¢
AT TE Cy(1 —cosp) — Cysing + Cy
To
V=V,
VA . .
Mp =V Rsin$ — T, sin(¢ — 0) If p = 1.3 (solid or hollow round cross section, v = 0.3)
My=0 Ty=0 y,=0 Ty = V4R - cos ¢) + T, cos(¢ — 6) [ 45° 90° 180°
ye=0 Op=0 yp=0 0 0 0 30° 60° 0 60° 120°
Ky 0.3668 0.4056 —0.0664 —0.2795 0.4694 —0.0067 —0.2414
Koyp —0.1872 —0.6165 —0.6557 —0.2751 —1.2204 —2.0685 —0.4153
Kyu 0.9566 1.6010 1.0766 0.4426 1.9170 1.0985 0.1400
Kyp —0.4477 —0.5944 —0.9324 —0.7795 0.0000 —0.8660 —0.8660
Koy 0.8146 0.4056 0.4336 0.5865 —0.0612 —0.5134 0.0172
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TABLE 9.4 Formulas for curved beams of compact cross section loaded normal to the plane of curvature (Continued)

End restraints, reference no.

Formulas for boundary values and selected numerical values

3c.

Right end fixed, left end supported

T, (CagCy = Cos C7)(L — cos §) + (Cy5C1 — CpCy) cos § + (Cop C7 — CgCy) sin g

Vy= x
and slope-guided 4 R (C,Cy — CyCr)(1 —cos ¢) + (C,Cs — C3Cy)cos dp + (C5C; — C1 Cy) sin g
M. =T (Ca5Cy — CasCe)(1 — cos ) +(Caz Cs — Cy5C3) 08 § + (Cog Cy — Cyp Cg) sin
4 ? (C4Cy — CgCr)(1 — cos p) + (C, Cy — C3Cy) cos ¢ + (C3C; — C,Cy) sin ¢
Ma Vy=— T,k Caa(C4Cy — C6Cq) + Cu5(C3C7 — €1 Cy) + Cg(C1 Cs — C3Cy)
( s 4= " BT (C;Cy — CoCr)(1 = cos §) + (C; Cg — CCr)cos § + (CsCr — C; Cy) sin
0
Ve =V,
VA If f = 1.3 (solid or hollow round cross section, v = 0.3)
Mp =V Rsin ¢ + M, cos ¢ ) N N
Ty=0 y,=0 ©,=0 — T, sin(¢ — 0) ¢ 45 90 180
yp=0 05=0 y5=0 , 0 0 0° 30° 60° 0 60° 120°
Tp = V4R(1 — cos ¢p) + M, sin ¢
+ T, cos(¢p — 0) Kyy 1.8104 1.1657 0.7420 0.0596 0.6201 0.2488 —0.1901
Kya —0.7589 —0.8252 —0.8776 —0.3682 —0.4463 —0.7564 —0.1519
KWA 0.8145 1.0923 0.5355 0.2156 1.3724 0.1754 —0.0453
Kyp 0.0364 0.1657 —0.1240 —0.4404 0.4463 —0.1096 —0.7141
Kpp 0.7007 0.3406 0.3644 0.5575 0.2403 —0.0023 0.1199
3d. Right end fixed, left end supported V,=— T, [(Cag + Cag)Cs — Cy5(Cy + Cy)lsin g + (Coy Cg — Cog Cy) cos
and roll-guided R [C5(Cy + Cy) — C6(Cy + Cy)lsing + (C3Cg — CyCy) cos
o= _T [Cas(Cs + Cy) — Cs(Cuz + Cyg)lsin ¢ + (Cys Cy — CyCo) cos
AT TG (G + Cy) — Co(Cy + Cy)lsin g + (CyCy — CyCy)cos
0, = TR Cyp(C5Cy — CsCs) + Cu5(C3Cs — C3Co) + Cug(C3Cs — C5C5)
( Ty 4= TET [Co(Cy + Cg) — Co(Cy + Co)lsin + (CsCs — CyCo)cos b
T Vp=Vy
VA If B = 1.3 (solid or hollow round cross section, v = 0.3)
Mp =V, Rsing — Tysing — T, sin(¢p — 0)
o 45° 90° 180°
My=0 34=0 ¥, =0 Tp = V4R(1 —cos ¢p) + Ty cos ¢ + T, cos(¢p — 0)
yp=0 Op=0 yp=0 o 4 ’ 0 15° 30° 30° 60° 60° 120°
Ky, —0.3410 —0.4177 —0.3392 —0.3916 —0.2757 —0.2757
Kpy —0.6694 —0.3198 —0.6724 —0.2765 —0.5730 —0.0730
Koa —0.0544 —0.0263 —0.2411 —0.1046 —1.3691 —0.3262
Kyp —0.2678 —0.3280 —0.5328 —0.6152 —0.8660 —0.8660
Kpp 0.2928 0.6175 0.1608 0.4744 —0.4783 0.0217
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TABLE 9.4 Formulas for curved beams of compact cross section loaded normal to the plane of curvature (Continued)

3e. Right end fixed, left end fixed V.= _ T, Caz(CyCq — C5C7) + Co5(CyC7 — €1 Cg) + Cg(C1 G5 — C5Cy)
4 R Ci(C5Cy — CsCg) + Cy(C3Cg — C5Cg) + C7(Cy Cg — C3C5)
M, — —p Cax(C5C = CsCy) + Cys (G Cs — Gy Cy) + Cis(Cy G — C5C5)
4 7 C1(C5Cy = CsCy) + C4(C3Cs — C2Cy) + C(Cy G — C5C5)
To T, =T, Caa(CeC7 — C4Cg) + Cy5(C1 Gy — C3C7) + Cug(C3C4 — €1 Co)
N ¢ C1(C5Cy — C4Cy) + Cy(C3C5 — C5Cy) + C7(CyC5 — C5Cs)
Ya=0 ©4=0 ¥, =0 V="V, - -
yp=0 O@p=0 Yp=0 If # = 1.3 (solid or hollow round cross section, v = 0.3)
Mp =V, Rsin¢d + M, cosp — Ty sin¢ - - .
~ T, sin(¢ — 0) ¢ 45 90 180 270 360
0 15° 30° 60° 90° 90° 180°
Ty = VAR(1 — cos ) + M sind + T, cos ¢ °
+1T, cos(¢p — 0) Kya 0.1704 0.1705 0.1696 0.1625 0.1592 0.0000
Kya —0.2591 —0.4731 —0.6994 —0.7073 —0.7500 0.0000
Kry —0.6187 —0.4903 —0.1278 0.2211 0.1799 0.5000
Kyp —0.1252 —0.2053 —0.1666 0.0586 0.2500 0.0000
Kpp 0.2953 0.1974 —0.0330 —0.1302 0.1799 —0.5000
3f. Right end supported and slope- V. — T, [Cy sin ¢ — Cy(1 — cos $)] cos(¢p — 0) — Cyy sin® ¢ + Cy5(1 — cos ¢) sin ¢
guided, left end supported and AT R C,4(1 —cos $)* + Cy sin ¢ — (C, + Cg)(1 — cos p) sin ¢
slope-guided
M. — [C3 sin ¢ — Cg(1 — cos ¢p)] cos(¢p — 0) Cao(1 —cos¢)sin¢ + C,5(1 — cos ¢)?
A AT Cy(1 —cos p)* + Cysin® ¢ — (C; + Cg)(1 — cos ) sin ¢
= ToR(C3C4 — €y Cg) cos(p — 0) + (CopCs — Ca5Cy) sinp — (CCy — C5 Gy )(1 — cos )
M AT EI C4(1 - cos $)* + Cy sin® ¢ — (C, + Cg)(1 — cos p) sin
M B
A
To V=V,
If = 1.3 (solid or hollow round cross section, v = 0.3)
Mp =V Rsin ¢ + M, cos ¢ — T, sin(¢p — 0)
\/A ¢ 45° 90° 180°
MAR T,R
Vp=vacosd+ g Crt E o+ BF 1 G 0 0 15° o 30° 0 60°
Ty=0 y,=0 ©,=0
Tp=0 yp=0 Op=0 Ky, 1.0645 0.5147 0.8696 0.4252 0.5000 0.2500
Kya —1.4409 —1.4379 —0.8696 —0.9252 —0.3598 —0.7573
Kya 1.6003 1.3211 1.2356 0.6889 1.4564 0.1746
Kyp —0.9733 —1.1528 —0.1304 —0.4409 0.3598 —0.1088
Kyp 1.1213 1.1662 0.4208 0.4502 0.3500 —0.0034
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TABLE 9.4 Formulas for curved beams of compact cross section loaded normal to the plane of curvature (Continued)

End restraints, reference no.

Formulas for boundary values and selected numerical values

3g. Right end supported and slope-

T, Coy cos® ¢ — Cys sin ¢ cos ¢ + (Cj sin ¢p — C, cos ¢) cos(¢p — 0)

Vi=—- 8 -
guided, left end supported and 4 R (Cssin¢ — Cycos ¢)(1 — cos ¢) + C; cos? ¢ — Cy sin ¢ cos ¢
roll-guided. . .
T T (Cys sin ¢ — C,y cos §)(1 — cos @) + (C5 cos ¢ — Cg sin ) cos(¢p — 0)
Vg AT T (Cysing — Cy cos d)(1 — cos ) + C cos? ¢ — Cg sin ¢ cos ¢
j O, = _T,R(CypC5 — Cy5Co)(1 — cos ¢) + (Cy5C3 — Cup Cg) c0s § + (C3Cs — C3C5) cos(¢p — 0)
Mg A EI (C5sin ¢ — Cy cos p)(1 — cos §) + C; cos? ¢ — Cg sin ¢ cos ¢
Vp=V, - -
T If f = 1.3 (solid or hollow round cross section, v = 0.3)
A VA Mp =V, Rsing — Tysing — T, sin(¢p — 0) ¢ 15 90° 180°
2
My=0 y,=0 v, =0 Yy =-0sing+ 2B Va0 TR 0 15° 30° 30° 60° 60° 120°
Ty=0 yg=0 ©z=0 ET ET EI
Ky, —0.8503 —1.4915 —0.5000 —0.8660 —0.0512 —0.2859
Ky —0.8725 —0.7482 —0.7175 —0.4095 —0.6023 —0.0717
Kox —0.0522 —0.0216 —0.2274 —0.0640 —1.9528 —0.2997
Kyp —0.4843 —0.7844 —0.6485 —0.9566 —0.8660 —0.8660
Kyp 0.2386 0.5031 0.1780 0.5249 —0.9169 0.0416
3h. Right end supported and slope- Vy=— T, cos(¢p — 0)
guided, left end simply supported R(1 —cos¢)
Vg o, - _T,R [Caz sin ¢ + Cgcos(p —0)  Cysingpcos(dp —0) c _]
) A EI 1—cos¢ (1 —cos 45)2 @
M __ T,R[C,5sin¢ — Cyy cos ¢ ] _Cos cos(¢p — 0)
B Y AT~ T—cosh +(Cycos ¢ — Cq sin qﬁ)i(l ~con gy
TO
V=V, If f = 1.3 (solid or hollow round cross section, v = 0.3)
Va Mp = VyRsin ¢ — T, sin(p — 0) b 45° 90° 180°
My=0 T,=0 y,=0 ,
Tp=0 yp=0 ©y=0 U cosh— O, sind V%I;? ¢, +%Cas 0 0 0 30° 60 0° 60° 120
Ky, —2.4142 0.0000 —0.5000 —0.8660 0.5000 0.2500 —0.2500
Koa —0.4161 —0.6564 —0.6984 —0.3328 —1.3000 —2.7359 —0.3929
Kya 2.1998 1.8064 1.2961 0.7396 1.9242 1.1590 0.1380
Kyp —2.4142 —1.0000 —1.3660 —1.3660 0.0000 —0.8660 —0.8660
Ky 1.5263 0.5064 0.5413 0.7323 —0.1178 —0.9878 0.0332
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TABLE 9.4 Formulas for curved beams of compact cross section loaded normal to the plane of curvature (Continued)

3i. Right end supported and roll-guided, Va=0
left end supported and roll- s . .
guided. T, =T (Cyg + Cug)sin” ¢ + (Cy + Cq) sin(¢p — 0) sin ¢
Ve ° (Cy + Cq 4 Cg + Cg)sin”® ¢
0, —— ToR[Cas(Cs + Cg) — Cus(Cy + C3)lsind — (C;C — C3Cs) sin(¢p — 0)
) AT R (Cy+ C + Cy + Cy)sin’ ¢ . -
If f = 1.3 (solid or hollow round cross section, v = 0.3)
Ts Vg=0
T ¢ 45° 90° 270°
T, ° Ty = V4R(1 —cos ¢p) + Ty cosp + T, cos(¢p — 0)
A y 0 15° 30° 90°
A R V,R? T R
My=0 y,=0 §,=0 Op =04 c08 +— A Cs+—41 A Co + 7 Cas Kya 0.0000 0.0000 0.0000
My=0 yg=0 yz=0 Ky —0.7071 —0.8660 0.0000
Koa —0.0988 —0.6021 —3.6128
Krpp 0.3660 0.5000 —1.0000
Kop 0.0807 0.5215 0.0000
3j. Right end supported and roll- V= T, sin(¢ — 0)
guided, left end simply supported Rsing
v T R | Cyycos p — Cog(1 — cos @) sin(¢p — 0)
B = —ee T eer” — - r 7
0, B sing +[C3cos ¢ — Cy(1 —cos §)] sin® 5
T R sin(¢ — 0 If f = 1.3 (solid or hollow round cross section, v = 0.3)
> Vo =—— Ca2+ca8+(cﬁ+cﬁ)L
EI sin ¢
Ty ¢ 45° 90°
V=V,
To B=Va 0 o 15 30° o 300 60°
Ty = V4R(1 —cos ¢p) + T, cos(¢p — 0)
VA Kyy 1.0000 0.7071 0.3660 1.0000 0.8660 0.5000
TUR Koy —0.2790 —0.2961 —0.1828 —1.3000 —1.7280 —1.1715
My=0 Ty=0 y,=0 Op = O, 059+ Yy sind + Cﬁ 71 Co Ky 1.0210 0.7220 0.3737 2.0420 1.7685 1.0210
Mp=0 yp=0 yp=0 Ko 1.0000 1.0731 1.0731 1.0000 1.3660 1.3660
Kop 0.1439 0.1825 0.1515 0.7420 1.1641 0.9732
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TABLE 9.4 Formulas for curved beams of compact cross section loaded normal to the plane of curvature (Continued)

4. Uniformly distributed lateral load

Transverse shear = V = V, — wR(x — 0)!
Bending moment = M = V4 Rsinx + My cosx — T4 sinx — wR2[1 — cos(x — 0)x — 0)°
Twisting moment = 7' = V,R(1 — cosx) + M sinx + T4 cosx — wR*[x — 0 — sin(x — 0))(x — 0)°

Vertical deflection =y =y, + ©4Rsinx +,R(1 — cosx) + Mgingl + T%IIFFZ + Vz,ilfg& - wE—I?FMS

Bending slope = ©® = @4 cosx + ¥4 sinx+%lﬂ +%F5 + Vz,}f Fg —wE—}?Fam

Roll slope =y = Y4 cosx — Oy sinx+%F7 +%Fs +V%7};2F9 - wE—IjSFaw

For tabulated values: V = KywR, M =KywR?, T =KywR?, y= K‘wa—}?, 0= K@wE—If, V=K, wE—}?

