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Preface to the
Seventh Edition

The tabular format used in the fifth and sixth editions is continued in

this edition. This format has been particularly successful when imple-

menting problem solutions on a programmable calculator, or espe-

cially, a personal computer. In addition, though not required in

utilizing this book, user-friendly computer software designed to

employ the format of the tabulations contained herein are available.

The seventh edition intermixes International System of Units (SI)

and United States Customary Units (USCU) in presenting example

problems. Tabulated coefficients are in dimensionless form for conve-

nience in using either system of units. Design formulas drawn from

works published in the past remain in the system of units originally

published or quoted.

Much of the changes of the seventh edition are organizational, such

as:

j Numbering of equations, figures and tables is linked to the parti-

cular chapter where they appear. In the case of equations, the

section number is also indicated, making it convenient to locate

the equation, since section numbers are indicated at the top of each

odd-numbered page.

j In prior editions, tables were interspersed within the text of each

chapter. This made it difficult to locate a particular table and

disturbed the flow of the text presentation. In this edition, all

numbered tables are listed at the end of each chapter before the

references.

Other changes=additions included in the seventh addition are as

follows:

j Part 1 is an introduction, where Chapter 1 provides terminology

such as state properties, units and conversions, and a description of

the contents of the remaining chapters and appendices. The defini-



tions incorporated in Part 1 of the previous editions are retained in

the seventh edition, and are found in Appendix B as a glossary.

j Properties of plane areas are located in Appendix A.

j Composite material coverage is expanded, where an introductory

discussion is provided in Appendix C, which presents the nomen-

clature associated with composite materials and how available

computer software can be employed in conjunction with the tables

contained within this book.

j Stress concentrations are presented in Chapter 17.

j Part 2, Chapter 2, is completely revised, providing a more compre-

hensive and modern presentation of stress and strain transforma-

tions.

j Experimental Methods. Chapter 6, is expanded, presenting more

coverage on electrical strain gages and providing tables of equations

for commonly used strain gage rosettes.

j Correction terms for multielement shells of revolution were

presented in the sixth edition. Additional information is provided

in Chapter 13 of this edition to assist users in the application of

these corrections.

The authors wish to acknowledge and convey their appreciation to

those individuals, publishers, institutions, and corporations who have

generously given permission to use material in this and previous

editions. Special recognition goes to Barry J. Berenberg and Universal

Technical Systems, Inc. who provided the presentation on composite

materials in Appendix C, and Dr. Marietta Scanlon for her review of

this work.

Finally, the authors would especially like to thank the many dedi-

cated readers and users of Roark’s Formulas for Stress & Strain. It is

an honor and quite gratifying to correspond with the many individuals

who call attention to errors and=or convey useful and practical

suggestions to incorporate in future editions.

Warren C. Young

Richard G. Budynas

x Preface to the Seventh Edition
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Preface to
the First Edition

This book was written for the purpose of making available a compact,

adequate summary of the formulas, facts, and principles pertaining to

strength of materials. It is intended primarily as a reference book and

represents an attempt to meet what is believed to be a present need of

the designing engineer.

This need results from the necessity for more accurate methods of

stress analysis imposed by the trend of engineering practice. That

trend is toward greater speed and complexity of machinery, greater

size and diversity of structures, and greater economy and refinement

of design. In consequence of such developments, familiar problems, for

which approximate solutions were formerly considered adequate, are

now frequently found to require more precise treatment, and many

less familiar problems, once of academic interest only, have become of

great practical importance. The solutions and data desired are often to

be found only in advanced treatises or scattered through an extensive

literature, and the results are not always presented in such form as to

be suited to the requirements of the engineer. To bring together as

much of this material as is likely to prove generally useful and to

present it in convenient form has been the author’s aim.

The scope and management of the book are indicated by the

Contents. In Part 1 are defined all terms whose exact meaning

might otherwise not be clear. In Part 2 certain useful general princi-

ples are stated; analytical and experimental methods of stress analysis

are briefly described, and information concerning the behavior of

material under stress is given. In Part 3 the behavior of structural

elements under various conditions of loading is discussed, and exten-

sive tables of formulas for the calculation of stress, strain, and

strength are given.

Because they are not believed to serve the purpose of this book,

derivations of formulas and detailed explanations, such as are appro-

priate in a textbook, are omitted, but a sufficient number of examples



are included to illustrate the application of the various formulas and

methods. Numerous references to more detailed discussions are given,

but for the most part these are limited to sources that are generally

available and no attempt has been made to compile an exhaustive

bibliography.

That such a book as this derives almost wholly from the work of

others is self-evident, and it is the author’s hope that due acknowl-

edgment has been made of the immediate sources of all material here

presented. To the publishers and others who have generously

permitted the use of material, he wishes to express his thanks. The

helpful criticisms and suggestions of his colleagues, Professors E. R.

Maurer, M. O. Withey, J. B. Kommers, and K. F. Wendt, are gratefully

acknowledged. A considerable number of the tables of formulas have

been published from time to time in Product Engineering, and the

opportunity thus afforded for criticism and study of arrangement has

been of great advantage.

Finally, it should be said that, although every care has been taken to

avoid errors, it would be oversanguine to hope that none had escaped

detection; for any suggestions that readers may make concerning

needed corrections the author will be grateful.

Raymond J. Roark

xii Preface to the First Edition
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Chapter

1
Introduction

The widespread use of personal computers, which have the power to

solve problems solvable in the past only on mainframe computers, has

influenced the tabulated format of this book. Computer programs for

structural analysis, employing techniques such as the finite element

method, are also available for general use. These programs are very

powerful; however, in many cases, elements of structural systems can

be analyzed quite effectively independently without the need for an

elaborate finite element model. In some instances, finite element

models or programs are verified by comparing their solutions with

the results given in a book such as this. Contained within this book are

simple, accurate, and thorough tabulated formulations that can be

applied to the stress analysis of a comprehensive range of structural

components.

This chapter serves to introduce the reader to the terminology, state

property units and conversions, and contents of the book.

1.1 Terminology

Definitions of terms used throughout the book can be found in the

glossary in Appendix B.

1.2 State Properties, Units, and Conversions

The basic state properties associated with stress analysis include the

following: geometrical properties such as length, area, volume,

centroid, center of gravity, and second-area moment (area moment of

inertia); material properties such as mass density, modulus of elasti-

city, Poisson’s ratio, and thermal expansion coefficient; loading proper-

ties such as force, moment, and force distributions (e.g., force per unit

length, force per unit area, and force per unit volume); other proper-



ties associated with loading, including energy, work, and power; and

stress analysis properties such as deformation, strain, and stress.

Two basic systems of units are employed in the field of stress

analysis: SI units and USCU units.y SI units are mass-based units

using the kilogram (kg), meter (m), second (s), and Kelvin (K) or

degree Celsius (�C) as the fundamental units of mass, length, time,

and temperature, respectively. Other SI units, such as that used for

force, the Newton (kg-m=s2), are derived quantities. USCU units are

force-based units using the pound force (lbf), inch (in) or foot (ft),

second (s), and degree Fahrenheit (�F) as the fundamental units of

force, length, time, and temperature, respectively. Other USCU units,

such as that used for mass, the slug (lbf-s2=ft) or the nameless lbf-

s2=in, are derived quantities. Table 1.1 gives a listing of the primary SI

and USCU units used for structural analysis. Certain prefixes may be

appropriate, depending on the size of the quantity. Common prefixes

are given in Table 1.2. For example, the modulus of elasticity of carbon

steel is approximately 207 GPa ¼ 207 � 109 Pa ¼ 207 � 109 N=m2. Pre-

fixes are normally used with SI units. However, there are cases where

prefixes are also used with USCU units. Some examples are the kpsi

(1 kpsi ¼ 103 psi ¼ 103 lbf=in2), kip (1 kip ¼ 1 kilopound ¼ 1000 lbf ), and

Mpsi (1 Mpsi ¼ 106 psi).

Depending on the application, different units may be specified. It is

important that the analyst be aware of all the implications of the units

and make consistent use of them. For example, if you are building a

model from a CAD file in which the design dimensional units are given

in mm, it is unnecessary to change the system of units or to scale the

model to units of m. However, if in this example the input forces are in

TABLE 1.1 Units appropriate to structural analysis

Property SI unit, symbol

(derived units)

USCU unit,y symbol

(derived units)

Length meter, m inch, in

Area square meter (m2) square inch (in2)

Volume cubic meter (m3) cubic inch (in3)

Second-area moment (m4) (in4)

Mass kilogram, kg (lbf-s2=in)

Force Newton, N (kg-m=s2) pound, lbf

Stress, pressure Pascal, Pa (N=m2) psi (lbf=in2)

Work, energy Joule, J (N-m) (lbf-in)

Temperature Kelvin, K degrees Fahrenheit, �F

y In stress analysis, the unit of length used most often is the inch.

y SI and USCU are abbreviations for the International System of Units (from the
French Systéme International d’Unités) and the United States Customary Units,
respectively.

4 Formulas for Stress and Strain [CHAP. 1



Newtons, then the output stresses will be in N=mm2, which is correctly

expressed as MPa. If in this example applied moments are to be

specified, the units should be N-mm. For deflections in this example,

the modulus of elasticity E should also be specified in MPa and the

output deflections will be in mm.

Table 1.3 presents the conversions from USCU units to SI units

for some common state property units. For example, 10 kpsi ¼

ð6:895 � 103Þ � ð10 � 103Þ ¼ 68:95 � 106 Pa ¼ 68:95 MPa. Obviously, the

multiplication factors for conversions from SI to USCU are simply the

reciprocals of the given multiplication factors.

TABLE 1.2 Common prefixes

Prefix, symbol Multiplication factor

Giga, G 109

Mega, M 106

Kilo, k 103

Milli, m 10�3

Micro, m 10�6

Nano, n 10�9

TABLE 1.3 Multiplication factors to convert from
USCU units to SI units

To convert from USCU to SI Multiply by

Area:

ft2 m2 9:290 � 10�2

in2 m2 6:452 � 10�4

Density:

slug=ft3 (lbf-s2=ft4) kg=m3 515.4

lbf-s2=in4 kg=m3 2:486 � 10�2

Energy, work, or moment:

ft-lbf or lbf-ft J or N-m 1.356

in-lbf or lbf-in J or N-m 0.1130

Force:

lbf N 4.448

Length:

ft m 0.3048

in m 2:540 � 10�2

Mass:

slug (lbf-s2=ft) kg 14.59

lbf-s2=in kg 1.216

Pressure, stress:

lbf=ft2 Pa (N=m2) 47.88

lbf=in2 (psi) Pa (N=m2) 6:895 � 103

Volume:

ft3 m3 2:832 � 10�2

in3 m3 1:639 � 10�5

SEC. 1.2] Introduction 5



1.3 Contents

The remaining parts of this book are as follows.

Part 2: Facts; Principles; Methods. This part describes important
relationships associated with stress and strain, basic material
behavior, principles and analytical methods of the mechanics of
structural elements, and numerical and experimental techniques in
stress analysis.

Part 3: Formulas and Examples. This part contains the many applica-
tions associated with the stress analysis of structural components.
Topics include the following: direct tension, compression, shear, and
combined stresses; bending of straight and curved beams; torsion;
bending of flat plates; columns and other compression members; shells
of revolution, pressure vessels, and pipes; direct bearing and shear
stress; elastic stability; stress concentrations; and dynamic and
temperature stresses. Each chapter contains many tables associated
with most conditions of geometry, loading, and boundary conditions for
a given element type. The definition of each term used in a table is
completely described in the introduction of the table.

Appendices. The first appendix deals with the properties of a plane
area. The second appendix provides a glossary of the terminology
employed in the field of stress analysis.

The references given in a particular chapter are always referred to

by number, and are listed at the end of each chapter.

6 Formulas for Stress and Strain [CHAP. 1
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Chapter

2
Stress and Strain: Important

Relationships

Understanding the physical properties of stress and strain is a

prerequisite to utilizing the many methods and results of structural

analysis in design. This chapter provides the definitions and impor-

tant relationships of stress and strain.

2.1 Stress

Stress is simply a distributed force on an external or internal surface

of a body. To obtain a physical feeling of this idea, consider being

submerged in water at a particular depth. The ‘‘force’’ of the water one

feels at this depth is a pressure, which is a compressive stress, and not

a finite number of ‘‘concentrated’’ forces. Other types of force distribu-

tions (stress) can occur in a liquid or solid. Tensile (pulling rather than

pushing) and shear (rubbing or sliding) force distributions can also

exist.

Consider a general solid body loaded as shown in Fig. 2.1(a). Pi and

pi are applied concentrated forces and applied surface force distribu-

tions, respectively; and Ri and ri are possible support reaction force

and surface force distributions, respectively. To determine the state of

stress at point Q in the body, it is necessary to expose a surface

containing the point Q. This is done by making a planar slice, or break,

through the body intersecting the point Q. The orientation of this slice

is arbitrary, but it is generally made in a convenient plane where the

state of stress can be determined easily or where certain geometric

relations can be utilized. The first slice, illustrated in Fig. 2.1(b), is

arbitrarily oriented by the surface normal x. This establishes the yz

plane. The external forces on the remaining body are shown, as well as

the internal force (stress) distribution across the exposed internal



surface containing Q. In the general case, this distribution will not be

uniform along the surface, and will be neither normal nor tangential

to the surface at Q. However, the force distribution at Q will have

components in the normal and tangential directions. These compo-

nents will be tensile or compressive and shear stresses, respectively.

Following a right-handed rectangular coordinate system, the y and z

axes are defined perpendicular to x, and tangential to the surface.

Examine an infinitesimal area DAx ¼ DyDz surrounding Q, as shown

in Fig. 2.2(a). The equivalent concentrated force due to the force

distribution across this area is DFx, which in general is neither

normal nor tangential to the surface (the subscript x is used to

designate the normal to the area). The force DFx has components in

the x, y, and z directions, which are labeled DFxx, DFxy, and DFxz,

respectively, as shown in Fig. 2.2(b). Note that the first subscript

Figure 2.1

10 Formulas for Stress and Strain [CHAP. 2



denotes the direction normal to the surface and the second gives the

actual direction of the force component. The average distributed force

per unit area (average stress) in the x direction isy

�ssxx ¼
DFxx

DAx

Recalling that stress is actually a point function, we obtain the exact

stress in the x direction at point Q by allowing DAx to approach zero.

Thus,

sxx ¼ lim
DAx!0

DFxx

DAx

or,

sxx ¼
dFxx

dAx

ð2:1-1Þ

Stresses arise from the tangential forces DFxy and DFxz as well, and

since these forces are tangential, the stresses are shear stresses.

Similar to Eq. (2.1-1),

txy ¼
dFxy

dAx

ð2:1-2Þ

txz ¼
dFxz

dAx

ð2:1-3Þ

Figure 2.2

y Standard engineering practice is to use the Greek symbols s and t for normal (tensile
or compressive) and shear stresses, respectively.

SEC. 2.1] Stress and Strain: Important Relationships 11



Since, by definition, s represents a normal stress acting in the same

direction as the corresponding surface normal, double subscripts are

redundant, and standard practice is to drop one of the subscripts and

write sxx as sx. The three stresses existing on the exposed surface at

the point are illustrated together using a single arrow vector for each

stress as shown in Fig. 2.3. However, it is important to realize that the

stress arrow represents a force distribution (stress, force per unit

area), and not a concentrated force. The shear stresses txy and txz are

the components of the net shear stress acting on the surface, where the

net shear stress is given byy

ðtxÞnet ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2

xy þ t2
xz

q
ð2:1-4Þ

To describe the complete state of stress at point Q completely, it

would be necessary to examine other surfaces by making different

planar slices. Since different planar slices would necessitate different

coordinates and different free-body diagrams, the stresses on each

planar surface would be, in general, quite different. As a matter of

fact, in general, an infinite variety of conditions of normal and shear

stress exist at a given point within a stressed body. So, it would take an

infinitesimal spherical surface surrounding the point Q to understand

and describe the complete state of stress at the point. Fortunately,

through the use of the method of coordinate transformation, it is only

necessary to know the state of stress on three different surfaces to

describe the state of stress on any surface. This method is described in

Sec. 2.3.

The three surfaces are generally selected to be mutually perpendi-

cular, and are illustrated in Fig. 2.4 using the stress subscript notation

y Stresses can only be added as vectors if they exist on a common surface.

Figure 2.3 Stress components.
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as earlier defined. This state of stress can be written in matrix form,

where the stress matrix ½s� is given by

½s� ¼

sx txy txz

tyx sy tyz

tzx tzy sz

2
4

3
5 ð2:1-5Þ

Except for extremely rare cases, it can be shown that adjacent shear

stresses are equal. That is, tyx ¼ txy, tzy ¼ tyz, and txz ¼ tzx, and the

stress matrix is symmetric and written as

½s� ¼

sx txy tzx

txy sy tyz

tzx tyz sz

2
4

3
5 ð2:1-6Þ

Plane Stress. There are many practical problems where the stresses
in one direction are zero. This situation is referred to as a case of plane
stress. Arbitrarily selecting the z direction to be stress-free with
sz ¼ tyz ¼ tyz ¼ 0, the last row and column of the stress matrix can
be eliminated, and the stress matrix is written as

½s� ¼
sx txy

txy sy

� �
ð2:1-7Þ

and the corresponding stress element, viewed three-dimensionally and

down the z axis, is shown in Fig. 2.5.

2.2 Strain and the Stress–Strain Relations

As with stresses, two types of strains exist: normal and shear strains,

which are denoted by e and g, respectively. Normal strain is the rate of

change of the length of the stressed element in a particular direction.

Figure 2.4 Stresses on three orthogonal surfaces.
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Shear strain is a measure of the distortion of the stressed element, and

has two definitions: the engineering shear strain and the elasticity

shear strain. Here, we will use the former, more popular, definition.

However, a discussion of the relation of the two definitions will be

provided in Sec. 2.4. The engineering shear strain is defined as the

change in the corner angle of the stress cube, in radians.

Normal Strain. Initially, consider only one normal stress sx applied to
the element as shown in Fig. 2.6. We see that the element increases in
length in the x direction and decreases in length in the y and z
directions. The dimensionless rate of increase in length is defined as
the normal strain, where ex, ey, and ez represent the normal strains in

Figure 2.5 Plane stress.

Figure 2.6 Deformation attributed to sx.
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the x, y, and z directions respectively. Thus, the new length in any
direction is equal to its original length plus the rate of increase
(normal strain) times its original length. That is,

Dx0 ¼ Dx þ exDx; Dy0 ¼ Dy þ eyDy; Dz0 ¼ Dz þ ezDz ð2:2-1Þ

There is a direct relationship between strain and stress. Hooke’s law

for a linear, homogeneous, isotropic material is simply that the normal

strain is directly proportional to the normal stress, and is given by

ex ¼
1

E
½sx 
 nðsy þ szÞ� ð2:2-2aÞ

ey ¼
1

E
½sy 
 nðsz þ sxÞ� ð2:2-2bÞ

ez ¼
1

E
½sz 
 nðsx þ syÞ� ð2:2-2cÞ

where the material constants, E and n, are the modulus of elasticity

(also referred to as Young’s modulus) and Poisson’s ratio, respectively.

Typical values of E and n for some materials are given in Table 2.1 at

the end of this chapter.

If the strains in Eqs. (2.2-2) are known, the stresses can be solved for

simultaneously to obtain

sx ¼
E

ð1 þ nÞð1 
 2nÞ
½ð1 
 nÞex þ nðey þ ezÞ� ð2:2-3aÞ

sy ¼
E

ð1 þ nÞð1 
 2nÞ
½ð1 
 nÞey þ nðez þ exÞ� ð2:2-3bÞ

sz ¼
E

ð1 þ nÞð1 
 2nÞ
½ð1 
 nÞez þ nðex þ eyÞ� ð2:2-3cÞ

For plane stress, with sz ¼ 0, Eqs. (2.2-2) and (2.2-3) become

ex ¼
1

E
ðsx 
 nsyÞ ð2:2-4aÞ

ey ¼
1

E
ðsy 
 nsxÞ ð2:2-4bÞ

ez ¼ 

n
E
ðsx þ syÞ ð2:2-4cÞ
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and

sx ¼
E

1 
 n2
ðex þ neyÞ ð2:2-5aÞ

sy ¼
E

1 
 n2
ðey þ nexÞ ð2:2-5bÞ

Shear Strain. The change in shape of the element caused by the shear
stresses can be first illustrated by examining the effect of txy alone as
shown in Fig. 2.7. The engineering shear strain gxy is a measure of the
skewing of the stressed element from a rectangular parallelepiped. In
Fig. 2.7(b), the shear strain is defined as the change in the angle BAD.
That is,

gxy ¼ ff BAD 
 ff B0A0D 0

where gxy is in dimensionless radians.

For a linear, homogeneous, isotropic material, the shear strains in

the xy, yz, and zx planes are directly related to the shear stresses by

gxy ¼
txy

G
ð2:2-6aÞ

gyz ¼
tyz

G
ð2:2-6bÞ

gzx ¼
tzx

G
ð2:2-6cÞ

where the material constant, G, is called the shear modulus.

Figure 2.7 Shear deformation.
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It can be shown that for a linear, homogeneous, isotropic material

the shear modulus is related to Poisson’s ratio by (Ref. 1)

G ¼
E

2ð1 þ nÞ
ð2:2-7Þ

2.3 Stress Transformations

As was stated in Sec. 2.1, knowing the state of stress on three

mutually orthogonal surfaces at a point in a structure is sufficient to

generate the state of stress for any surface at the point. This is

accomplished through the use of coordinate transformations. The

development of the transformation equations is quite lengthy and is

not provided here (see Ref. 1). Consider the element shown in Fig.

2.8(a), where the stresses on surfaces with normals in the x, y, and z

directions are known and are represented by the stress matrix

½s�xyz ¼

sx txy tzx

txy sy tyz

tzx tyz sz

2
4

3
5 ð2:3-1Þ

Now consider the element, shown in Fig. 2.8(b), to correspond to the

state of stress at the same point but defined relative to a different set of

surfaces with normals in the x0, y0, and z0 directions. The stress matrix

corresponding to this element is given by

½s�x0y0z0 ¼

sx0 tx0y0 tz0x0

tx0y0 sy0 ty0z0

tz0x0 ty0z0 sz0

2
4

3
5 ð2:3-2Þ

To determine ½s�x0y0z0 by coordinate transformation, we need to

establish the relationship between the x0y0z0 and the xyz coordinate

systems. This is normally done using directional cosines. First, let us

consider the relationship between the x0 axis and the xyz coordinate

system. The orientation of the x0 axis can be established by the angles

yx0x, yx0y, and yx0z, as shown in Fig. 2.9. The directional cosines for x0 are

given by

lx0 ¼ cos yx0x; mx0 ¼ cos yx0y; nx0 ¼ cos yx0z ð2:3-3Þ

Similarly, the y0 and z0 axes can be defined by the angles yy0x, yy0y, yy0z

and yz0x, yz0y, yz0z, respectively, with corresponding directional cosines

ly0 ¼ cos yy0x; my0 ¼ cos yy0y; ny0 ¼ cos yy0z ð2:3-4Þ

lz0 ¼ cos yz0x; mz0 ¼ cos yz0y; nz0 ¼ cos yz0z ð2:3-5Þ
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It can be shown that the transformation matrix

½T� ¼

lx0 mx0 nx0

ly0 my0 ny0

lz0 mz0 nz0

2
4

3
5 ð2:3-6Þ

Figure 2.8 The stress at a point using different coordinate systems.

18 Formulas for Stress and Strain [CHAP. 2



transforms a vector given in xyz coordinates, fVgxyz, to a vector in x0y0z0

coordinates, fVgx0y0z0 , by the matrix multiplication

fVgx0y0z0 ¼ ½T�fVgxyz ð2:3-7Þ

Furthermore, it can be shown that the transformation equation for the

stress matrix is given by (see Ref. 1)

½s�x0y0z0 ¼ ½T�½s�xyz½T�
T

ð2:3-8Þ

where ½T�
T is the transpose of the transformation matrix ½T�, which is

simply an interchange of rows and columns. That is,

½T�
T
¼

lx0 ly0 lz0

mx0 my0 mz0

nx0 ny0 nz0

2
4

3
5 ð2:3-9Þ

The stress transformation by Eq. (2.3-8) can be implemented very

easily using a computer spreadsheet or mathematical software. Defin-

ing the directional cosines is another matter. One method is to define

the x0y0z0 coordinate system by a series of two-dimensional rotations

from the initial xyz coordinate system. Table 2.2 at the end of this

chapter gives transformation matrices for this.

Figure 2.9 Coordinate transformation.
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EXAMPLE

The state of stress at a point relative to an xyz coordinate system is given by
the stress matrix

½s�xyz ¼


8 6 
2

6 4 2


2 2 
5

2
4

3
5 MPa

Determine the state of stress on an element that is oriented by first rotating
the xyz axes 45� about the z axis, and then rotating the resulting axes 30�

about the new x axis.