End restraints, reference no.

Formulas for boundary values and selected numerical values

4a. Right end fixed, left end free

w

Vi=0 My=0 T,=0
yp=0 Op=0 yYp=0

wR* .
Ya = *ﬁ[caw sin ¢ — Cyi9(1 — cos ¢) — Czl

wR? .
0, = ﬁ(culﬁ 08 ¢ — Cqyg sin )
wR? .
VYa= EI (Carg 08 ¢ + Carg sin ) If f = 1.3 (solid or hollow round cross section, v = 0.3)
Vg = —wR(¢p —0) ¢ 45° 90° 180°
Mp = —wR*[1 - cos(¢ — 0)] 0 0° 0° 30° 60° 0° 60° 120°
T = —wR*[$ — 0 — sin(¢ — 0)] K —0.0469 —0.7118 —0.2211 —0.0269 —8.4152 —2.2654 —0.1699
Kou 0.0762 0.4936 0.1071 0.0071 0.4712 —0.6033 —0.1583
Kya 0.0267 0.4080 0.1583 0.0229 4.6000 1.3641 0.1071
Kup —0.2929 —1.0000 —0.5000 —0.1340 —2.0000 —~1.5000 —0.5000
Krp —-0.0783 —0.5708 —0.1812 —0.0236 —3.1416 —~1.2284 —0.1812
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TABLE 9.4 Formulas for curved beams of compact cross section loaded normal to the plane of curvature (Continued)

4b. Right end fixed, left end simply

V, = wR Ca19(1 —cos ¢p) — Cyyg8in ¢ + Capg

supported Cy(1 —cos¢) — Cgsing + Cy
w _ WR? (C13Cy — Car9Cy)sin § + (Crg Co — CarCo)(L — c0s ) + (Cor6Cy — CurCo) cos
AT EI Co(1 —cos ) — Cgsing + Cy
_ WR[Co16(Cy + Cy) — Cs(Can + Curg)lsin @ + (Carg Cs — Cang Cy) cos ¢
AT EI Co(1 — cos ) — Cgsing + Cy
Vi =V — wR($ — 0)
VA My = V,Rsing If = 1.3 (solid or hollow round cross section, v = 0.3)
My=0 Ty=0 y,=0 — wR?[1 — cos(¢p — 0)] o
¢ 45 90° 180°
yp=0 Op=0 yYp=0
Ty = VaR(1 - cos ) 0 0° 0° 30° 60° 0° 60° 120°
— wR?[$ — 0 — sin(p — 0)]
Ky, 0.2916 0.5701 0.1771 0.0215 1.0933 0.2943 0.0221
Kop —0.1300 —0.1621 —0.0966 —0.0177 —2.3714 —1.3686 —0.2156
Kyu 0.0095 0.1192 0.0686 0.0119 0.6500 0.3008 0.0273
Kyp —0.0867 —0.4299 —0.3229 —0.1124 —2.0000 —1.5000 —0.5000
Kypp 0.0071 —0.0007 —0.0041 —0.0021 —0.9549 —0.6397 —0.1370
4c. Right end fixed, left end supported V, = wR (Ca19C4 — Ca16Cr)(L — c05 ) +(Cay6C1 — Ca13Cs) cos  +(Coy3Cr — Ca19_01)51n¢
and slope-guided (C4Cy — C4Cr)(1 = cos ¢) +(C, C5 — C3Cy) cos ¢ + (C5C; — C, Cy) sin
w M, — wR? (Ca16C9 — Ca19Cp)(1 — c08 §) + (Ca13Cs — C16C3) €08 ¢ + (C19Cy — Ca13Cy) sin ¢
4 (C4Cy — CsCr)(1 —cos ) + (C, Cg — C3Cy) cos ¢ + (C3C7 — C; Cy) sin ¢
M _ wR? Ca13(C4Cy — C5C7) + Ca16(C5C7 — C1Cy) + Coy9(C1Cg — C3Cy)
"( A7 EI (C,Cy — C5Cq)(1 — cos §) + (C; Cg — C5Cy) cos p + (C3C; — C; Cq) sin ¢
Vp=Vy—wR(¢p -0
v B 4-wR@=0) If f = 1.3 (solid or hollow round cross section, v = 0.3)
A .
B Mp = VyRsin + M, cos ¢ ¢ 45° 90° 180°
4=0 y4=0 0,=0 — wR2[1 — cos(¢p — 0)]
yp=0 O5=0 yp=0 0 0° 0° 30° 60° 0° 60° 120°
Tp = V4R(1 —cos ¢) + M, sin¢p
— wRY — 0 — sin(¢ — 0)] Ky 0.3919 0.7700 0.2961 0.0434 1.3863 0.4634 0.0487
Kya —0.0527 —0.2169 —0.1293 —0.0237 —0.8672 —0.5005 —0.0789
Kyu —0.0004 —0.0145 —0.0111 —0.0027 —0.4084 —0.3100 —0.0689
Kyp —0.0531 —0.2301 —0.2039 —0.0906 —1.1328 —0.9995 —0.4211
Kyp —0.0008 —0.0178 —0.0143 —0.0039 —0.3691 —0.3016 —0.0838
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TABLE 9.4 Formulas for curved beams of compact cross section loaded normal to the plane of curvature (Continued)

End restraints, reference no.

Formulas for boundary values and selected numerical values

4d. Right end fixed, left end supported
and roll-guided

w

[(Cars + Ca19)Cs — Cae(Cy + Cy)lsin ¢ + (Cia Cg — Cr9Cy) cos ¢
[C5(C5 + Cg) — C6(Cy + Cy)lsin + (C3Cs — C,Cy) cos ¢

Vy=wR

Ca16(Cs + Cg) — C4(Carz + Carg)Isin @ + (Cor9 Cy — Caz Cy) cos ¢
[C5(C5 + Cg) — C4(Cy + Cy)lsin ¢ + (C3Cg — CyCy) cos

T, = wRZ[

_ wR? Cy13(C5Cy — CsCs) + Coi(C3Cs — CoCy) + Cong(CyCs — C5Cs)

( 4T EI [C5(C5 + Cg) — Ce(Cy + Cy)lsin g + (C3Cg — CyCy) cos
T Vg =V, —wR($ -0
A v B 4 - wR@ =0 If f = 1.3 (solid or hollow round cross section, v = 0.3)
A MB:VARéin¢—TA sin ¢ ¢ 15 90° 180°
My=0 ya=0 Y, =0 — wR?[1 — cos(¢ — 0)]
=0 Op=0 yp=0 0 0 0 30° 60° 0 60° 120°
Tp = V4R(1 —cos ¢) + Ty cos ¢
_wR$ — 0 sin(é — )] Kys 0.2880 0.5399 0.1597 0.0185 0.9342 0.2207 0.0154
Kry —0.0099 —0.0745 —0.0428 —0.0075 —0.3391 —0.1569 —0.0143
Koy —0.0111 —0.1161 —0.0702 —0.0131 —1.9576 —1.1171 —0.1983
Kyp —0.0822 —0.3856 —0.2975 —0.1080 —2.0000 —1.5000 —0.5000
Kpp —0.0010 —0.0309 —0.0215 —0.0051 —0.9342 —0.6301 —0.1362
4e. Right end fixed, left end fixed V, = wR Ca13(C4Cs — C5Cq) + Co6(Co Cq — €1 Cg) + Cyyo(C1 G5 — G, Cy)
C1(C5Cy — CsCy) + C4(C3Cs — CyCy) + C7(C2Cs — C3C5)
W
M, — wR? Ca13(C5Cy — C6Cg) + Ca16(C3Cs — C3Cy) + Carg(C2Cs — C3C5)
“ C1(C5Cy — CsCg) + Cy(C3Cs — CyCy) + C7(C,.Cs — C3Cs)
T — wR? Car3(CsCr — C4Cy) + C6(C1 Co — C3C7) + Cpg(C5C4 — €1 Co)
4 C1(C5Cy — CsCy) + C4(C3Cs — Cy.Cy) + C7(C2Cg — C3C)
Vg =V, —wR(¢ —0) - -
If f = 1.3 (solid or hollow round cross section, v = 0.3)
= = = Mp = V,Rsin ¢ + My co:
ya=0 0,=0 ¥, =0 B = Vatisin ¢ 4 cos ) 45° 90° 180° 360°
yp=0 Op=0 Yp=0 — Ty sing
— wR2[1 — cos(¢ — 0)] 0 0 15° 0 30° 0° 60° 0°
Ty = V4R(1 — cos ¢) + M, sin ¢ Ky 0.3927 0.1548 0.7854 0.3080 1.5708 0.6034 3.1416
4T, cos Kua ~0.0531 ~0.0316 ~0.2279 ~0.1376 ~1.0000 ~0.6013 —2.1304
— R — 0 — sin(é — 0)] Ky 0.0005 0.0004 0.0133 0.0102 0.2976 0.2259 3.1416
Kyp —0.0531 —0.0471 —0.2279 —0.2022 —1.0000 —0.8987 —2.1304
Krp —0.0005 —0.0004 —0.0133 —0.0108 —0.2976 —0.2473 —3.1416
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TABLE 9.4 Formulas for curved beams of compact cross section loaded normal to the plane of curvature (Continued)

4f. Right end supported and slope- V, = wR[C4(1 —cos ) — C; sin ¢][¢p — 0 — sin(¢p — 0)] + Cyy5 8in® ¢p — Cyy6 50 G(1 — cos )
guided, left end supported and C4(1 = cos §)* + Cy sin® ¢ — (C, + Cg)(1 — cos p) sin
slope-guided
\ . . 9 .
‘/a M. — wR? [Cssing — Cg(1 — cos P)][¢ — 0 — sin(¢p — 0)] + C,14(1 — cos ¢ — C,158in ¢(1 — cos §)
w 4 Cy(1 — cos ) + Cy sin ¢ — (Cy + Co)(1 — cos §) sin ¢
)MB _ WR? (Ca15Cs = Carg C1)(L — €08 §) — (Ca13Cs — CasCs) sin g — (C3C, — €1 Cy)l¢ — 0 — sin(d — 0)]
M AT EI Cy(1—cos ) + Cy sin® ¢ — (Cy + Cg)(1 — cos ) sin ¢
A
C Vg =V, —wR(¢ — 0) If # = 1.3 (solid or hollow round cross section, v = 0.3)
v Mp = V,Rsin ¢ + M, cos ¢ ¢ 45° 90° 180°
A _ 20 _ _
wR?[1 — cos(¢ — 0)] 0 0 150 0° 30° 0° 60°
Ty=0 y4=0 ©,=0 , \
- — _ MR V,R R* =
Tp=0 yp=0 Op=0 Vg =acosd+ 51 C, + % Cy— %Cm Kys 0.3927 0.1549 0.7854 0.3086 1.5708 0.6142
Kyia —0.0519 —0.0308 —0.2146 —0.1274 —1.0000 —0.6090
Kya —0.0013 —0.0010 —0.0220 —0.0171 —0.5375 —0.4155
Kyp —0.0519 —0.0462 —0.2146 —0.1914 —1.0000 —0.8910
Kyp —0.0013 —0.0010 —0.0220 —0.0177 —0.5375 —0.4393
4g. Right end supported and slope- V, = wR(C5 sin ¢ — Cy cos $)[¢ — 0 — sin(§p — 0)] + Cyy5 c05® p — Cyyg 8in ¢ cos ¢
guided, left end supported and roll- 4 (Cs sin ¢ — Cy cos ¢)(1 — cos ¢) + C; cos? ¢ — Cg sin ¢ cos ¢
uided
€ V'3 T — Wi (C5cos p — Cgsinp)[¢p — 0 — sin(¢p — 0)] — (Cy15 cos ¢ — Cyp6 sin ¢)(1 — cos )
A= (C5 sin¢ — Cy cos ¢)(1 — cos §p) + Cj cos? ¢ — Cg sin ¢ cos ¢
w
M _ wR? (C3Cg — C5C5)[¢p — 0 — sin(d — 0)] + (Ca13C5 — CargCa)(1 — 08 §) + (Cu16C5 — Ca13Cs) cos ¢
8 AT Rl (Cssin g — Cy cos ¢)(1 — cos ¢) + C;3 cos? ¢ — Cg sin ¢ cos ¢
( Vp=Vs—wR(¢—0)
TA My = V,Rsing — T, sin ¢ If § = 1.3 (solid or hollow round cross section, v = 0.3)
A — wR?[1 — cos(¢ — 0)] ¢ 45° 90° 180°
My=0 y4=0 ¢,=0 . TsR 0 0° 0° 30° 60° 0 60° 120°
Tp=0 yp=0 ©p=0 lﬁ=—®Asln¢+—EI Cyg
V,R? wR? Ky, 0.2896 0.5708 0.1812 0.0236 1.3727 0.5164 0.0793
T Er Co— EI Caro Ky —0.0093 —0.0658 —0.0368 —0.0060 —0.3963 —0.1955 —0.0226
Ko, —0.0111 —0.1188 —0.0720 —0.0135 —3.0977 —1.9461 —0.3644
Kyp —0.0815 —0.3634 —0.2820 —0.1043 —2.0000 —1.5000 —0.5000
Kyp —0.0008 —0.0342 —0.0238 —0.0056 —1.7908 —1.2080 —0.2610
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TABLE 9.4 Formulas for curved beams of compact cross section loaded normal to the plane of curvature (Continued)

End restraints, reference no.

Formulas for boundary values and selected numerical values

4h. Right end supported and slope-
guided, left end simply supported

Vg

0

¢ —0—sin@—0)
VamwR e
_wR® [Cyysing + Colgp —0—sin(gp—0)] _ Cysinglp—0—sin@ - 0] _,
A*ﬁ{ 1—cos¢ N (1~ cos §)* : ul("}

Vi = Vy — wR( — 0)

My = V,Rsing If f = 1.3 (solid or hollow round cross section, v = 0.3)

Va — wR’[1 ~ cos(¢ — 0)] ¢ 45° 90° 180°
My;=0 Ty=0 y,=0 ViR 0 o o 30 o0 o 0 120°
Tz=0 yp=0 ©z=0 U =Yacos¢—Oysin ¢+ -7 Co
wR3 Ky, 0.2673 0.5708 0.1812 0.0236 1.5708 0.6142 0.0906
T EI Carg Koa —0.0150 —0.1620 —0.0962 —0.0175 —3.6128 —2.2002 —0.3938
Ky 0.0204 0.1189 0.0665 0.0109 0.7625 0.3762 0.0435
Kyp —0.1039 —0.4292 —0.3188 —0.1104 —2.0000 —1.5000 —0.5000
KwB —0.0133 —0.0008 —0.0051 —0.0026 —1.8375 —1.2310 —0.2637
4i. Right end supported and roll-guided, V.= wR(Ca13 + Carg) sin ¢ + (Cy + Cy)[1 — cos(¢ — 0)]
= -
left end supported and roll-guided (Cy + C3 + Cg + Cy)sing
V, 9 (Caig + Carg) sin g — (Cy + Cy)[1 — cos(¢p — 0)]
B Ty =wR -
(Cy + C3 + Cg + Cy) sin ¢
w
_ WR? Cuuy(Cy + Cg) — Carg(Cy + Cy) +(CoCy — Gy C)[1 — cos(p — 0)]/ sin
)TB ATEL (Cy + C3 + C5 + Cy)sing
Vg =Va —wR(¢ —0) . .
Ta If f = 1.3 (solid or hollow round cross section, v = 0.3),
Tg = VAR(1 — cos ¢) + T4 cos
BT A (2 9 Ta ¢ ¢ 45° 90° 270°
Va — wR*[¢p — 0 — sin(¢p — 0)]
) 5 0 0° 15° 0° 30° 0° 90°
TWR. V4R wR
0;=0 lalvg Co— " 0
My=0 y,=0 y,=0 B = Oacos ¢+ Cs + =g Co =7 Cas Ky 0.3927 0.1745 0.7854 0.3491 2.3562 1.0472
Mp=0 yp=0 Yp=0 Kpy —0.0215 —0.0149 —0.2146 —0.1509 3.3562 3.0472
Kou —0.0248 —0.0173 —0.3774 —0.2717 —10.9323 —6.2614
Kpp 0.0215 0.0170 0.2146 0.1679 —3.3562 —2.0944
Kop 0.0248 0.0194 0.3774 0.2912 10.9323 9.9484
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TABLE 9.4 Formulas for curved beams of compact cross section loaded normal to the plane of curvature (Continued)

4j. Right end supported and roll-guided,
left end simply supported

1 —cos(¢ —0)

Va=wR sin ¢

Vg _ WR?| Cyy5c08 p — Caro(1 —cos ) B N 1 — cos(¢p — 0)
) 0O, = N o [C5 cos p — Cg(1 — cos ¢)] BT )
T wR? 1 — cos(¢p — 0)
B _- — it S S
) Va = EI |:Ca13 +Cary = (Cy +Cy) sin ¢ ] If f = 1.3 (solid or hollow round cross section, v = 0.3)
Vg = Vy — wR($ — 0) ¢ 45° 90°
v Ty = V4R(1 — cos ) — wR%[¢p — 0 — sin($ — 0)] 0 0° 15° 30° 0 30° 60°
A
. V,R? wR3 Ky, 0.4142 0.1895 0.0482 1.0000 0.5000 0.1340
My=0 Tp=0 y,=0 Op =0, 08¢+ sin¢ + 7 Co =7 Case Koa —0.0308 —0.0215 —0.0066 —0.6564 —0.4679 —0.1479
Mg=0 yp=0 yp=0 Ky 0.0220 0.0153 0.0047 0.4382 0.3082 0.0954
Krp 0.0430 0.0319 0.0111 0.4292 0.3188 0.1104
Kop 0.0279 0.0216 0.0081 0.5367 0.4032 0.1404
5. Uniformly distributed torque Transverse shear = V =V,
Bending moment = M = V,Rsinx + M, cosx — T sinx — ¢, R[1 — cos(x — 0)[<x — 0)°
Twisting moment = 7' = V4 R(1 — cosx) + M sinx + T4 cos x + ¢, R sin(x — 0)¢x — 0)°
) ) ) MR TR V,R LR}
Vertical deflection =y =y, + ©4Rsinx 4+, R(1 — cosx) + 2,1 F +%Fz + %F3 + ﬁFalz
. . MuR TR V,R? t,R?
Bending slope = © = ©, cosx + 4 smer#F1 +ﬁF5 +2,71F6 + OEI Fo5
. MyR T\R V,R? t,R?
Roll slope = ¢ =y, cosx — Oy smx+ﬁF7 +ﬁFg + 2,1 F, JroE—IFa18
F 1 lues: V = Kyt,, M=K, T=K KW Kool LS
'or tabulated values: V = Ky, = Kyt,R, =Kpt,R, y= BT 0= ° G V=K, i
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TABLE 9.4 Formulas for curved beams of compact cross section loaded normal to the plane of curvature (Continued)

End restraints, reference no.

Formulas for boundary values and selected numerical values

R 3
5a. Right end fixed, left end free ya= tﬁ [Coys sin ¢ — Coys(1 — cos ) — Coo]
2
0, = _%(CMS cos  — Cyrg sin )
to
t,R? .
Ya=-— ﬁ(cam c0s ¢ + Cyp5 sin )
If f = 1.3 (solid or hollow round cross section, v = 0.3)
Vy =0
¢ 45° 90° 180°
My = —,R[1 — cos(¢p — 0)]
0 0° 0° 30° 60° 0° 60° 120°
Ty =t,Rsin(¢ — 0)
Ky 0.0129 0.1500 0.2562 0.1206 0.6000 2.5359 1.1929
Koa —0.1211 —0.8064 —0.5429 —0.1671 —3.6128 —2.2002 —0.3938
Ky 0.3679 1.1500 0.3938 0.0535 2.0000 —0.5859 —0.5429
Va=0 My=0 Ty=0 Kys —0.2929 —1.0000 —0.5000 —0.1340 —2.0000 —~1.5000 —0.5000
yp=0 ©p=0 yYp=0 Kp 0.7071 1.0000 0.8660 0.5000 0.0000 0.8660 0.8660
5b. Right end fixed, left end simply V=t Ca1s(1 —cos ) — Cyy5 §ind) + Carz
supported ? Cy(1—cosp)— Cgsing + Cy
0, —— t,R? (Ca15Cy — Co15C3) 8in ¢ + (Ca15Cs — Ca15Co)(1 — €08 h) + (Cag5Cs — Ca12Cg) cos
A EI Co(1—cos ) — Cgsing + Cy
Uy =— t,R? [Co15(Cy + Cs) — Co(Carz + Carg)] sin ¢ + (Ca15Cs — Carp Cg) cos ¢
to 4 EI Cy(1 —cos¢) — Cgsing + Cy
V=1V,
A B A
Mp = V,Rsin¢$ — t,R[1 — cos(¢ — 0)] - -
My=0 Ty=0 y,=0 If f = 1.3 (solid or hollow round cross section, v = 0.3)
_ _ _ Ty = V,R(1 — cos ¢p) + t,Rsin(¢p — 0)
=0 Op=0 =0 B A
B B 17 ° " 45° 90° 180°
0 0° 0° 30° 60° 0° 60° 120°
Ky, —0.0801 —0.1201 —0.2052 —0.0966 —0.0780 —0.3295 —0.1550
Koa —0.0966 —0.6682 —0.3069 —0.0560 —3.4102 —1.3436 0.0092
Kya 0.3726 1.2108 0.4977 0.1025 2.2816 0.6044 0.0170
Kyp —0.3495 —1.1201 —0.7052 —0.2306 —2.0000 —1.5000 —0.5000
Krp 0.6837 0.8799 0.6608 0.4034 —0.1559 0.2071 0.5560
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TABLE 9.4 Formulas for curved beams of compact cross section loaded normal to the plane of curvature (Continued)

5c. Right end fixed, left end supported V=t (Ca18C4 — Cay5C7)(1 — c08 ) + (Cap5 Cy — C12Cy) c08 ¢ + (Cy3C7 — CoygCy) sin g
and slope-guided ’ (C4Cy — C4Cy)(1 = cos ¢) +(C, C5 — C3Cy) cos ¢ + (C3C7 — C, Cy) sin
M, =t R(Ca1sc9 — CaysCs)(1 — €08 §) + (Cu19Cs — Ca15C5) cos ¢ + (Cu1s Cs — Ca12Co) sin ¢
4 0 (C4Cy — CsCr)(1 —cos §) +(C, C5 — C3Cy)cos ¢ + (C3C7 — C, Cy) sin g
Ma ( to Uy =— LR Cp(CiCy — CoCr) + Cs(C3C7 = €1 Cy) + Cys(C1 G — C5Cy)
4 EI (C,Cy — C4C7)(1 —cos p) + (C,C — C3Cy)cos ¢ + (C3C; — C, Cy) sin ¢
Va Vi =V : .
If f = 1.3 (solid or hollow round cross section, v = 0.3)
Ty=0 y,=0 ©4=0 Mp =V Rsin ¢ + M, cos ¢ N N N
yp=0 Op=0 yYp=0 — t,R[1 — cos(¢ — 0)] ¢ 45 90 180
X 0 0° 0° 30° 60° 0° 60° 120°
Ty = V,R(1 —cos ¢)+ M, sing
+t,Rsin(¢p — 0) Ky, 0.6652 0.7038 0.1732 —0.0276 0.3433 —0.1635 —0.1561
Kya —0.3918 —0.8944 —0.4108 —0.0749 —1.2471 —0.4913 0.0034
Kya 0.2993 0.6594 0.2445 0.0563 0.7597 0.0048 0.0211
Kyp —0.0996 —0.2962 —0.3268 —0.1616 —0.7529 —1.0087 —0.5034
Krp 0.6249 0.8093 0.6284 0.3975 0.6866 0.5390 0.5538
5d. Right end fixed, left end supported V= —t [(Ca12 + Ca18)C5 — C15(Cy + Cy)lsin ¢ + (Cy15Cg — Coy5Cy) cos
and roll-guided ’ [C5(C3 + Cg) — Co(Cy + Cy)lsin + (C3Cg — CyCy) cos
7= ¢ R[Cals(cs + Co) — C6(Carz + Carp)lsin @ + (Coig Cs — C1p C) cos ¢
4T [C5(Cs + Cg) — C4(Cy + Cy)lsin ¢ + (C3Cs — CyCy) cos ¢
TA( 1o _ t,R? Ca15(C5Co — C5Cs) + Cans(CCs — Cy.Co) + Carg(CoCo — C5Cs)
A EI  [C5(Cs+ Cy) — C4(Cy + Cy)]sin ¢ + (C5C5 — C,Cy) cos ¢
A
Vy =V, - -
My=0 y,=0 ,=0 If p = 1.3 (solid or hollow round cross section, v = 0.3)
yg =0 Op=0 Yyp=0 Mp =V,Rsin ¢ — Ty sin¢ 45 450 90° 180°
—t,R[1 — cos(¢ — 0)]
0 0° 0° 30° 60° 0° 60° 120°
Tp = V4R(1 —cos ¢)+ Tycos¢
+t,Rsin(¢p — 0) Ky, —0.2229 —0.4269 —0.3313 —0.1226 —0.6366 —0.4775 —0.1592
Ky —0.3895 —0.7563 —0.3109 —0.0640 —1.1902 —0.3153 —0.0089
Koa —0.0237 —0.2020 —0.1153 —0.0165 —1.9576 —0.9588 0.0200
Kyp —0.1751 —0.6706 —0.5204 —0.1926 —2.0000 —1.5000 —0.5000
Krp 0.3664 0.5731 0.5347 0.3774 —0.0830 0.2264 0.5566
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TABLE 9.4 Formulas for curved beams of compact cross section loaded normal to the plane of curvature (Continued)

End restraints, reference no.

Formulas for boundary values and selected numerical values

5e. Right end fixed, left end fixed

Ca12(C4Cs — C5C7) + C15(CyCr — €y Cg) + Cys(C1 G5 — G2 Cy)

Vy=—t
4 ? C(C5Cy — C4Cy) + C4(C3C5 — CyCy) + C7(C,Cg — C3C5)

S RCaIZ(C5CQ — CgCs) + Co15(C5Cg) — CyCy) + Cy15(Cy Cg — C5C5)

My = C1(C5Cy — CsCg) + C4(C3C5 — C5.C9) + C7(Cy G — C3.C5)
to T, =t RCaIZ(CGC7 = CyCy) + Ca15(C1 Gy — C3Cr) + Cons(C3C4 — €1 Co)
C1(C5Cy — CsCg) + C4(C3C5 — Cy.Cy) + C7(C2 Cg — C3C5)
Vg="Vy - -
y4=0 ©,=0 y,=0 If § = 1.3 (solid or hollow round cross section, v = 0.3)
yp=0 O@g=0 yYp=0 Mp =V Rsin$ + M, cosp — Ty sin¢ 4 5 %0 180°
— t,R[1 — cos(¢p — 0)]
0 0° 15° 0° 30° 0° 60°
Ty = V,R(1 — cos ¢p) + My sinp + Ty cos ¢
+t,Rsin(¢p — 0) Kya 0.0000 —0.0444 0.0000 —0.0877 0.0000 —0.1657
Kya —0.1129 —0.0663 —0.3963 —0.2262 —1.0000 —0.4898
Kry —0.3674 —0.1571 —0.6037 —0.2238 —0.5536 —0.0035
Kyp —0.1129 —0.1012 —0.3963 —0.3639 —1.0000 —1.0102
Krp 0.3674 0.3290 0.6037 0.5522 0.5536 0.5382
5f. Right end supported and slope- v [Cl sin ¢ — Cy(1 — cos ¢)]sin(¢p — 0) — Cyyp sin® ¢+ C,y5(1 — cos Pp) sin ¢
guided, left end supported and 4=l Cy4(1 —cos ¢)? + C,q sin’ ¢ —(C; + Cg)(1 —cos ¢p)sin¢p
slope-guided
Vg M, = plCssind — Ce(1 — cos ¢)]sin(¢ — H) Cara(1 — cos §) sin ¢ + Cy5(1 — cos )
M C,(1 = cos ¢)? + Cy sin® ¢ — (C; + Cg)(1 — cos ¢) sin ¢
-]
_ t,R? (C3C, — C1Cg) sin(p — 0) + (Car3Cs — Ca15Cs) sin ¢ — (Co12Cy — Car5C1)(1 — cos §)
M, AT EI C,(1 = cos $)? + Cy sin® ¢ — (C, + Cg)(1 — cos ) sin ¢
( to Vy =V,
If p = 1.3 (solid or hollow round cross section, v = 0.3)
Vy Mp =V Rsin ¢ + My cos ¢ — t,R[1 — cos(¢ — 0)]
¢ 45° 90° 180°
Ty=0 y4=0 ©4=0 tR
Tp=0 yp=0 Op=0 Vo =vacosp+ AR o,y Ca 77 Cais 0 0° 15° 0° 30° 0° 60°
Ky, 0.0000 —0.2275 0.0000 —0.3732 0.0000 —0.4330
Kya —1.0000 —0.6129 —1.0000 —0.4928 —1.0000 —0.2974
Kya 1.0000 0.6203 1.0000 0.5089 1.0000 0.1934
Kyp —1.0000 —0.7282 —1.0000 —0.8732 —1.0000 —1.2026
Kyp 1.0000 0.7027 1.0000 0.7765 1.0000 0.7851
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TABLE 9.4 Formulas for curved beams of compact cross section loaded normal to the plane of curvature (Continued)

5g.