Solution. The surface normals can be found by a series of coordinate
transformations for each rotation. From Fig. 2.10(a), the vector components
for the first rotation can be represented by

x1

y1

z1

8<
:

9=
; ¼

cos y sin y 0


 sin y cos y 0

0 0 1

2
4

3
5 x

y

z

8<
:

9=
; ðaÞ

The last rotation establishes the x0y0z0 coordinates as shown in Fig. 2.10(b), and
they are related to the x1y1z1 coordinates by

x0

y0

z0

8<
:

9=
; ¼

1 0 0

0 cosj sinj
0 
 sinj cosj

2
4

3
5 x1

y1

z1

8<
:

9=
; ðbÞ

Substituting Eq. (a) in (b) gives

x0

y0

z0

8><
>:

9>=
>; ¼

1 0 0

0 cosj sinj

0 
 sinj cosj

2
64

3
75

cos y sin y 0


 sin y cos y 0

0 0 1

2
64

3
75

x

y

z

8><
>:

9>=
>;

¼

cos y sin y 0


 sin y cosj cos y cosj sinj

sin y sinj 
 cos y sinj cosj

2
64

3
75

x

y

z

8><
>:

9>=
>; ðcÞ

Figure 2.10
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Equation (c) is of the form of Eq. (2.3-7). Thus, the transformation matrix is

½T� ¼

cos y sin y 0


 sin y cosj cos y cosj sinj
sin y sinj 
 cos y sinj cosj

2
4

3
5 ðdÞ

Substituting y ¼ 45� and j ¼ 30� gives

½T� ¼
1

4

2
ffiffiffi
2

p
2

ffiffiffi
2

p
0



ffiffiffi
6

p ffiffiffi
6

p
2ffiffiffi

2
p



ffiffiffi
2

p
2

ffiffiffi
3

p

2
64

3
75 ðeÞ

The transpose of ½T� is

½T�
T
¼

1

4

2
ffiffiffi
2

p



ffiffiffi
6

p ffiffiffi
2

p

2
ffiffiffi
2

p ffiffiffi
6

p



ffiffiffi
2

p

0 2 2
ffiffiffi
3

p

2
64

3
75 ð f Þ

From Eq. (2.3-8),

½s�x0y0z0 ¼
1

4

2
ffiffiffi
2

p
2

ffiffiffi
2

p
0



ffiffiffi
6

p ffiffiffi
6

p
2ffiffiffi

2
p



ffiffiffi
2

p
2

ffiffiffi
3

p

2
64

3
75


8 6 
2

6 4 2


2 2 
5

2
64

3
75 1

4

2
ffiffiffi
2

p



ffiffiffi
6

p ffiffiffi
2

p

2
ffiffiffi
2

p ffiffiffi
6

p



ffiffiffi
2

p

0 2 2
ffiffiffi
3

p

2
64

3
75

This matrix multiplication can be performed simply using either a computer
spreadsheet or mathematical software, resulting in

½s�x0y0z0 ¼
4 5:196 
3

5:196 
4:801 2:714


3 2:714 
8:199

2
4

3
5 MPa

Stresses on a Single Surface. If one was concerned about the state of
stress on one particular surface, a complete stress transformation
would be unnecessary. Let the directional cosines for the normal of
the surface be given by l, m, and n. It can be shown that the normal
stress on the surface is given by

s ¼ sxl2 þ sym2 þ szn
2 þ 2txylm þ 2tyzmn þ 2tzxnl ð2:3-10Þ

and the net shear stress on the surface is

t ¼ ½ðsxl þ txym þ tzxnÞ2 þ ðtxyl þ sym þ tyznÞ
2

þ ðtzxl þ tyzm þ sznÞ
2

 s2�

1=2
ð2:3-11Þ

SEC. 2.3] Stress and Strain: Important Relationships 21



The direction of t is established by the directional cosines

lt ¼
1

t
½ðsx 
 sÞl þ txym þ tzxn�

mt ¼
1

t
½txyl þ ðsy 
 sÞm þ tyzn� ð2:3-12Þ

nt ¼
1

t
½tzxl þ tyzm þ ðsz 
 sÞn�

EXAMPLE

The state of stress at a particular point relative to the xyz coordinate system is

½s�xyz ¼

14 7 
7

7 10 0


7 0 35

2
4

3
5 kpsi

Determine the normal and shear stress on a surface at the point where the
surface is parallel to the plane given by the equation

2x 
 y þ 3z ¼ 9

Solution. The normal to the surface is established by the directional
numbers of the plane and are simply the coefficients of x, y, and z terms of
the equation of the plane. Thus, the directional numbers are 2, 
1, and 3. The
directional cosines of the normal to the surface are simply the normalized
values of the directional numbers, which are the directional numbers divided

by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
22 þ ð
1Þ2 þ 32

q
¼

ffiffiffiffiffiffi
14

p
. Thus

l ¼ 2=
ffiffiffiffiffiffi
14

p
; m ¼ 
1=

ffiffiffiffiffiffi
14

p
; n ¼ 3=

ffiffiffiffiffiffi
14

p

From the stress matrix, sx ¼ 14, txy ¼ 7, tzx ¼ 
7, sy ¼ 10, tyz ¼ 0, and sz

¼ 35 kpsi. Substituting the stresses and directional cosines into Eq. (2.3-10)
gives

s ¼ 14ð2=
ffiffiffiffiffiffi
14

p
Þ
2
þ 10ð
1=

ffiffiffiffiffiffi
14

p
Þ
2
þ 35ð3=

ffiffiffiffiffiffi
14

p
Þ
2
þ 2ð7Þð2=

ffiffiffiffiffiffi
14

p
Þð
1=

ffiffiffiffiffiffi
14

p
Þ

þ 2ð0Þð
1=
ffiffiffiffiffiffi
14

p
Þð3=

ffiffiffiffiffiffi
14

p
Þ þ 2ð
7Þð3=

ffiffiffiffiffiffi
14

p
Þð2=

ffiffiffiffiffiffi
14

p
Þ ¼ 19:21 kpsi

The shear stress is determined from Eq. (2.3-11), and is

t ¼ f½14ð2=
ffiffiffiffiffiffi
14

p
Þ þ 7ð
1=

ffiffiffiffiffiffi
14

p
Þ þ ð
7Þð3=

ffiffiffiffiffiffi
14

p
Þ�

2

þ ½7ð2=
ffiffiffiffiffiffi
14

p
Þ þ 10ð
1=

ffiffiffiffiffiffi
14

p
Þ þ ð0Þð3=

ffiffiffiffiffiffi
14

p
Þ�

2

þ ½ð
7Þð2=
ffiffiffiffiffiffi
14

p
Þ þ ð0Þð
1=

ffiffiffiffiffiffi
14

p
Þ þ 35ð3=

ffiffiffiffiffiffi
14

p
Þ�

2

 ð19:21Þ2g1=2 ¼ 14:95 kpsi
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From Eq. (2.3-12), the directional cosines for the direction of t are

lt ¼
1

14:95
½ð14 
 19:21Þð2=

ffiffiffiffiffiffi
14

p
Þ þ 7ð
1=

ffiffiffiffiffiffi
14

p
Þ þ ð
7Þð3=

ffiffiffiffiffiffi
14

p
Þ� ¼ 
0:687

mt ¼
1

14:95
½7ð2=

ffiffiffiffiffiffi
14

p
Þ þ ð10 
 19:21Þð
1=

ffiffiffiffiffiffi
14

p
Þ þ ð0Þð3=

ffiffiffiffiffiffi
14

p
Þ� ¼ 0:415

nt ¼
1

14:95
½ð
7Þð2=

ffiffiffiffiffiffi
14

p
Þ þ ð0Þð
1=

ffiffiffiffiffiffi
14

p
Þ þ ð35 
 19:21Þð3=

ffiffiffiffiffiffi
14

p
Þ� ¼ 0:596

Plane Stress. For the state of plane stress shown in Fig. 2.11(a),
sz ¼ tyz ¼ tzx ¼ 0. Plane stress transformations are normally per-
formed in the xy plane, as shown in Fig. 2.11(b). The angles relating
the x0y0z0 axes to the xyz axes are

yx0x ¼ y;

yy0x ¼ yþ 90�;

yz0x ¼ 90�;

yx0y ¼ 90� 
 y;

yy0y ¼ y;

yz0y ¼ 90�;

yx0z ¼ 90�

yy0z ¼ 90�

yz0z ¼ 0

Thus the directional cosines are

lx0 ¼ cos y
ly0 ¼ 
 sin y
lz0 ¼ 0

mx0 ¼ sin y
my0 ¼ cos y
mz0 ¼ 0

nx0 ¼ 0

ny0 ¼ 0

nz0 ¼ 1

The last rows and columns of the stress matrices are zero so the

stress matrices can be written as

½s�xy ¼
sx txy

txy sy

� �
ð2:3-13Þ

Figure 2.11 Plane stress transformations.
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and

½s�x0y0 ¼
sx0 tx0y0

tx0y0 sy0

� �
ð2:3-14Þ

Since the plane stress matrices are 2 � 2, the transformation matrix

and its transpose are written as

½T� ¼
cos y sin y


 sin y cos y

� �
; ½T�

T
¼

cos y 
 sin y
sin y cos y

� �
ð2:3-15Þ

Equations (2.3-13)–(2.3-15) can then be substituted into Eq. (2.3-8) to

perform the desired transformation. The results, written in long-hand

form, would be

sx0 ¼ sx cos2 yþ sy sin
2 yþ 2txy cos y sin y

sy0 ¼ sx sin
2 yþ sy cos2 y
 2txy cos y sin y ð2:3-16Þ

tx0y0 ¼ 
ðsx 
 syÞ sin y cos yþ txyðcos2 y
 sin
2 yÞ

If the state of stress is desired on a single surface with a normal

rotated y counterclockwise from the x axis, the first and third equa-

tions of Eqs. (2.3-16) can be used as given. However, using trigono-

metric identities, the equations can be written in slightly different

form. Letting s and t represent the desired normal and shear stresses

on the surface, the equations are

s ¼
sx þ sy

2
þ
sx 
 sy

2
cos 2yþ txy sin 2y

t ¼ 

sx 
 sy

2
sin 2yþ txy cos 2y

ð2:3-17Þ

Equations (2.3-17) represent a set of parametric equations of a circle in

the st plane. This circle is commonly referred to as Mohr’s circle and is

generally discussed in standard mechanics of materials textbooks.

This serves primarily as a teaching tool and adds little to applications,

so it will not be represented here (see Ref. 1).

Principal Stresses. In general, maximum and minimum values of the
normal stresses occur on surfaces where the shear stresses are zero.
These stresses, which are actually the eigenvalues of the stress
matrix, are called the principal stresses. Three principal stresses
exist, s1, s2, and s3, where they are commonly ordered as s1 5s2 5s3.
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Considering the stress state given by the matrix of Eq. (2.3-1) to be

known, the principal stresses sp are related to the given stresses by

ðsx 
 spÞlp þ txymp þ tzxnp ¼ 0

txylp þ ðsy 
 spÞmp þ tyznp ¼ 0 ð2:3-18Þ

tzxlp þ tyzmp þ ðsz 
 spÞnp ¼ 0

where lp, mp, and np are the directional cosines of the normals to the

surfaces containing the principal stresses. One possible solution to

Eqs. (2.3-18) is lp ¼ mp ¼ np ¼ 0. However, this cannot occur, since

l2
p þ m2

p þ n2
p ¼ 1 ð2:3-19Þ

To avoid the zero solution of the directional cosines of Eqs. (2.3-18), the

determinant of the coefficients of lp, mp, and np in the equation is set to

zero. This makes the solution of the directional cosines indeterminate

from Eqs. (2.3-18). Thus,

ðsx 
 spÞ txy tzx

txy ðsy 
 spÞ tyz

tzx tyz ðsz 
 spÞ

������
������ ¼ 0

Expanding the determinant yields

s3
p 
 ðsx þ sy þ szÞs

2
p þ ðsxsy þ sysz þ szsx 
 t2

xy 
 t2
yz 
 t2

zxÞsp


 ðsxsysz þ 2txytyztzx 
 sxt
2
yz 
 syt

2
zx 
 szt

2
xyÞ ¼ 0 ð2:3-20Þ

where Eq. (2.3-20) is a cubic equation yielding the three principal

stresses s1, s2, and s3.

To determine the directional cosines for a specific principal stress,

the stress is substituted into Eqs. (2.3-18). The three resulting equa-

tions in the unknowns lp, mp, and np will not be independent since

they were used to obtain the principal stress. Thus, only two of Eqs.

(2.3-18) can be used. However, the second-order Eq. (2.3-19) can be

used as the third equation for the three directional cosines. Instead of

solving one second-order and two linear equations simultaneously, a

simplified method is demonstrated in the following example.y

y Mathematical software packages can be used quite easily to extract the eigenvalues
(sp) and the corresponding eigenvectors (lp, mp, and np) of a stress matrix. The reader is
urged to explore software such as Mathcad, Matlab, Maple, and Mathematica, etc.
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EXAMPLE

For the following stress matrix, determine the principal stresses and the
directional cosines associated with the normals to the surfaces of each
principal stress.

½s� ¼
3 1 1

1 0 2

1 2 0

2
4

3
5 MPa

Solution. Substituting sx ¼ 3, txy ¼ 1, tzx ¼ 1, sy ¼ 0, tyz ¼ 2, and sz ¼ 0 into
Eq. (2.3-20) gives

s2
p 
 ð3 þ 0 þ 0Þs2

p þ ½ð3Þð0Þ þ ð0Þð0Þ þ ð0Þð3Þ 
 22 
 12 
 12�sp


 ½ð3Þð0Þð0Þ þ ð2Þð2Þð1Þð1Þ 
 ð3Þð22Þ 
 ð0Þð12Þ 
 ð0Þð12Þ� ¼ 0

which simplifies to

s2
p 
 3s2

p 
 6sp þ 8 ¼ 0 ðaÞ

The solutions to the cubic equation are sp ¼ 4, 1, and 
2 MPa. Following the
conventional ordering,

s1 ¼ 4 MPa; s2 ¼ 1 MPa; s3 ¼ 
2 MPa

The directional cosines associated with each principal stress are determined
independently. First, consider s1 and substitute sp ¼ 4 MPa into Eqs. (2.3-18).
This results in


l1 þ m1 þ n1 ¼ 0 ðbÞ

l1 
 4m1 þ 2n1 ¼ 0 ðcÞ

l1 þ 2m1 
 4n1 ¼ 0 ðdÞ

where the subscript agrees with that of s1.
Equations (b), (c), and (d) are no longer independent since they were used to

determine the values of sp. Only two independent equations can be used, and
in this example, any two of the above can be used. Consider Eqs. (b) and (c),
which are independent. A third equation comes from Eq. (2.3-19), which is
nonlinear in l1, m1, and n1. Rather than solving the three equations simulta-
neously, consider the following approach.

Arbitrarily, let l1 ¼ 1 in Eqs. (b) and (c). Rearranging gives

m1 þ n1 ¼ 1

4m1 
 2n1 ¼ 1
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solving these simultaneously gives m1 ¼ n1 ¼ 1
2
. These values of l1, m1, and n1

do not satisfy Eq. (2.3-19). However, all that remains is to normalize their

values by dividing by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12 þ ð1

2
Þ
2
þ ð1

2
Þ
2

q
¼

ffiffiffi
6

p
=2: Thus,y

l1 ¼ ð1Þð2=
ffiffiffi
6

p
Þ ¼

ffiffiffi
6

p
=3

m1 ¼ ð1=2Þð2=
ffiffiffi
6

p
Þ ¼

ffiffiffi
6

p
=6

n1 ¼ ð1=2Þð2=
ffiffiffi
6

p
Þ ¼

ffiffiffi
6

p
=6

Repeating the same procedure for s2 ¼ 1 MPa results in

l2 ¼
ffiffiffi
3

p
=3; m2 ¼ 


ffiffiffi
3

p
=3; n2 ¼ 


ffiffiffi
3

p
=3

and for s3 ¼ 
2 MPa

l3 ¼ 0; m3 ¼
ffiffiffi
2

p
=2; n3 ¼ 


ffiffiffi
2

p
=2

If two of the principal stresses are equal, there will exist an infinite set

of surfaces containing these principal stresses, where the normals of

these surfaces are perpendicular to the direction of the third principal

stress. If all three principal stresses are equal, a hydrostatic state of

stress exists, and regardless of orientation, all surfaces contain the

same principal stress with no shear stress.

Principal Stresses, Plane Stress. Considering the stress element shown
in Fig. 2.11(a), the shear stresses on the surface with a normal in the z
direction are zero. Thus, the normal stress sz ¼ 0 is a principal stress.
The directions of the remaining two principal stresses will be in the xy
plane. If tx0y0 ¼ 0 in Fig. 2.11(b), then sx0 would be a principal stress, sp

with lp ¼ cos y, mp ¼ sin y, and np ¼ 0. For this case, only the first two
of Eqs. (2.3-18) apply, and are

ðsx 
 spÞ cos yþ txy sin y ¼ 0

txy cos yþ ðsy 
 spÞ sin y ¼ 0
ð2:3-21Þ

As before, we eliminate the trivial solution of Eqs. (2.3-21) by setting

the determinant of the coefficients of the directional cosines to zero.

That is,

ðsx 
 spÞ txy

txy ðsy 
 spÞ

�����
����� ¼ ðsx 
 spÞðsy 
 spÞ 
 t2

xy

¼ s2
p 
 ðsx þ syÞsp þ ðsxsy 
 t2

xyÞ ¼ 0 ð2:3-22Þ

y This method has one potential flaw. If l1 is actually zero, then a solution would not
result. If this happens, simply repeat the approach letting either m1 or n1 equal unity.
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Equation (2.3-22) is a quadratic equation in sp for which the two

solutions are

sp ¼
1

2
ðsx þ syÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðsx 
 syÞ

2
þ 4t2

xy

q� �
ð2:3-23Þ

Since for plane stress, one of the principal stresses (sz) is always zero,

numbering of the stresses (s1 5s2 5s3) cannot be performed until Eq.

(2.3-23) is solved.

Each solution of Eq. (2.3-23) can then be substituted into one of Eqs.

(2.3-21) to determine the direction of the principal stress. Note that if

sx ¼ sy and txy ¼ 0, then sx and sy are principal stresses and Eqs.

(2.3-21) are satisfied for all values of y. This means that all stresses in

the plane of analysis are equal and the state of stress at the point is

isotropic in the plane.

EXAMPLE

Determine the principal stresses for a case of plane stress given by the stress
matrix

½s� ¼
5 
4


4 11

� �
kpsi

Show the element containing the principal stresses properly oriented with
respect to the initial xyz coordinate system.

Solution. From the stress matrix, sx ¼ 5, sy ¼ 11, and txy ¼ 
4 kpsi and Eq.
(2.3-23) gives

sp ¼ 1
2

ð5 þ 11Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð5 
 11Þ2 þ 4ð
4Þ2

q� �
¼ 13; 3 kpsi

Thus, the three principal stresses (s1;s2; s3), are (13, 3, 0) kpsi, respectively.
For directions, first substitute s1 ¼ 13 kpsi into either one of Eqs. (2.3-21).
Using the first equation with y ¼ y1

ðsx 
 s1Þ cos y1 þ txy sin y1 ¼ ð5 
 13Þ cos y1 þ ð
4Þ sin y1 ¼ 0

or

y1 ¼ tan
1 

8

4

� �
¼ 
63:4�

Now for the other principal stress, s2 ¼ 3 kpsi, the first of Eqs. (2.3-21) gives

ðsx 
 s2Þ cos y2 þ txy sin y2 ¼ ð5 
 3Þ cos y2 þ ð
4Þ sin y2 ¼ 0

or

y2 ¼ tan
1 2

4

� �
¼ 26:6�
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Figure 2.12(a) illustrates the initial state of stress, whereas the orientation
of the element containing the in-plane principal stresses is shown in Fig.
2.12(b).

Maximum Shear Stresses. Consider that the principal stresses for a
general stress state have been determined using the methods just
described and are illustrated by Fig. 2.13. The 123 axes represent the
normals for the principal surfaces with directional cosines determined
by Eqs. (2.3-18) and (2.3-19). Viewing down a principal stress axis
(e.g., the 3 axis) and performing a plane stress transformation in the
plane normal to that axis (e.g., the 12 plane), one would find that the
shear stress is a maximum on surfaces �45� from the two principal
stresses in that plane (e.g., s1, s2). On these surfaces, the maximum
shear stress would be one-half the difference of the principal stresses
[e.g., tmax ¼ ðs1 
 s2Þ=2] and will also have a normal stress equal to the
average of the principal stresses [e.g., save ¼ ðs1 þ s2Þ=2]. Viewing
along the three principal axes would result in three shear stress

Figure 2.12 Plane stress example.

Figure 2.13 Principal stress state.
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maxima, sometimes referred to as the principal shear stresses. These
stresses together with their accompanying normal stresses are

Plane 1; 2: ðtmaxÞ1;2 ¼ ðs1 
 s2Þ=2; ðsaveÞ1;2 ¼ ðs1 þ s2Þ=2

Plane 2; 3: ðtmaxÞ2;3 ¼ ðs2 
 s3Þ=2; ðsaveÞ2;3 ¼ ðs2 þ s3Þ=2

Plane 1; 3: ðtmaxÞ1;3 ¼ ðs1 
 s3Þ=2; ðsaveÞ1;3 ¼ ðs1 þ s3Þ=2

ð2:3-24Þ

Since conventional practice is to order the principal stresses by

s1 5s2 5s3, the largest shear stress of all is given by the third of

Eqs. (2.3-24) and will be repeated here for emphasis:

tmax ¼ ðs1 
 s3Þ=2 ð2:3-25Þ

EXAMPLE

In the previous example, the principal stresses for the stress matrix

½s� ¼
5 
4


4 11

� �
kpsi

were found to be (s1; s2;s3Þ ¼ ð13; 3;0Þkpsi. The orientation of the element
containing the principal stresses was shown in Fig. 2.12(b), where axis 3 was
the z axis and normal to the page. Determine the maximum shear stress and
show the orientation and complete state of stress of the element containing
this stress.

Solution. The initial element and the transformed element containing the
principal stresses are repeated in Fig. 2.14(a) and (b), respectively. The
maximum shear stress will exist in the 1, 3 plane and is determined by
substituting s1 ¼ 13 and s3 ¼ 0 into Eqs. (2.3-24). This results in

ðtmaxÞ1;3 ¼ ð13 
 0Þ=2 ¼ 6:5 kpsi; ðsaveÞ1;3 ¼ ð13 þ 0Þ=2 ¼ 6:5 kpsi

To establish the orientation of these stresses, view the element along the axis
containing s2 ¼ 3 kpsi [view A, Fig. 2.14(c)] and rotate the surfaces �45� as
shown in Fig. 2.14(c).

The directional cosines associated with the surfaces are found through
successive rotations. Rotating the xyz axes to the 123 axes yields

1

2

3

8><
>:

9>=
>; ¼

cos 63:4� 
 sin 63:4� 0

sin 63:4� cos 63:4� 0

0 0 1

2
64

x

y

z

8><
>:

9>=
>;

¼

0:4472 
0:8944 0

0:8944 0:4472 0

0 0 1

2
64

3
75

x

y

z

8><
>:

9>=
>; ðaÞ
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A counterclockwise rotation of 45� of the normal in the 3 direction about axis 2
is represented by

x0

y0

z0

8><
>:

9>=
>; ¼

cos 45� 0 
 sin 45�

0 1 0

sin 45� 0 cos 45�

2
64

3
75

1

2

3

8><
>:

9>=
>;

¼

0:7071 0 
0:7071

0 1 0

0:7071 0 0:7071

2
64

3
75

1

2

3

8><
>:

9>=
>; ðbÞ

Thus,

x0

y0

z0

8><
>:

9>=
>; ¼

0:7071 0 
0:7071

0 1 0

0:7071 0 0:7071

2
64

3
75

0:4472 
0:8944 0

0:8944 0:4472 0

0 0 1

2
64

3
75

x

y

z

8><
>:

9>=
>;

¼

0:3162 
0:6325 
0:7071

0:8944 0:4472 0

0:3162 
0:6325 0:7071

2
64

3
75

x

y

z

8><
>:

9>=
>;

Figure 2.14 Plane stress maximum shear stress.
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The directional cosines for Eq. (2.1-14c) are therefore

nx0x nx0y nx0z

ny0x ny0y ny0z

nz0x nz0y nz0z

2
4

3
5 ¼

0:3162 
0:6325 
0:7071

0:8944 0:4472 0

0:3162 
0:6325 0:7071

2
4

3
5

The other surface containing the maximum shear stress can be found similarly
except for a clockwise rotation of 45� for the second rotation.

2.4 Strain Transformations

The equations for strain transformations are identical to those for

stress transformations. However, the engineering strains as defined in

Sec. 2.2 will not transform. Transformations can be performed if the

shear strain is modified. All of the equations for the stress transforma-

tions can be employed simply by replacing s and t in the equations by e
and g=2 (using the same subscripts), respectively. Thus, for example,

the equations for plane stress, Eqs. (2.3-16), can be written for strain

as

ex0 ¼ ex cos2 yþ ey sin
2 yþ gxy cos y sin y

ey0 ¼ ex sin
2 yþ ey cos2 y
 gxy cos y sin y ð2:4-1Þ

gx0y0 ¼ 
2ðex 
 eyÞ sin y cos yþ gxyðcos2 y
 sin
2 yÞ

2.5 Reference

1. Budynas, R. G.: ‘‘Advanced Strength and Applied Stress Analysis,’’ 2nd ed., McGraw-
Hill, 1999.
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2.6 Tables

TABLE 2.1 Material propertiesy

Modulus of

elasticity, E

Thermal

expansion

coefficient, a
Poisson’s

Material Mpsi GPa ratio, n m=�F m=�C

Aluminum alloys 10.5 72 0.33 13.1 23.5

Brass (65=35) 16 110 0.32 11.6 20.9

Concrete 4 34 0.20 5.5 9.9

Copper 17 118 0.33 9.4 16.9

Glass 10 69 0.24 5.1 9.2

Iron (gray cast) 13 90 0.26 6.7 12.1

Steel (structural) 29.5 207 0.29 6.5 11.7

Steel (stainless) 28 193 0.30 9.6 17.3

Titanium (6 A1=4 V) 16.5 115 0.34 5.2 9.5

yThe values given in this table are to be treated as approximations of the true behavior of an
actual batch of the given material.

TABLE 2.2 Transformation matrices for positive
rotations about an axisy

Axis Transformation matrix

x axis:

x1

y1

z1

8<
:

9=
; ¼

1 0 0

0 cos y sin y
0 
 sin y cos y

2
4

3
5 x

y

z

8<
:

9=
;

y axis:

x1

y1

z1

8<
:

9=
; ¼

cos y 0 
 sin y
0 1 0

sin y 0 cos y

2
4

3
5 x

y

z

8<
:

9=
;

z axis:

x1

y1

z1

8<
:

9=
; ¼

cos y sin y 0


 sin y cos y 0

0 0 1

2
4

3
5 x

y

z

8<
:

9=
;

yA positive rotation about a given axis is counterclockwise about
the axis (as viewed from the positive axis direction).
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TABLE 2.3 Transformation equations

General state of stress

½s�x0y0z0 ¼ ½T�½s�xyz½T�
T

where

½s�x0y0z0 ¼

sx0 tx0y0 tz0x0

tx0y0 sy0 ty0z0

tz0x0 ty0z0 sz0

2
64

3
75; ½T� ¼

lx0 mx0 nx0

ly0 my0 ny0

lz0 mz0 nz0

2
64

3
75; ½s�xyz ¼

sx txy tzx

txy sy tyz

tzx tyz sz

2
64

3
75

Stresses on a single surface (l, m, n are directional cosines of surface normal)

s ¼ sxl2 þ sym2 þ szn
2 þ 2txylm þ 2tyzmn þ 2tzxnl

t ¼ ½ðsxl þ txym þ tzxnÞ2 þ ðtxyl þ sym þ tyznÞ
2
þ ðtzxl þ tyzm þ sznÞ

2

 s2�

1=2

lt ¼
1

t
½ðsx 
 sÞl þ txym þ tzxn�

mt ¼
1

t
½txyl þ ðsy 
 sÞm þ tyzn�

nt ¼
1

t
½tzxl þ tyzm þ ðsz 
 sÞn�

lt, mt, and nt are directional cosines for the direction of t.

Plane stress (y is counterclockwise from x axis to surface normal, x0)

s ¼ 1
2
ðsx þ syÞ þ

1
2
ðsx 
 syÞ cos 2yþ txy sin 2y

t ¼ 
 1
2
ðsx 
 syÞ sin 2yþ txy cos 2y

Principal stresses (general case)

s3
p 
 ðsx þ sy þ szÞs

2
p þ ðsxsy þ sysz þ szsx 
 t2

xy 
 t2
yz 
 t2

zxÞsp


 ðsxsysz þ 2txytyztzx 
 sxt
2
yz 
 syt

2
zx 
 szt

2
xyÞ ¼ 0

Directional cosines (lp, mp, np) are found from three of the following equations:

ðsx 
 spÞlp þ txymp þ tzxnp ¼ 0

txylp þ ðsy 
 spÞmp þ tyznp ¼ 0

tzxlp þ tyzmp þ ðsz 
 spÞnp ¼ 0

9=
; select two independent equations

l2
p þ m2

p þ n2
p ¼ 1

Principal stresses (plane stress) One principal stress is zero and the remaining two are

given by

sp ¼ 1
2

ðsx þ syÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðsx 
 syÞ

2
þ 4t2

xy

q� �
Angle of surface normal relative to the x axis is given by

yp ¼ tan
1
sp 
 sx

txy

 !
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35

Chapter

3
The Behavior of Bodies

under Stress

This discussion pertains to the behavior of what are commonly

designated as structural materials. That is, materials suitable for

structures and members that must sustain loads without suffering

damage. Included in this category are most of the metals, concrete,

wood, composite materials, some plastics, etc. It is beyond the scope of

this book to give more than a mere statement of a few important facts

concerning the behavior of a stressed material. Extensive literature is

available on every phase of the subject, and the articles contained

herein will serve as an introduction only.