Right end supported and slope-

Cy15 €082 ¢ — Cyy5 8in ¢ cos ¢ + (Cy sin ¢p — Cy, cos ¢p) sin(¢p — 0)

Vy=- 8 -
guided, left end supported and roll- A (Cj sin ¢ — Cy cos p)(1 — cos p) 4 C; cos? ¢ — Cg sin ¢ cos ¢
guided . . .
T R(C‘ﬂs sin ¢ — Cyp5 cos @)(1 — cos ¢) + (Cy cos ¢ — Cg sin ¢) sin(¢p — 0)
A AT (Cssin ¢ — Cy cos ¢p)(1 — cos §p) + C3 cos? ¢ — Cg sin ¢ cos ¢
Mg 0, —— 1, R? (Ca15C5 — Ca15Co)(1 = €08 ) + (Ca15Cs — Ca19Cy) cos ¢ + (C, Cs — C5C5) sin(¢ — 0)
A EI (C5sing — Cy cos Pp)(1 — cos ¢) + Cg cos? ¢ — Cg sin ¢ cos ¢
V=1V,
TA( fo 5=V
v Mg =V,Rsin ¢ — Ty sin¢ If = 1.3 (solid or hollow round cross section, v = 0.3)
A
My=0 3,20 y,=0 —t,R[1 — cos(¢ — 0)] ¢ 45° 90° 180°
Ty=0 yp=0 Op=0 Wy = O, sind + Tésll‘? e 0 0° 0° 30° 60° 0° 60° 120°
4 V,4R? Co+ i, R? c Kya —0.8601 —~1.0000 —0.8660 —0.5000 —0.5976 —0.5837 —0.4204
EI °7 EI T*® Koy ~0.6437 ~0.9170 ~0.4608 ~0.1698 ~1.1953 ~0.3014 0.0252
Koa —0.0209 —0.1530 —0.0695 0.0158 —2.0590 —0.6825 0.6993
Kyp —0.4459 —1.0830 —0.9052 —0.4642 —2.0000 —1.5000 —0.5000
Kyp 0.2985 0.6341 0.5916 0.4716 —0.1592 0.4340 1.0670
5h. Right end supported and slope- Vy=— t,sin(¢ — 0)
guided, left end simply supported 1—cos¢
v 0, —— t, R [Capsing + Cgsin(gp —0)  Cysingsin(g —0) c.
8 A EI 1—cos¢ (1 —cos ¢)2 al?
M
8 2 ; ;
t,R* [Cy15sin¢ — C,y9co8 P . sin(¢ — 0)
) Va EI [ 1—cos¢ +(Gycos¢ = Cosing) (1 — cos ¢)?
Vp=1V,
to B 4 If f = 1.3 (solid or hollow round cross section, v = 0.3)
v My =VaRsin ¢ p 45 90° 180°
A —t,R[1 — cos(¢ — 0)]
My=0 Ty=0 y,=0 , , o ¢+VAR2C, 0 0° 0 30 60 0 60° 120
=y, cosp— Oy sin
Tp=0 yp=0 Op=0 B=Va A EI ° Kya —2.4142 —1.0000 —0.8660 —0.5000 0.0000 —0.4330 —0.4330
+ t,R? C Koa —0.2888 —0.7549 —0.3720 —0.0957 —3.6128 —1.0744 0.7320
ET % Ky 1.4161 1.6564 0.8324 0.3067 2.3000 0.5800 ~0.0485
Kyp —2.0000 —2.0000 —1.3660 —0.6340 —2.0000 —1.5000 —0.5000
K'PB 1.2811 1.0985 0.8250 0.5036 —0.3000 0.3985 1.0700
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TABLE 9.4 Formulas for curved beams of compact cross section loaded normal to the plane of curvature (Continued)

End restraints, reference no.

Formulas for boundary values and selected numerical values

5i. Right end supported and roll-guided, Va=0
left end supported and roll-guided oy .
v Tt R(Calz + Cy1g)sin” ¢ + (C3 + Cy) sin ¢[1 — cos(¢p — 0)]
8 AT Cy + Cy + Cg + Cy) sin®
T (Cy + C3 4 Cg + Cg) sin” ¢
B ’ .
5 0,=— t,R? [Ca12(Cs + Cg) — Cars(Cs + Cy)]sin ¢ — (C,Cq — C3C)[1 — cos(d — 0)]
) EI (Cy + C3 + Cg + Cy) sin® ¢
1o V=0
TA VA Ty = T, cosp + t, Rsin(é — 0) If f = 1.3 (solid or hollow round cross section, v = 0.3)
; 45° 90° 270°
Op =0 cos¢+MC +ﬂc ’ ’
My=0 y3=0 yu =0 BT EI 7T EI 7% 0 0 15° 0° 30° 0° 90°
Mp=0 yp=0 yYp=0
Ky, 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Kry —0.4142 —0.1895 —1.0000 —0.5000 1.0000 2.0000
Kou —0.0527 —0.0368 —0.6564 —0.4679 —6.5692 —2.3000
Krp 0.4142 0.3660 1.0000 0.8660 —1.0000 0.0000
Kop 0.0527 0.0415 0.6564 0.5094 6.5692 7.2257
5. Right end supported and roll-guided, V= to[1 — cos(¢ — 0)]
left end simply supported sin ¢
6, — o [Curz 0036 = Cas(1 = cos9)  [Cycos = Cy(1 — cos @)1 = cos( — )]
A EI sin ¢ sin® ¢
t,R? Cy + Cy)[1 — cos(¢p — 0)
Ya= *(’E.il{cmz +Cas +%¢¢]
Vg ="Va If § = 1.3 (solid or hollow round cross section, v = 0.3)
Ty = V,R(1 — cos ¢p) + t,Rsin(¢p — 0) ) 45° 90°
. ViR R 0 0° 15° 30° 0° 30° 60°
My=0 Ty=0 y,=0 Op =04cos¢+d,sing + Bl Ce + El Cars
Mp=0 yp=0 =0 Kya 0.4142 0.1895 0.0482 1.0000 0.5000 0.1340
Koa —0.1683 —0.0896 —0.0247 —1.9564 -1.1179 —0.3212
Ky 0.4229 0.1935 0.0492 2.0420 1.0210 0.2736
Krp 0.8284 0.5555 0.2729 2.0000 1.3660 0.6340
Kop 0.1124 0.0688 0.0229 1.3985 0.8804 0.2878
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sec. 9.7] Curved Beams 379

9.7 References

1.

2.

15.
16.
17.
18.
. Karabin, M. E., E. C. Rodabaugh, and J. F. Whatham: Stress Component Indices for
20.
21.
22.
23.
24.
25.
26.
217.

28.
. Cook, R. D., and W. C. Young: “Advanced Mechanics of Materials,” 2nd ed., Prentice-

30.
31.

Wilson, B. J., and J. F. Quereau: A Simple Method of Determining Stress in Curved
Flexural Members, Univ. Ill. Eng. Exp. Sta., Circ. 16, 1927.

Timoshenko, S., and J. N. Goodier: “Theory of Elasticity,” 2nd ed., Engineering
Society Monograph, McGraw-Hill, 1951.

. Boresi, A. P, R. J. Schmidt, and O. M. Sidebottom: “Advanced Mechanics of

Materials,” 5th ed., John Wiley & Sons, 1993.

. von Karméan, Th.: “Uber die Forminderung diinnwandiger Rohre, insbesondere

federnder Ausgleichrohre,” Z. Vereines Dtsch. Ing., vol. 55, p. 1889, 1911.

. Timoshenko, S.: Bending Stresses in Curved Tubes of Rectangular Cross-section,

Trans. ASME, vol.. 45, p. 135, 1923.

. Burke, W. F.: Working Charts for the Stress Analysis of Elliptic Rings, Nat. Adv.

Comm. Aeron., Tech. Note 444, 1933.

. Bushnell, David: Elastic-Plastic Bending and Buckling of Pipes and Elbows, Comp.

Struct., vol. 13, 1981.

. Utecht, E. A.: Stresses in Curved, Circular Thin-Wall Tubes, ASME <J. Appl. Mech.,

vol. 30, no. 1, 1963.

. Penstock Analysis and Stiffener Design, U.S. Dept. Of Agriculture, Bur. Reclamation,

Boulder Canyon Proj. Final Repts., Pt. V, Bull. 5, 1940.

. Bleich, Hans: Stress Distribution in the Flanges of Curved T and I Beams, U.S. Dept.

Of Navy, David W. Taylor Model Basin, transl. 228, 1950.

. Mantle, J. B., and T. J. Dolan: A Photoelastic Study of Stresses in U-shaped Members,

Proc. Soc. Exp. Stress Anal., vol. 6, no. 1., 1948.

. Stressed Skin Structures, Royal Aeronautical Society, data sheets.
. Timoshenko, S.: “Strength of Materials,” D. Van Nostrand, 1930.
. Levy, Roy: Displacements of Circular Rings with Normal Loads, Proc. Am. Soc. Civil

Eng., J. Struct. Div., vol. 88, no. 1, 1962.

Moorman, R. B. B.: Stresses in a Curved Beam under Loads Normal to the Plane of Its
Axis, Iowa Eng. Exp. Sta., Iowa State College, Bull. 145, 1940.

Fisher, G. P.: Design Charts for Symmetrical Ring Girders, ASME J. Appl. Mech., vol.
24, no. 1, 1957.

Moorman, R. B. B.: Stresses in a Uniformly Loaded Circular-arc I-beam, Univ.
Missouri Bull., Eng. Ser. 36, 1947.

Hogan, M. B.: Utah Eng. Exp. Sta., Bulls. 21, 27, and 31.

Elbow-Straight Pipe Junctions Subjected to In-Plane Bending, Trans. ASME J.
Pressure Vessel Tech., vol. 108, February 1986.

Volterra, Enrico, and Tandall Chung: Constrained Circular Beam on Elastic Founda-
tions, Trans. Am. Soc. Civil Eng., vol. 120, 1955 (paper 2740).

Meck, H. R.: Three-Dimensional Deformation and Buckling of a Circular Ring of
Arbitrary Section, ASME J. Eng. Ind., vol. 91, no. 1, 1969.

Brookhart, G. C.: Circular-Arc I-Type Girders, Proc. Am. Soc. Civil Eng., J. Struct.
Div., vol. 93, no. 6, 1967.

Dabrowski, R.: “Curved Thin-Walled Girders, Theory and Analyses,” Cement and
Concrete Association, 1972.

Verden, Werner: “Curved Continuous Beams for Highway Bridges,” Frederick Ungar,
1969 (English transl.).

Sawko, F., and R. J. Cope: Analysis of Multi-cell Bridges Without Transverse
Diaphragms—A Finite Element Approach, Struct. Eng., vol. 47, no. 11, 1969.
Meyer, C.: Analysis and Design of Curved Box Girder Bridges, Univ. California,
Berkeley, Struct, Eng. & Struct. Mech. Rept. SESM-70-22, December 1970.

Vlasov, V. Z.: “Thin-Walled Elastic Beams,” Clearing House for Federal Scientific and
Technical Information, U.S. Dept. Of Commerce, 1961.

Neugebauer, George H.: Private communication.

Hall, 1998.

Tepper, Ken: Private communication

Broughton, D. C., M. E. Clark, and H. T. Corten: Tests and Theory of Elastic Stresses
in Curved Beams Having I- and T-Sections, Exp. Mech., vol. 8, no. 1, 1950.



380 Formulas for Stress and Strain [cHAP. 9

32. Biezeno, C. B., and R. Grammel: “Engineering Dynamics,” vol. II (Elastic Problems of
Single Machine Elements), Blackie & Son, 1956 (English translation of 1939 edition
in German).

33. Plesha, M. E.: Department of Engineering Mechanics, University of Wisconsin—
Madison, private communication.

34. Whatham, J. F.: Pipe Bend Analysis by Thin Shell Theory, ASME <J. Appl. Mech., vol.
53, March 1986.

35. Barber, J. R.: Force and Displacement Influence Functions for the Circular Ring, Inst.
Mech. Eng. J. Strain Anal., vol. 13, no. 2, 1978.

36. Budynas, R. G.: “Advanced Strength and Applied Analysis,” 2nd ed., McGraw-Hill,
1999.



Chapter

10

Torsion

10.1 Straight Bars of Uniform Circular
Section under Pure Torsion

The formulas in this section are based on the following assumptions:
(1) The bar is straight, of uniform circular section (solid or concen-
trically hollow), and of homogeneous isotropic material; (2) the bar is
loaded only by equal and opposite twisting couples, which are applied
at its ends in planes normal to its axis; and (3) the bar is not stressed
beyond the elastic limit.

Behavior. The bar twists, each section rotating about the longitudinal
axis. Plane sections remain plane, and radii remain straight. There is
at any point a shear stress 7 on the plane of the section; the magnitude
of this stress is proportional to the distance from the center of the
section, and its direction is perpendicular to the radius drawn through
the point. Accompanying this shear stress there is an equal longi-
tudinal shear stress on a radial plane and equal tensile and compres-
sive stresses g, and o, at 45° (see Sec. 7.5). The deformation and
stresses described are represented in Fig. 10.1.

In addition to these deformations and stresses, there is some longi-
tudinal strain and stress. A solid circular cylinder wants to lengthen
under twist, as shown experimentally by Poynting (Ref. 26). In any
event, for elastic loading of metallic circular bars, neither longitudinal
deformation nor stress is likely to be large enough to have engineering
significance.

Formulas. Let 7 =twisting moment, [=length of the member,
r =outer radius of the section, J =polar moment of inertia of the
section, p =radial distance from the center of the section to any point
g, T =the shear stress, 0 =angle of twist (radians), G =modulus of
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Figure 10.1

rigidity of the material, and U = strain energy. Then

Tl

0= JG (10.1-1)
T= % (at point q) (10.1-2)
Tmax = ? (at outer surface) (10.1-3)
1721
U=555 (10.1-4)

By substituting for JJ in Egs. (10.1-1) and (10.1-3) its value 21 from
Table A.1, the formulas for cases 1 and 10 in Table 10.1 are readily
obtained. If a solid or hollow circular shaft has a slight taper, the
formulas above for shear stress are sufficiently accurate and the
expressions for 0 and U can be modified to apply to a differential
length by replacing [ by dl If the change in section is abrupt, as at a
shoulder with a small fillet, the maximum stress should be found by
the use of a suitable factor of stress concentration K,. Values of K, are
given in Table 17.1.

10.2 Bars of Noncircular Uniform Section under
Pure Torsion

The formulas of this section are based on the same assumptions as
those of Sec. 10.1 except that the cross section of the bar is not circular.
It is important to note that the condition of loading implies that the
end sections of the bar are free to warp, there being no constraining
forces to hold them in their respective planes.

Behavior. The bar twists, each section rotating about its torsional
center. Sections do not remain plane, but warp, and some radial lines
through the torsional center do not remain straight. The distribution
of shear stress on the section is not necessarily linear, and the
direction of the shear stress is not necessarily normal to a radius.
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Formulas. The torsional stiffness of the bar can be expressed by the
general equations

0 Tl

where K is a factor dependent on the form and dimensions of the cross
section. For a circular section K is the polar moment of inertia </ [Eq.
(10.1-1)] for other sections K is less than J and may be only a very
small fraction of /. The maximum stress is a function of the twisting
moment and of the form and dimensions of the cross section. In Table
10.1, formulas are given for K and for max t for a variety of sections.
The formulas for cases 1 to 3, 5, 10, and 12 are based on rigorous
mathematical analysis. The equations for case 4 are given in a
simplified form involving an approximation, with a resulting error
not greater than 4%. The K formulas for cases 13-21 and the stress
formulas for cases 13-18 are based on mathematical analysis but are
approximate (Ref. 2); their accuracy depends upon how nearly the
actual section conforms to the assumptions indicated as to form. The K
formulas for cases 22—-26 and the stress formulas for cases 19-26 are
based on the membrane analogy and are to be regarded as reasonably
close approximations giving results that are rarely as much as 10% in
error (Refs. 2—4 and 11).

It will be noted that formulas for K in cases 23—26 are based on the
assumption of uniform flange thickness. For slightly tapering flanges,
D should be taken as the diameter of the largest circle that can be
inscribed in the actual section, and b as the average flange thickness.
For sharply tapering flanges the method described by Griffith (Ref. 3)
may be used. Charts relating especially to structural H- and I-sections
are in Ref. 11.

Cases 7, 9, and 27-35 present the results of curve fitting to data
from Isakower, Refs. 12 and 13. These data were obtained from
running a computer code CLYDE (Ref. 14) based on a finite-difference
solution using central differences with a constant-size square mesh.
Reference 12 also suggests an extension of this work to include
sections containing hollows. For some simple concentric hollows the
results of solutions in Table 10.1 can be superposed to obtain closely
approximate solutions if certain limitations are observed. See the
examples at the end of this section.

The formulas of Table 10.1 make possible the calculation of the
strength and stiffness of a bar of almost any form, but an under-
standing of the membrane analogy (Sec. 6.4) makes it possible to draw
certain conclusions as to the comparative torsional properties of
different sections by simply visualizing the bubbles that would be
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formed over holes of corresponding size and shape. From the volume
relationship, it can be seen that of two sections having the same area,
the one more nearly circular is the stiffer, and that although any
extension whatever of the section increases its torsional stiffness,
narrow outstanding flanges and similar protrusions have little
effect. It is also apparent that any member having a narrow section,
such as a thin plate, has practically the same torsional stiffness when
flat as when bent into the form of an open tube or into channel or angle
section.

From the slope relationship it can be seen that the greatest stresses
(slopes) in a given section occur at the boundary adjacent to the
thicker portions, and that the stresses are very low at the ends of
outstanding flanges or protruding corners and very high at points
where the boundary is sharply concave. Therefore a longitudinal slot
or groove that is sharp at the bottom or narrow will cause high local
stresses, and if it is deep will greatly reduce the torsional stiffness of
the member. The direction of the shear stresses at any point is along
the contour of the bubble surface at the corresponding point, and at
points corresponding to local maximum and minimum elevations of
the bubble having zero slopes in all directions the shear stress is zero.
Therefore there may be several points of zero shear stress in a section.
Thus for an I-section, there are high points of zero slope at the center
of the largest inscribed circles (at the junction of web and flanges) and
a low point of zero slope at the center of the web, and eight points of
zero slope at the external corners. At these points in the section the
shear stress is zero.

The preceding generalizations apply to solid sections, but it is
possible to make somewhat similar generalizations concerning
hollow or tubular sections from the formulas given for cases 10-16.
These formulas show that the strength and stiffness of a hollow
section depend largely upon the area inclosed by the median boundary.
For this reason a circular tube is stiffer and stronger than one of any
other form, and the more nearly the form of any hollow section
approaches the circular, the greater will be its strength and stiffness.
It is also apparent from the formulas for strength that even a local
reduction in the thickness of the wall of a tube, such as would be
caused by a longitudinal groove, may greatly increase the maximum
shear stress, though if the groove is narrow the effect on stiffness will
be small.

The torsional strengths and stiffnesses of thin-walled multicelled
structures such as airplane wings and boat hulls can be calculated by
the same procedures as for single-celled sections. The added relation-
ships needed are developed from the fact that all cells twist at the
same angular rate at a given section (Ref. 1).
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EXAMPLES

1. It is required to compare the strength and stiffness of a circular steel tube,
41in outside diameter and 3% in thick, with the strength and stiffness of the
same tube after it has been split by cutting full length along an element. No
warping restraint is provided.

Solution. The strengths will be compared by comparing the twisting
moments required to produce the same stress; the stiffnesses will be compared
by comparing the values of K.

(@) For the tube (Table 10.1, case 10), K =3n(ri —r}) = Lin[2* — (12)"] =

6.98in*

n(ry — i)
2r,

(b) For the split tube (Table 10.1, case 17), K_Snrt3 n(l )(32) =
0.0154in%,

T=r1 = 3.4971b-in

an’r2e?
=T
6nr + 1.8t

The closed section is therefore more than 400 times as stiff as the open section
and more than 30 times as strong.

= 0.0977 lb-in

2. It is required to determine the angle through which an airplane-wing spar
of spruce, 8 ft long and having the section shown in Fig. 10.2, would be twisted
by end torques of 500 1b-in, and to find the maximum resultlng stress For the
material in question, G = 100,0001b/in? and E = 1,500,000 1b/in”.

Solution. All relevant dimensions are shown in Fig. 10.2, with notation
corresponding to that used in the formulas. The first step is to compute K by
the formulas given for case 26 (Table 10.1), and we have

K = 2K, + K, + 20D*

K, = 2.75(1.0453){% - 0'212('17’;) 45) [1 - 1;2%75;4)]} =0.796in*
K, = 1(2.40)(0.507%) = 0.104in"
o= (1)32; [0 150 + %] =0.1133
Thus
K = 2(0.796) + 0.104 + 2(0.1133)(1.502*) = 2.85in*
Therefore

Tl 500(96)

—_— — 1 d = . 40
= KG ~ 2.85(100,000) _ 168 rad =96
The maximum stress will probably be at P, the point where the largest
inscribed circle touches the section boundary at a fillet. The formula is

T
Tmax = E C
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T

r=0.875" P
<
o~
d=0.507" 2 S
-
%3
" Figure 10.2
where
1.502 1.502 1.502
C=——F———11 0118In{l1———-)—-0238———
n2(1.5024){ * [ n( 2(—0.875)) 2(—0.875)]
16(7.632%)
X tanhw} =1.731in
T

Substituting the values of 7', C, and K, it is found that

500 .
Tmax = 5 g5 (1.73) = 3031b/in

It will be of interest to compare this stress with the stress at @, the other
point where the maximum inscribed circle touches the boundary. Here the
formula that applies is

T
T_EC
where
1.502 7%(1.502%)  1.502 .
SR s R S - —14
¢ L e LB02° [ 0 5(16(7.632) 00 )] 87in
" 16(7.63?)

(Here r =infinity because the boundary is straight.)
Substituting the values of T,C, and K as before, it is found that
1 = 2521b/in?.

3. For each of the three cross sections shown in Fig. 10.3, determine the
numerical relationships between torque and maximum shear stress and
between torque and rate of twist.

Solution. To illustrate the method of solution, superposition will be used for
section A despite the availability of a solution from case 10 of Table 10.1. For a
shaft, torque and angle of twist are related in the same way that a soap-film
volume under the film is related to the pressure which inflates the film,
provided the same cross section is used for each. See the discussion of the
membrane analogy in Sec. 6.4. One can imagine then a soap film blown over a
circular hole of radius R, and then imagine the removal of that portion of the
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0.262
) Rep =1.17

01~

(a) (b) (c)
Figure 10.3

volume extending above the level of the soap film for which the radius is R;.
Doing the equivalent operation with the shaft assumes that the rate of twist is
0/L and that it applies to both the outer round shaft of radius R, and the
material removed with radius R;. The resulting torque 7% is then the
difference of the two torques or

K,G6 KGO
TR == TO - Ti == L - L
where from case 1
R R?
Ko = T[20 and Ki = nTl

or

_ m/2RY — RHGO
- L

Case 10 for the hollow round section gives this same relationship. Slicing off
the top of the soap film would not change the maximum slope of the bubble
which is present along the outer radius. Thus the maximum shear stress on
the hollow shaft with torque Ty is the same as the shear stress produced on a
solid round section by the torque T,. From case 1

2T, 2TxT, 2T, R: 2TRR,

"SRR T RRITy  aRIRI - (Rl - KD

Tg

which again checks the expression for shear stress in case 10. Inserting the
numerical values for R, and R; gives

1.3672G0
ETL

It is important to note that the exact answer was obtained because there was
a concentric circular contour line on the soap film blown over the large hole.
Had the hole in the shaft been slightly off center, none of the equivalent
contour lines on the soap film would have been absolutely circular and the
answers just obtained would be slightly in error.

Now apply this same technique to the hollow shaft with section B having a
12-spline internal hole. To solve this case exactly, one would need to find a
contour line on the equivalent soap film blown over the circular hole of radius
R,. Such a contour does not exist, but it can be created as discussed in Sec. 6.4.
Imagine a massless fine wire bent into the shape of the internal spline in a
single plane and allow this wire to float at a constant elevation in the soap film

and 7©=0.7314T%
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in equilibrium with the surface tension. The volume which is to be removed
from the soap film is now well-defined and will be worked out using cases 1 and
33, but the unanswered question is what the addition of the wire did to the
total volume of the original soap film. It is changed by a small amount. This
information comes from Ref. 12, where Isakower shows numerical solutions to
some problems with internal noncircular holes. The amount of the error
depends upon the number and shape of the splines and upon how close they
come to the outer boundary of the shaft. Ignoring these errors, the solution can
be carried out as before.

The torque carried by the solid round shaft is the same as for section A. For
the 12-point internal spline, one needs to use case 33 three times since case 33
carries only four splines and then remove the extra material added by using
case 1 twice for the material internal to the splines. For case 33 let r = 0.6,
b=0.1, and a = 0.157/2, which gives b/r = 0.167 and a/b = 0.785. Using the
equations in case 33 one finds C = 0.8098 and for each of the three four-splined
sections, K = 2(0.8098)(0.6)4 = 0.2099. For each of the two central circular
sections removed, use case 1 with r = 0.6, getting K = n(0.6%)/2 = 0.2036.
Therefore, for the splined hole the value of K; = 3(0.2099) — 2(0.2036) =
0.2225. For the solid shaft with the splined hole removed, Kp = n(1)*/2 —
0.2225 = 1.3483 so that T = 1.3483G0/L.

Finding the maximum shear stress is a more difficult task for this cross
section. If, as stated before, the total volume of the original soap film is
changed a small amount when the spline-shaped wire is inserted, one might
expect the meridional slope of the soap film at the outer edge and the
corresponding stress at the outer surface of the shaft A to change slightly.
However, if one ignores this effect, this shear stress can be found as (case 1)

2T, 2TxT, 2TxK, 2Ty n/2
“TIRS T 7RIT, nRIKy n(1)° 1.3378

=0.7475Ty

For this section, however, there is a possibility that the maximum shear stress
and maximum slope of soap film will be bound at the outer edge of an internal
spline. No value for this is known, but it would be close to the maximum shear
stress on the inner edge of the spline for the material removed. This is given in
case 33 as t; = TB/r®, where B can be found from the equations to be
B =0.6264, so that t; = T(0.6264)/0.6% = 2.8998T. Since the torque here is
the torque necessary to give a four-splined shaft a rate of twist 0/L, which is
common to all the elements used, both positive and negative,

T; = 2.8998@ = 2.8998(0.2099)% = 0.6087%

Tr
=0. ———=0.454T]
060871.3483 0.454Tp

Any errors in this calculation would not be of consequence unless the stress
concentrations in the corners of the splines raise the peak shear stresses above
7, = 0.7475TR. Since this is possible, one would want to carry out a more
complete analysis if considerations of fatigue or brittle fracture were neces-
sary.

Using the same arguments already presented for the first two sections, one
can find Kj, for section C by using three of the 4-splined sections from case 33
and removing twice the solid round material with radius 1.0 and once the solid
round material with radius 0.6. For case 33, r=1.0, b =0.17, a = 0.262/2,
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b/r=0.17, and a/b=0.771. Using these data, one finds that C = 0.8100,
B =0.6262, and K = 1.6200. This gives then for the hollow section C,

21(1Y)  m(0.6* 1.5148G0
Ky = 1.6200(3) — % - % = 15148 and Tp=—""7——

Similarly,

T(0.6262) 0.6262(1.6200)G0  1.0144G0
fmax =TT L T L

Ty
= 10144 702 = 0.6697T

Again one would expect the maximum shear stress to be somewhat larger with
twelve splines than with four and again the stress concentrations in the
corners of the splines must be considered.

10.3 Effect of End Constraint

It was pointed out in Sec. 10.2 that when noncircular bars are twisted,
the sections do not remain plane but warp, and that the formulas of
Table 10.1 are based on the assumption that this warping is not
prevented. If one or both ends of a bar are so fixed that warping is
prevented, or if the torque is applied to a section other than at the ends
of a bar, the stresses and the angle of twist produced by the given
torque are affected. In compact sections the effect is slight, but in the
case of open thin-walled sections the effect may be considerable.

Behavior. To visualize the additional support created by warping
restraint, consider a very thin rectangular cross section and an I-
beam having the same thickness and the same total cross-sectional
area as the rectangle. With no warping restraint the two sections will
have essentially the same stiffness factor K (see Table 10.1, cases 4
and 26). With warping restraint provided at one end of the bar, the
rectangle will be stiffened very little but the built-in flanges of the I-
beam act as cantilever beams. The shear forces developed in the
flanges as a result of the bending of these cantilevers will assist the
torsional shear stresses in carrying the applied torque and greatly
increase the stiffness of the bar unless the length is very great.

Formulas. Table 10.2 gives formulas for the warping stiffness factor
C,,, the torsional stiffness factor K, the location of the shear center, the
magnitudes and locations within the cross section of the maximum
shear stresses due to simple torsion, the maximum shear stresses due
to warping, and the maximum bending stresses due to warping. All
the cross sections listed are assumed to have thin walls and the same
thickness throughout the section unless otherwise indicated.
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Table 10.3 provides the expressions necessary to evaluate the angle
of rotation 0 and the first three derivatives of 6 along the span for a
variety of loadings and boundary restraints. The formulas in this table
are based on deformations from bending stresses in the thin-walled
open cross sections due to warping restraint and consequently, since
the transverse shear deformations of the beam action are neglected,
are not applicable to cases where the torsion member is short or where
the torsional loading is applied close to a support which provides
warping restraint.