3.1 Methods of Loading

The mechanical properties of a material are usually determined by

laboratory tests, and the commonly accepted values of ultimate

strength, elastic limit, etc., are those found by testing a specimen of

a certain form in a certain manner. To apply results so obtained in

engineering design requires an understanding of the effects of many

different variables, such as form and scale, temperature and other

conditions of service, and method of loading.

The method of loading, in particular, affects the behavior of bodies

under stress. There are an infinite number of ways in which stress

may be applied to a body, but for most purposes it is sufficient to

distinguish the types of loading now to be defined.

1. Short-time static loading. The load is applied so gradually that at

any instant all parts are essentially in equilibrium. In testing, the

load is increased progressively until failure occurs, and the total

time required to produce failure is not more than a few minutes. In



service, the load is increased progressively up to its maximum

value, is maintained at that maximum value for only a limited

time, and is not reapplied often enough to make fatigue a consid-

eration. The ultimate strength, elastic limit, yield point, yield

strength, and modulus of elasticity of a material are usually

determined by short-time static testing at room temperature.

2. Long-time static loading. The maximum load is applied gradually

and maintained. In testing, it is maintained for a sufficient time to

enable its probable final effect to be predicted; in service, it is

maintained continuously or intermittently during the life of the

structure. The creep, or flow characteristics, of a material and its

probable permanent strength are determined by long-time static

testing at the temperatures prevailing under service conditions.

(See Sec. 3.6.)

3. Repeated loading. Typically, a load or stress is applied and wholly

or partially removed or reversed repeatedly. This type of loading is

important if high stresses are repeated for a few cycles or if

relatively lower stresses are repeated many times; it is discussed

under Fatigue. (See Sec. 3.8.)

4. Dynamic loading. The circumstances are such that the rate of

change of momentum of the parts must be taken into account. One

such condition may be that the parts are given definite accelera-

tions corresponding to a controlled motion, such as the constant

acceleration of a part of a rotating member or the repeated accel-

erations suffered by a portion of a connecting rod. As far as stress

effects are concerned, these loadings are treated as virtually static

and the inertia forces (Sec. 16.2) are treated exactly as though they

were ordinary static loads.

A second type of quasi-static loading, quick static loading, can be

typified by the rapid burning of a powder charge in a gun barrel.

Neither the powder, gas, nor any part of the barrel acquires appreci-

able radial momentum; therefore equilibrium may be considered to

exist at any instant and the maximum stress produced in the gun

barrel is the same as though the powder pressure had developed

gradually.

In static loading and the two types of dynamic loading just

described, the loaded member is required to resist a definite force. It

is important to distinguish this from impact loading, where the loaded

member is usually required to absorb a definite amount of energy.

Impact loading can be divided into two general categories. In the

first case a relatively large slow-moving mass strikes a less massive

beam or bar and the kinetic energy of the moving mass is assumed to

be converted into strain energy in the beam. All portions of the beam
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and the moving mass are assumed to stop moving simultaneously. The

shape of the elastic axis of the deflected beam or bar is thus the same

as in static loading. A special case of this loading, generally called

sudden loading, occurs when a mass that is not moving is released

when in contact with a beam and falls through the distance the beam

deflects. This produces approximately twice the stress and deflection

that would have been produced had the mass been ‘‘eased’’ onto the

beam (see Sec. 16.4). The second case of impact loading involves

the mass of the member being struck. Stress waves travel through

the member during the impact and continue even after the impacting

mass has rebounded (see Sec. 16.3).

On consideration, it is obvious that methods of loading really differ

only in degree. As the time required for the load to be applied

increases, short-time static loading changes imperceptibly into long-

time static loading; impact may be produced by a body moving so

slowly that the resulting stress conditions are practically the same as

though equal deflection had been produced by static loading; the

number of stress repetitions at which fatigue becomes involved is

not altogether definite. Furthermore, all these methods of loading may

be combined or superimposed in various ways. Nonetheless, the

classification presented is convenient because most structural and

machine parts function under loading that may be classified definitely

as one of the types described.

3.2 Elasticity; Proportionality of Stress and Strain

In determining stress by mathematical analysis, it is customary to

assume that material is elastic, isotropic, homogeneous, and infinitely

divisible without change in properties and that it conforms to Hooke’s

law, which states that strain is proportional to stress. Actually, none of

these assumptions is strictly true. A structural material is usually an

aggregate of crystals, fibers, or cemented particles, the arrangement of

which may be either random or systematic. When the arrangement is

random the material is essentially isotropic if the part considered is

large in comparison with the constituent units; when the arrangement

is systematic, the elastic properties and strength are usually different

in different directions and the material is anisotropic. Again, when

subdivision is carried to the point where the part under consideration

comprises only a portion of a single crystal, fiber, or other unit, in all

probability its properties will differ from those of a larger part that is

an aggregate of such units. Finally, very careful experiments show

that for all materials there is probably some set and some deviation

from Hooke’s law for any stress, however small.

These facts impose certain limitations upon the conventional meth-

ods of stress analysis and must often be taken into account, but
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formulas for stress and strain, mathematically derived and based on

the assumptions stated, give satisfactory results for nearly all

problems of engineering design. In particular, Hooke’s law may be

regarded as practically true up to a proportional limit, which, though

often not sharply defined, can be established for most materials with

sufficient definiteness. So, too, a fairly definite elastic limit is deter-

minable; in most cases it is so nearly equal to the proportional limit

that no distinction need be made between the two.

3.3 Factors Affecting Elastic Properties

For ordinary purposes it may be assumed that the elastic properties of

most metals, when stressed below a nominal proportional limit, are

constant with respect to stress, unaffected by ordinary atmospheric

variations of temperature, unaffected by prior applications of moder-

ate stress, and independent of the rate of loading. When precise

relations between stress and strain are important, as in the design

or calibration of instruments, these assumptions cannot always be

made. The fourth edition of this book (Ref. 1) discussed in detail the

effects of strain rate, temperature, etc., on the elastic properties of

many metals and gave references for the experiments performed. The

relationships between atomic and molecular structure and the elastic

properties are discussed in texts on materials science.

Wood exhibits a higher modulus of elasticity and much higher

proportional limit when tested rapidly than when tested slowly. The

standard impact test on a beam indicates a fiber stress at the propor-

tional limit approximately twice as great as that found by the standard

static bending test. Absorption of moisture up to the fiber saturation

point greatly lowers both the modulus of elasticity and the propor-

tional limit (Ref. 2).

Both concrete and cast iron have stress-strain curves more or less

curved throughout, and neither has a definite proportional limit. For

these materials it is customary to define E as the ratio of some definite

stress (for example, the allowable stress or one-fourth the ultimate

strength) to the corresponding unit strain; the quantity so determined

is called the secant modulus since it represents the slope of the secant

of the stress-strain diagram drawn from the origin to the point

representing the stress chosen. The moduli of elasticity of cast iron

are much more variable than those of steel, and the stronger grades

are stiffer than the weaker ones. Cast iron suffers a distinct set from

the first application of even a moderate stress; but after several

repetitions of that stress, the material exhibits perfect elasticity up

to, but not beyond, that stress. The modulus of elasticity is slightly less

in tension than in compression.
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Concrete also shows considerable variation in modulus of elasticity,

and in general its stiffness increases with its strength. Like cast iron,

concrete can be made to exhibit perfect elasticity up to a moderate

stress by repeated loading up to that stress. Because of its tendency to

yield under continuous loading, the modulus of elasticity indicated by

long-time loading is much less than that obtained by progressive load-

ing at ordinary speeds.

3.4 Load–Deformatlon Relation for a Body

If Hooke’s law holds for the material of which a member or structure is

composed, the member or structure will usually conform to a similar

law of load-deformation proportionality and the deflection of a beam or

truss, the twisting of a shaft, the dilation of a pressure container, etc.,

may in most instances be assumed proportional to the magnitude of

the applied load or loads.

There are two important exceptions to this rule. One is to be found

in any case where the stresses due to the loading are appreciably

affected by the deformation. Examples of this are: a beam subjected to

axial and transverse loads; a flexible wire or cable held at the ends and

loaded transversely; a thin diaphragm held at the edges and loaded

normal to its plane; a ball pressed against a plate or against another

ball; and a helical spring under severe extension.

The second exception is represented by any case in which failure

occurs through elastic instability, as in the compressive loading of a

long, slender column. Here, for compression loads less than a specific

critical (Euler) load, elastic instability plays no part and the axial

deformation is linear with load. At the critical load, the type of

deformation changes, and the column bends instead of merely short-

ening axially. For any load beyond the critical load, high bending

stresses and failure occurs through excessive deflection (see Sec. 3.13).

3.5 Plasticity

Elastic deformation represents an actual change in the distance

between atoms or molecules; plastic deformation represents a perma-

nent change in their relative positions. In crystalline materials, this

permanent rearrangement consists largely of group displacements of

the atoms in the crystal lattice brought about by slip on planes of least

resistance, parts of a crystal sliding past one another and in some

instances suffering angular displacement. In amorphous materials,

the rearrangement appears to take place through the individual

shifting from positions of equilibrium of many atoms or molecules,

the cause being thermal agitation due to external work and the result

appearing as a more or less uniform flow like that of a viscous liquid. It
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should be noted that plastic deformation before rupture is much less

for biaxial or triaxial tension than for one-way stress; for this reason

metals that are ordinarily ductile may prove brittle when thus

stressed.

3.6 Creep and Rupture under Long-Time Loading

More materials will creep or flow to some extent and eventually fail

under a sustained stress less than the short-time ultimate strength.

After a short time at load, the initial creep related to stress redis-

tribution in the structure and strain hardening ceases and the steady

state, or viscous creep, predominates. The viscous creep will continue

until fracture unless the load is reduced sufficiently, but it is seldom

important in materials at temperatures less than 40 to 50% of their

absolute melting temperatures. Thus, creep and long-time strength at

atmospheric temperatures must sometimes be taken into account in

designing members of nonferrous metals and in selecting allowable

stresses for wood, plastics, and concrete.

Metals. Creep is an important consideration in high-pressure steam

and distillation equipment, gas turbines, nuclear reactors, supersonic

vehicles, etc. Marin, Odqvist, and Finnie, in Ref. 3, give excellent

surveys and list references on creep in metals and structures. Conway

(Refs. 4 and 5) discusses the effectiveness of various parametric

equations, and Conway and Flagella (Ref. 6) present extensive

creep-rupture data for the refractory metals. Odqvist (Ref. 7) discusses

the theory of creep and its application to large deformation and

stability problems in plates, shells, membranes, and beams and

tabulates creep constants for 15 common metals and alloys. Hult

(Ref. 8) also discusses creep theory and its application to many

structural problems. Penny and Marriott (Ref. 9) discuss creep

theories and the design of experiments to verify them. They also

discuss the development of several metals for increased resistance to

creep at high temperatures as well as polymeric and composite

materials at lower temperatures. Reference 10 is a series of papers

with extensive references covering creep theory, material properties,

and structural problems.

Plastics. The literature on the behavior of the many plastics being

used for structural or machine applications is too extensive to list here.

Concrete. Under sustained compressive stress, concrete suffers

considerable plastic deformation and may flow for a very long time

at stresses less than the ordinary working stress. Continuous flow has
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been observed over a period of 10 years, though ordinarily it ceases or

becomes imperceptible within 1 or 2 years. The rate of flow is greater

for air than for water storage, greater for small than for large speci-

mens, and for moderate stresses increases approximately as the

applied stress. On removal of stress, some elastic recovery occurs.

Concrete also shows creep under tensile stress, the early creep rate

being greater than the flow rate under compression (Refs. 11 and 16).

Under very gradually applied loading concrete exhibits an ultimate

strength considerably less than that found under short-time loading;

in certain compression tests it was found that increasing the time of

testing from 1 s to 4 h decreased the unit stress at failure about 30%,

most of this decrease occurring between the extremely quick (1 or 2 s)

and the conventional (several minutes) testing. This indicates that the

compressive stress that concrete can sustain indefinitely may be

considerably less than the ultimate strength as determined by a

conventional test. On the other hand, the long-time imposition of a

moderate loading appears to have no harmful effect; certain tests show

that after 10 years of constant loading equal to one-fourth the ultimate

strength, the compressive strength of concrete cylinders is practically

the same and the modulus of elasticity is considerably greater than for

similar cylinders that were not kept under load (Ref. 15).

The modulus of rupture of plain concrete also decreases with the

time of loading, and some tests indicate that the long-time strength in

cross-breaking may be only 55 to 75% of the short-time strength (Ref.

12).

Reference 17 is a compilation of 12 papers, each with extensive

references, dealing with the effect of volumetric changes on concrete

structures. Design modifications to accommodate these volumetric

changes are the main thrust of the papers.

Wood. Wood also yields under sustained stress; the long-time (several

years) strength is about 55% of the short-time (several minutes)

strength in bending; for direct compression parallel to the grain the

corresponding ratio is about 75% (Ref. 2).

3.7 Criteria of Elastic Failure and of Rupture

For the purpose of this discussion it is convenient to divide metals into

two classes: (1) ductile metals, in which marked plastic deformation

commences at a fairly definite stress (yield point, yield strength, or

possibly elastic limit) and which exhibit considerable ultimate elonga-

tion; and (2) brittle metals, for which the beginning of plastic deforma-

tion is not clearly defined and which exhibit little ultimate elongation.

Mild steel is typical of the first class, and cast iron is typical of the
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second; an ultimate elongation of 5% has been suggested as the

arbitrary dividing line between the two classes of metals.

A ductile metal is usually considered to have failed when it has

suffered elastic failure, i.e., when marked plastic deformation has

begun. Under simple uniaxial tension this occurs when the stress

reaches a value we will denote by sys, which represents the yield

strength, yield point, or elastic limit, according to which one of these is

the most satisfactory indication of elastic failure for the material in

question. The question arises, when does elastic failure occur under

other conditions of stress, such as compression, shear, or a combina-

tion of tension, compression, and shear?

There are many theories of elastic failure that can be postulated for

which the consequences can be seen in the tensile test. When the

tensile specimen begins to yield at a tensile stress of sys, the following

events occur:

1. The maximum-principal-stress theory: the maximum principal

stress reaches the tensile yield strength, sys.

2. The maximum-shear-stress theory (also called the Tresca theory):

the maximum shear stress reaches the shear yield strength, 0.5 sys.

3. The maximum-principal-strain theory: the maximum principal

strain reaches the yield strain, sys=E.

4. The maximum-strain-energy theory: the strain energy per unit

volume reaches a maximum of 0.5 s2
ys=E.

5. The maximum-distortion-energy theory (also called the von Mises

theory and the Maxwell–Huber–Hencky–von Mises theory): the

energy causing a change in shape (distortion) reaches

½ð1 þ nÞ=ð3EÞ�s2
ys.

6. The maximum-octahedral-shear-stress theory: the shear stress

acting on each of eight (octahedral) surfaces containing a hydro-

static normal stress, save ¼ ðs1 þ s2 þ s3Þ=3, reaches a value offfiffiffi
2

p
sys=3. It can be shown that this theory yields identical conditions

as that provided by the maximum-distortion-energy theory.

Of these six theories, for ductile materials, the fifth and sixth are the

ones that agree best with experimental evidence. However, the second

leads to results so nearly the same and is simpler and more conserva-

tive for design applications. Thus, it is more widely used as a basis for

design.

Failure theories for yield of ductile materials are based on shear or

distortion. The maximum-distortion-energy theory equates the distor-

tion energy for a general case of stress to the distortion energy when a
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simple tensile specimen yields. In terms of the principal stresses the

distortion energy for the general case can be shown to be (see Ref. 59)

ud ¼
1 þ n
6E

½ðs1 � s2Þ
2
þ ðs2 � s3Þ

2
þ ðs3 � s1Þ

2
� ð3:7-1Þ

For the simple tensile test, yielding occurs when s1 ¼ sys, and

s2 ¼ s3 ¼ 0. From Eq. (3.7-1), this gives a distortion energy at yield of

ðudÞy ¼
1 þ n
3E

s2
ys ð3:7-2Þ

Equating the energy for the general case, Eq. (3.7-1), to that for yield,

Eq. (3.7-2), givesffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:5½ðs1 � s2Þ

2
þ ðs2 � s3Þ

2
þ ðs3 � s1Þ

2
�

q
¼ sys ð3:7-3Þ

For yield under a single, uniaxial state of stress, the stress would be

equated to sys. Thus, for yield, a single, uniaxial stress equivalent to

the general state of stress is equated to the left-hand side of Eq. (3.7-3).

This equivalent stress is called the von Mises stress, svM , and is given

by

svM ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:5½ðs1 � s2Þ

2
þ ðs2 � s3Þ

2
þ ðs3 � s1Þ

2
�

q
ð3:7-4Þ

Therefore, the maximum-distortion-energy theory predicts elastic fail-

ure when the von Mises stress reaches the yield strength.

The maximum-octahedral-shear-stress theory yields identical

results to that of the maximum-distortion-energy theory (see Ref.

59). Through stress transformation, a stress element can be isolated

in which all normal stresses on it are equal. These normal stresses are

the averages of the normal stresses of the stress matrix, which are also

the averages of the principal stresses and are given by

save ¼ 1
3
ðsx þ sy þ szÞ ¼

1
3
ðs1 þ s2 þ s3Þ ð3:7-5Þ

The element with these normal stresses is an octahedron where the

eight surfaces are symmetric with respect to the principal axes. The

directional cosines of the normals of these surfaces, relative to the

principal axes, are eight combinations of 	1=
ffiffiffi
3

p
(e.g., one set is 1=

ffiffiffi
3

p
,

1=
ffiffiffi
3

p
, 1=

ffiffiffi
3

p
; another is 1=

ffiffiffi
3

p
, �1

ffiffiffi
3

p
, 1=

ffiffiffi
3

p
; etc.). The octahedron is as

shown in Fig. 3.1. The shear stresses on these surfaces are also equal,

called the octahedral shear stresses, and are given by

toct ¼
1
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs1 � s2Þ

2
þ ðs2 � s3Þ

2
þ ðs3 � s1Þ

2
q

ð3:7-6Þ
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Again, for the simple tensile test, yield occurs when s1 ¼ sys, and s2 ¼

s3 ¼ 0. From Eq. (3.7-6), this gives an octahedral shear stress at yield of

ðtoctÞy ¼

ffiffiffi
2

p

3
sys ð3:7-7Þ

Equating Eqs. (3.7-6) and (3.7-7) results in Eq. (3.7-3) again, proving

that the maximum-octahedral-shear-stress theory is identical to the

maximum-distortion-energy theory.

The maximum-shear-stress theory equates the maximum shear

stress for a general state of stress to the maximum shear stress

obtained when the tensile specimen yields. If the principal stresses

are ordered such that s1 5s2 5s3, the maximum shear stress is given

by 0:5ðs1 � s3Þ (see Sec. 2.3, Eq. 2.3-25). The maximum shear stress

obtained when the tensile specimen yields is 0.5 sys. Thus, the

condition for elastic failure for the maximum-shear-stress theory isy

s1 � s3 ¼ sys ð3:7-8Þ

The criteria just discussed concern the elastic failure of material.

Such failure may occur locally in a member and may do no real damage

if the volume of material affected is so small or so located as to have

y Plane stress problems are encountered quite often where the principal stresses are
found from Eq. (2.3-23), which is

sp ¼
sx þ sy

2

� �
	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sx � sy

2

� �2

þ t2
xy

r

This yields only two of the three principal stresses. The third principal stress for plane
stress is zero. Once the three principal stresses are determined, they can be ordered
according to s1 5s2 5s3 and then Eq. (3.7-8) can be employed.

Figure 3.1 Octahedral surfaces containing octa-
hedral shear stresses (shown relative to the
principal axes, with only one set of stresses
displayed).
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only negligible influence on the form and strength of the member as a

whole. Whether or not such local overstressing is significant depends

upon the properties of the material and the conditions of service.

Fatigue properties, resistance to impact, and mechanical functioning

are much more likely to be affected than static strength, and a degree of

local overstressing that would constitute failure in a high-speed

machine part might be of no consequence whatever in a bridge member.

A brittle material cannot be considered to have definitely failed until

it has broken, which can occur either through a tensile fracture, when

the maximum tensile stress reaches the ultimate strength, or through

what appears to be a shear fracture, when the maximum compressive

stress reaches a certain value. The fracture occurs on a plane oblique

to the maximum compressive stress but not, as a rule, on the plane of

maximum shear stress, and so it cannot be considered to be purely a

shear failure (see Ref. 14). The results of some tests on glass and

Bakelite (Ref. 26) indicate that for these brittle materials either the

maximum stress or the maximum strain theory affords a satisfactory

criterion of rupture while neither the maximum shear stress nor the

constant energy of distortion theory does. These tests also indicate

that strength increases with rate of stress application and that the

increase is more marked when the location of the most stressed zone

changes during the loading (pressure of a sphere on a flat surface)

than when this zone is fixed (axial tension).

Another failure theory that is applicable to brittle materials is the

Coulomb–Mohr theory of failure. Brittle materials have ultimate

compressive strengths suc greater than their ultimate tensile

strengths sut, and therefore both a uniaxial tensile test and a uniaxial

compressive test must be run to use the Coulomb–Mohr theory. First

we draw on a single plot both Mohr’s stress circle for the tensile test at

the instant of failure and Mohr’s stress circle for the compressive test

at the instant of failure; then we complete a failure envelope simply by

drawing a pair of tangent lines to the two circles, as shown in Fig. 3.2.

Failure under a complex stress situation is expected if the largest of

the three Mohr circles for the given situation touches or extends

outside the envelope just described. If all normal stresses are tensile,

the results coincide with the maximum stress theory. For a condition

where the three principal stresses are sA, sB, and sC, as shown in Fig.

3.2, failure is being approached but will not take place unless the

dashed circle passing through sA and sC reaches the failure envelope.

The accurate prediction of the breaking strength of a member

composed of brittle metal requires a knowledge of the effect of form

and scale, and these effects are expressed by the rupture factor (see

Sec. 3.11). In addition, what has been said here concerning brittle

metals applies also to any essentially isotropic brittle material.

Thus far, our discussion of failure has been limited to isotropic

materials. For wood, which is distinctly anisotropic, the possibility of
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failure in each of several ways and directions must be taken into

account, viz.: (1) by tension parallel to the grain, which causes

fracture; (2) by tension transverse to the grain, which causes fracture;

(3) by shear parallel to the grain, which causes fracture; (4) by

compression parallel to the grain, which causes gradual buckling of

the fibers usually accompanied by a shear displacement on an oblique

plane; (5) by compression transverse to the grain, which causes

sufficient deformation to make the part unfit for service. The unit

stress producing each of these types of failure must be ascertained by

suitable tests (Ref. 2).

Another anisotropic class of material of consequence is that of the

composites. It is well known that composite members (see Secs. 7.3,

8.2, and Appendix C), such as steel reinforced concrete beams, more

effectively utilize the more expensive, higher-strength materials in

high-stress areas and the less expensive, lower-strength materials in

the low-stress areas. Composite materials accomplish the same effect

at microstructural and macrostructural levels. Composite materials

come in many forms, but are generally formulated by embedding a

reinforcement material in the form of fibers, flakes, particles, or

laminations, in a randomly or orderly oriented fashion within a base

matrix of polymeric, metallic, or ceramic material. For more detail

properties of composites, see Ref. 60.

3.8 Fatigue

Practically all materials will break under numerous repetitions of a

stress that is not as great as the stress required to produce immediate

rupture. This phenomenon is known as fatigue.

Figure 3.2
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Over the past 100 years the effects of surface condition, corrosion,

temperature, etc., on fatigue properties have been well documented,

but only in recent years has the microscopic cause of fatigue damage

been attributed to cyclic plastic flow in the material at the source of a

fatigue crack (crack initiation) or at the tip of an existing fatigue crack

(crack propagation; Ref. 20). The development of extremely sensitive

extensometers has permitted the separation of elastic and plastic

strains when testing axially loaded specimens over short gage lengths.

With this instrumentation it is possible to determine whether cyclic

loading is accompanied by significant cyclic plastic strain and, if it is,

whether the cyclic plastic strain continues at the same level, increases,

or decreases. Sandor (Ref. 44) discusses this instrumentation and its

use in detail.

It is not feasible to reproduce here even a small portion of the fatigue

data available for various engineering materials. The reader should

consult materials handbooks, manufacturers’ literature, design

manuals, and texts on fatigue. See Refs. 44 to 48. Some of the more

important factors governing fatigue behavior in general will be

outlined in the following material.

Number of cycles to failure. Most data concerning the number of cycles

to failure are presented in the form of an S N curve where the cyclic

stress amplitude is plotted versus the number of cycles to failure. This

generally leads to a straight-line log–log plot if we account for the

scatter in the data. For ferrous metals a lower limit exists on the stress

amplitude and is called the fatigue limit, or endurance limit. This

generally occurs at a life of from 105 to 107 cycles of reversed stress,

and we assume that stresses below this limit will not cause failure

regardless of the number of repetitions. With the ability to separate

elastic and plastic strains accurately, there are instances when a plot

of plastic-strain amplitudes versus N and elastic-strain amplitudes

versus N will reveal more useful information (Refs. 44 and 45).

Method of loading and size of specimen. Uniaxial stress can be

produced by axial load, bending, or a combination of both. In flat-

plate bending, only the upper and lower surfaces are subjected to the

full range of cyclic stress. In rotating bending, all surface layers are

similarly stressed, but in axial loading, the entire cross section is

subjected to the same average stress. Since fatigue properties of a

material depend upon the statistical distribution of defects throughout

the specimen, it is apparent that the three methods of loading will

produce different results.

In a similar way, the size of a bending specimen will affect the

fatigue behavior while it will have little effect on an axially loaded
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specimen. Several empirical formulas have been proposed to represent

the influence of size on a machine part or test specimen in bending.

For steel, Moore (Ref. 38) suggests the equation

s0e 1 �
0:016

d0

� �
¼ s00e 1 �

0:016

d00

� �

where s0e is the endurance limit for a specimen of diameter d0 and s00e is

the endurance limit for a specimen of diameter d00. This formula was

based on test results obtained with specimens from 0.125 to 1.875

inches in diameter and shows good agreement within that size range.

Obviously it cannot be used for predicting the endurance limit of very

small specimens. The few relevant test results available indicate a

considerable decrease in endurance limit for very large diameters

(Refs. 22–24).