In a study of the effect on seven cross sections, all of which were
approximately 4in deep and had walls approximately 0.1in thick,
Schwabenlender (Ref. 28) tested them with one end fixed and the other
end free to twist but not warp with the torsional loading applied to the
latter end. He found that the effect of the transverse shear stress
noticeably reduced the torsional stiffness of cross sections such as
those shown in Table 10.2, cases 1 and 6-8, when the length was less
than six times the depth; for sections such as those in cases 2-5 (Table
10.2), the effect became appreciable at even greater lengths. To
establish an absolute maximum torsional stiffness constant we note
that for any cross section, when the length approaches zero, the
effective torsional stiffness constant K’ cannot exceed J, the polar
moment of inertia, where J = I + I, for axes through the centroid of
the cross section. (Example 1 illustrates this last condition.)

Reference 19 gives formulas and graphs for the angle of rotation and
the first three derivatives for 12 cases of torsional loading of open cross
sections. Payne (Ref. 15) gives the solution for a box girder that is fixed
at one end and has a torque applied to the other. (This solution was
also presented in detail in the fourth edition of this book.) Chu (Ref.
29) and Vlasov (Ref. 30) discuss solutions for cross sections with both
open and closed parts. Kollbrunner and Basler (Ref. 31) discuss the
warping of continuous beams and consider the multicellular box
section, among other cross sections.

EXAMPLES

1. A steel torsion member has a cross section in the form of a twin channel
with flanges inward as dimensioned in Fig. 10.4. Both ends of this channel are
rigidly welded to massive steel blocks to provide full warping restraint. A
torsional load is to be applied to one end block while the other is fixed.
Determine the angle of twist at the loaded end for an applied torque of
10001b-in for lengths of 100, 50, 25, and 10in. Assume E = 30(106)lb/in2
and v = 0.285.

Solution. First determine cross-sectional constants, noting that b =4 —
0.1=39in, b; =1.95-0.05=1.9in, A=4-0.1=3.9in, and ¢=0.1in.
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) —4' Figure 10.4

From Table 10.2, case 4,
3 0.13 -
K= §(2b +4by) = T[2(3.9) +4(1.9)] = 0.005133 in

2
C, = %(Sb‘i’ + 6h%b, + h%b + 12b%h) = 28.931in®

_E _ 30(10%) o
=+ 20 +0285)  LE71O)Ib/in
g (KG )" _[0.005133(11.67)(10°)
__<CwE) _[ 28.93(30)(10%)

1/2
] =0.00831in~"

From Table 10.3, case 1d, when a = 0, the angular rotation at the loaded end is

given as
0= T, 3 (ﬁl — 2tanhﬁ)
CLEP 2

If we were to describe the total angle of twist at the loaded end in terms of an
equivalent torsional stiffness constant K’ in the expression

T,!
'=%a
then
Tl - Bl
K a0 K_Kiﬂl—Z(ﬂl/Z)

The following table gives both K’ and 0 for the several lengths:

Bl ,
! Bl 5 K 0

200 1.662 0.6810 0.0284 34.58°

100 0.831 0.3931 0.0954 5.15°
50 0.416 0.2048 0.3630 0.68°
25 0.208 0.1035 1.4333 0.09°
10 0.083 0.0415 8.926 0.006°
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The stiffening effect of the fixed ends of the flanges is obvious even at a
length of 200in where K’ = 0.0284 as compared with K = 0.00513. The
warping restraint increases the stiffness more than five times. The large
increases in K’ at the shorter lengths of 25 and 10in must be examined
carefully. For this cross section I, = 3.88 and I, = 3.96, and so J = 7.84 in®.
The calculated stiffness K’ = 8.926 at [ = 10in is beyond the limiting value of
7.84, and so it is known to be in error because shear deformation was not
included; therefore we would suspect the value of K’ = 1.433 at [ = 251n as
well. Indeed, Schwabenlender (Ref. 28) found that for a similar cross section
the effect of shear deformation in the flanges reduced the stiffness by
approximately 25% at a length of 25in and by more than 60% at a length of
101in.

2. A small cantilever crane rolls along a track welded from three pieces of 0.3-
in-thick steel, as shown in Fig. 10.5. The 20-ft-long track is solidly welded to a
rigid foundation at the right end and simply supported 4 ft from the left end,
which is free. The simple support also provides resistance to rotation about the
beam axis but provides no restraint against warping or rotation in horizontal
and vertical planes containing the axis.

The crane weighs 3001b and has a center of gravity which is 20in out from
the web of the track. A load of 2001b is carried at the end of the crane 60in
from the web. It is desired to determine the maximum flexure stress and the
maximum shear stress in the track and also the angle of inclination of the
crane when it is located 8ft from the welded end of the track.

Solution. The loading will be considered in two stages. First consider a
vertical load of 500 1b acting 8 ft from the fixed end of a 16-ft beam fixed at one
end and simply supported at the other. The following constants are needed:

4(0.3)(10) + 9.7(0.3)(5)

Y= " a+97t8)03 _ +08m

E = 30(10%)1b/in®
3 3

1, =209 40310 - 4.087 + 22T 1 970,35 - 4.087

3
+ 80.3%) + 8(0.3)(4.08%)
12
=107.3in"

-
| oo
C|) '=b 3001b

X - - X \_20"‘4
< 60"
y w Y200lb

PSS —
PR —

Figure 10.5
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From Table 8.1, case lc, a=38ft, [=16ft, W =500lb, My =0, and
R, =[500/2(16®)](16 — 8)*[2(16) + 8] = 156.21b. Now construct the shear and
moment diagrams.

v M (Ib-in)
156.25 | 1250
e

-343.75 -1500

The second portion of the solution considers a beam fixed at the right end
against both rotation and warping and free at the left end. It is loaded at a
point 4 ft from the left end with an unknown torque 7, which makes the angle
of rotation zero at that point, and a known torque of 300(20)+
200(60) = 18,0001b-in at a point 12ft from the left end. Again evaluate the
following constants; assume G = 12(10°)1b/in:

K =1(4+8+10)(0.3%) = 0.198 in! (Table 10.2, case 7)

(10%)(0.3)(4°)(8%) .
w = W = 142.2 11'16 (Table 102, case 7)

KG\"? T[(0.198)(12)(10%)1"* .
#= (%) :[W] = 0:02561n

Therefore Al = 0.0236(20)(12) = 5.664, (I — a) = 0.0236(20 — 12)(12) = 2.2656
for a = 12ft, and f(I — @) = 0.0236(20 — 4)(12) = 4.5312 for a = 4 ft.

From Table 10.3, case 1b, consider two torsional loads: an unknown torque
T, at a = 4ft and a torque of 18,0001b-in at a = 12 ft. The following constants
are needed:

C; = cosh fil = cosh 5.664 = 144.1515
Cy, = sinh il = sinh 5.664 = 144.1480

For a = 4ft,

C,3 =coshf(l—a)— 1 =cosh4.5312 — 1 = 45.4404
C,s =sinh (I — a) — f(I — a) = sinh 4.5312 — 4.5312 = 41.8984

For a = 12ft,

C,3 = cosh 2.2656 — 1 = 3.8703
C,, = sinh 2.2656 — 2.2656 = 2.5010
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At the left end T4 = 0 and 6 = 0:

) _ 18,000 (144.1480)(3.8703)
4~ (142.2)(30)(10%)(0.02363) 144.1515

T, (144.1480)(45.4404)
* (142.2)(30)(105)(0.0236°) [ 144.1515

=0.43953 + 6.3148(107)T,

- 2.5010]

- 41.8984]

Similarly, 0/, = —0.0002034 — 1.327(10~")T...
To evaluate T, the angle of rotation at x = 4 ft is set equal to zero:

/

0
0. =0=104 +—AF2(,;)
B
where

Fye = sinh[0.0236(48)] = sinh 1.1328 = 1.3911

or

(0.0002034)(1.3911)  (1.327)(10-7)(1.3911)

0 = 0.43953 + 6.3148(10°)T, — 0.0236 - 0.0236 ¢

This gives T, = —77281b-in, 0, = —0.04847rad, and 0, = 0.0008221 rad/in.
To locate positions of maximum stress it is desirable to sketch curves of ',
0", and 0" versus the position x:

0 =0,F, +—< Fo,+—2_F,
AT T e E,BZ S0 T o g
7728

(142.2)(30)(106)(0.02362)

= 0.0008221 cosh fix — [cosh f(x — 48) — 1](x — 48)°

18,000

0
*+ (142.2)(30)(10%)(0.02367) [COSh Alx — 144) — 1](x — 144)

This gives
6 = 0.0008221 cosh fx — 0.003253[cosh f(x — 48) — 1](x — 48)°
+0.0007575[cosh f(x — 144) — 1](x — 144)°
Similarly,
0" = 0.00001940 sinh fx — 0.00007676 sinh f(x — 48)
+0.00001788 sinh f{x — 144)
0" = 1075[0.458 cosh fx — 1.812 cosh f(x — 48)(x — 48)°
+ 422 cosh f(x — 144)(x — 144)°]

Maximum bending stresses are produced by the beam bending moments of
+12501b-ft at x = 12 ft and —15001b-ft at x = 20 ft and by maximum values of
0" of —0.000076 at x = 12ft and +0.000085 at x = 20ft. Since the largest
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22600 2.44(10°%)
0.00183 0.000085

| | |
-103(10°°)

-0.00188 -0.000076 -1.97(107°%)

8" vs. x 8" vs. x 8" vs. x

magnitudes of both M, and 0" occur at x = 20 ft, the maximum bending stress
will be at the wall. Therefore, at the wall,
or — 1500(12)(10 — 4.08 4+ 0.15)  10(4) 0.3(8%)
A= 107.26 2 0.3(4%) 4 0.3(8%)
= 970 — 45,300 = —44,3001b/in*
o5 = 970 + 45,300 = 46,3001b/in>
~ —1500(12)(4.08 +0.15)  10(8)  0.3(4%)
c= 107.26 2 0.3(4%)+ 0.3(8%)
= —700 + 11,300 = 10,600 Ib/in®
op=—1700—-11,300 = —-12,000 lb/in2

(30)(10%)(0.000085)

(30)(10%)(0.000085)

Maximum shear stresses are produced by ¢, 0”, and beam shear V. The
shear stress due to 0” is maximum at the top of the web, that due to 0 is
maximum on the surface anywhere, and that due to V is maximum at the
neutral axis but is not much smaller at the top of the web. The largest shear
stress in a given cross section is therefore found at the top of the web and is the
sum of the absolute values of the three components at one of four possible
locations at the top of the web. This gives

110(0.3)(8%)(42)
Tmax| = ‘g 0.3(43 + 89)
(2 — 0.15)(0.3)(10 — 4.08)
‘ 107.26(0.3)

= 1533.3(10%)0"| + 3.6(106)0/| + [0.1021V|

30(105)0”| + 10.3(12)(105)¢|

Y

The following maximum values of 0"

values of the position x:

, 0, V, and 1, are found at the given

x 0" 0 14 [Tmax|> 1b/in®
48+ —1.03(107%) 1.41(1073) 156.3 5633
79.2 —0.80(107%) 1.83(107%) 156.3 7014
144— —1.97(1079) —0.28(1079) 156.3 2073
144+ 2.26(1076) —0.28(107%) —343.7 2247
191.8 1.37(10-%) —1.88(1079) —343.7 7522

240 2.44(1076) 0 —343.7 1335
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To obtain the rotation of the crane at the load, substitute x = 144 into

0, T,
0=04+—F5Fy+——5Fu
A ﬁ 2 C Eﬂ a4(c)
0.0008221 7728(4.7666 — 2.2656)
= —0.04847 + ——————14.9414 — =0.1273
*70.0236 142.2(30)(106)(0.02363)
=7.295°

10.4 Effect of Longitudinal Stresses

It was pointed out in Sec. 10.1 that the elongation of the outer fibers
consequent upon twist caused longitudinal stresses, but that in a bar
of circular section these stresses were negligible. In a flexible bar, the
section of which comprises one or more narrow rectangles, the stresses
in the longitudinal fibers may become large; and since after twisting
these fibers are inclined, the stresses in them have components,
normal to the axis of twist, which contribute to the torsional resistance
of the member.

The stress in the longitudinal fibers of a thin twisted strip and the
effect of these stresses on torsional stiffness have been considered by
Timoshenko (Ref. 5), Green (Ref. 6), Cook and Young (Ref. 1), and
others. The following formulas apply to this case: Let 2a =width of
strip; 2b =thickness of strip; 7, 0,, and ¢, = maximum shear, maxi-
mum tensile, and maximum compressive stress due to twisting,
respectively; T =applied twisting moment; and 0// =angle of twist
per unit length. Then

E? (a\2
7T 1962 (6) (10.4-1)
0. =10, (10.4-2)
3
T = KG? 8 (?) ba® (10.4-3)

The first term on the right side of Eq. (10.4-3), KG0/I, represents the
part of the total applied torque T that is resisted by torsional shear;
the second term represents the part that is resisted by the tensile
stresses in the (helical) longitudinal fibers. It can be seen that this
second part is small for small angles of twist but increases rapidly as
0/l increases.

To find the stresses produced by a given torque 7T, first the value of
0/1 is found by Eq. (10.4-3), taking K as given for Table 10.1, case 4.
Then 7 is found by the stress formula for case 4, taking KGO0/ for the
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twisting moment. Finally ¢, and o, can be found by Egs. (10.4-1) and
(10.4-2).

This stiffening and strengthening effect of induced longitudinal
stress will manifest itself in any bar having a section composed of
narrow rectangles, such as a I-, T-, or channel, provided that the parts
are so thin as to permit a large unit twist without overstressing. At the
same time the accompanying longitudinal compression [Eq. (10.4-2)]
may cause failure through elastic instability (see Table 15.1).

If a thin strip of width a and maximum thickness b is initially
twisted (as by cold working) to a helical angle f, then there is an initial
stiffening effect in torsion that can be expressed by the ratio of
effective K to nominal K (as given in Table 10.3):

Effective K

Effective K _ 2(%)?
Nominalx — | T ¢ +8 (b)

where C is a numerical coefficient that depends on the shape of the
cross section and is 1—25 for a rectangle, 1 for an ellipse, 1—10 for a lenticular
form, and 6—70 for a double wedge (Ref. 22).

If a bar of any cross section is independently loaded in tension, then
the corresponding longitudinal tensile stress o, similarly will provide
a resisting torque that again depends on the angle of twist, and the
total applied torque corresponding to any angle of twist 0 is T =
(KG + 0,J)0/1, where J is the centroidal polar moment of inertia of
the cross section. If the longitudinal loading causes a compressive
stress o,, the equation becomes

0

T=(KG -0, )7

Bending also influences the torsional stiffness of a rod unless the

cross section has (1) two axes of symmetry, (2) point symmetry, or (3)

one axis of symmetry that is normal to the plane of bending. (The

influences of longitudinal loading and bending are discussed in Ref.
23.)

10.5 Ultimate Strength of Bars in Torsion

When twisted to failure, bars of ductile material usually break in
shear, the surface of fracture being normal to the axis and practically
flat. Bars of brittle material usually break in tension, the surface of
fracture being helicoidal.

Circular sections. The formulas of Sec. 10.1 apply only when the
maximum stress does not exceed the elastic limit. If Eq. (10.1-3) is
used with 7" equal to the twisting moment at failure, a fictitious value
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of 7 1s obtained, which is called the modulus of rupture in torsion and
which for convenience will be denoted here by 7. For solid bars of steel,
7" slightly exceeds the ultimate tensile strength when the length is
only about twice the diameter but drops to about 80% of the tensile
strength when the length becomes 25 times the diameter. For solid
bars of aluminum, 7’ is about 90% of the tensile strength.

For tubes, the modulus of rupture decreases with the ratio of
diameter D to wall thickness ¢. Younger (Ref. 7) gives the following
approximate formula, applicable to tubes of steel and aluminum:

g 16007,
D/t —2)* + 1600

where 7’ is the modulus of rupture in torsion of the tube and 1 is the
modulus of rupture in torsion of a solid circular bar of the same
material. (Curves giving 7’ as a function of D/t for various steels and
light alloys may be found in Ref. 18.)

10.6 Torsion of Curved Bars; Helical Springs

The formulas of Secs. 10.1 and 10.2 can be applied to slightly curved
bars without significant error, but for sharply curved bars, such as
helical springs, account must be taken of the influence of curvature
and slope. Among others, Wahl (Ref. 8) and Ancker and Goodier (Ref.
24) have discussed this problem, and the former presents charts which
greatly facilitate the calculation of stress and deflection for springs of
non-circular section. Of the following formulas cited, those for round
wire were taken from Ref. 24, and those for square and rectangular
wire from Ref. 8 (with some changes of notation).

Let R = radius of coil measured from spring axis to center of section
(Fig. 10.6), d = diameter of circular section, 2b =thickness of square
section, P =load (either tensile or compressive), n =number of active
turns in spring, o =pitch angle of spring, f =total stretch or short-
ening of spring, and t =maximum shear stress produced. Then for a
spring of circular wire,

Gd* C64\R) " 2(1+v)

2
__16PR [1 L5d T (ﬁ) } (10.6-2)

2
f=@{1 3 @) footy (tanu)2:| (10.6-1)

nd? S8R 32\R
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Figure 10.6
For a spring of square wire,
2.789PR3n
f = T fOI‘C > 3 (106'3)
4.8PR 1.2 0.56 0.5
— 1+ =4 10.6-4
8b3 < T a c3 ) ( )
where ¢ = R/b.
For a spring of rectangular wire, section 2a x 2b where a > b,
3
= 3nPR°n 1 (10.6-5)

8Gb* a/b — 0.627[tanh(rb/2a) + 0.004]

for ¢ > 3 if the long dimension 2a is parallel to the spring axis or for
¢ > 5 if the long dimension 2a is perpendicular to the spring axis,

c_ PR(3b + 1.8a) (1 n 1_62 n 0.56 0.5)

— 10.6-6
8b2q2 c? ¢l ( )

It should be noted that in each of these cases the maximum stress is
given by the ordinary formula for the section in question (from Table
10.1) multiplied by a corrective factor that takes account of curvature,
and these corrective factors can be used for any curved bar of the
corresponding cross section. Also, for compression springs with the
end turns ground down for even bearing, n, should be taken as the
actual number of turns (including the tapered end turns) less 2. For
tension springs n should be taken as the actual number of turns or
slightly more.

Unless laterally supported, compression springs that are relatively
long will buckle when compressed beyond a certain critical deflection.
This critical deflection depends on the ratio of L, the free length, to D,
the mean diameter, and is indicated approximately by the following
tabulation, based on Ref. 27. Consideration of coil closing before
reaching the critical deflection is necessary.

‘ L/D ‘ 1 2 3 4 5 6 7 8 ‘

‘ Critical deflection/L ‘0.72 071 068 063 053 039 027 0.17 ‘
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Precise formula. For very accurate calculation of the extension of a
spring, as 1s necessary in designing precision spring scales, account
must be taken of the change in slope and radius of the coils caused by
stretching. Sayre (Ref. 9) gives a formula which takes into account not
only the effect of this change in form but also the deformation due to
direct transverse shear and flexure. This formula can be written as

f:PHR(Z)L_R%Hg (1 ~ GK) ) FL]

GK GKL EI) " AG
RZ 2GK\ ., )
—[3GKL (3 ~ 57 )(H + HH,, — 2H? (10.6-7)

where f = stretch of the spring; P =load; R, =initial radius of the coil;
H =variable length of the effective portion of the stretched spring;
H, =initial value of H; L =actual developed length of the wire of
which the spring is made; A = cross-sectional area of this wire; K = the
torsional-stiffness factor for the wire section, as given in Table 10.1
(K = 3nr* for a circle; K = 2.25a* for a square; etc.); F =the section
factor for shear deformation [Eq. (8.10-1); F = 1—5? for a circle or ellipse,
F = 8 for a square or rectangle]; and I =moment of inertia of the wire
section about a central axis parallel to the spring axis. The first term
in brackets represents the initial rate of stretch, and the second term
in brackets represents the change in this rate due to change in form
consequent upon stretch. The final expression shows that f is not a
linear function of P.



10.7 Tables

TABLE 10.1 Formulas for torsional deformation and stress

GENERAL FORMULAS: 0 = TL/KG and t = T/@Q, where 0 = angle of twist (radians); 7 = twisting moment (force-length); L =length, t = unit shear stress (force per unit area); G = modulus of
rigidity (force per unit area); K (length to the fourth) and @ (length cubed) are functions of the cross section

Form and dimensions of cross sections,

other quantities involved, and case no. Formula for Kin 0 = % Formula for shear stress
1. Solid circular section K =gnrt Tmax = %7; at boundary
2r
. o . na’b? ; ;
2. Solid elliptical section oy Tmax = ab? at ends of minor axis
a
2b
>~ . —
. . _ 4
3. Solid square section K =2.25a Trmax = 0'6[?31T at midpoint of each side
2a
. . 5[16 b bt
4. Solid rectangular section K=ab’|—-336—(1-——— fora>b
3 a 12a*

-]

[ 20 —

2 3 4
Tmax = 37 1+ 0.60959 + 0.8865 é —1.8023 é +0.9100 é
8ab? a a a a

at the midpoint of each longer side fora > b

[2:01 03s
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TABLE 10.1 Formulas for torsional deformation and stress (Continued)

Form and dimensions of cross sections,

other quantities involved, and case no.

Formula for Kin 0 = %

Formula for shear stress

5. Solid triangular section (equilaterial)

/7~

a

<

20T

Tmax = i at midpoint of each side

6. Isosceles triangle

s
A
e a—

(Note: See also Ref. 21 for graphs of stress
magnitudes and locations and stiffness
factors)

For 2<a/b <3 (39° <a<82)

(13 b3
= 15a? + 2062

approximate formula which is exact at o = 60°
where K = 0.02165¢*.

For V3 < a/b <23 (82° <« <120°)
K =0.0915b* (% - 0.8592)

approximate formula which is exact at

o = 90° where K = 0.0261c* (errors < 4%) (Ref. 20)

For 39° <o < 120°

0= K
"~ 5[0.200 + 0.309a/b — 0.0418(a/b)’]

approximate formula which is exact at « = 60° and o = 90°

For « =60° @ =0.0768b° = 0.0500c*
For x =90° @ =0.1604b° = 0.0567¢?

Tmax At center of longest side

7. Circular segmental section

IENN

[Note: h = r(1 — cosa)]

K = 2Cr" where C varies with g as follows.

~ >

For 0< — < 1.0:

2

C=0.7854 — 0.0333% - 2.6183(%)

3 4 5
+4A1595(2) —3,0769(2) +0A9299(%)

TB . L h
Tmax = —3 Where B varies with —
T r

as follows. For 0 < — <1.0:

r

3 4 5
+14A062(%) — 14510(%) +6A434(%)

(Data from Refs. 12 and 13)

. h h\?
B=0.6366 + 1.7598 "~ 5.4897

ujeIlS pue SSa4]S 10} SejNuWIoS
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TABLE 10.1 Formulas for torsional deformation and stress (Continued)

8. Circular sector

2

r

&

(Note: See also Ref. 21)

K = Cr* where C varies with %as follows.
o
For 0.1 < — <2.0:
n
2
€ = 0.0034 - 0.0697 + 0.5825(%)
ks T

—0.2950(%)3+ 0.0874(%)4— 0.0111(%)5

T on a radial boundary. B varies

T
max = B3

. o o
with — as follows. For 0.1 < = < 1.0:

s ks
2
B=0.0117 - 0.2137% + 2.2475(5)
Y1 TT.
4 6709(E)3+ 5 1764(5)4— 2 2000(3)5
. T : T ) T

(Data from Ref. 17)

9. Circular shaft with opposite sides
flattened

(Note: h=r —w)

K = 2Cr* where C varies with g as follows.

~ >

For two flat sides where 0 < — < 0.8:

h R\?
C=0.7854— 04053 — 3.5810(
3 4
+ 5.2708(%) - 2.0772(2)

For four flat sides where
0< g <0.293:

2 3
C=0.7854 — 0.70002 - 7.7982(%) + 14.578(%)

TB . . h .
Tmax = S5 where B varies with ;s follows. For two flat sides where

3

0<

h
- <06
r

h n\? n\*
B=0.6366+2.5303 — 11.157(;) + 49568(;)

4 5
- 85.886(%) + 69.849(2)

. h
For four flat sides where 0 < - <0.293:

2 3
B =0.6366 + 2.6298% - 5.6147(h) + 30.853<h)

r r

(Data from Refs. 12 and 13)

[2:01 03s
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TABLE 10.1 Formulas for torsional deformation and stress (Continued)

Form and dimensions of cross sections,

T . TL
other quantities involved, and case no. Formula for Kin 0 = Joce Formula for shear stress
10. Hollow concentric circular section K= %Tl(Vﬁ ) T = 24Tr,, _ at outer boundary
n(ry —r})
"o
/
~T|
11. Eccentric hollow circular section K- n(D* —d*) . - _L6TDF
Tos2C T (DY - d*)
where Fel4 4n? it ?onz 24 48n2%(1 + 2n? + 3nt + 2{16)/1:5
P . 4 1—n (1—n%)(1—n?) (1—=n2)(1—n*)(1-nb)
C=1+ 16n 2 384n J
= : g 2 o , .
A=mH=nh" (1-r)’1-nY L 6472+ 1207 1 197" 4 28n° 4 18n° + 1401 £ 301%) \ b
(1= n3)(1 = (1 = nb)(1 - n¥) ) ’
. . 353 27T
12. Hollow elliptical section, outer and = 77;(1 b —(1-¢% Tmax = ——75,7 5, Aat ends of minor axis on outer surface
inner boundaries similar ellipses a? +b? rab2(1 — q*)
——T where
2by 2b gl b
a b

-

20
20 —>

(Note: The wall thickness is not constant)

13. Hollow, thin-walled section of uniform
thickness; U =length of elliptical
median boundary, shown dashed:

no (a—b)
U= b—1)|140.258 ——
n(a+ t)|: +0.25 (a+b—t)l:|

(approximately)

2b

p—

T.J”

_4arttfa - 1P (b - 10)°]
K7 —

T

Faverage = ita — 1a)(b — 1)

(stress is nearly uniform if ¢ is small)

ujeIlS pue SSa4]S 10} SejNuWIoS
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TABLE 10.1 Formulas for torsional deformation and stress (Continued)

14. Any thin tube of uniform thickness; 4A%
U =length of median boundary; U
A =mean of areas enclosed by outer
and inner boundaries, or (approximate)
area within median boundary

©

T . . .
Taverage = 571 (stress is nearly uniform if ¢ is small)

15. Any thin tube. U and A as for K- 442
case 14; t =thickness at any point J[dUt

Taverage 0N any thickness AB = (tmaxWhere ¢ is a minimum)

T
%A

16. Hollow rectangle, thin-walled K - 2th@— 12 (b - t,)?
T oat+bt -2 -8

il
i
e o—

(Note: For thick-walled hollow rectangles
see Refs. 16 and 25. Reference 25
illustrates how to extend the work
presented to cases with more than

one enclosed region.)

T

2t(a —t)(b—ty)
Taverage — T

2ty (a—t)(b —ty)

near midlength of short sides
near midlength of long sides

(There will be higher stresses at inner corners unless fillets of fairly large radius
are provided)

[2:01 03s

uoisio]
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TABLE 10.1 Formulas for torsional deformation and stress (Continued)

Form and dimensions of cross sections,

other quantities involved, and case no. Formula for Kin 6 = % Formula for shear stress
17. Thin circular open tube of uniform K =Z2ars S T(6nr + 1.8t)
thickness; r = mean radius max 4n2r2¢2
1 along both edges remote from ends (this assumes ¢ is small comopared with mean
radius)
Pig
18. Any thin open tube of uniform 1.3 _T@EU+ 1.8
: ! . K Ut Tmax = — 55—
thickness; U =length of median line, 3 U2t
shown dashed . .
f along both edges remote from ends (this assumes ¢ small compared wtih least
radius of curvature of median line; otherwise use the formulas given for cases
19-26)
41,

19. Any elongated section with axis of
symmetry OX; U =length, A =area of
section, I, = moment of inertia about
axis of symmetry

X

K=17 161, /AU?

20. Any elongated section or thin open tube;
dU =elementary length along median
line, ¢t =thickness normal to median line,
A =area of section

t

/\

_ F
T 3+ 4F/AU?

5
where F = J $3dU
0

21. Any solid, fairly compact section
without reentrant angles, JJ =polar
moment of inertia about centroid axis,
A =area of section

A4
~ 10

For all solid sections of irregular form (cases 19-26 inclusive) the maximum shear
stress occurs at or very near one of the points where the largest inscribed circle
touches the boundary,* and of these, at the one where the curvature of the
boundary is algebraically least. (Convexity represents positive and concavity
negative curvature of the boundary.) At a point where the curvature is positive
(boundary of section straight or convex) this maximum stress is given approxi-
mately by

0 T
Tmax = GZC OF  Tpax :EC
where
D n?D* D
=1+ 05Tz )
1+

1642

D =diameter of largest inscribed circle
r =radius of curvature of boundary at the point (positive for this case)
A=area of the section

*Unless at some point on the boundary there is a sharp reentant angle, causing
high local stress.
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TABLE 10.1 Formulas for torsional deformation and stress (Continued)

22. Trapezoid

T
1

=

K =Lb(m+n)(m?+n? — Vym* — V,n'

where V; = 0.10504 — 0.10s + 0.0848s>
— 0.067465% + 0.0515s*
V, = 0.10504 + 0.10s + 0.0848s>
+0.06746s° + 0.0515s*
m-—n

b

(Ref. 11)

23. T-section, flange thickness uniform.
For definitions of r, D, t, and t;, see

case 26.
e
b
I!r B
- ¥
- d k-

K =K, +K, +aD"

3[1 b b*
—abl (1=
where K, = ab [3 0.21a<1 12&4)]

1 d d*
a3t Y1 _
Ky =cd |:3 OAIOSC(I 192c4>:|

%= % (0.15 + 0.10%)

b+’ +rd+di/4
- (2r+b)
for d < 2(b+r)

D

24. L-section; b > d. For definitions of r and
D, see case 26.

b
T

[
[ oA
-

K =K, +K, +aD*

3[1 b b*
—abl Z(1-
where K; = ab |:3 0.21a<1 12&4)]

a1 d d*
a3t Y1 _
Ky =cd [3 OAIOSC(I 192c“):|

”= % (0.07 + 0.076%)

D =2[d+b+3r—/22r+ b)@2r +d|

for b <2(d+r)

At a point where the curvature is negative (boundary of section concave or
reentrant), this maximum stress is given approximately by

Tax = G%C Or  Tpax :%C

whereC:L 1+(0.1181n 1—2 —0.2382 tanh%
1_*_7'52D4 2r or n

1642

and D, A, and r have the same meaning as before and ¢ = a positive angle through
which a tangent to the boundary rotates in turning or traveling around the
reentrant portion, measured in radians (here r is negative).