Stress concentrations. Fatigue failures occur at stress levels less than

those necessary to produce the gross yielding which would blunt the

sharp rise in stress at a stress concentration. It is necessary, therefore,

to apply the fatigue strengths of a smooth specimen to the peak

stresses expected at the stress concentrations unless the size of the

stress-concentrating notch or fillet approaches the grain size or the

size of an anticipated defect in the material itself (see Factor of stress

concentration in fatigue in Sec. 3.10). References 40 and 41 discuss the

effect of notches on low-cycle fatigue.

Surface conditions. Surface roughness constitutes a kind of stress

raiser. Discussion of the effect of surface coatings and platings is

beyond the scope of this book (see Refs. 28 and 36).

Corrosion fatigue. Under the simultaneous action of corrosion and

repeated stress, the fatigue strength of most metals is drastically

reduced, sometimes to a small fraction of the strength in air, and a

true endurance limit can no longer be said to exist. Liquids and gases

not ordinarily thought of as especially conducive to corrosion will often

have a very deleterious effect on fatigue properties, and resistance to

corrosion is more important than normal fatigue strength in determin-

ing the relative rating of different metals (Refs. 24, 25, and 31).

Range of stress. Stressing a ductile material beyond the elastic limit

or yield point in tension will raise the elastic limit for subsequent

cycles but lower the elastic limit for compression. The consequence of

this Bauschinger effect on fatigue is apparent if one accepts the

statement that fatigue damage is a result of cyclic plastic flow; i.e.,
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if the range of cyclic stress is reduced sufficiently, higher peak stresses

can be accepted without suffering continuing damage.

Various empirical formulas for the endurance limit corresponding to

any given range of stress variation have been suggested, the most

generally accepted of which is expressed by the Goodman diagram or

some modification thereof. Figure 3.3 shows one method of construct-

ing this diagram. In each cycle, the stress varies from a maximum

value smax to a minimum value smin, either of which is plus or minus

according to whether it is tensile or compressive. The mean stress is

sm ¼ 1
2
ðsmax þ sminÞ

and the alternating stress is

sa ¼ 1
2
ðsmax � sminÞ

the addition and subtraction being algebraic. With reference to rectan-

gular axes, sm is measured horizontally and sa vertically. Obviously

when sm ¼ 0, the limiting value of sa is the endurance limit for fully

reversed stress, denoted here by se. When sa ¼ 0, the limiting value of

sm is the ultimate tensile strength, denoted here by su. Points A and B

on the axes are thus located.

According to the Goodman theory, the ordinate to a point on the

straight line AB represents the maximum alternating stress sa that

can be imposed in conjunction with the corresponding mean stress sm.

Any point above AB represents a stress condition that would even-

tually cause failure; any point below AB represents a stress condition

with more or less margin of safety. A more conservative construction,

suggested by Soderberg (Ref. 13), is to move point B back to sys,

the yield strength. A less conservative but sometimes preferred

construction, proposed by Gerber, is to replace the straight line by

the parabola.

Figure 3.3
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The Goodman diagrams described can be used for steel and for

aluminum and titanium alloys, but for cast iron many test results fall

below the straight line AB and the lower curved line, suggested by

Smith (Ref. 21), is preferred. Test results for magnesium alloys also

sometimes fall below the straight line.

Figure 3.3 represents conditions where sm is tensile. If sm is

compressive, sa is increased; and for values of sm less than the

compression yield strength, the relationship is represented approxi-

mately by the straight line AB extended to the left with the same

slope. When the mean stress and alternating stress are both torsional,

sa is practically constant until sm exceeds the yield strength in shear;

and for alternating bending combined with mean torsion, the same

thing is true. But when sm is tensile and sa is torsional, sa diminishes

as sm increases in almost the manner represented by the Goodman

line. When stress concentration is to be taken into account, the

accepted practice is to apply Kf (or Kt if Kf is not known) to sa only,

not to sm (for Kt and Kf , see Sec. 3.10).

Residual stress. Since residual stresses, whether deliberately intro-

duced or merely left over from manufacturing processes, will influence

the mean stress, their effects can be accounted for. One should be

careful, however, not to expect the beneficial effects of a residual stress

if during the expected life of a structure it will encounter overloads

sufficient to change the residual-stress distribution. Sandor (Ref. 44)

discusses this in detail and points out that an occasional overload

might be beneficial in some cases.

The several modified forms of the Goodman diagram are used for

predicting the stress levels which will form cracks, but other more

extensive plots such as the Haigh diagram (Ref. 45) can be used to

predict in addition the stress levels for which cracks, once formed, will

travel, fatigue lives, etc.

Combined stress. No one of the theories of failure in Sec. 3.7 can be

applied to all fatigue loading conditions. The maximum-distortion-

energy theory seems to be conservative in most cases, however.

Reference 18 gives a detailed description of an acceptable procedure

for designing for fatigue under conditions of combined stress. The

procedure described also considers the effect of mean stress on the

cyclic stress range. Three criteria for failure are discussed: gross

yielding, crack initiation, and crack propagation. An extensive discus-

sion of fatigue under combined stress is found in Refs. 27, 31, and 45.

Stress history. A very important question and one that has been given

much attention is the influence of previous stressing on fatigue
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strength. One theory that has had considerable acceptance is the

linear damage law (Miner in Ref. 27); here the assumption is made

that the damage produced by repeated stressing at any level is directly

proportional to the number of cycles. Thus, if the number of cycles

producing failure (100% damage) at a stress range s1 is N1, then the

proportional damage produced by N cycles of the stress is N=N1 and

stressing at various stress levels for various numbers of cycles causes

cumulative damage equal to the summation of such fractional values.

Failure occurs, therefore, when
P

N=N1 ¼ 1. The formula implies that

the effect of a given number of cycles is the same, whether they are

applied continuously or intermittently, and does not take into account

the fact that for some metals understressing (stressing below the

endurance limit) raises the endurance limit. The linear damage law

is not reliable for all stress conditions, and various modifications have

been proposed, such as replacing 1 in the formula by a quantity x

whose numerical value, either more or less than unity, must be

determined experimentally. Attempts have been made to develop a

better theory (e.g., Corten and Dolan, Freudenthal and Gumbel, in

Ref. 32). Though all the several theories are of value when used

knowledgeably, it does not appear that as yet any generally reliable

method is available for predicting the life of a stressed part under

variable or random loading. (See Refs. 19 and 39.) See Refs. 44 and 45

for a more detailed discussion.

A modification of the foil strain gage called an S N fatigue life gage

(Refs. 33 and 34) measures accumulated plastic deformation in the

form of a permanent change in resistance. A given total change in

resistance can be correlated with the damage necessary to cause a

fatigue failure in a given material.

3.9 Brittle Fracture

Brittle fracture is a term applied to an unexpected brittle failure of a

material such as low-carbon steel where large plastic strains are

usually noted before actual separation of the part. Major studies of

brittle fracture started when failures such as those of welded ships

operating in cold seas led to a search for the effect of temperature on

the mode of failure. For a brittle fracture to take place the material

must be subjected to a tensile stress at a location where a crack or

other very sharp notch or defect is present and the temperature must

be lower than the so-called transition temperature. To determine a

transition temperature for a given material, a series of notched speci-

mens is tested under impact loading, each at a different temperature,

and the ductility or the energy required to cause fracture is noted.

There will be a limited range of temperatures over which the ductility

or fracture energy will drop significantly. Careful examination of the
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fractured specimens will show that the material at the root of the

notch has tried to contract laterally. Where the fracture energy is

large, there is evidence of a large lateral contraction; and where the

fracture energy is small, the lateral contraction is essentially zero. In

all cases the lateral contraction is resisted by the adjacent less

stressed material. The deeper and sharper cracks have relatively

more material to resist lateral contraction. Thicker specimens have

a greater distance over which to build up the necessary triaxial tensile

stresses that lead to a tensile failure without producing enough shear

stress to cause yielding. Thus, the term transition temperature is

somewhat relative since it depends upon notch geometry as well as

specimen size and shape. Since yielding is a flow phenomenon, it is

apparent that rate of loading is also important. Static loading of

sufficient intensity may start a brittle fracture, but it can continue

under much lower stress levels owing to the higher rate of loading.

The ensuing research in the field of fracture mechanics has led to the

development of both acceptable theories and experimental techniques,

the discussion of which is beyond the scope of this book. Users should

examine Refs. 49–58 for information and for extensive bibliographies.

3.10 Stress Concentration

The distribution of elastic stress across the section of a member may be

nominally uniform or may vary in some regular manner, as illustrated

by the linear distribution of stress in flexure. When the variation is

abrupt so that within a very short distance the intensity of stress

increases greatly, the condition is described as stress concentration. It

is usually due to local irregularities of form such as small holes, screw

threads, scratches, and similar stress raisers. There is obviously no

hard and fast line of demarcation between the rapid variation of stress

brought about by a stress raiser and the variation that occurs in such

members as sharply curved beams, but in general the term stress

concentration implies some form of irregularity not inherent in the

member as such but accidental (tool marks) or introduced for some

special purpose (screw thread).

The maximum intensity of elastic stress produced by many of the

common kinds of stress raisers can be ascertained by mathematical

analysis, photoelastic analysis, or direct strain measurement and is

usually expressed by the stress concentration factor. This term is

defined in Appendix B, but its meaning may be made clearer by an

example. Consider a straight rectangular beam, originally of uniform

breadth b and depth D, which has had cut across the lower face a fairly

sharp transverse V-notch of uniform depth h, making the net depth of

the beam section at that point D � h. If now the beam is subjected to a

uniform bending moment M , the nominal fiber stress at the root of the
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notch may be calculated by ordinary flexure formula s ¼ Mc=I , which

here reduces to s ¼ 6M=½bðD � hÞ2�. But the actual stress s0 is very

much greater than this because of the stress concentration that occurs

at the root of the notch. The ratio s0=s, actual stress divided by

nominal stress, is the stress concentration factor Kt for this particular

case. Values of Kt for a number of common stress raisers are given in

Table 17.1. The most complete single source for numerical values of

stress concentration factors is Peterson (Ref. 42). It also contains an

extensive bibliography.

The abrupt variation and high local intensity of stress produced by

stress raisers are characteristics of elastic behavior. The plastic yield-

ing that occurs on overstressing greatly mitigates stress concentration

even in relatively brittle materials and causes it to have much less

influence on breaking strength than might be expected from a consid-

eration of the elastic stresses only. The practical significance of stress

concentration therefore depends on circumstances. For ductile metal

under static loading it is usually (though not always) of little or no

importance; for example, the high stresses that occur at the edges of

rivet holes in structural steel members are safely ignored, the stress

due to a tensile load being assumed uniform on the net section. (In the

case of eyebars and similar pin-connected members, however, a reduc-

tion of 25% in allowable stress on the net section is recommended.) For

brittle material under static loading, stress concentration is often a

serious consideration, but its effect varies widely and cannot be

predicted either from Kt or from the brittleness of the material (see

Ref. 35).

What may be termed the stress concentration factor at rupture, or

the strength reduction factor, represents the significance of stress

concentration for static loading. This factor, which will be denoted

by Kr is the ratio of the computed stress at rupture for a plain

specimen to the computed stress at rupture for the specimen contain-

ing the stress raiser. For the case just described, it would be the ratio

of the modulus of rupture of the plain beam to that of the notched

beam, the latter being calculated for the net section. Kr is therefore a

ratio of stresses, one or both of which may be fictitious, but is none-

theless a measure of the strength-reducing effect of stress concentra-

tion. Some values of Kr are given in Table 17 of Ref. 1.

It is for conditions involving fatigue that stress concentration is

most important. Even the most highly localized stresses, such as those

produced by small surface scratches, may greatly lower the apparent

endurance limit, but materials vary greatly in notch sensitivity, as

susceptibility to this effect is sometimes called. Contrary to what

might be expected, ductility (as ordinarily determined by axial testing)

is not a measure of immunity to stress concentration in fatigue; for

example, steel is much more susceptible than cast iron. What may be
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termed the fatigue stress concentration factor Kf is the practical

measure of notch sensitivity. It is the ratio of the endurance limit of

a plain specimen to the nominal stress at the endurance limit of a

specimen containing the stress raiser.

A study of available experimental data shows that Kf is almost

always less, and often significantly less, than Kt, and various methods

for estimating Kf from Kt have been proposed. Neuber (Ref. 37)

proposes the formula

Kf ¼ 1 þ
Kt � 1

1 þ p
ffiffiffiffiffiffiffiffiffi
r0=r

p
=ðp� oÞ

ð3:10-1Þ

where o is the flank angle of the notch (called y in Table 17.1), r is the

radius of curvature (in inches) at the root of the notch (called r in Table

17.1), and r0 is a dimension related to the grain size, or size of some

type of basic building block, of the material and may be taken as

0.0189 in for steel.

All the methods described are valuable and applicable within

certain limitations, but none can be applied with confidence to all

situations (Ref. 29). Probably none of them gives sufficient weight to

the effect of scale in the larger size range. There is abundant evidence

to show that the significance of stress concentration increases with

size for both static and repeated loading, especially the latter.

An important fact concerning stress concentration is that a single

isolated notch or hole has a worse effect than have a number of similar

stress raisers placed close together; thus, a single V-groove reduces the

strength of a part more than does a continuous screw thread of almost

identical form. The deleterious effect of an unavoidable stress raiser

can, therefore, be mitigated sometimes by juxtaposing additional form

irregularities of like nature, but the actual superposition of stress

raisers, such as the introduction of a small notch in a fillet, may result

in a stress concentration factor equal to or even exceeding the product

of the factors for the individual stress raisers (Refs. 30 and 43).

3.11 Effect of Form and Scale on Strength;
Rupture Factor

It has been pointed out (Sec. 3.7) that a member composed of brittle

material breaks in tension when the maximum tensile stress reaches

the ultimate strength or in shear when the maximum compressive

stress reaches a certain value. In calculating the stress at rupture in

such a member it is customary to employ an elastic-stress formula;

thus the ultimate fiber stress in a beam is usually calculated by the

ordinary flexure formula. It is known that the result (modulus of

rupture) is not a true stress, but it can be used to predict the strength

of a similar beam of the same material. However, if another beam of
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the same material but of different cross section, span=depth ratio, size,

or manner of loading and support is tested, the modulus of rupture will

be found to be different. (The effect of the shape of the section is often

taken into account by the form factor, and the effects of the span=depth

ratio and manner of loading are recognized in the testing procedure.)

Similarly, the calculated maximum stress at rupture in a curved beam,

flat plate, or torsion member is not equal to the ultimate strength of

the material, and the magnitude of the disparity will vary greatly with

the material, form of the member, manner of loading, and absolute

scale. In order to predict accurately the breaking load for such a

member, it is necessary to take this variation into account, and the

rupture factor (defined in Appendix B) provides a convenient means of

doing so. Values of the rupture factor for a number of materials and

types of members are given in Table 18 of Ref. 1.

On the basis of many experimental determinations of the rupture

factor (Ref. 35) the following generalizations may be made:

1. The smaller the proportional part of the member subjected to high

stress, the larger the rupture factor. This is exemplified by the facts

that a beam of circular section exhibits a higher modulus of rupture

than a rectangular beam and that a flat plate under a concentrated

center load fails at a higher computed stress than one uniformly

loaded. The extremes in this respect are, on the one hand, a

uniform bar under axial tension for which the rupture factor is

unity and, on the other hand, a case of severe stress concentration

such as a sharply notched bar for which the rupture factor may be

indefinitely large.

2. In the flexure of statically indeterminate members, the redistribu-

tion of bending moments that occurs when plastic yielding starts at

the most highly stressed section increases the rupture factor. For

this reason a flat plate gives a higher value than a simple beam,

and a circular ring gives a higher value than a portion of it tested as

a statically determinate curved beam.

3. The rupture factor seems to vary inversely with the absolute scale

for conditions involving abrupt stress variation, which is consistent

with the fact (already noted) that for cases of stress concentration

both Kr and Kf diminish with the absolute scale.

4. As a rule, the more brittle the material, the more nearly all rupture

factors approach unity. There are, however, many exceptions to this

rule. It has been pointed out (Sec. 3.10) that immunity to notch

effect even under static loading is not always proportional to

ductility.

The practical significance of these facts is that for a given material

and given factor of safety, some members may be designed with a
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much higher allowable stress than others. This fact is often recognized

in design; for example, the allowable stress for wooden airplane spars

varies according to the form factor and the proportion of the stress that

is flexural.

What has been said here pertains especially to comparatively brittle

materials, i.e., materials for which failure consists in fracture rather

than in the beginning of plastic deformation. The effect of form on the

ultimate strength of ductile members is less important, although even

for steel the allowable unit stress is often chosen with regard to

circumstances such as those discussed previously. For instance, in

gun design the maximum stress is allowed to approach and even

exceed the nominal elastic limit, the volume of material affected

being very small, and in structural design extreme fiber stresses in

bending are permitted to exceed the value allowed for axial loading. In

testing, account must be taken of the fact that some ductile metals

exhibit a higher ultimate strength when fracture occurs at a reduced

section such as would be formed in a tensile specimen by a concentric

groove or notch. Whatever effect of stress concentration may remain

during plastic deformation is more than offset by the supporting action

of the shoulders, which tends to prevent the normal ‘‘necking down.’’

3.12 Prestressing

Parts of an elastic system, by accident or design, may have introduced

into them stresses that cause and are balanced by opposing stresses in

other parts, so that the system reaches a state of stress without the

imposition of any external load. Examples of such initial, or locked-up,

stresses are the temperature stresses in welded members, stresses in a

statically indeterminate truss due to tightening or ‘‘rigging’’ some of

the members by turnbuckles, and stresses in the flange couplings of a

pipeline caused by screwing down the nuts. The effects of such

prestressing upon the rigidity and strength of a system will now be

considered, the assumption being made that prestressing is not so

severe as to affect the properties of the material.

In discussing this subject it is necessary to distinguish two types of

systems, viz. one in which the component parts can sustain reversal of

stress and one in which at least some of the component parts cannot

sustain reversal of stress. Examples of the first type are furnished by a

solid bar and by a truss, all members of which can sustain either

tension or compression. Examples of the second type are furnished by

the bolt-flange combination mentioned and by a truss with wire

diagonals that can take tension only.

For the first type of system, prestressing has no effect on initial

rigidity. Thus a plain bar with locked-up temperature stresses will

exhibit the same modulus of elasticity as a similar bar from which
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these stresses have been removed by annealing; two prestressed

helical springs arranged in parallel, the tension in one balancing the

compression in the other, will deflect neither more nor less than the

same two springs similarly placed without prestressing.

Prestressing will lower the elastic limit (or allowable load, or

ultimate strength) provided that in the absence of prestressing all

parts of the system reach their respective elastic limits (or allowable

loads, or ultimate strengths) simultaneously. But if this relation

between the parts does not exist, then prestressing may raise any or

all of these quantities. One or two examples illustrating each condition

may make this clear.

Consider first a plain bar that is to be loaded in axial tension. If

there are no locked-up stresses, then (practically speaking) all parts of

the bar reach their allowable stress, elastic limit, and ultimate

strength simultaneously. But if there are locked-up stresses present,

then the parts in which the initial tension is highest reach their elastic

limit before other parts and the elastic limit of the bar as a whole is

thus lowered. The load at which the allowable unit stress is first

reached is similarly lowered, and the ultimate strength may also be

reduced; although if the material is ductile, the equalization of stress

that occurs during elongation will largely prevent this.

As an example of the second condition (all parts do not simulta-

neously reach the elastic limit or allowable stress) consider a thick

cylinder under internal pressure. If the cylinder is not prestressed, the

stress at the interior surface reaches the elastic limit first and so

governs the pressure that may be applied. But if the cylinder is

prestressed by shrinking on a jacket or wrapping with wire under

tension, as is done in gun construction, then the walls are put into an

initial state of compression. This compressive stress also is greatest at

the inner surface, and the pressure required to reverse it and produce

a tensile stress equal to the elastic limit is much greater than before.

As another example, consider a composite member comprising two

rods of equal length, one aluminum and the other steel, that are placed

side by side to jointly carry a tensile load. For simplicity, it will be

assumed that the allowable unit stresses for the materials are the

same. Because the modulus of elasticity of the steel is about three

times that of the aluminum, it will reach the allowable stress first and

at a total load less than the sum of the allowable loads for the bars

acting separately. But if the composite bar is properly prestressed, the

steel being put into initial compression and the aluminum into initial

tension (the ends being in some way rigidly connected to permit this),

then on the application of a tensile load the two bars will reach the

allowable stress simultaneously and the load-carrying capacity of the

combination is thus greater than before. Similarly the elastic limit and
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sometimes the ultimate strength of a composite member may be raised

by prestressing.

In a system of the second type (in which all parts cannot sustain

stress reversal) prestressing increases the rigidity for any load less

than that required to produce stress reversal. The effect of prestress-

ing up to that point is to make the rigidity of the system the same as

though all parts were effective. Thus in the case of the truss with wire

diagonals it is as though the counterwires were taking compression; in

the case of the flange-bolt combination it is as though the flanges were

taking tension. (If the flanges are practically rigid in comparison with

the bolts, there is no deformation until the applied load exceeds the

bolt tension and so the system is rigid.) When the applied load becomes

large enough to cause stress reversal (to make the counterwires go

slack or to separate the flanges), the effect of prestressing disappears

and the system is neither more nor less rigid than a similar one not

prestressed provided, of course, none of the parts has been over-

stressed.

The elastic limit (or allowable load, or ultimate strength) of a system

of this type is not affected by prestressing unless the elastic limit (or

allowable load, or ultimate strength) of one or more of the parts is

reached before the stress reversal occurs. In effect, a system of this

type is exactly like a system of the first type until stress reversal

occurs, after which all effects of prestressing vanish.

The effects of prestressing are often taken advantage of, notably in

bolted joints (flanges, cylinder heads, etc.), where high initial tension

in the bolts prevents stress fluctuation and consequent fatigue, and in

prestressed reinforced-concrete members, where the initially

compressed concrete is enabled, in effect, to act in tension without

cracking up to the point of stress reversal. The example of the

prestressed thick cylinder has already been mentioned.

3.13 Elastic Stability

Under certain circumstances the maximum load a member will

sustain is determined not by the strength of the material but by the

stiffness of the member. This condition arises when the load produces

a bending or a twisting moment that is proportional to the correspond-

ing deformation. The most familiar example is the Euler column.

When a straight slender column is loaded axially, it remains straight

and suffers only axial compressive deformation under small loads. If

while thus loaded it is slightly deflected by a transverse force, it will

straighten after removal of that force. But there is obviously some

axial load that will just hold the column in the deflected position, and

since both the bending moment due to the load and the resisting

moment due to the stresses are directly proportional to the deflection,
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the load required thus to hold the column is independent of the

amount of the deflection. If this condition of balance exists at stresses

less than the elastic limit, the condition is called elastic stability and

the load that produces this condition is called the critical load. Any

increase of the load beyond this critical value is usually attended by

immediate collapse of the member.

It is the compressive stresses within long, thin sections of a struc-

ture that can cause instabilities. The compressive stress can be elastic

or inelastic and the instability can be global or local. Global instabil-

ities can cause catastrophic failure, whereas local instabilities may

cause permanent deformation but not necessarily a catastrophic fail-

ure. For the Euler column, when instability occurs, it is global since

the entire cross section is involved in the deformation. Localized

buckling of the edges of the flange in compression of a wide-flange

I-beam in bending can occur. Likewise, the center of the web of a

transversely loaded I-beam or plate girder in bending undergoes pure

shear where along the diagonal (45�) compressive stresses are present

and localized buckling is possible.

Other examples of elastic stability are afforded by a thin cylinder

under external pressure, a thin plate under edge compression or edge

shear, and a deep thin cantilever beam under a transverse end load

applied at the top surface. Some such elements, unlike the simple

column described previously, do not fail under the load that initiates

elastic buckling but demonstrate increasing resistance as the buckling

progresses. Such postbuckling behavior is important in many

problems of shell design. Elastic stability is discussed further in

Chap. 15, and formulas for the critical loads for various members

and types of loadings are given in Tables 15.1 and 15.2.
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Chapter

4
Principles and Analytical Methods

Most of the formulas of mechanics of materials express the relations

among the form and dimensions of a member, the loads applied

thereto, and the resulting stress or deformation. Any such formula is

valid only within certain limitations and is applicable only to certain

problems. An understanding of these limitations and of the way in

which formulas may be combined and extended for the solution of

problems to which they do not immediately apply requires a knowl-

edge of certain principles and methods that are stated briefly in the

following articles. The significance and use of these principles and

methods are illustrated in Part 3 by examples that accompany the

discussion of specific problems.

4.1 Equations of Motion and of Equilibrium

The relations that exist at any instant between the motion of a body

and the forces acting on it may be expressed by these two equations:

(1) Fx (the component along any line x of all forces acting on a

body) ¼ m �aax (the product of the mass of the body and the x component

of the acceleration of its mass center); (2) Tx (the torque about any line

x of all forces acting on the body) ¼ dHx=dt (the time rate at which its

angular momentum about that line is changing). If the body in

question is in equilibrium, these equations reduce to (1) Fx ¼ 0 and

(2) Tx ¼ 0.

These equations, Hooke’s law, and experimentally determined

values of the elastic constants E, G, and n constitute the basis for

the mathematical analysis of most problems of mechanics of materials.

The majority of the common formulas for stress are derived by

considering a portion of the loaded member as a body in equilibrium

under the action of forces that include the stresses sought and then

solving for these stresses by applying the equations of equilibrium.



4.2 Principle of Superposition

With certain exceptions, the effect (stress, strain, or deflection)

produced on an elastic system by any final state of loading is the

same whether the forces that constitute that loading are applied

simultaneously or in any given sequence and is the result of the

effects that the several forces would produce if each acted singly.

An exception to this principle is afforded by any case in which some

of the forces cause a deformation that enables other forces to produce

an effect they would not have otherwise. A beam subjected to trans-

verse and axial loading is an example; the transverse loads cause a

deflection that enables the longitudinal load to produce a bending

effect it would not produce if acting alone. In no case does the principle

apply if the deformations are so large as to alter appreciably the

geometrical relations of the parts of the system.

The principle of superposition is important and has many applica-

tions. It often makes it possible to resolve or break down a complex

problem into a number of simple ones, each of which can be solved

separately for like stresses, deformations, etc., which are then alge-

braically added to yield the solution of the original problem.

4.3 Principle of Reciprocal Deflections

Let A and B be any two points of an elastic system. Let the displace-

ment of B in any direction U due to force P acting in any direction V at

A be u; and let the displacement of A in the direction V due to a force Q

acting in the direction U at B be v. Then Pv ¼ Qu.

This is the general statement of the principle of reciprocal deflec-

tions. If P and Q are equal and parallel and u and v are parallel, the

statement can be simplified greatly. Thus, for a horizontal beam with

vertical loading and deflection understood, the principle expresses the

following relation: A load applied at any point A produces the same

deflection at any other point B as it would produce at A if applied at B.

The principle of reciprocal deflections is a corollary of the principle

of superposition and so can be applied only to cases for which that

principle is valid. It can be used to advantage in many problems

involving deformation. Examples of the application of the principle are

given in Chaps. 8 and 11.