The preceding formulas should also be used for cases 17 and 18 when ¢ is
relatively large compared with radius of median line.
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TABLE 10.1 Formulas for torsional deformation and stress (Continued)

Form and dimensions of cross sections,

other quantities involved, and case no.

Formula for K in 0 = I

KG

Formula for shear stress

25. U- or Z-section

15

K =sum of K’s of constituent L-sections computed
as for case 24

26. I-section, flange thickness uniform;
r =fillet radius, D = diameter largest
inscribed circle, t=bif b<d; t=d
ifd<b t;=bifb>d;t; =difd>b

k—a—df T

K = 2K, + K, +2uD*

31 b b*
T L 2(1-
where K; = ab [3 0421(1(1 12(14)]

Ky =1cd®
t r
0= E<0'15+O'15)

Use expression for D from case 23

27. Split hollow shaft

K = 2Cr? where C varies with i as follows.
o

For 0.2 < <lig <0.6:
Ty

2 3
C=K, +K, L +K,( ) +K1(:i)

o
where for 0.1 < h/r; < 1.0,

2
K, = 04427+000647—00201< )

=

~

2
K, =—-0.8071—0. 4047f +0. 1051<7>
i

=

2
K; =—0.0469 + 1. 2063? —0. 3538<7>
i

i

K, =0.5023 — 0.9618 — +03639<)

3

o

At M, 1= ? where B varies with -

r

For 0.2 < - <0.6:

rt)

2 3
B=K, +K, - +K3( >+K4( )

where fore 0.1 < h/r; < 1.0,

h
K, = 2.0014 —0.1400— — 0.3231

i

h
K, = 29047+ 3. 0069r + 4.0500

i

P

S

h
Ky =—15.721 — 6.5077— — 12.496

i

h
K, = 29,553+4.11157+ 18.845

i

(Data from Refs. 12 and 13)

i

o

~

|
S~—

N
T
~—

<

| =
—

\ >
~—

as follows.

w

o

o

o
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TABLE 10.1 Formulas for torsional deformation and stress (Continued)

28. Shaft with one keyway K = 2Cr* where C varies with %as follows. At M, = % where B varies with é as follows. For 0.2 < ? <0.5:
b _ . b b\* b\*
For0< — <05 B:K1+K2;+K3<;) +K4(;)
r 2 3 _ _
C=K, +K2é+K3 b +K, b where for 0.5 < a/b < 1.5,
U] r r r
\ a a?
- o K, = 1.169070A31685+0A0490(B) 2
where for 0.3 <a/b< 15 K, = 0.43490 — 1.5096%+0.8677(%)
K, = .7854 2
b 1= 0.8 s K, = —1.1830 + 4.2764% - 1A7024(%)
K, = ~0.0848 +0.12347 — 0.0847(;) a s
b b K, = 0.8812-0.26277 - 0.1897(5)
K, = 04318 —2. 2000‘;+ 0. 7633(%)
(Data from Refs. 12 and 13)
K, = —0.0780 + 2.0618% - 0. 5234(")
b b
29. Shaft with two keyways 4 . i b TB b b
. K = 2Cr* where C varies with Las follows. At M,z = - where B varies w1th — as follows. For 0.2 < S <05:

For 0 < é < 0.5
r
b b\? b\*
C=K, +K,— +K5<)+K4(;>
where for 0.3 < a/b< 1.5,
K, = 0.7854

o

K, =—-0.0795+0. 1286% —0.1169

Ky = ~1.4126 - 3.8580 +1.3292

= =

e S

= =
o

K, = 0.7098 + 4. 1936% —1.1053

A

ik}

=
©

b b\* b\*
B:K1+K2;+K3<;) +K4(;)

where for 0.5 < a/b < 1.5,

a a2
Ky = 12512054067 + 040387(3)

a a2
K, = 09885 +2.34507 + 0,3256(5)

a

2
K,= 7.2650 — 15338% + 31138(—)

b
a a
K, = ~11.152 + 33.7105 10.007(5)

(Data from Refs. 12 and 13)

2
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TABLE 10.1 Formulas for torsional deformation and stress (Continued)

Form and dimensions of cross sections,

other quantities involved, and case no. Formula for Kin 0 = % Formula for shear stress
30. Shaft with four keyways 4 : b 7B . b b
: yway; K = 2Cr* where C varies with — as follows. At M, 7 =— where B varies with — as follows. For 0.2 < — < 0.4,
r 7 r r
b . b b\? b\’
For0< = <04 B:K1+KZ;+K3(;> +K4(;)
2 3
r C=K1+KZE+K3 é +K, é where for 0.5 < a/b< 1.2,
a l r r r
j K = 10434+ 1.0449% — 0.2077(%)”
¥ where for 0.3 <a/b<1.2, 1= 0434 +1. b (5)
_ a a\2
K = 07854 K, = 0.0958-9.84017 + 1.6847(3)
b a a\? a ay2
= — —— - Ky = 15.749 — 6. —+14.222(—-
K, = —0.1496 + 02773 o.2110(b) s 5.749 ~ 6.96507 + (b)
a a2 . a a2
K, = —2.9138 - 828547 + 25782(5 K, = —35.878 + 88.696 7 — 47.545(5)
K, = 22991+ 12,007 - 2.2838(%)"
4= 229914 12.097% = 2. (5) (Data from Refs. 12 and 13)
31. Shaft with one spline 4 : b TB . b b
. K = 2Cr" where C varies with > as follows. At M, = = where B varies with - as follows. For 0 < = < 0.5,

For 0 <

9 <0.5:
r

b b 2 b 3
C=K, +K2;+K3(;> +K4(;)
where for 0.2 < a/b < 1.4,
K, = 0.7854

a a\2
K, = 0.0264— 0.11873 + 0.0868(5)

2
Ky =—02017+ 090197 — 04947 (7
b b
a a\?
K = 0.2911- 148755+ 2,0651(5)

—

b b\? b\?
B:K,+K2;+K3( ) +K4(—>

T r

where for 0.2 < a/b < 1.4,

K, = 0.6366

K, = —0.0023 + 0.0168% + 0.0093(5)2
K, = 0.0052+ 0A0225% - 03300(%)2
K,= 0.0984 — 0.4936% + 0.2179(%)2

(Data from Refs. 12 and 13)
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TABLE 10.1 Formulas for torsional deformation and stress (Continued)

32. Shaft with two splines K = 2Cr* where C varies with I;) as follows. At M,t = Tr’—? where B varies with g as follows. For 0 < g < 0.5,
b o5 b b\* b\
Forog;go,o, B:K1+KZ;+K3<;) +K4(;)
2 3
C=K, +K2€+K3<2) +K4(§> where for 0.2 < a/b < 1.4,
K, = 0.6366
where for 0.2 < a/b < 1.4, a a2
K, = 0.0069 —0.0229% + 0.0637(—)
= b b
K, = 0.7854 0 o
« o2 Ky = —0.0675 + 0.3996 - — 1,0514(7)
K, = 0.0204-0.18075 + 0.1157(5) b b
« @ ? K = 03582183242+ 1.5393(9)
K, = —0.2075 + 1.1544% — 05937(7) b b
b b
2
K, = 0.3608 - 2.25827 +3.7336() (Data from Refs. 12 and 13)
33. Shaft with four splines 4 : s b B : i b b
. P K = 2Cr* where C varies with . as follows. At M, 1= = where B varies with = as follows. For 0 < - < 0.5,

For 0 <

b <0.5:
r

2 3
C=K, +K2€+K3(b) +K4(b)

r r

where for 0.2 < a/b < 1.0,

K = 07854

K, = 0.0595— 03397% + 03239(%)2
K, = —0.6008 + 3.1396% - 2.0693(%)2
K, = 1.0869 — 6.2451%+ 9.4190(%)2

r r

b b\2 b\*
B:K1+Kz;+K3< ) +K4(—>

where for 0.2 < a/b < 1.0,

K = 06366
a a\?
K= 00114-0.07897 + 0,1767(5)
a a2
Ky = —0.1207+ 1.02917 — 2.3589(5)

a a\?
K= 05132 34300 + 40226(5)

(Data from Refs. 12 and 13)
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TABLE 10.1 Formulas for torsional deformation and stress (Continued)

Form and dimensions of cross sections,

TS . TL
other quantities involved, and case no. Formula for Kin 0 = Joce] Formula for shear stress
34. Pinned shaft with one, two, or four K = 2Cr* where C varies with a over the range At M, = E where B varies with a over the
grooves " r "
a =
0< - < 0.5 as follows. For one groove: range 0.1 < ¢ < 0.5 as follows. For one groove:
r

C=0.7854 — 040225% - 144154(2)2+ 0.9167(%)3

For two grooves:

C=0.7854 — 00147‘;’ - 3A0649(%)2+ 2,5453(%)3

For four grooves:

C=0.7854 — 0,04092 - 6,2371(g)z+ 7.2538(%)3

B=1.0259 + 1A1802% - 2A7897(%)2+ 37092(%)3

For two grooves:

B =1.0055+ 1.5427% - 2.9501(%)2+ 7.0534(%)3

For four grooves:

B=12135— 249697% + 33.713(%)27 99.506(%)3+ 130.49(%)4

(Data from Refs. 12 and 13)

35. Cross shaft K = 2Cs* where C varies with gover the
range 0 < g < 0.9 as follows:
2 3
C=1.1266 - 0.3210" + 8.1519(1) - 14.347(%)
s s s

+ 15.223( )4— 4.7767(95

r
S

At M, c= B”’QT
5

. T
where B, varies with 5 over the range 0 < - < 0.5 as follows:

T
s
By = 0.6010 + 0A1059£ - 0.9180(::)2+ 37335(2)37 28686@4

ByT . .
At N,t= :—3 where By varies with £ over the range 0.3 < g < 0.9 as follows:

5

By = —0.3281 + 9.1405£ - 42.520(92+ 109.04(2)3— 133.95(2)4+ 66.054(2)

(Note: By > By, for r/s > 0.32)

(Data from Refs. 12 and 13)
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TABLE 10.2 Formulas for torsional properties and stresses in thin-walled open cross sections

NOTATION: Point 0 indicates the shear center. e = distance from a reference to the shear center; K = torsional stiffness constant (length to the fourth power); C,, = warping constant (length to the

sixth power); 7, =shear stress due to torsional rigidity of the cross section (force per unit area); 7, = shear stress due to warping rigidity of the cross section (force per unit area); s, =bending stress

due to warping rigidity of the cross section (force per unit area); E = modulus of elasticity of the material (force per unit area); and G = modulus of rigidity (shear modulus) of the material (force per

unit area)

1"

The appropriate values of 0, 0", and 0" are found in Table 10.3 for the loading and boundary restraints desired

Selected maximum values

Cross section, reference no. Constants
1. Channel . 3b?
" h+6b
B A P
3 =—
0 t A K 3 (h +2b)

Fefl o |

C, =
ke N

 h2b%2h+3b

12 h+6b

hbh+3b ., .
(0 ) max = S hT6h E0" throughout the thickness at corners A and D

hb® (h+3b o h+3b
(12)max = - (h ¥ 6b) E0" throughout the thickness at a distance bh b from corners A and D
(T1)max = tGO'" at the surface everywhere

2. C-section

3h%b + 6hb, — 8b3
73 + 6h%b + 6h2b, + 8} — 12hb?

ckb-ig s
b *%(h+2b+2b1)
l
0 At
— - h 2 2
g [ (et

h2e? ho 262\ 2b
+—(b b1+677> 1(b+e):|

(0 ) max = [;(b —e)+b(b+ e)]EO” throughout the thickness at corners A and F

h 2
(T9)max = [Z(b —e)(2b; +b—e)+ %(b + e)]EG'” throughout the thickness on the top and bottom flanges at a
distance e from corners C and D

(T1)max = tGO' at the surface everywhere

3. Hat section

b-»mJ_

e=

t3
b| K:3 1
h2b? b 2b, 2}
. LA
}«e
hZe? h 263\ 263
+Te(b+b,+ +T) “b+e]

3h2b + 6h%b, — 8b
B3+ 6h2b + 6h2b, + 8b3 + 12hb?

—(h+2b+2b,)

h

0y = [%(b —e)—by(b+ e):|E0” throughout the thickness at corners A and F
L

o, = 2( —e)E0" throughout the thickness at corners B and E
h2(b— e)‘ [ hb—e)
|: O e) (b +e)— (b —e) [E0” throughout the thickness at a distance 20 Fe)

from corner B toward corner A

2
Ty = [%(b +e)— hb] —(b—-e)— g(b - e)2:|EH’” throughout the thickness at a distance e
from corner C toward corner B

7, = tGO' at the surface everywhere
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TABLE 10.2 Formulas for torsional properties and stresses in thin-walled open cross sections (Continued)

Cross section, reference no. Constants Selected maximum values
- . 3
4. Twin channel with K= L(2b +4b,) (6 )max = b (bl + ﬁ) E0" throughout the thickness at points A and D
flanges inward 3 2 2
th? . ; ; 5 — .
C, = ﬂ(Sbf +6h%b, + h2b + 12b%h) (T2)max = l—g(4bf +4b,h + hb)EQ" throughout the thickness midway between corners B and C

i B

g%w

(t1)max = tGO' at the surface everywhere

. . 3
5. Twin channel with K= L(Zb +4b,) (0 )max = @EH” throughout the thickness at points B and C if h > b,
flanges outward 3

2
_,‘ C, = %(Bb‘} + 6h%b, + h2b — 12b2h) (0 )max = (}Zb b; )EQ” throughout the thickness at points A and D if h < b,
‘ A
b(h h
C O (T9) max = it b, EH throughout the thickness at a distance 3 from corner B toward point A if
Fzﬁ‘_}_ _h 1
by ) (1 + 2 2h>

(T2)max = Z (b% - hzb - hbl)Eﬂ”’ throughout the thickness at a point midway between corners B and C if

h 1 b
b, <§<1+ 2+2h>

(T1)max = tGO' at the surface everywhere

. _ 10943 3
6. Wide flanged beam K =3@2°+6,h) (6 )max = @EH” throughout the thickness at points A and B
with equal flanges 4

h*tb®
C, =
t 24 (T9)max = —ﬂEﬂ’” throughout the thickness at a point midway between A and B

(T1)max = tGO' at the surface everywhere
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TABLE 10.2 Formulas for torsional properties and 