4.4 Method of Consistent Deformations
(Strain Compatibility)

Many statically indeterminate problems are easily solved by utilizing

the obvious relations among the deformations of the several parts or

among the deformations produced by the several loads. Thus the
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division of load between the parts of a composite member is readily

ascertained by expressing the deformation or deflection of each part in

terms of the load it carries and then equating these deformations or

deflections. For example, the reaction at the supported end of a beam

with one end fixed and the other supported can be found by regarding

the beam as a cantilever, acted on by the actual loads and an upward

end load (the reaction), and setting the resultant deflection at the

support end equal to zero.

The method of consistent deformations is based on the principle of

superposition; it can be applied only to cases for which that principle is

valid.

4.5 Principles and Methods Involving Strain Energy

Strain energy is defined as the mechanical energy stored up in an

elastically stressed system; formulas for the amount of strain energy

developed in members under various conditions of loading are given

in Part 3. It is the purpose of this article to state certain relations

between strain energy and external forces that are useful in the

analysis of stress and deformation. For convenience, external forces

with points of application that do not move will here be called

reactions, and external forces with points of application that move

will be called loads.

External work equal to strain energy. When an elastic system is
subjected to static loading, the external work done by the loads as
they increase from zero to their maximum value is equal to the strain
energy acquired by the system.

This relation may be used directly to determine the deflection of a

system under a single load; for such a case, assuming a linear

material, it shows that the deflection at the point of loading in the

direction of the load is equal to twice the strain energy divided by the

load. The relationship also furnishes a means of determining the

critical load that produces elastic instability in a member. A reason-

able form of curvature, compatible with the boundary conditions, is

assumed, and the corresponding critical load found by equating the

work of the load to the strain energy developed, both quantities being

calculated for the curvature assumed. For each such assumed curva-

ture, a corresponding approximate critical load will be found and the

least load so found represents the closest approximation to the true

critical load (see Refs. 3 to 5).

Method of unit loads. During the static loading of an elastic system the
external work done by a constant force acting thereon is equal to the
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internal work done by the stresses caused by that constant force. This
relationship is the basis of the following method for finding the
deflection of any given point of an elastic system: A unit force is
imagined to act at the point in question and in the direction of the
deflection that is to be found. The stresses produced by such a unit
force will do a certain amount of internal work during the application
of the actual loads. This work, which can be readily found, is equal to
the work done by the unit force; but since the unit force is constant,
this work is equal to the deflection sought.

If the direction of the deflection cannot be ascertained in advance, its

horizontal and vertical components can be determined separately in

the way described and the resultant deflection found therefrom.

Examples of application of the method are given in Sec. 7.4.

Deflection, the partial derivative of strain energy. When a linear elastic
system is statically loaded, the partial derivative of the strain energy
with respect to any one of the applied forces is equal to the movement
of the point of application of that force in the direction of that force.
This relationship provides a means of finding the deflection of a beam
or truss under several loads (see Refs. 3, 5, and 7).

Theorem of least work.y When an elastic system is statically loaded,
the distribution of stress is such as to make the strain energy a
minimum consistent with equilibrium and the imposed boundary
conditions. This principle is used extensively in the solution of stati-
cally indeterminate problems. In the simpler type of problem (beams
with redundant supports or trusses with redundant members) the first
step in the solution consists in arbitrarily selecting certain reactions or
members to be considered redundant, the number and identity of
these being such that the remaining system is just determinate. The
strain energy of the entire system is then expressed in terms of the
unknown redundant reactions or stresses. The partial derivative of the
strain energy with respect to each of the redundant reactions or
stresses is then set equal to zero and the resulting equations solved
for the redundant reactions or stresses. The remaining reactions or
stresses are then found by the equations of equilibrium. An example of
the application of this method is given in Sec. 7.4.

y By theorem of least work is usually meant only so much of the theorem as is
embodied in the first application here described, and so understood it is often referred to
as Castigliano’s second theorem. But, as originally stated by Castigliano, it had a
somewhat different significance. (See his ‘‘Théorème de l’équilibre des systèmes
élastiques et ses applications,’’ Paris, 1879, or the English translation ‘‘Elastic Stresses
in Structures,’’ by E. S. Andrews, Scott, Greenwood, London. See also R. V. Southwell,
Castigliano’s Principle of Minimum Strain-energy, Proc. Roy. Soc. Lond., Ser. A, vol. 154,
1936.) The more general theory stated is called theorem of minimum energy by Love
(Ref. 1) and theorem of minimum resilience by Morley (Ref. 2).
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As defined by this procedure, the theorem of least work is implicit in

Castigliano’s theorem: It furnishes a method of solution identical with

the method of consistent deflections, the deflection used being zero and

expressed as a partial derivative of the strain energy. In a more

general type of problem, it is necessary to determine which of an

infinite number of possible stress distributions or configurations

satisfies the condition of minimum strain energy. Since the develop-

ment of software based on the finite-element method of analysis the

electronic computer has made practicable the solution of many

problems of this kind—shell analysis, elastic and plastic buckling,

etc.—that formerly were relatively intractable.

4.6 Dimensional Analysis

Most physical quantities can be expressed in terms of mass, length,

and time conveniently represented by the symbols M , L, and t,

respectively. Thus velocity is Lt�1 acceleration is Lt�2, force is

MLt�2, unit stress is ML�1t�2, etc. A formula in which the several

quantities are thus expressed is a dimensional formula, and the

various applications of this system of representation constitute dimen-

sional analysis.

Dimensional analysis may be used to check formulas for homogen-

eity, check or change units, derive formulas, and establish the rela-

tionships between similar physical systems that differ in scale (e.g., a

model and its prototype). In strength of materials, dimensional analy-

sis is especially useful in checking formulas for homogeneity. To do

this, it is not always necessary to express all quantities dimensionally

since it may be possible to cancel some terms. Thus it is often

convenient to express force by some symbol, as F, until it is ascertained

whether or not all terms representing force can be canceled.

For example, consider the formula for the deflection y at the free end

of a cantilever beam of length l carrying a uniform load per unit

length, w. This formula (Table 8.1) is

y ¼ �
1

8

wl4

EI

To test for homogeneity, omit the negative sign and the coefficient 1
8

(which is dimensionless) and write the formula

L ¼
ðF=LÞ4

ðF=L2ÞL4

It is seen that F cancels and the equation reduces at once to L ¼ L,

showing that the original equation was homogeneous.
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Instead of the symbols M , L, t, and F , we can use the names of the

units in which the quantities are to be expressed. Thus the above

equation may be written

inches ¼
ðpounds=inchÞðinches

4
Þ

ðpounds=inches
2
Þðinches

4
Þ
¼ inches

This practice is especially convenient if it is desired to change units.

Thus it might be desired to write the above formula so that y is given

in inches when l is expressed in feet. It is only necessary to write

inches ¼
1

8

ðpounds=inchÞðfeet � 12Þ4

ðpounds=inches
2
Þinches

4

and the coefficient is thus found to be 2592 instead of 1
8
.

By what amounts to a reversal of the checking process described, it

is often possible to determine the way in which a certain term or terms

should appear in a formula provided the other terms involved are

known. For example, consider the formula for the critical load of the

Euler column. Familiarity with the theory of flexure suggests that this

load will be directly proportional to E and I . It is evident that the

length l will be involved in some way as yet unknown. It is also

reasonable to assume that the load is independent of the deflection

since both the bending moment and the resisting moment would be

expected to vary in direct proportion to the deflection. We can then

write P ¼ kEIla, where k is a dimensionless constant that must be

found in some other way and the exponent a shows how l enters the

expression. Writing the equation dimensionally and omitting k, we

have

F ¼
F

L2
L4La or L2 ¼ L4þa

Equating the exponents of L (as required for homogeneity) we find

a ¼ �2, showing that the original formula should be P ¼ kEI=l2. Note

that the derivation of a formula in this way requires at least a partial

knowledge of the relationship that is to be expressed.

A much more detailed discussion of similitude, modeling, and

dimensional analysis can be found in Chaps. 15 and 8 of Refs. 6 and

7, respectively. Reference 6 includes a section where the effect of

Poisson’s ratio on the stresses in two- and three-dimensional problems

is discussed. Since Poisson’s ratio is dimensionless, it would have to be

the same in model and prototype for perfect modeling and this

generally is not possible. References to work on this problem are

included and will be helpful.
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4.7 Remarks on the Use of Formulas

No calculated value of stress, strength, or deformation can be regarded

as exact. The formulas used are based on certain assumptions as to

properties of materials, regularity of form, and boundary conditions

that are only approximately true, and they are derived by mathema-

tical procedures that often involve further approximations. In general,

therefore, great precision in numerical work is not justified. Each

individual problem requires the exercise of judgment, and it is impos-

sible to lay down rigid rules of procedure; but the following sugges-

tions concerning the use of formulas may be of value.

1. For most cases, calculations giving results to three significant

figures are sufficiently precise. An exception is afforded by any

calculation that involves the algebraic addition of quantities that are

large in comparison with the final result (e.g., some of the formulas for

beams under axial and transverse loading, some of the formulas for

circular rings, and any case of superposition in which the effects of

several loads tend to counteract each other). For such cases more

significant figures should be carried throughout the calculations.

2. In view of uncertainties as to actual conditions, many of the

formulas may appear to be unnecessarily elaborate and include

constants given to more significant figures than is warranted. For

this reason, we may often be inclined to simplify a formula by dropping

unimportant terms, ‘‘rounding off ’’ constants, etc. It is sometimes

advantageous to do this, but it is usually better to use the formula

as it stands, bearing in mind that the result is at best only a close

approximation. The only disadvantage of using an allegedly ‘‘precise’’

formula is the possibility of being misled into thinking that the result

it yields corresponds exactly to a real condition. So far as the time

required for calculation is concerned, little is saved by simplification.

3. When using an unfamiliar formula, we may be uncertain as to the

correctness of the numerical substitutions made and mistrustful of the

result. It is nearly always possible to effect some sort of check by

analogy, superposition, reciprocal deflections, comparison, or merely

by judgment and common sense. Thus the membrane analogy (Sec.

5.4) shows that the torsional stiffness of any irregular section is

greater than that of the largest inscribed circular section and less

than that of the smallest circumscribed section. Superposition shows

that the deflection and bending moment at the center of a beam under

triangular loading (Table 8.1, case 2e) is the same as under an equal

load uniformly distributed. The principle of reciprocal deflections

shows that the stress and deflection at the center of a circular flat

plate under eccentric concentrated load (Table 11.2, case 18) are the

same as for an equal load uniformly distributed along a concentric

circle with radius equal to the eccentricity (case 9a). Comparison
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shows that the critical unit compressive stress is greater for a thin

plate under edge loading than for a strip of that plate regarded as an

Euler column. Common sense and judgment should generally serve to

prevent the acceptance of grossly erroneous calculations.

4. A difficulty frequently encountered is uncertainty as to boundary

conditions—whether a beam or flat plate should be calculated as freely

supported or fixed, whether a load should be assumed uniformly or

otherwise distributed, etc. In any such case it is a good plan to make

bracketing assumptions, i.e., to calculate the desired quantity on the

basis of each of two assumptions representing limits between which

the actual conditions must lie. Thus for a beam with ends having an

unknown degree of fixity, the bending moment at the center cannot be

more than if the ends were freely supported and the bending moments

at the ends cannot be more than if the ends were truly fixed. If so

designed as to be safe for either extreme condition, the beam will be

safe for any intermediate degree of fixity.

5. The stress and deflections predicted by most formulas do not

account for localized effects of the loads. For example, the stresses and

deflections given for a straight, simply-supported beam with a

centered, concentrated lateral force only account for that due to

bending. Additional compressive bearing stresses and deflections

exist depending on the exact nature of the interaction of the applied

and reaction forces with the beam. Normally, the state of stress and

deformation at distances greater than the dimensions of the loaded

regions only depend on the net effect of the localized applied and

reaction forces and are independent of the form of these forces. This is

an application of Saint Venant’s principle (defined in Appendix B).

This principle may not be reliable for thin-walled structures or for

some orthotropic materials.

6. Formulas concerning the validity of which there is a reason for

doubt, especially empirical formulas, should be checked dimensionally.

If such a formula expresses the results of some intermediate condition,

it should be checked for extreme or terminal conditions; thus an

expression for the deflection of a beam carrying a uniform load over

a portion of its length should agree with the corresponding expression

for a fully loaded beam when the loaded portion becomes equal to the

full length and should vanish when the loaded portion becomes zero.
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Chapter

5
Numerical Methods

The analysis of stress and deformation of the loading of simple

geometric structures can usually be accomplished by closed-form

techniques. As the structures become more complex, the analyst is

forced to approximations of closed-form solutions, experimentation, or

numerical methods. There are a great many numerical techniques

used in engineering applications for which digital computers are very

useful. In the field of structural analysis, the numerical techniques

generally employ a method which discretizes the continuum of the

structural system into a finite collection of points (or nodes) whereby

mathematical relations from elasticity are formed. The most popular

technique used currently is the finite element method (FEM). For this

reason, most of this chapter is dedicated to a general description of the

method. A great abundance of papers and textbooks have been

presented on the finite element method, and a complete listing is

beyond the scope of this book. However, some textbooks and historical

papers are included for introductory purposes.

Other methods, some of which FEM is based upon, include trial

functions via variational methods and weighted residuals, the finite

difference method (FDM), structural analogues, and the boundary

element method (BEM). FDM and BEM will be discussed briefly.

5.1 The Finite Difference Method

In the field of structural analysis, one of the earliest procedures for the

numerical solutions of the governing differential equations of stressed

continuous solid bodies was the finite difference method. In the finite

difference approximation of differential equations, the derivatives in

the equations are replaced by difference quotients of the values of the

dependent variables at discrete mesh points of the domain. After

imposing the appropriate boundary conditions on the structure, the



discrete equations are solved obtaining the values of the variables at

the mesh points. The technique has many disadvantages, including

inaccuracies of the derivatives of the approximated solution, difficul-

ties in imposing boundary conditions along curved boundaries, diffi-

culties in accurately representing complex geometric domains, and the

inability to utilize non-uniform and non-rectangular meshes.

5.2 The Finite Element Method

The finite element method (FEM) evolved from the use of trial

functions via variational methods and weighted residuals, the finite

difference method, and structural analogues (see Table 1.1 of Ref. 1).

FEM overcomes the difficulties encountered by the finite-differ-

ence method in that the solution of the differential equations of the

structural problem are obtained by utilizing an integral formulation to

generate a system of algebraic equations with continuous piecewise-

smooth (trial) functions that approximate the unknown quantities. A

geometrically complex domain of the structural problem can be

systematically represented by a large, but finite, collection of simpler

subdomains, called finite elements. For structural problems, the

displacement field of each element is approximated by polynomials,

which are interpolated with respect to preselected points (nodes) on,

and possibly within, the element. The polynomials are referred to

as interpolation functions, where variational or weighted residual

methods (e.g. Rayleigh–Ritz, Galerkin, etc.) are applied to determine

the unknown nodal values. Boundary conditions can easily be applied

along curved boundaries, complex geometric domains can be modeled,

and non-uniform and non-rectangular meshes can be employed.

The modern development of FEM began in the 1940s in the field of

structural mechanics with the work of Hrennikoff, McHenry, and

Newmark, who used a lattice of line elements (rods and beams) for

the solution of stresses in continuous solids (see Refs. 2–4). In 1943,

from a 1941 lecture, Courant suggested piecewise-polynomial inter-

polation over triangular subregions as a method to model torsional

problems (see Ref. 5).

With the advent of digital computers in the 1950s, it became

practical for engineers to write and solve the stiffness equations in

matrix form (see Refs. 6–8). A classic paper by Turner, Clough, Martin,

and Topp published in 1956 presented the matrix stiffness equations

for the truss, beam, and other elements (see Ref. 9). The expression

finite element is first attributed to Clough (see Ref. 10).

Since these early beginnings, a great deal of effort has been

expended in the development of FEM in the areas of element formula-

tions and computer implementation of the entire solution process. The

major advances in computer technology includes the rapidly expand-
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ing computer hardware capabilities, efficient and accurate matrix

solver routines, and computer graphics for ease in the preprocessing

stages of model building, including automatic adaptive mesh genera-

tion, and in the postprocessing stages of reviewing the solution results.

A great abundance of literature has been presented on the subject,

including many textbooks. A partial list of some textbooks, introduc-

tory and more comprehensive, is given at the end of this chapter. For a

brief introduction to FEM and modeling techniques, see Chapters 9

and 10, respectively, of Ref. 11.

FEM is ideally suited to digital computers, in which a continuous

elastic structure (continuum) is divided (discretized) into small but

finite well-defined substructures (elements). Using matrices, the

continuous elastic behavior of each element is categorized in terms

of the element’s material and geometric properties, the distribution of

loading (static, dynamic, and thermal) within the element, and the

loads and displacements at the nodes of the element. The element’s

nodes are the fundamental governing entities of the element, since it

is the node where the element connects to other elements, where

elastic properties of the element are established, where boundary

conditions are assigned, and where forces (contact or body) are

ultimately applied. A node possesses degrees of freedom (dof ’s).

Degrees of freedom are the translational and rotational motion that

can exist at a node. At most, a node can possess three translational

and three rotational degrees of freedom. Once each element within a

structure is defined locally in matrix form, the elements are then

globally assembled (attached) through their common nodes (dof ’s) into

an overall system matrix. Applied loads and boundary conditions are

then specified, and through matrix operations the values of all

unknown displacement degrees of freedom are determined. Once

this is done, it is a simple matter to use these displacements to

determine strains and stresses through the constitutive equations of

elasticity.

Many geometric shapes of elements are used in finite element

analysis for specific applications. The various elements used in a

general-purpose commercial FEM software code constitute what is

referred to as the element library of the code. Elements can be placed

in the following categories: line elements, surface elements, solid

elements, and special purpose elements. Table 5.1 provides some, but

not all, of the types of elements available for finite element analysis.

Since FEM is a numerical technique that discretizes the domain of a

continuous structure, errors are inevitable. These errors are:

1. Computational errors. These are due to round-off errors from

the computer floating-point calculations and the formulations of the

numerical integration schemes that are employed. Most commercial
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finite element codes concentrate on reducing these errors and conse-

quently the analyst generally is concerned with discretization factors.

2. Discretization errors. The geometry and the displacement distri-

bution of a true structure vary continuously. Using a finite number of

elements to model the structure introduces errors in matching geo-

metry and the displacement distribution due to the inherent limita-

TABLE 5.1 Sample finite element library

Element

type Name Shape

Number

of nodes Applications

Line Truss 2 Pin-ended bar in tension or

compression

Beam 2 Bending

Frame 2 Axial, torsional, and bending.

With or without load stiffening

Surface 4 Noded

quadri-

lateral

4 Plane stress or strain,

axisymmetry, shear panel, thin

flat plate in bending

8 Noded

quadri-

lateral

8 Plane stress or strain, thin

plate or shell in bending

3 Noded

triangular

3 Plane stress or strain,

axisymmetry, shear panel, thin

flat plate in bending. Prefer

quad where possible. Used for

transitions of quads

6 Noded

triangular

6 Plane stress or strain,

axisymmetry, thin plate or shell

in bending. Prefer quad where

possible. Used for transitions of

quads

Solidy 8 Noded

hexagonal

(brick)

8 Solid, thick plate (using mid-

side nodes)

6 Noded

Pentagonal

(wedge)

6 Solid, thick plate (using mid-

side nodes). Used for

transitions

4 Noded

tetrahedron

(tet)

4 Solid, thick plate (using mid-

side nodes). Used for

transitions

Special

purpose

Gap 2 Free displacement for

prescribed compressive gap

Hook 2 Free displacement for

prescribed extension gap

Rigid Variable Rigid constraints between

nodes

y These elements are also available with mid-size nodes.
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tions of the elements. For example, consider the thin plate structure

shown in Fig. 5.1(a). Figure 5.1(b) shows a finite element model of the

structure where three-noded, plane stress, triangular elements are

employed. The plane stress triangular element has a flaw, which

creates two basic problems. The element has straight sides, which

remain straight after deformation. The strains throughout the plane

stress triangular element are constant. The first problem, a geometric

one, is the modeling of curved edges. Note that the surface of the

model with a large curvature appears reasonably modeled, whereas

the surface of the hole is very poorly modeled. The second problem,

which is much more severe, is that the strains in various regions of the

actual structure are changing rapidly, and the constant strain element

will only provide an approximation of the average strain at the center

of the element. So, in a nutshell, the results predicted using this model

will be relatively poor. The results can be improved by significantly

increasing the number of elements used (increased mesh density).

Alternatively, using a better element, such as an eight-noded quad-

rilateral, which is more suited to the application, will provide the

improved results. Due to higher-order interpolation functions, the

eight-noded quadrilateral element can model curved edges and

provides for a higher-order function for the strain distribution.

5.3 The Boundary Element Method

The boundary element method (BEM), developed more recently than

FEM, transforms the governing differential equations and boundary

conditions into integral equations, which are converted to contain

Figure 5.1 Discretization of a continuous structure.
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surface integrals (see Refs. 12–16). Because only surface integrals

remain, surface elements are used to perform the required integra-

tions. This is the main advantage that BEM has over FEM, which

requires three-dimensional elements throughout the entire volumetric

domain. Boundary elements for a general three-dimensional solid are

quadrilateral or triangular surface elements covering the surface area

of the component. For two-dimensional and axisymmetric problems,

only line elements tracing the outline of the component are necessary.

Although BEM offers some modeling advantages over FEM, the

latter can analyze more types of engineering applications and is much

more firmly entrenched in today’s computer-aided-design (CAD) envir-

onment. Development of engineering applications of BEM are proceed-

ing however, and more will be seen of the method in the future.
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Chapter

6
Experimental Methods

A structural member may be of such a form or may be loaded in such a

way that the direct use of formulas for the calculation of stresses and

strain produced in it is ineffective. One then must resort either to

numerical techniques such as the finite element method or to experi-

mental methods. Experimental methods can be applied to the actual

member in some cases, or to a model thereof. Which choice is made

depends upon the results desired, the accuracy needed, the practical-

ity of size, and the cost associated with the experimental method.

There has been a tremendous increase in the use of numerical

methods over the years, but the use of experimental methods is still

very effective. Many investigations make use of both numerical and

experimental results to cross-feed information from one to the other

for increased accuracy and cost effectiveness (see Chap. 17 in Ref. 27).

Some of the more important experimental methods are described

briefly in Sec. 6.1 of this chapter. Of these methods, the most popular

method employs electrical resistance strain gages, and is described in

more detail in Sec. 6.2. Only textbooks, reference books, handbooks,

and lists of journals are referenced, since there are several organiza-

tions (see Refs. 1, 25, and 26) devoted either partially or totally to

experimental methods, and a reasonable listing of papers would be

excessive and soon out of date. The most useful reference for users

wanting information on experimental methods is Ref. 27, the ‘‘Hand-

book on Experimental Mechanics,’’ edited by A. S. Kobayashi and

dedicated to the late Dr. M. Hetenyi, who edited Ref. 2. Reference 27

contains 22 chapters contributed by 27 authors under the sponsorship

of the Society for Experimental Mechanics. Experimental methods

applied specifically to the field of fracture mechanics are treated

extensively in Refs. 13, 15, 17, 19, 22, and Chaps. 14 and 20 of Ref. 27.



6.1 Measurement Techniques

The determination of stresses produced under a given loading of a

structural system by means of experimental techniques are based on

the measurement of deflections. Since strain is directly related to (the

rate of change of) deflection, it is common practice to say that the

measurements made are that of strain. Stresses are then determined

implicitly using the stress–strain relations. Deflections in a structural

system can be measured through changes in resistance, capacitance,

or inductance of electrical elements; optical effects of interference,

diffraction, or refraction; or thermal emissions. Measurement is

comparatively easy when the stress is fairly uniform over a consider-

able length of the part in question, but becomes more difficult when

the stress is localized or varies greatly with position. Short gage

lengths and great precision require stable gage elements and stable

electronic amplification if used. If dynamic strains are to be measured,

a suitable high-frequency response is also necessary. In an isotropic

material undergoing uniaxial stress, one normal strain measurement

is all that is necessary. On a free surface under biaxial stress condi-

tions, two measured orthogonal normal strains will provide the stres-

ses in the same directions of the measured strains. On a free surface

under a general state of plane stress, three measured normal strains

in different directions will allow the determination of the stresses in

directions at that position (see Sec. 6.2). At a free edge in a member

that is thin perpendicular to the free edge, the state of stress is

uniaxial and, as stated earlier, can be determined from one normal

strain tangent to the edge. Another tactic might be to measure the

change in thickness or the through-thickness strain at the edge. This

might be more practical, such as measuring the strain at the bottom

of a groove in a thin plate. For example, assume an orthogonal xyz

coordinate system where x is parallel to the edge and z is in the

direction of the thickness at the edge. Considering a linear, isotropic

material, from Hooke’s law, ez ¼ �nsx=E. Thus, sx ¼ �Eez=n.
The following descriptions provide many of the successful instru-

ments and techniques used for strain measurement. They are listed

in a general order of mechanical, electrical, optical, and thermal

methods. Optical and thermal techniques have been greatly enhanced

by advances in digital image processing technology for computers (see

Chap. 21 of Ref. 27).

1. Mechanical measurement. A direct measurement of strain can be

made with an Invar tape over a gage length of several meters or with a

pair of dividers over a reasonable fraction of a meter. For shorter gage

lengths, mechanical amplification can be used, but friction is a

problem and vibration can make them difficult to mount and to
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read. Optical magnification using mirrors still requires mechanical

levers or rollers and is an improvement but still not satisfactory for

most applications. In a laboratory setting, however, such mechanical

and optical magnification can be used successfully. See Ref. 3 for more

detailed descriptions. A scratch gage uses scratches on a polished

target to determine strain amplitudes, and while the scratches are in

general not strictly related to time, they are usually related to events

in such a way as to be extremely useful in measuring some dynamic

events. The scratched target is viewed with a microscope to obtain

peak-to-peak strains per event, and a zero strain line can also be

scratched on the target if desired (Ref. 3). The use of lasers and=or

optical telescopes with electronic detectors to evaluate the motion of

fiduciary marks on distant structures makes remote-displacement

measurements possible, and when two such detectors are used, strains

can be measured. While the technique is valuable when needed for

remote measurement, generally for environmental reasons, it is an

expensive technique for obtaining the strain at a single location.

2. Brittle coatings. Surface coatings formulated to crack at strain

levels well within the elastic limit of most structural materials provide

a means of locating points of maximum strain and the directions of

principal strains. Under well-controlled environmental conditions and

with suitable calibration, such coatings can yield quantitative results

(Refs. 2, 3, 7, 9, 20, 21, and 27). This technique, however, is not

universally applicable, since the coatings may not be readily available

due to environmental problems with the coating materials.

3. Electrical strain and displacement gages. The evolution of electrical

gages has led to a variety of configurations where changes in resis-

tance, capacitance, or inductance can be related to strain and displace-

ment with proper instrumentation (Refs. 2–5, 20, 21, 23, 24, and 27).

(a) Resistance strain gage. For the electrical resistance strain

gages, the gage lengths vary from less than 0.01 in to several inches.

The gage grid material can be metallic or a semiconductor. The gages

can be obtained in alloys that are designed to provide minimum output

due to temperature strains alone and comparatively large outputs due

to stress-induced strains. Metallic bonded-foil gages are manufactured

by a photoetching process that allows for a wide range of configura-

tions of the grid(s). The semiconductor strain gages provide the largest

resistance change for a given strain, but are generally very sensitive to

temperature changes. They are used in transducers where proper

design can provide temperature compensation The use of electrical

resistance strain gages for stress analysis purposes constitute the
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majority of experimental applications. For this reason, Sec. 6.2

provides further information on the use of these gages.

(b) Capacitance strain gage. Capacitance strain gages are larger

and more massive than bonded electric resistance strain gages and are

more widely used for applications beyond the upper temperature

limits of the bonded resistance strain gages.

(c) Inductance strain gages. The change in air gap in a magnetic

circuit can create a large change in inductance depending upon the

design of the rest of the magnetic circuit. The large change in

inductance is accompanied by a large change in force across the gap,

and so the very sensitive inductance strain gages can be used only on

more massive structures. They have been used as overload indicators

on presses with no electronic amplification necessary. The linear

relationship between core motion and output voltage of a linear

differential transformer makes possible accurate measurement of

displacements over a wide range of gage lengths and under a wide

variety of conditions. The use of displacement data as input for work in

experimental modal analysis is discussed in Chap. 16 of Ref. 27 and in

many of the technical papers in Ref. 24.

4. lnterferometrlc strain gages. Whole-field interferometric techniques

will be discussed later, but a simple strain gage with a short length

and high sensitivity can be created by several methods. In one, a

diffraction grating is deposited at the desired location and in the

desired direction and the change in grating pitch under strain is

measured. With a metallic grid, these strain gages can be used at

elevated temperatures. Another method, also useable at high tempera-

tures, makes use of the interference of light reflected from the inclined

surfaces of two very closely spaced indentations in the surface of a

metallic specimen. Both of these methods are discussed and referenced

in Ref. 27.

5. Photoelastic analysis. When a beam of polarized light passes

through an elastically stressed transparent isotropic material, the

beam may be treated as having been decomposed into two rays

polarized in the planes of the principal stresses in the material. In

birefringent materials the indexes of refraction of the material

encountered by these two rays will depend upon the principal stresses.

Therefore, interference patterns will develop which are proportional to

the differences in the principal stresses.

(a) Two-dimensional analysis. With suitable optical elements—

polarizers and wave plates of specific relative retardation—both the

principal stress differences and the directions of principal stresses
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may be determined at every point in a two-dimensional specimen

(Refs. 2–6, 10, 14, 18, 27, and 28). Many suitable photoelastic plastics

are available. The material properties that must be considered are

transparency, sensitivity (relative index of refraction change with

stress), optical and mechanical creep, modulus of elasticity, ease of

machining, cost, and stability (freedom from stresses developing with

time). Materials with appropriate creep properties may be used for

photoplasticity studies (Ref. 16).

(b) Three-dimensional analysis. Several photoelastic techniques

are used to determine stresses in three-dimensional specimens. If

information is desired at a single point only, the optical polarizers,

wave plates, and photoelastically sensitive material can be embedded

in a transparent model (Ref. 2) and two-dimensional techniques used.

A modification of this technique, stress freezing, is possible in some

biphase materials. By heating, loading, cooling, and unloading, it is

possible to lock permanently into the specimen, on a molecular level,

strains proportional to those present under load. Since equilibrium

exists at a molecular level, the specimen can be cut into two-

dimensional slices and all secondary principal stress differences deter-

mined. The secondary principal stresses at a point are defined as the

largest and smallest normal stresses in the plane of the slice; these in

general will not correspond with the principal stresses at that same

point in the three-dimensional structure. If desired, the specimen can

be cut into cubes and the three principal stress differences deter-

mined. The individual principal stresses at a given point cannot be

determined from photoelastic data taken at that point alone since the

addition of a hydrostatic stress to any cube of material would not be

revealed by differences in the indexes of refraction. Mathematical

integration techniques, which start at a point where the hydrostatic

stress component is known, can be used with photoelastic data to

determine all individual principal stresses.

A third method, scattered light photoelasticity, uses a laser beam

of intense monochromatic polarized light or a similar thin sheet of

light passing through photoelastically sensitive transparent models

that have the additional property of being able to scatter uniformly a

small portion of the light from any point on the beam or sheet. The

same general restrictions apply to this analysis as applied to the

stress-frozen three-dimensional analysis except that the specimen

does not have to be cut. However, the amount of light available for

analysis is much less, the specimen must be immersed in a fluid with

an index of refraction that very closely matches that of the specimen,

and in general the data are much more difficult to analyze.

(c) Photoelastic coating. Photoelastic coatings have been sprayed,

bonded in the form of thin sheets, or cast directly in place on the
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surface of models or structures to determine the two-dimensional

surface strains. The surface is made reflective before bonding the

plastics in place so the effective thickness of the photoelastic plastic is

doubled and all two-dimensional techniques can be applied with

suitable instrumentation.

6. Moiré techniques. All moiré techniques can be explained by optical

interference, but the course-grid techniques can also be evaluated on

the basis of obstructive or mechanical interference.

(a) Geometric moiré. Geometric moiré techniques use grids of

alternate equally wide bands of relatively transparent or light-colored

material and opaque or dark-colored material in order to observe the

relative motion of two such grids. The most common technique (Refs.

2, 5, 8, and 11) uses an alternate transparent and opaque grid to

produce photographically a matching grid on the flat surface of the

specimen. Then the full-field relative motion is observed between the

reproduction and the original when the specimen is loaded. Similarly,

the original may be used with a projector to produce the photographic

image on the specimen and then produce interference with the

projected image after loading. These methods can use ordinary

white light, and the interference is due merely to geometric blocking

of the light as it passes through or is reflected from the grids.

Another similar technique, shadow moiré, produces interference

patterns due to motion of the specimen at right angles to its surface

between an alternately transparent and opaque grid and the shadow

of the grid on the specimen.

(b) Moiré interferometry. Interferometry provides a means of

producing both specimen gratings and reference gratings. Virtual

reference gratings of more than 100,000 lines per inch have been

utilized. Moiré interferometry provides contour maps of in-plane

displacements, and, with the fine pitches attainable, differentiation

to obtain strains from this experimental process is comparable to

that used in the finite-element method of numerical analysis where

displacement fields are generally the initial output. See Chap. 7 in

Ref. 27.

7. Holographic and laser speckle interferometry. The rapid evolution of

holographic and laser speckle interferometry is related to the devel-

opment of high-power lasers and to the development of digital compu-

ter enhancement of the resulting images. Various techniques are used

to measure the several displacement components of diffuse reflecting

surfaces. Details are beyond the scope of this book and are best

reviewed in Chap. 8 of Ref. 27.
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8. Shadow optical method of caustics. The very simple images created

by the reflection or refraction of light from the surface contours of

high-gradient stress concentrations such as those at the tips of cracks

make the use of the shadow optical method of caustics very useful for

dynamic studies of crack growth or arrest. Chapter 9 of Ref. 27 gives a

detailed discussion of this technique and a comparison to photoelastic

studies for the same loadings.

9. X-ray diffraction. X-ray diffraction makes possible the determination

of changes in interatomic distance and thus the measurement of

elastic strain. The method has the particular advantages that it can

be used at points of high stress concentration and to determine

residual stresses without cutting the object of investigation.

10. Stress-pattern analysis by thermal emission. This technique uses

computer enhancement of infrared detection of very small tempera-

ture changes in order to produce digital output related to stress at a

point on the surface of a structure, a stress graph along a line on the

surface, or a full-field isopachic stress map of the surface. Under cyclic

loading, at a frequency high enough to assure that any heat transfer

due to stress gradients is insignificant, the thermoelastic effect

produces a temperature change proportional to the change in the

sum of the principal stresses. Although calibration corrections must

be made for use at widely differing ambient temperatures, the tech-

nique works over a wide range of temperatures and on a variety of

structural materials including metals, wood, concrete, and plain and

reinforced plastics. Tests have been made on some metals at tempera-

tures above 700�C. Chapter 14 of Ref. 27 describes and surveys work

on this technique.

6.2 Electrical Resistance Strain Gages

General. The use of electrical resistance strain gages is probably the

most common method of measurement in experimental stress analy-

sis. In addition, strain gage technology is quite important in the design

of transducer instrumentation for the measurement of force, torque,

pressure, etc.

Electrical resistance strain gages are based on the principal that the

resistance R of a conductor changes as a function of normal strain e.
The resistance of a conductor can be expressed as

R ¼ r
L

A
(6.2-1)

where r is the resistivity of the conductor (ohms-length), and L and A

are the length and cross-sectional area of the conductor respectively. It

SEC. 6.2] Experimental Methods 87



can be shown that a change in R due to changes in r, L and A is given

by

DR

R
¼ ð1 þ 2nÞeþ

Dr
r

(6.2-2)

where n is Poisson’s ratio, and assuming small strain on the conductor,

e, which is given by DL=L. If the change in the resistance of the

conductor is considered to be only due to the applied strain, then

Eq. (6.2-2) can be written as

DR

R
¼ Sae (6.2-3)

where

Sa ¼ 1 þ 2nþ
Dr=r
e

(6.2-4)

Sa is the sensitivity of the conductor to strainy. The first two terms

come directly from changes in dimension of the conductor where for

most metals the quantity 1 þ 2n varies from 1.4 to 1.7. The last term in

Eq. (6.2-4) is called the change in specific resistance relative to strain,

and for some metals can account for much of the sensitivity to strain.

The most commonly used material for strain gages is a copper–nickel

alloy called Constantan, which has a strain sensitivity of 2.1. Other

alloys used for strain gage applications are modified Karma, Nichrome

V, and Isoelastic, which have sensitivities of 2.0, 2.2, and 3.6, respec-

tively. The primary advantages of Constantan are:

1. The strain sensitivity Sa is linear over a wide range of strain and

does not change significantly as the material goes plastic.

2. The thermal stability of the material is excellent and is not greatly

influenced by temperature changes when used on common struc-

tural materials.

3. The metallurgical properties of Constantan are such that they can

be processed to minimize the error induced due to the mismatch in

the thermal expansion coefficients of the gage and the structure to

which it is adhered over a wide range of temperature.

y When using a commercial strain indicator, one must enter the sensitivity provided by
the gage manufacturer. This sensitivity is referred to the gage factor of the gage, Sg. This
is defined slightly differently than Sa, and will be discussed shortly.
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Isoelastic, with a higher sensitivity, is used for dynamic applica-

tions. Semiconductor gages are also available, and can reach sensitiv-

ities as high as 175. However, care must be exercised with respect to

the poor thermal stability of these piezoresistive gages.

Most gages have a nominal resistance of 120 ohm or 350 ohm.

Considering a 120-ohm Constantan gage, to obtain a measurement

of strain within an accuracy of �5 m, it would be necessary to measure

a change in resistance within �1:2 mohm. To measure these small

changes in resistance accurately, commercial versions of the Wheat-

stone bridge, called strain gage indicators, are available.

Metallic alloy electrical resistance strain gages used in experimental

stress analysis come in two basic types: bonded-wire and bonded-foil

(see Fig. 6.1). Today, bonded-foil gages are by far the more prevalent.

The resistivity of Constantan is approximately 49 mohm 	 cm. Thus if a

strain gage is to be fabricated using a wire 0.025 mm in diameter and

is to have a resistance of 120 ohm, the gage would require a wire

approximately 120 mm long. To make the gage more compact over a

shorter active length, the gage is constructed with many loops as

shown in Fig. 6.1. Typical commercially available bonded-foil gage

lengths vary from 0.20 mm (0.008 in) to 101.6 mm (4.000 in). For

normal applications, bonded-foil gages either come mounted on a

very thin polyimide film carrier (backing) or are encapsulated between

two thin films of polyimide. Other carrier materials are available for

special cases such as high-temperature applications.

The most widely used adhesive for bonding a strain gage to a test

structure is the pressure-curing methyl 2-cyanoacrylate cement.

Other adhesives include epoxy, polyester, and ceramic cements.

Figure 6.1 Forms of electrical resistance strain gages.
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Extreme care must be exercised when installing a gage, since a good

bond and an electrically insulated gage are necessary. The installation

procedures can be obtained from technical instruction bulletins

supplied by the manufacturer. Once a gage is correctly mounted,

wired, resistance tested for continuity and insulation from the test

structure, and waterproofed (if appropriate), it is ready for instrumen-

tation and testing.

Strain Gage Configurations. In both wire or foil gages, many config-

urations and sizes are available. Strain gages come in many forms for

transducer or stress-analysis applications. The fundamental config-

urations for stress-analysis work are shown in Fig. 6.2.

A strain gage is mounted on a free surface, which in general, is in a

state of plane stress where the state of stress with regards to a specific

xy rectangular coordinate system can be unknown up to the three

stresses, sx, sy, and txy. Thus, if the state of stress is completely

unknown on a free surface, it is necessary to use a three-element

rectangular or delta rosette since each gage element provides only one

piece of information, the indicated normal strain at the point in the

direction of the gage.

To understand how the rosettes are used, consider the three-element

rectangular rosette shown in Fig. 6.3(a), which provides normal strain

components in three directions spaced at angles of 45�.

If an xy coordinate system is assumed to coincide with gages A

and C, then ex ¼ eA and ey ¼ eC. Gage B in conjunction with gages A

and C provides information necessary to determine gxy. Recalling the

first of Eqs. (2.4-1), ex0 ¼ ex cos2 yþ ey sin
2 yþ gxy cos y sin y, with

y ¼ 45�

eB ¼ ex cos2 45� þ ey sin
2

45� þ gxy cos 45 sin 45�

¼ 1
2
ðex þ ey þ gxyÞ ¼

1
2
ðeA þ eC þ gxyÞ

Solving for gxy yields

gxy ¼ 2eB � eA � eC

Once ex, ey, and gxy are known, Hooke’s law [Eqs. (2.2-5) and (2.2-6a)]

can be used to determine the stresses sx, sy, and txy.
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The relationship between eA, eB, and eC can be seen from Mohr’s

circle of strain corresponding to the strain state at the point under

investigation [see Fig. 6.3(b)].

The following example shows how to use the above equations for an

analysis as well as how to use the equations provided in Table 6.1.

EXAMPLE

A three-element rectangular rosette strain gage is installed on a steel speci-
men. For a particular state of loading of the structure the strain gage readings
arey

eA ¼ 200 m; eB ¼ 900 m; eC ¼ 1000 m

Figure 6.2 Examples of commonly used strain gage configurations. (Source: Figures
a c courtesy of BLH Electronics, Inc., Canton, MA. Figures d f courtesy of Micro-
Measurements Division of Measurements Group, Inc., Raleigh, NC.) Note: The letters
SR-4 on the BLH gages are in honor of E. E. Simmons and Arthur C. Ruge and their two
assistants (a total of four individuals), who, in 1937–1938, independently produced the
first bonded-wire resistance strain gage.

y The strain gage readings are typically corrected due to the effect of transverse
strains on each gage. This will be discussed shortly.
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Figure 6.3 Three-element strain gage rosette.
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Determine the values and orientations of the principal stresses at the point.
Let E ¼ 200 GPa and n ¼ 0:285.

Solution. From above,

ex ¼ eA ¼ 200 m; ey ¼ eC ¼ 1000 m

gxy ¼ 2eB � eA � eC ¼ ð2Þð900Þ � 200 � 1000 ¼ 600 m

The stresses can be determined using Eqs. (2.2-5) and (2.2-6a):

sx ¼
E

1 � n2
ðex þ neyÞ

¼
200ð109Þ

1 � ð0:285Þ2
½200 þ ð0:285Þð1000Þ�ð10�6Þ ¼ 105:58ð106Þ N=m2 ¼ 105:58 MPa

sy ¼
E

1 � n2
ðey þ nexÞ

¼
200ð109Þ

1 � ð0:285Þ2
½1000 þ ð0:285Þð200Þ�ð10�6Þ ¼ 230:09ð106Þ N=m2

¼ 230:09 MPa

txy ¼
E

2ð1 þ nÞ
gxy ¼

200ð109Þ

2ð1 þ 0:285Þ
600ð10�6Þ ¼ 46:69ð106Þ N=m2

¼ 46:69 MPa

Figure 6.4(a) shows the stresses determined in the x and y directions as
related to the gage orientation shown in Fig. 6.3(a).

For the principal stress axes, we use Eq. (2.3-23) given by

sp ¼ 1
2

ðsx þ syÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðsx þ syÞ

2
þ 4t2

xy

q� �

¼ 1
2

105:58 þ 230:09 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð105:58 þ 230:09Þ2 þ 4ð46:67Þ2

q� �
¼ 245:65; 90:01 MPa

For the orientation of the principal stress axes, using the first of Eqs. (2.3-21)
gives

yp ¼ tan�1
sp � sx

txy

 !
ðaÞ

For the principal stress, s1 ¼ 245:65 MPa, Eq. (a) gives

yp1 ¼ tan�1 245:65 � 105:58

46:69

� �
¼ 71:6�

For the other principal stress, s2 ¼ 90:01 MPa

yp2 ¼ tan�1 90:01 � 105:58

46:69

� �
¼ �18:4�

Recalling that yp is defined positive in the counterclockwise direction, the
principal stress state at the point relative to the xy axes of the strain gage
rosette correspond to that shown in Fig. 6.4(b).
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Using the equations given in Table 6.1 at the end of the chapter,

eA þ eC

1 � n
¼

200 þ 1000

1 � 0:285
¼ 1678:3 m

1

1 þ n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðeA � eCÞ

2
þ ð2eB � eA � eCÞ

2

q

¼
1

1 þ 0:285

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð200 � 1000Þ2 þ ½2ð900Þ � 200 � 1000�2

q
¼ 778:2 m

Thus,

sp1 ¼
200ð10Þ9

2
ð1678:3 þ 778:2Þ ¼ 245:65 MPa

sp2 ¼
200ð10Þ9

2
ð1678:3 � 778:2Þ ¼ 90:01 MPa

The principal angle is

yp ¼
1

2
tan�1 2ð900Þ � 200 � 1000

200 � 1000

� �
¼

1

2
tan�1 þ600

�800

� �
¼

1

2
ð143:13�Þ ¼ 71:6�

counterclockwise from the x axis (A gage) to sp1 ¼ 245:65 MPa.y Note that this
agrees with Fig. 6.4(b).

y When calculating yp, do not change the signs of the numerator and denominator in
the equation. The tan�1 is defined from 0� to 360�. For example, tan�1ðþ=þÞ is in the
range 0�–90�, tan�1ðþ=�Þ is in the range 90� 180�, tan�1ð�=�Þ is in the range
180� 270�, and tan�1ð�=þÞ is in the range 270� 360�. Using this definition for yp, the
calculation will yield the counterclockwise angle from the x axis to sp1, the greater of the
two principal stresses in the plane of the gages.

Figure 6.4 (a) Stresses in the x and y directions. (b) Principal stresses.
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Strain Gage Corrections. There are many types of corrections that may

be necessary to obtain accurate strain gage results (see Refs. 27 and

28). Two fundamental corrections that are necessary correct the

indicated strain errors due to strains on the specimen perpendicular

(transverse) to the longitudinal axis of the gage and changes in

temperature of the gage installation. With each strain gage, the

manufacturer provides much information on the performance of the

gage, such as its sensitivity to longitudinal and transverse strain and

how the sensitivity of the gage behaves relative to temperature

changes.

(b) Transverse sensitivity corrections. The strain sensitivity of a

single straight uniform length of conductor in a uniform uniaxial

strain field e in the longitudinal direction of the conductor is given

by Eq. (6.2-3), which is Sa ¼ ðDR=RÞ=e. In a general strain field, there

will be strains perpendicular to the longitudinal axis of the conductor

(transverse strains). Due to the width of the conductor elements and

the geometric configuration of the conductor in the gage pattern, the

transverse strains will also effect a change in resistance in the

conductor. This is not desirable, since only the effect of the strain in

the direction of the gage length is being sought.

To further complicate things, the sensitivity of the strain gage

provided by the gage manufacturer is not based on a uniaxial strain

field, but that of a uniaxial stress field in a tensile test specimen. For a

uniaxial stress field let the axial and transverse strains be ea and et

respectively. The sensitivity provided by the gage manufacturer, called

the gage factor Sg, is defined as Sg ¼ ðDR=RÞea, where under a uniaxial

stress field, et ¼ �n0ea. Thus

DR

R
¼ Sgea; with et ¼ �n0ea (6.2-5)

The term n0 is Poisson’s ratio of the material on which the manufac-

turer’s gage factor was measured, and is normally taken to be 0.285. If

the gage is used under conditions where the transverse strain is

et ¼ �nea, then the equation DR=R ¼ Sgea would yield exact results.

If et 6¼ �n0ea, then some error will occur. This error depends on the

sensitivity of the gage to transverse strain and the deviation of the

ratio of et=ea from �n0. The strain gage manufacturer generally

supplies a transverse sensitivity coefficient, Kt, defined as St=Sa,

where St is the transverse sensitivity factor. One cannot correct the

indicated strain from a single strain reading. Thus it is necessary to

have multiple strain readings from that of a strain gage rosette. Table

6.2 at the end of the chapter gives equations for the corrected strain

values of the three most widely used strain gage rosettes. Corrected
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strain readings are given by e; whereas uncorrected strains from the

strain gage indicator are given by êe.

EXAMPLE

In the previous example the indicated strains are êeA ¼ 200 m, êeB ¼ 900 m, and
êeC ¼ 1000 m. Determine the principal stresses and directions if the transverse
sensitivity coefficient of the gages are KtA ¼ KtC ¼ 0:05 and KtB ¼ 0:06.

Solution. From Table 6.2,

eA ¼
ð1 � n0KtAÞêeA � KtAð1 � n0KtCÞêeC

1 � KtAKtC

¼
½1 � ð0:285Þð0:05Þ�ð200Þ � ð0:05Þ½1 � ð0:285Þð0:05Þ�ð1000Þ

1 � ð0:05Þð0:05Þ

¼ 148:23 m

eB ¼

ð1 � n0KtBÞêeB �
KtB

1 � KtAKtC

½ð1 � n0KtAÞð1 � KtCÞêeA þ ð1 � n0KtCÞð1 � KtAÞêeC �

1 � KtB

¼

 
½1 � ð0:285Þð0:06Þ�ð900Þ �

0:06

½1 � ð0:05Þð0:05Þ�

� f½1 � ð0:285Þð0:05Þ�½1 � 0:05Þ�ð200Þ þ ½1 � ð0:285Þð0:05Þ�½1 � 0:05�ð1000Þg

!

� ð1 � 0:06Þ�1

¼ 869:17 m

and

eC ¼
ð1 � n0KtCÞêeC � KtCð1 � n0KtAÞêeA

1 � KtAKtC

¼
½1 � ð0:285Þð0:05Þ�ð1000Þ � ð0:05Þ½1 � ð0:285Þð0:05Þ�ð200Þ

1 � ð0:05Þð0:05Þ

¼ 978:34 m

From Table 6.1,y

eA þ eC

1 � n
¼

148:23 þ 978:34

1 � 0:285
¼ 1575:62 m

1

1 þ n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðeA � eCÞ

2
þ ð2eB � eA � eCÞ

2

q

¼
1

1 þ 0:285

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð148:23 � 978:34Þ2 þ ½2ð869:17Þ � 148:23 � 978:34�2

q
¼ 802:48 m

y Note that if n for the specimen was different from n0 ¼ 0:285, it would be used in the
equations of Table 6.1 but not for Table 6.2.
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and

sp1 ¼
200ð10Þ9

2
ð1575:62 þ 802:48Þð10�6Þ ¼ 237:8ð106Þ N=m2

¼ 237:81 MPa

sp2 ¼
200ð10Þ9

2
ð1575:62 � 802:48Þð10�6Þ ¼ 90:01ð106Þ N=m2

¼ 77:31 MPa

yp ¼
1

2
tan�1 2ð869:17Þ � 148:23 � 978:34

148:23 � 978:34

� �
¼

1

2
tan�1 611:77

�830:11

� �

¼
1

2
ð143:61�Þ ¼ 71:8�

The principal stress element is shown in Fig. 6.5 relative to the xy coordinate
system of the gage rosette as shown in Fig. 6.3(a).

(b) Corrections due to temperature changes. Temperature changes on

an installed strain gage cause a change in resistance, which is due to a

mismatch in the thermal expansion coefficients of the gage and the

specimen, a change in the resistivity of the gage material, and a

change in the gage factor, Sg. This effect can be compensated for by

two different methods. The first method of temperature compensation

is achieved using an additional compensating gage on an adjacent arm

of the Wheatstone bridge circuit. This compensating gage must be

identical to the active gage, mounted on the same material as the

active gage, and undergoing an identical temperature change as that

of the active gage.

The second method involves calibration of the gage relative to

temperature changes. The gage can be manufactured and calibrated

for the application on a specific specimen material. The metallurgical

properties of alloys such as Constantan and modified Karma can be

processed to minimize the effect of temperature change over a limited

range of temperatures, somewhat centered about room temperature.

Gages processed in this manner are called self-temperature-

compensated strain gages. An example of the characteristics of a

Figure 6.5 Principal stress element corrected for transverse sensitivity.
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BLH self-temperature-compensated gage specifically processed for use

on a low-carbon steel is shown in Fig. 6.6. Note that the apparent

strain is zero at 22�C and 45�C and approximately zero in the vicinity

of these temperatures. For temperatures beyond this region, compen-

sation can be achieved by monitoring the temperature at the strain

gage site. Then, using either the curve from the data sheet or the fitted

polynomial equation, the strain readings can be corrected numerically.

Note, however, that the curve and the polynomial equation given on

the data sheet are based on a gage factor of 2.0. If corrections are

anticipated, the gage factor adjustment of the strain indicator should

be set to 2.0. An example that demonstrates this correction is given at

the end of this section.

The gage factor variation with temperature is also presented in the

data sheet of Fig. 6.6. If the strain gage indicator is initially set at

ðSgÞi, the actual gage factor at temperature T is ðSgÞT , and the

indicator registers a strain measurement of ereading, the corrected

strain is

eactual ¼
ðSgÞi

ðSgÞT
ereading (6.2-6)

Figure 6.6 Strain gage temperature characteristsics. (Source: Data sheet courtesy BLH
Electronics, Inc., Canton, MA.)
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where

ðSgÞT ¼ 1 þ
DSgð%Þ

100

� �
ðSgÞi (6.2-7)

and DSg(%) being the percent variation in gage factor given in Fig. 6.6.

If a simultaneous correction for apparent strain and gage factor

variation is necessary, the corrected strain is given by

eactual ¼
ðSgÞi

ðSgÞT
ðereading � eapparentÞ (6.2-8)

EXAMPLE

A strain gage with the characteristics of Fig. 6.6 has a room-temperature gage
factor of 2.1 and is mounted on a 1018 steel specimen. A strain measurement of
�1800 m is recorded during the test when the temperature is 150�C. Deter-
mine the value of actual test strain if:

(a) the gage is in a half-bridge circuit with a dummy temperature compensat-
ing gage and prior to testing, the indicator is zeroed with the gage factor set
at 2.1.

(b) the gage is the only gage in a quarter-bridge circuit and prior to testing,
the indicator is zeroed with the gage factor set at 2.0.

Solution. From Fig. 6.6, the gage factor variation at 150�C is
DSgð%Þ ¼ 1:13%. Thus, from Eq. (6.2-7), the gage factor at the test tempera-
ture is

ðSgÞT ¼ 1 þ
1:13

100

� �
ð2:1Þ ¼ 2:124

(a) Since in this part, a dummy gage is present that cancels the apparent
strain, the only correction that is necessary is due to the change in the gage
factor. From Eq. (6.2-6),

eactual ¼
2:1

2:124

� �
ð�1800Þ ¼ �1780 m

which we see is a minor correction.

(b) In this part, we must use Eq. (6.2-8). Using the equation given in Fig. 6.6,
the apparent strain at the test temperature is

eapparent ¼� 48:85 þ ð3:86Þð150Þ � ð7:85E 02Þð150Þ2

þ ð4:05E 04Þð150Þ3 � ð5:28E 07Þð150Þ4 ¼ �136:5 m
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Substituting this into Eq. (6.2-8), with ðSgÞi ¼ 2:0, gives

eactual ¼
2:0

2:124

� �
½�1800 � ð�136:5Þ� ¼ �1566 m

which is not a minor correction.

6.3 Detection of Plastic Yielding

In parts made of ductile metal, sometimes a great deal can be learned

concerning the location of the most highly stressed region and the load

that produces elastic failure by noting the first signs of plastic yield-

ing. Such yielding may be detected in the following ways.

Observation of slip lines. If yielding occurs first at some point on the

surface, it can be detected by the appearance of slip lines if the surface

is suitably polished.

Brittle coating. If a member is coated with some material that will

flake off easily, this flaking will indicate local yielding of the member.

A coating of rosin or a wash of lime or white portland cement, applied

and allowed to dry, is best for this purpose, but chalk or mill scale will

often suffice. By this method zones of high stress such as those that

occur in pressure vessels around openings and projections can be

located and the load required to produce local yielding can be deter-

mined approximately.

Photoelastic coatings. Thin photoelastic coatings show very character-

istic patterns analogous to slip lines when the material beneath the

coating yields.

6.4 Analogies

Certain problems in elasticity involve equations that cannot be solved

but that happen to be mathematically identical with the equations

that describe some other physical phenomenon which can be investi-

gated experimentally. Among the more useful of such analogies are the

following.

Membrane analogy. This is especially useful in determining the

torsion properties of bars having noncircular sections. If in a thin

flat plate holes are cut having the outlines of various sections and over

each of these holes a soap film (or other membrane) is stretched and
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slightly distended by pressure from one side, the volumes of the

bubbles thus formed are proportional to the torsional rigidities of

the corresponding sections and the slope of a bubble surface at any

point is proportional to the stress caused at that point of the corre-

sponding section by a given twist per unit length of bar. By cutting in

the plate one hole the shape of the section to be studied and another

hole that is circular, the torsional properties of the irregular section

can be determined by comparing the bubble formed on the hole of that

shape with the bubble formed on the circular hole since the torsional

properties of the circular section are known.

Electrical analogy for isopachic lines. Isopachic lines are lines along

which the sums of the principal stresses are equal in a two-

dimensional plane stress problem. The voltage at any point on a

uniform two-dimensional conducting surface is governed by the

same form of equation as is the principal stress sum. Teledeltos

paper is a uniform layer of graphite particles on a paper backing

and makes an excellent material from which to construct the electrical

analog. The paper is cut to a geometric outline corresponding to the

shape of the two-dimensional structure or part, and boundary poten-

tials are applied by an adjustable power supply. The required bound-

ary potentials are obtained from a photoelastic study of the part where

the principal stress sums can be found from the principal stress

differences on the boundaries (Refs. 2 and 3). A similar membrane

analogy has the height of a nonpressurized membrane proportional to

the principal stress sum (Refs. 2 and 3).
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6.5 Tables

TABLE 6.1 Strain gage rosette equations applied to a specimen of a linear,
isotropic material

The principal strains and stresses are

given relative to the xy coordinate

axes as shown.

Three-element rectangular rosette

Principal strains

ep1 ¼
eA þ eC

2
þ

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðeA � eCÞ

2
þ ð2eB � eA � eCÞ

2

q

ep2 ¼
eA þ eC

2
�

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðeA � eCÞ

2
þ ð2eB � eA � eCÞ

2

q
Principal stresses

sp1 ¼
E

2

eA þ eC

1 � n
þ

1

1 þ n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðeA � eCÞ

2
þ ð2eB � eA � eCÞ

2

q� �

sp2 ¼
E

2

eA þ eC

1 � n
�

1

1 þ n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðeA � eCÞ

2
þ ð2eB � eA � eCÞ

2

q� �
Principal angle

Treating the tan�1 as a single-valued function,y the angle counterclockwise from gage A

to the axis containing ep1 or sp1 is given by

yp ¼
1

2
tan�1 2eB � eA � eC

eA � eC

� �

y See Example in Sec. 6.2.
(continued)
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TABLE 6.1 Strain gage rosette equations applied to a specimen of a linear,
isotropic material (Continued)

Three-element delta rosette

Principal strains

ep1 ¼
eA þ eB þ eC

3
þ

ffiffiffi
2

p

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðeA � eBÞ

2
þ ðeB � eCÞ

2
þ ðeC � eAÞ

2

q

ep2 ¼
eA þB þeC

3
�

ffiffiffi
2

p

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðeA � eBÞ

2
þ ðeB � eCÞ

2
þ ðeC � eAÞ

2

q
Principal stresses

sp1 ¼
E

3

eA þ eB þ eC

1 � n
þ

ffiffiffi
2

p

1 þ n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðeA � eBÞ

2
þ ðeB � eCÞ

2
þ ðeC � eAÞ

2

q" #

sp2 ¼
E

3

eA þ eB þ eC

1 � n
�

ffiffiffi
2

p

1 þ n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðeA � eBÞ

2
þ ðeB � eCÞ

2
þ ðeC � eAÞ

2

q" #

Principal angle

Treating the tan�1 as a single-valued functiony the angle counterclockwise from gage A

to the axis containing ep1 or sp1 is given by

yp ¼
1

2
tan�1

ffiffiffi
3

p
ðeC � eBÞ

2eA � eB � eC

� �

y See Example (as applied to a rectangular rosette) in Sec. 6.2.
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TABLE 6.2 Corrections for the transverse sensitivity of electrical resistance strain
gages

e refers to corrected strain value, whereas êe refers to the strain read from the strain

indicator. The Kt terms are the transverse sensitivity coefficients of the gages as supplied

by the manufacturer. Poisson’s ratio, n0, is normally given to be 0.285.

Two-element rectangular rosette

ex ¼
ð1 � n0KtAÞêeA � KtAð1 � n0KtBÞêeB

1 � KtAKtB

ey ¼
ð1 � n0KtBÞêeB � KtBð1 � n0KtAÞêeA

1 � KtAKtB

Three-element rectangular rosette

eA ¼
ð1 � n0KtAÞêeA � KtAð1 � n0KtCÞêeC

1 � KtAKtC

eB ¼

ð1 � n0KtBÞêeB �
KtB

1 � KtAKtC

½ð1 � n0KtAÞð1 � KtCÞêeA þ ð1 � n0KtCÞð1 � KtAÞêeC �

1 � KtB

eC ¼
ð1 � n0KtCÞêeC � KtCð1 � n0KtAÞêeA

1 � KtAKtC
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eC ¼ kfð1 � n0KtCÞð3 � KtA � KtB � KtAKtBÞêeC � 2KtC ½ð1 � n0KtAÞð1 � KtBÞêeA

þ ð1 � n0KtBÞð1 � KtAÞêeB�g
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Part

3
Formulas and Examples

Each of the following chapters deals with a certain type of

structural member or a certain condition of stress. What may

be called the common, or typical, case is usually discussed

first; special cases, representing peculiarities of form,

proportions, or circumstances of loading, are considered

subsequently. In the discussion of each case the underlying

assumptions are stated, the general behavior of the loaded

member is described, and formulas for the stress and

deformation are given. The more important of the general

equations are numbered consecutively throughout each section

to facilitate reference, but, wherever possible, formulas

applying to specific cases are tabulated for convenience and

economy of space.

In all formulas which contain numerical constants having

dimensions, the units are specified.

Most formulas contain only dimensionless constants and

can be evaluated in any consistent system of units.



109

Chapter

7
Tension, Compression, Shear,

and Combined Stress

7.1 Bar under Axial Tension (or Compression);
Common Case

The bar is straight, of any uniform cross section, of homogeneous

material, and (if under compression) short or constrained against

lateral buckling. The loads are applied at the ends, centrally, and in

such a manner as to avoid nonuniform stress distribution at any

section of the part under consideration. The stress does not exceed

the proportional limit.

Behavior. Parallel to the load the bar elongates (under tension) or

shortens (under compression), the unit longitudinal strain being e and

the total longitudinal deflection in the length l being d. At right angles

to the load the bar contracts (under tension) or expands (under

compression); the unit lateral strain e0 is the same in all transverse

directions, and the total lateral deflection d0 in any direction is

proportional to the lateral dimension d measured in that direction.

Both longitudinal and lateral strains are proportional to the applied

load. On any right section there is a uniform tensile (or compressive)

stress s; on any oblique section there is a uniform tensile (or compres-

sive) normal stress sy and a uniform shear stress ty. The deformed

bar under tension is represented in Fig. 7.1(a), and the stresses in

Fig. 7.1(b).



Formulas. Let

P ¼ applied load

A ¼ cross-sectional area ðbefore loadingÞ

l ¼ length ðbefore loadingÞ

E ¼ modulus of elasticity

n ¼ Poisson0s ratio

Then

s ¼
P

A
ð7:1-1Þ

sy ¼
P

A
cos2 y; max sy ¼ s ðwhen y ¼ 0�Þ

t ¼
P

2A
sin 2y; max ty ¼

1

2
sðwhen y ¼ 45 or 135�Þ

e ¼
s
E

ð7:1-2Þ

d ¼ le ¼
Pl

AE
ð7:1-3Þ

e0 ¼ �ne ð7:1-4Þ

d0 ¼ e0d ð7:1-5Þ

Strain energy per unit volume U ¼
1

2

s2

E
ð7:1-6Þ

Total strain energy U ¼
1

2

s2

E
Al ¼

1

2
Pd ð7:1-7Þ

For small strain, each unit area of cross section changes by ð�2neÞ
under load, and each unit of volume changes by ð1 � 2nÞe under load.

In some discussions it is convenient to refer to the stiffness of a

member, which is a measure of the resistance it offers to being

Figure 7.1
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deformed. The stiffness of a uniform bar under axial load is shown by

Eq. (7.1-3) to be proportional to A and E directly and to l inversely, i.e.,

proportional AE=l.

EXAMPLE

A cylindrical rod of steel 4 in long and 1.5 in diameter has an axial compres-
sive load of 20,000 lb applied to it. For this steel n ¼ 0:285 and E ¼

30;000;000 lb=in2
. Determine (a) the unit compressive stress s; (b) the total

longitudinal deformation, d; (c) the total transverse deformation d0; (d) the
change in volume, DV ; and (e) the total energy, or work done in applying the
load.

Solution

(a) s ¼
P

A
¼

4P

pd2
¼

4ð�20;000Þ

pð1:5Þ2
¼ �11;320 lb=in2

(b) e ¼
s
E

¼
�11;320

30;000;000
¼ �377ð10�6Þ

d ¼ el ¼ ð�377Þð10�6Þð4Þ ¼ �1:509ð10�3Þ in ð
00
�00 means shorteningÞ

(c) e0 ¼ �ne ¼ �0:285ð�377Þð10�6Þ ¼ 107:5ð10�6Þ

d0 ¼ e0d ¼ ð107:5Þð10�6Þð1:5Þ ¼ 1:613ð10�4Þ in ð
00
þ00 means expansionÞ

(d) DV=V ¼ ð1 � 2nÞe ¼ ½1 � 2ð0:285Þ	ð�377Þð10�6Þ ¼ �162:2ð10�6Þ

DV ¼ �162:2ð10�6ÞV ¼ �162:2ð10�6Þ
p
4

d2l ¼ �162:2ð10�6Þ
p
4
ð1:5Þ2ð4Þ

¼ �1:147ð10�3Þ in
3
ð
00
�00 means decreaseÞ

(e) Increase in strain energy,

U ¼
1

2
Pd ¼

1

2
ð�20;000Þð�1:509Þð10�3Þ ¼ 15:09 in-lb

7.2 Bar under Tension (or Compression);
Special Cases

If the bar is not straight, it is subject to bending; formulas for this case

are given in Sec. 12.4.

If the load is applied eccentrically, the bar is subject to bending;

formulas for this case are given in Secs. 8.7 and 12.4. If the load is

compressive and the bar is long and not laterally constrained, it must

be analyzed as a column by the methods of Chapters 12 and 15.

If the stress exceeds the proportional limit, the formulas for stress

given in Sec. 7.1 still hold but the deformation and work done in

producing it can be determined only from experimental data relating

unit strain to unit stress.
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If the section is not uniform but changes gradually, the stress at any

section can be found by dividing the load by the area of that section;

the total longitudinal deformation over a length l is given by

ðl

0

P

AE
dx

and the strain energy is given by

ðl

0

1

2

P2

AE
dx, where dx is an infinite-

simal length in the longitudinal direction. If the change in section is

abrupt stress concentration may have to be taken into account, values

of Kt being used to find elastic stresses and values of Kr being used to

predict the breaking load. Stress concentration may also have to be

considered if the end attachments for loading involve pinholes, screw

threads, or other stress raisers (see Sec. 3.10 and Chap. 17).

If instead of being applied at the ends of a uniform bar the load is

applied at an intermediate point, both ends being held, the method of

consistent deformations shows that the load is apportioned to the two

parts of the bar in inverse proportion to their respective lengths.

If a uniform bar is supported at one end in a vertical position and

loaded only by its own weight, the maximum stress occurs at the

supported end and is equal to the weight divided by the cross-sectional

area. The total elongation is half as great and the total strain energy

one-third as great as if a load equal to the weight were applied at the

unsupported end. A bar supported at one end and loaded by its own

weight and an axial downward load P (force) applied at the unsup-

ported end will have the same unit stress s (force per unit area) at all

sections if it is tapered so that all sections are similar in form but vary

in scale according to the formula

y ¼
s
w

loge

As
P

ð7:2-1Þ

where y is the distance from the free end of the bar to any section, A is

the area of that section, and w is the density of the material (force per

unit volume).

If a bar is stressed by having both ends rigidly held while a change

in temperature is imposed, the resulting stress is found by calculating

the longitudinal expansion (or contraction) that the change in

temperature would produce if the bar were not held and then calculat-

ing the load necessary to shorten (or lengthen) it by that amount

(principle of superposition). If the bar is uniform, the unit stress

produced is independent of the length of the bar if restraint against

buckling is provided. If a bar is stressed by being struck an axial blow

at one end, the case is one of impact loading, discussed in Sec. 16.3.

EXAMPLES

1. Figure 7.2 represents a uniform bar rigidly held at the ends A and D and
axially loaded at the intermediate points B and C. It is required to determine
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the total force in each portion of the bar AB, BC, CD. The loads are in newtons
and the lengths in centimeters.

Solution. Each load is divided between the portions of the bar to right and
left in inverse proportion to the lengths of these parts (consistent deforma-
tions), and the total force sustained by each part is the algebraic sum of the
forces imposed by the individual loads (superposition). Of the 9000 N load,
therefore, 7

9
, or 7000 N, is carried in tension by segment AB, and 2

9
, or 2000 N, is

carried in compression by the segment BD. Of the 18,000 N load, 4
9
, or 8000 N,

is carried in compression by segment AC, and 5
9
, or 10,000 N, is carried in

tension by segment CD. Denoting tension by the plus sign and compression by
the minus sign, and adding algebraically, the actual stresses in each segment
are found to be

AB: 7000 � 8000 ¼ �1000 N

BC: �2000 � 8000 ¼ �10;000 N

CD: �2000 þ 10;000 ¼ þ8000 N

The results are quite independent of the diameter of the bar and of E provided
the bar is completely uniform.

If instead of being held at the ends, the bar is prestressed by wedging it
between rigid walls under an initial compression of, say, 10,000 N and the
loads at B and C are then applied, the results secured above would represent
the changes in force the several parts would undergo. The final forces in the
bar would therefore be 11,000 N compression in AB, 20,000 N compression in
BC, and 2000 N compression in CD. But if the initial compression were less
than 8000 N, the bar would break contact with the wall at D (no tension
possible); there would be no force at all in CD, and the forces in AB and BC,
now statically determinate, would be 9000 and 18,000 N compression, respec-
tively.

2. A steel bar 24 in long has the form of a truncated cone, being circular
in section with a diameter at one end of 1 in and at the other of 3 in. For this
steel, E ¼ 30;000;000 lb=in2

and the coefficient of thermal expansion is
0:0000065=�F. This bar is rigidly held at both ends and subjected to a drop
in temperature of 50�F. It is required to determine the maximum tensile stress
thus caused.

Solution. Using the principle of superposition, the solution is effected in
three steps: (a) the shortening d due to the drop in temperature is found,
assuming the bar free to contract; (b) the force P required to produce an
elongation equal to d, that is, to stretch the bar back to its original length, is
calculated; (c) the maximum tensile stress produced by this force P is
calculated.

(a) d ¼ 50(0.0000065)(24) ¼ 0.00780 in.

(b) Let d denote the diameter and A the area of any section a distance x in

Figure 7.2
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from the small end of the bar. Then

d ¼ 1 þ
x

12
; A ¼

p
4

1 þ
x

12

� �2

and

d ¼

ðl

0

P

EA
dx ¼

ð24

0

4P

ðpEÞð1 þ x=12Þ2
dx ¼

4P

pð30Þð106Þ

ð�12Þ

ð1 þ x=12Þ

�����
24

0

¼ 3:395ð10�7ÞP

Equating this to the thermal contraction of 0.00780 in yields

P ¼ 22;970 lb

(c) The maximum stress occurs at the smallest section, and is

s ¼
4P

pd2
min

¼
4ð22;970Þ

pð1Þ2
¼ 29;250 lb=in2

The result can be accepted as correct only if the proportional limit of the steel
is known to be as great as or greater than the maximum stress and if the
concept of a rigid support can be accepted. (See cases 8, 9, and 10 in Table
14.1.)

7.3 Composite Members

A tension or compression member may be made up of parallel

elements or parts which jointly carry the applied load. The essential

problem is to determine how the load is apportioned among the several

parts, and this is easily done by the method of consistent deformations.

If the parts are so arranged that all undergo the same total elongation

or shortening, then each will carry a portion of the load proportional to

its stiffness, i.e., proportional to AE=l if each is a uniform bar and

proportional to AE if all these uniform bars are of equal length. It

follows that if there are n bars, with section areas A1;A2; . . . ;An,

lengths l1; l2; . . . ; ln, and moduli E1, E2; . . . ;En, then the loads on the

several bars P1, P2; . . . ;Pn are given by

P1 ¼ P

A1E1

l1

A1E1

l1

þ
A2E2

l2

þ 
 
 
 þ
AnEn

ln

ð7:3-1Þ

P2 ¼ P

A2E2

l2

A1E1

l1

þ
A2E2

l2

þ 
 
 
 þ
AnEn

ln

ð7:3-2Þ

::::::::::::::::::::::::::::::::::::::::::::::::::::::::
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A composite member of this kind can be prestressed. P1, P2, etc., then

represent the increments of force in each member due to the applied

load, and can be found by Eqs. (7.3-1) and (7.3-2), provided all bars can

sustain reversal of stress, or provided the applied load is not great

enough to cause such reversal in any bar which cannot sustain it. As

explained in Sec. 3.12, by proper prestressing, all parts of a composite

member can be made to reach their allowable loads, elastic limits, or

ultimate strengths simultaneously (Example 2).

EXAMPLES

1. A ring is suspended by three vertical bars, A, B, and C of unequal lengths.
The upper ends of the bars are held at different levels, so that as assembled
none of the bars is stressed. A is 4 ft long, has a section area of 0:3 in

2
, and is of

steel for which E ¼ 30;000;000 lb=in2
; B is 3 ft long and has a section area of

0:2 in
2
, and is of copper for which E ¼ 17;000;000 lb=in2

; C is 2 ft long, has
a section area of 0:4 in

2
, and is of aluminum for which E ¼ 10;000;000 lb=in2

.
A load of 10,000 lb is hung on the ring. It is required to determine how much of
this load is carried by each bar.

Solution. Denoting by PA, PB, and PC the loads carried by A, B, and C,
respectively, and expressing the moduli of elasticity in millions of pounds per
square inch and the lengths in feet, we substitute in Eq. (7.3-1) and find

PA ¼ 10;000

ð0:3Þð30Þ

4
ð0:3Þð30Þ

4
þ
ð0:2Þð17Þ

3
þ
ð0:4Þð10Þ

2

2
64

3
75 ¼ 4180 lb

Similarly

PB ¼ 2100 lb and PC ¼ 3720 lb

2. A composite member is formed by passing a steel rod through an aluminum
tube of the same length and fastening the two parts together at both ends. The
fastening is accomplished by adjustable nuts, which make it possible to
assemble the rod and tube so that one is under initial tension and the other
is under an equal initial compression. For the steel rod the section area is
1:5 in

2
, the modulus of elasticity 30,000,000 lb=in2

and the allowable stress
15,000 lb=in2

. For the aluminum tube the section area is 2 in
2
, the modulus of

elasticity 10,000,000 lb=in2
and the allowable stress 10,000 lb=in2

. It is desired
to prestress the composite member so that under a tensile load both parts will
reach their allowable stresses simultaneously.

Solution. When the allowable stresses are reached, the force in the steel rod
will be 1.5(15,000) ¼ 22,500 lb, the force in the aluminum tube will be
2(10,000) ¼ 20,000 lb, and the total load on the member will be
22,500 þ 20,000 ;¼ 42,500 lb. Let Pi denote the initial tension or compression
in the members, and, as before, let tension be considered positive and
compression negative. Then, since Eq. (7.3-1) gives the increment in force,

SEC. 7.3] Tension, Compression, Shear, and Combined Stress 115



we have for the aluminum tube

Pi þ 42;500
ð2Þð10Þ

ð2Þð10Þ þ ð1:5Þð30Þ
¼ 20;000

or

Pi ¼ þ 6920 lb ðinitial tensionÞ

For the steel rod, we have

Pi þ 42;500
ð1:5Þð30Þ

ð2Þð10Þ þ ð1:5Þð30Þ
¼ 22;500

or

Pi ¼ �6920 lb ðinitial compressionÞ

If the member were not prestressed, the unit stress in the steel would
always be just three times as great as that in the aluminum because it would
sustain the same unit deformation and its modulus of elasticity is three times
as great. Therefore, when the steel reached its allowable stress of
15,000 lb=in2

, the aluminum would be stressed to only 5000 lb=in2
and the

allowable load on the composite member would be only 32,500 lb instead of
42,500 lb.

7.4 Trusses

A conventional truss is essentially an assemblage of straight uniform

bars that are subjected to axial tension or compression when the truss

is loaded at the joints. The deflection of any joint of a truss is easily

found by the method of unit loads (Sec. 4.5). Let p1, p2, p3, etc., denote

the forces produced in the several members by an assumed unit load

acting in the direction x at the joint whose deflection is to be found,

and let d1, d2, d3, etc., denote the longitudinal deformations produced

in the several members by the actual applied loads. The deflection Dx

in the direction x of the joint in question is given by

Dx ¼ p1d1 þ p2d2 þ p3d3 þ 
 
 
 ¼
Pn
i¼1

pidi ð7:4-1Þ

The deflection in the direction y, at right angles to x, can be found

similarly by assuming the unit load to act in the y direction; the

resultant deflection is then determined by combining the x and y

deflections. Attention must be given to the signs of p and d, p is

positive if a member is subjected to tension and negative if under

compression, and d is positive if it represents an elongation and

negative if it represents a shortening. A positive value for
P

pd
means that the deflection is in the direction of the assumed unit
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load, and a negative value means that it is in the opposite direction.

(This procedure is illustrated in Example 1 below.)

A statically indeterminate truss can be solved by the method of least

work (Sec. 4.5). To do this, it is necessary to write down the expression

for the total strain energy in the structure, which, being simply the

sum of the strain energies of the constituent bars, is given by

1

2
P1d1 þ

1

2
P2d2 þ

1

2
P3d3 þ 
 
 
 ¼

Pn
i¼1

1

2
Pidi ¼

Pn
i¼1

1

2

P2l

AE

� 

i

ð7:4-2Þ

Here P1, P2, etc., denote the forces in the individual members due to

the applied loads and d has the same meaning as above. It is necessary

to express each force Pi as the sum of the two forces; one of these is the

force the applied loads would produce with the redundant member

removed, and the other is the force due to the unknown force (say, F)

exerted by this redundant member on the rest of the structure. The

total strain energy is thus expressed as a function of the known

applied forces and F , the force in the redundant member. The partial

derivative with respect to F of this expression for strain energy is then

set equal to zero and solved for F. If there are two or more redundant

members, the expression for strain energy with all the redundant

forces, F1, F2, etc., represented is differentiated once with respect to

each. The equations thus obtained are then solved simultaneously for

the unknown forces. (The procedure is illustrated in Example 2.)

EXAMPLES

1. The truss shown in Fig. 7.3 is composed of tubular steel members, for which
E ¼ 30;000;000 lb=in2

. The section areas of the members are given in the table
below. It is required to determine Dx and Dy, the horizontal and vertical
components of the displacement of joint A produced by the indicated loading.

Solution. The method of unit loads is used. The force P in each member due
to the applied loads is found, and the resulting elongation or shortening d is
calculated. The force px in each member due to a load of 1 lb acting to the right
at A, and the force py in each member due to a load of 1 lb acting down at A are
calculated. By Eq. (7.4-1),

P
pxd, then gives the horizontal and

P
pyd gives the

vertical displacement or deflection of A. Tensile forces and elongations are

Figure 7.3
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denoted by þ , compressive forces and shortenings by � . The work is
conveniently tabulated as follows:

Area, Length, ðpxdÞi, ðpydÞi,
Member Ai, in

2
li, in Pi, lb

di ¼
Pl

AE

� 

i

, in
ðpxÞi in (a) ðpyÞi in (b)

(1) AB 0.07862 48 800 0.01628 1.000 0.01628 1.333 0.02171

(2) AC 0.07862 60 �1000 �0.02544 0 0 �1.667 0.04240

(3) BC 0.1464 36 1200 0.00984 0 0 1.000 0.00984

(4) BE 0.4142 48 4000 0.01545 1.000 0.01545 2.667 0.04120

(5) BD 0.3318 60 �4000 �0.02411 0 0 �1.667 0.04018

(6) CD 0.07862 48 �800 �0.01628 0 0 �1.333 0.02171

Dx ¼ 0:03173 in Dy ¼ 0:17704 in

Dx and Dy are both found to be positive, which means that the displacements
are in the directions of the assumed unit loads—to the right and down. Had
either been found to be negative, it would have meant that the displacement
was in a direction opposite to that of the corresponding unit load.

2. Assume a diagonal member, running from A to D and having a section
area 0:3318 in

2
and length 8.544 ft, is to be added to the truss of Example 1;

the structure is now statically indeterminate. It is required to determine the
force in each member of the altered truss due to the loads shown.

Solution. We use the method of least work. The truss has one redundant
member; any member except BE may be regarded as redundant, since if any
one were removed, the remaining structure would be stable and statically
determinate. We select AD to be regarded as redundant, denote the unknown
force in AD by F, and assume F to be tension. We find the force in each member
assuming AD to be removed, then find the force in each member due to a pull F
exerted at A by AD, and then add these forces, thus getting an expression for
the force in each member of the actual truss in terms of F . The expression for
the strain energy can then be written out, differentiated with respect to F ,
equated to zero, and solved for F. F being known, the force in each member of
the truss is easily found. The computations are conveniently tabulated as
follows:

Forces in membersy

Due to

applied

loads without

AD

Due to

pull, F ,

exerted by

AD

Total forces,

Pi. Superposition

of (a) and (b)

Actual total

values with

F ¼ �1050 lb in (c)

Member (a) (lb) (b) (c) (d) (lb)

(1) AB 800 �0.470 F 800 � 0:470 F 1290

(2) AC �1000 �0.584 F �1000 � 0:584 F �390

(3) BC 1200 0.351 F 1200 þ 0:351 F 830

(4) BE 4000 0 4000 4000

(5) BD �4000 �0.584 F �4000 � 0:584 F �3390

(6) CD �800 �0.470 F �800 � 0:470 F �306

(7) AD 0 F F �1050

y þ for tension and � for compression.
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U ¼
P7
i¼1

1

2

P2l

AE

� 

i

¼
1

2E

ð800 � 0:470FÞ
2
ð48Þ

0:07862
þ
ð�1000 � 0:584FÞ

2
ð60Þ

0:07862

"

þ
ð1200 þ 0:351FÞ

2
ð36Þ

0:1464
þ
ð4000Þ2ð48Þ

0:4142

þ
ð�4000 � 0:584FÞ

2
ð60Þ

0:3318
þ
ð�800 � 0:470FÞ

2
ð48Þ

0:07862

þ
F2ð102:5Þ

0:3318

�

Setting the partial derivative of U relative to F to zero,

@U

@F
¼

1

2E

2ð800 � 0:470FÞð�0:470Þð48Þ

0:07862
þ

2ð�1000 � 0:584FÞð�0:584Þð60Þ

0:07862
þ 
 
 


� �
¼ 0

and solving for F gives F ¼ �1050 lb.
The negative sign here simply means that AD is in compression. A positive

value of F would have indicated tension. Substituting the value of F into the
terms of column (c) yield the actual total forces in each member as tabulated in
column (d).

7.5 Body under Pure Shear Stress

A condition of pure shear may be produced by any one of the methods

of loading shown in Fig. 7.4. In Fig. 7.4(a), a rectangular block of

length a, height b, and uniform thickness t is shown loaded by forces

P1 and P2, uniformly distributed over the surfaces to which they are

applied and satisfying the equilibrium equation P1b ¼ P2a. There are

equal shear stresses on all vertical and horizontal planes, so that any

contained cube oriented like ABCD has on each of four faces the shear

stress t ¼ P1=at ¼ P2=bt and no other stress.

In Fig. 7.4(b) a rectangular block is shown under equal and opposite

biaxial stresses st and sc. There are equal shear stresses on all planes

inclined at 45� to the top and bottom faces, so that a contained cube

Figure 7.4
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oriented like ABCD has on each of four faces the shear stress

t ¼ st ¼ sc and no other stress.

In Fig. 7.4(c), a circular shaft is shown under a twisting moment T ; a

cube of infinitesimal dimensions, a distance z from the axis and

oriented like ABCD has on each of four faces an essentially uniform

shear stress t ¼ Tz=J (Sec. 10.1) and no other stress.

In whatever way the loading is accomplished, the result is to impose

on an elementary cube of the loaded body the condition of stress

represented in Fig. 7.5, that is, shearing stress alone on each of four

faces, these stresses being equal and so directed as to satisfy the

equilibrium condition Tx ¼ 0 (Sec. 4.1).

The stresses, sy and ty on a transformed surface rotated counter-

clockwise through the angle y can be determined from the transforma-

tion equations given by Eqs. (2.3-17). They are given by

sy ¼ t sin 2y; ty ¼ t cos 2y ð7:5-1Þ

where ðsyÞmax;min ¼ �t at y ¼ �45�.

The strains produced by pure shear are shown in Fig. 7.5(b), where

the cube ABCD is deformed into a rhombohedron A0B0C0D0. The unit

shear strain, g, referred to as the engineering shear strain, is reduction

of angles ffABC and ffADC, and the increase in angles ffDAB and

ffBCD in radians. Letting G denote the modulus of rigidity, the shear

strain is related to the shear stress as

g ¼
t
G

ð7:5-2Þ

Assuming a linear material, the strain energy per unit volume for pure

shear, us, within the elastic range is given by

us ¼
1

2

t2

G
ð7:5-3Þ

Figure 7.5 (a) Shear stress and transformation. (b) Shear strain.
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The relations between t, s, and the strains represented in Fig. 7.5(b)

make it possible to express G in terms of E and Poisson’s ratio, n, for a

linear, homogeneous, isotropic material. The relationship is

G ¼
E

2ð1 þ nÞ
ð7:5-4Þ

From known values of E (determined by a tensile test) and G

(determined by a torsion test) it is thus possible to calculate n.

7.6 Cases of Direct Shear Loading

By direct shear loading is meant any case in which a member is acted

on by equal, parallel, and opposite forces so nearly colinear that the

material between them is subjected primarily to shear stress, with

negligible bending. Examples of this are provided by rivets, bolts, and

pins, shaft splines and keys, screw threads, short lugs, etc. These are

not really cases of pure shear; the actual stress distribution is complex

and usually indeterminate because of the influence of fit and other

factors. In designing such parts, however, it is usually assumed that

the shear is uniformly distributed on the critical section, and since

working stresses are selected with due allowance for the approximate

nature of this assumption, the practice is usually permissible. In

beams subject to transverse shear, this assumption cannot be made

as a rule.

Shear and other stresses in rivets, pins, keys, etc., are discussed

more fully in Chap. 14, shear stresses in beams in Chap. 8, and shear

stresses in torsion members in Chap. 10.

7.7 Combined Stress

Under certain circumstances of loading, a body is subjected to a

combination of tensile and compressive stresses (usually designated

as biaxial or triaxial stress) or to a combination of tensile, compressive,

and shear stresses (usually designated as combined stress). For

example, the material at the inner surface of a thick cylindrical

pressure vessel is subjected to triaxial stress (radial compression,

longitudinal tension, and circumferential tension), and a shaft simul-

taneously bent and twisted is subjected to combined stress (longi-

tudinal tension or compression, and torsional shear).

In most instances the normal and shear stresses on each of three

mutually perpendicular planes are due to flexure, axial loading,

torsion, beam shear, or some combination of these which separately

can be calculated readily by the appropriate formulas. Normal stresses

arising from different load conditions acting on the same plane can be
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combined simply by algebraic addition considering tensile stresses

positive and compressive stresses negative. Similarly, shear stresses

can be combined by algebraic addition following a consistent sign

convention. Further analysis of the combined states of normal and

shear stresses must be performed using the transformation techniques

outlined in Sec. 2.3. The principal stresses, the maximum shear stress,

and the normal and shear stresses on any given plane can be found by

the equations given in Sec. 2.3.

The strains produced by any combination of stresses not exceeding

the proportional limit can also be found using Hooke’s law for each

stress and then combined by superposition. Consideration of the

strains caused by equal triaxial stresses leads to an expression for

the bulk modulus of elasticity given by

K ¼
E

3ð1 � 2nÞ
ð7:7-1Þ

EXAMPLES

1. A rectangular block 12 in long, 4 in high, and 2 in thick is subjected to a
longitudinal tensile stress sx ¼ 12;000 lb=in2

, a vertical compressive stress
sy ¼ 15;000 lb=in2

, and a lateral compressive stress sz ¼ 9000 lb=in2
. The

material is steel, for which E ¼ 30;000;000 lb=in2
and n ¼ 0:30. It is required

to find the total change in length.

Solution. The longitudinal deformation is found by superposition: The unit
strain due to each stress is computed separately by Eqs. (7.1-2) and (7.1-4);
these results are added to give the resultant longitudinal unit strain, which is
multiplied by the length to give the total elongation. Denoting unit long-
itudinal strain by ex and total longitudinal deflection by dx , we have

ex ¼
12;000

E
� n

�15;000

E
� n

�9000

E

¼ 0:000400 þ 0:000150 þ 0:000090 ¼ þ0:00064

dx ¼ 12ð0:00064Þ ¼ 0:00768 in

The lateral dimensions have nothing to do with the result since the lateral
stresses, not the lateral loads, are given.

2. A piece of ‘‘standard extra-strong’’ pipe, 2 in nominal diameter, is simulta-
neously subjected to an internal pressure of p ¼ 2000 lb=in2

and to a twisting
moment of T ¼ 5000 in-lb caused by tightening a cap screwed on at one end.
Determine the maximum tensile stress and the maximum shear stress thus
produced in the pipe.

Solution. The calculations will be made, first, for a point at the outer
surface and, second, for a point at the inner surface. The dimensions of the
pipe and properties of the cross section are as follows: inner radius
ri ¼ 0:9695 in, outer radius ro ¼ 1:1875 in, cross-sectional area of bore
Ab ¼ 2:955 in

2
, cross-sectional area of pipe wall Aw ¼ 1:475 in

2
, and polar

moment of inertial J ¼ 1:735 in
4
.
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We take axis x along the axis of the pipe, axis y tangent to the cross section,
and axis z radial in the plane of the cross section. For a point at the outer
surface of the pipe, sx is the longitudinal tensile stress due to pressure and sy

is the circumferential (hoop) stress due to pressure, the radial stress sz ¼ 0
(since the pressure is zero on the outer surface of the pipe), and txy is the shear
stress due to torsion. Equation (7.1-1) can be used for sx, where P ¼ pAb

and A ¼ Aw. To calculate sy, we use the formula for stress in thick cylinders
(Table 13.5, case 1b). Finally, for txy, we use the formula for torsional stress
(Eq. (10.1-2). Thus,

sx ¼
pAb

Aw

¼
ð2000Þð2:955Þ

1:475
¼ 4007 lb=in2

sy ¼ p
r2

i ðr
2
o þ r2

oÞ

r2
oðr

2
o � r2

i Þ
¼ 2000

ð0:96952Þð1:18752 þ 1:18752Þ

ð1:18752Þð1:18752 � 0:96952Þ
¼ 7996 lb=in2

txy ¼
Tro

J
¼

ð5000Þð1:1875Þ

1:735
¼ 3422 lb=in2

This is a case of plane stress where Eq. (2.3-23) applies. The principal stresses
are thus

sp ¼ 1
2
½ðsx þ syÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðsx � syÞ

2
þ 4t2

xy

q
	

¼ 1
2
½ð4007 þ 7996Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð4007 � 7996Þ2 þ 4ð34222Þ

q
	 ¼ 9962; 2041 lb=in2

Thus, smax ¼ 9962 lb=in2
.

In order to determine the maximum shear stress, we order the three
principal stresses such that s1 5s2 5s3. For plane stress, the out-of-plane
principal stresses are zero. Thus, s1 ¼ 9962 lb=in2

, s2 ¼ 2041 lb=in2
, and

s3 ¼ 0. From Eq. (2.3-25), the maximum shear stress is

tmax ¼ 1
2
ðs1 � s3Þ ¼

1
2
ð9962 � 0Þ ¼ 4981 lb=in2

For a point on the inner surface, the stress conditions are three-dimensional
since a radial stress due to the internal pressure is present. The longitudinal
stress is the same; however, the circumferential stress and torsional shear
stress change. For the inner surface,

sx ¼ 4007 lb=in2

sy ¼ p
r2

o þ r2
i

r2
o � r2

i

¼ 2000
1:18752 þ 0:96952

1:18752 � 0:96952
¼ 9996 lb=in2

sz ¼ �p ¼ �2000 lb=in2

txy ¼
Tri

J
¼

ð5000Þð0:9695Þ

1:735
¼ 2794 lb=in2

tyz ¼ tzx ¼ 0
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The principal stresses are found using Eq. (2.3-20):y

s3
p � ð4007 þ 9996 � 2000Þs2

p þ ½ð4007Þð9996Þ þ ð9996Þð�2000Þ

þ ð�2000Þð4007Þ � 27942 � 0 � 0	sp � ½ð4007Þð9996Þð�2000Þ þ 2ð2794Þð0Þð0Þ

� ð4007Þð02Þ � ð9996Þð02Þ � ð�2000Þð27942Þ	 ¼ 0

or

s3
p � 12:003ð103Þs2

p þ 4:2415ð106Þsp þ 64:495ð109Þ ¼ 0

Solving this gives sp ¼ 11;100; 2906, and �2000 lb=in2
, which are the

principal stresses s1, s2, and s3, respectively. Obviously, the maximum

tensile stress is 11;100 lb=in2
. Again, the maximum shear stress comes

from Eq. (2.3-25), and is 1
2
½11;100 � ð�2000Þ	 ¼ 6550 lb=in2

.

Note that for this problem, if the pipe is a ductile material, and one

were looking at failure due to shear stress (see Sec. 3.7), the stress

conditions for the pipe are more severe at the inner surface compared

with the outer surface.

y Note: Since tyz ¼ tzx ¼ 0, sz is one of the principal stresses and the other two can be
found from the plane stress equations. Consequently, the other two principal stresses are
in the xy plane.
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Chapter

8
Beams; Flexure of Straight Bars

8.1 Straight Beams (Common Case) Elastically
Stressed

The formulas in this section are based on the following assumptions:

(1) The beam is of homogeneous material that has the same modulus of

elasticity in tension and compression. (2) The beam is straight or

nearly so; if it is slightly curved, the curvature is in the plane of

bending and the radius of curvature is at least 10 times the depth. (3)

The cross section is uniform. (4) The beam has at least one long-

itudinal plane of symmetry. (5) All loads and reactions are perpendi-

cular to the axis of the beam and lie in the same plane, which is a

longitudinal plane of symmetry. (6) The beam is long in proportion to

its depth, the span=depth ratio being 8 or more for metal beams of

compact section, 15 or more for beams with relatively thin webs, and

24 or more for rectangular timber beams. (7) The beam is not

disproportionately wide (see Sec. 8.11 for a discussion on the effect

of beam width). (8) The maximum stress does not exceed the propor-

tional limit.

Applied to any case for which these assumptions are not valid, the

formulas given yield results that at best are approximate and that

may be grossly in error; such cases are discussed in subsequent

sections. The limitations stated here with respect to straightness

and proportions of the beam correspond to a maximum error in

calculated results of about 5%.

In the following discussion, it is assumed for convenience that the

beam is horizontal and the loads and reactions vertical.

Behavior. As the beam bends, fibers on the convex side lengthen, and

fibers on the concave side shorten. The neutral surface is normal to the

plane of the loads and contains the centroids of all sections, hence the

neutral axis of any section is the horizontal central axis. Plane sections



remain plane, and hence unit fiber strains and stresses are propor-

tional to distance from the neutral surface. Longitudinal displace-

ments of points on the neutral surface are negligible. Vertical

deflection is largely due to bending, that due to shear being usually

negligible under the conditions stated.

There is at any point a longitudinal fiber stress s, which is tensile if

the point lies between the neutral and convex surfaces of the beam and

compressive if the point lies between the neutral and concave surfaces

of the beam. This fiber stress s usually may be assumed uniform

across the width of the beam (see Secs. 8.11 and 8.12).

There is at any point a longitudinal shear stress t on the horizontal

plane and an equal vertical shear stress on the transverse plane.

These shear stresses, due to the transverse beam forces, may be

assumed uniform across the width of the beam (see page 129).

Figure 8.1(a,b) represent a beam under load and show the various

dimensions that appear in the formulas; Fig. 8.1(c) shows a small

stress element at a point q acted on by the stresses s and t.

Formulas. Let I ¼ the moment of inertia of the section of the beam

with respect to the neutral axis and E ¼ modulus of elasticity of the

material.

The fiber stress s at any point q is

s ¼ �
My

I
ð8:1-1Þ

Figure 8.1
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where M is the bending moment at the section containing q, and y is

the vertical distance from the neutral axis to q.

The shear stress t at any point q is

t ¼
VA0 �yy

Ib
ð8:1-2Þ

where V is the vertical shear at the section containing q, A0 is the area

of that part of the section above (or below) q; �yy is the distance from the

neutral axis to the centroid of A0, and b is the net breadth of the section

measured through q.

The complementary energy of flexure Uf , is

Uf ¼

ð
M2

2EI
dx ð8:1-3Þ

where M represents the bending moment equation in terms of x, the

distance from the left end of the beam to any section.

The radius of curvature r of the elastic curve at any section is

r ¼
EI

M
ð8:1-4Þ

where M is the bending moment at the section in question.

The general differential equation of the elastic curve is

EI
d2yc

dx2
¼ M ð8:1-5Þ

where M has the same meaning as in Eq. (8.1-3) and yc represents the

vertical deflection of the centroidal axis of the beam. Solution of this

equation for the vertical deflection yc is effected by writing out the

expression for M, integrating twice, and determining the constants of

integration by the boundary conditions.

By the method of unit loads the vertical deflection at any point is

found to be

yc ¼

ð
Mm

EI
dx ð8:1-6Þ

or by Castigliano’s second theorem it is found to be

yc ¼
@U

@P
ð8:1-7Þ

where M has the same meaning as in Eq. (8.1-3) and m is the equation

of the bending moment due to a unit load acting vertically at the

section where yc is to be found. The integration indicated must be

performed over each portion of the beam for which either M or m is

expressed by a different equation. A positive result for yc means that
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the deflection is in the direction of the assumed unit load; a negative

result means it is in the opposite direction (see Example 2 at the end of

this section).

In Eq. (8.1-7), U is given by Eq. (8.1-3) and P is a vertical load, real

or imaginary, applied at the section where yc is to be found. It is most

convenient to perform the differentiation within the integral sign; as

with Eq. (8.1-6), the integration must extend over the entire length of

the beam, and the sign of the result is interpreted as before.

The change in slope of elastic curve Dy (radians) between any two

sections a and b is

Dy ¼

ðb

a

M

EI
dx ð8:1-8Þ

where M has the same meaning as in Eq. (8.1-3).

The deflection Dyc at any section a, measured vertically from a

tangent drawn to the elastic curve at any section b, is

Dyc ¼

ðb

a

M

EI
x dx ð8:1-9Þ

where x is the distance from a to any section dx between a and b.

Important relations between the bending moment and shear equa-

tions are

V ¼
dM

dx
ð8:1-10Þ

M ¼

ð
V dx ð8:1-11Þ

These relations are useful in constructing shear and moment

diagrams and locating the section or sections of maximum bending

moment since Eq. (8.1-10) shows that the maximum moment occurs

when V , its first derivative, passes through zero and Eq. (8.1-11)

shows that the increment in bending moment that occurs between any

two sections is equal to the area under the shear diagram between

those sections.

Maximum fiber stress. The maximum fiber stress at any section occurs

at the point or points most remote from the neutral axis and is given

by Eq. (8.1-1) when y ¼ c; hence

smax ¼
Mc

I
¼

M

I=c
¼

M

S
ð8:1-12Þ
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where S is the section modulus. The maximum fiber stress in the beam

occurs at the section of greatest bending moment; if the section is not

symmetrical about the neutral axis, the stresses should be investi-

gated at both the section of greatest positive moment and the section of

greatest negative moment.

Maximum transverse shear stress.y The maximum transverse shear

stress in the beam occurs at the section of greatest vertical shear.

The maximum transverse shear stress at any section occurs at the

neutral axis, provided the net width b is as small there as anywhere

else; if the section is narrower elsewhere, the maximum shear stress

may not occur at the neutral axis. This maximum transverse shear

stress can be expressed conveniently by the formula

ðtmaxÞV ¼ a
V

A
ð8:1-13Þ

where V=A is the average shear stress on the section and a is a factor

that depends on the form of the section. For a rectangular section,

a ¼ 3
2

and the maximum stress is at the neutral axis; for a solid circular

section, a ¼ 4
3

and the maximum stress is at the neutral axis; for a

triangular section, a ¼ 3
2

and the maximum stress is halfway between

the top and bottom of the section; for a diamond-shaped section of

depth h, a ¼ 9
8

and the maximum stress is at points that are a distance

h=8 above and below the neutral axis.

In the derivation of Eq. (8.1-2) and in the preceding discussion, it is

assumed that the shear stress is uniform across the width of the beam;

i.e., it is the same at all points on any transverse line parallel to the

neutral axis. Actually this is not the case; exact analysis (Ref. 1) shows

that the shear stress varies across the width and that for a rectangle

the maximum intensity occurs at the ends of the neutral axis where,

for a wide beam, it is twice the average intensity. Photoelastic

investigation of beams under concentrated loading shows that loca-

lized shearing stresses about four times as great as the maximum

stress given by Eq. (8.1-2) occur near the points of loading and support

(Ref. 2), but experience shows that this variation may be ignored and

design based on the average value as determined by Eq. (8.1-2).

y Note that the transverse shear stress denoted here is the shear stress due to the
vertical transverse force, V . The maximum transverse shear stress in a beam is not
necessarily the maximum shear stress in the beam. One needs to look at the overall state
of stress in light of stress transformations. For long beams, the maximum shear stress is
normally due to the maximum fiber stress, and, using Eq. (2.3-25), the maximum shear
stress is tmax ¼ 1

2
smax ¼ 1

2
M=S. For this reason, we will denote the maximum transverse

shear stress in a beam as ðtmaxÞV .
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For some sections the greatest horizontal shear stress at a given

point occurs, not on a horizontal plane, but on an inclined longitudinal

plane which cuts the section so as to make b a minimum. Thus, for a

circular tube or pipe the greatest horizontal shear stress at any point

occurs on a radial plane; the corresponding shear stress in the plane of

the section is not vertical but tangential, and in computing t by Eq.

(8.1-2) b should be taken as twice the thickness of the tube instead of

the net horizontal breadth of the member. (See Table 9.2, case 20 for

an example of where this shear stress in a tube is of importance.)

In an I-, T-, or box section there is a horizontal shear stress on any

vertical longitudinal plane through the flange, and this stress is

usually a maximum at the juncture of flange and web. It may be

calculated by Eq. (8.1-2), taking A0 as the area outside of the vertical

plane (for outstanding flanges) or between the vertical plane and the

center of the beam section (for box girders), and b as the flange

thickness (see the solution to Example lb). The other terms have the

same meanings as explained previously.

Shear stresses are not often of controlling importance except in wood

or metal beams that have thin webs or a small span=depth ratio. For

beams that conform to the assumptions stated previously, strength

will practically always be governed by fiber stress.

Change in projected length due to bending. The apparent shortening of

a beam due to bending, i.e., the difference between its original length

and the horizontal projection of the elastic curve, is given by

Dl ¼ �
1

2

ðl

0

dy

dx

� �2

dx ð8:1-14Þ

To evaluate Dl, dy=dx is expressed in terms of x [Eq. (8.1-5)] and the

square of this is integrated as indicated.

The extreme fibers of the beam undergo a change in actual length

due to stress given by

e ¼

ðl

0

Mc

EI
dx ð8:1-15Þ

By means of these equations the actual relative horizontal displace-

ment of points on the upper or lower surface of the beam can be

predicted and the necessary allowances made in the design of rocker

bearings, clearance for the corners, etc.

Tabulated formulas. Table 8.1 gives formulas for the reactions,

moments, slopes and deflections at each end of single-span beams

supported and loaded in various ways. The table also gives formulas
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for the vertical shears, bending moments, slopes, and deflections at

any distance x from the left end of the span.

In these formulas, the unit step function is used by itself and in

combination with ordinary functions.

The unit step function is denoted by hx � ai0 where the use of the

angle brackets h i is defined as follows: If x < a, hx � ai0 ¼ 0; if x > a,

hx � ai0 ¼ 1. At x ¼ a the unit step function is undefined just as

vertical shear is undefined directly beneath a concentrated load. The

use of the angle brackets h i is extended to other cases involving powers

of the unit step function and the ordinary function ðx � aÞn. Thus the

quantity ðx � aÞnhx � ai0 is shortened to hx � ain and again is given a

value of zero if x < a and is ðx � aÞn if x > a.

In addition to the usual concentrated vertical loads, concentrated

couples, and distributed loads, Table 8.1 also presents cases where the

loading is essentially a development of reactions due to deformations

created within the span. These cases include the concentrated angular

displacement, concentrated transverse deflection, and linear tempera-

ture differential across the beam from top to bottom. In all three cases

it can be assumed that initially the beam was deformed but free of

stress and then is forced to conform to the end conditions. (In many

cases no forces are created, and the formulas give only the deformed

shape.)

Hetényi (Ref. 29) discusses in detail the Maclaurin series form of the

equations used in this article and suggests (Ref. 53) that the deforma-

tion type of loading might be useful in solving beam problems.

Thomson (Ref. 65) describes the use of the unit step function in the

determination of beam deflections. By superposition, the formulas can

be made to apply to almost any type of loading and support. The use of

the tabulated and fundamental formulas given in this article is

illustrated in the following examples.

EXAMPLES

1. For a beam supported and loaded as shown in Fig. 8.2, it is required to
determine the maximum tensile stress, maximum shear stress, and maximum
compressive stress, assuming, first, that the beam is made of wood with
section as shown in Fig. 8.2(a) second, that the beam is made of wood with
section as shown in Fig. 8.2(b); and third that the beam is a 4-in, 7.7-lb steel I-
beam.

Solution. By using the equations of equilibrium (Sec. 4.1), the left and right
reactions are found to be 900 and 1500 lb, respectively. The shear and moment
equations are therefore

ðx ¼ 0 to x ¼ 160Þ: V ¼ 900 � 12x

M ¼ 900x � 12xð1
2
xÞ

ðx ¼ 160 to x ¼ 200Þ: V ¼ 900 � 12x þ 1500

M ¼ 900x � 12xð1
2
xÞ þ 1500ðx � 160Þ
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Using the step function described previously, these equations can be reduced
to

V ¼ 900 � 12x þ 1500hx � 160i0

M ¼ 900x � 6x2 þ 1500hx � 160i

These equations are plotted, giving the shear and moment diagrams shown
in Fig. 8.2. The maximum positive moment evidently occurs between the
supports; the exact location is found by setting the first shear equation equal to
zero and solving for x, which gives x ¼ 75 in. Substitution of this value of x in
the first moment equation gives M ¼ 33;750 lb-in. The maximum negative
moment occurs at the right support where the shear diagram again passes
through zero and is 9600 lb-in.

The results obtained so far are independent of the cross section of the beam.
The stresses will now be calculated for each of the sections (a), (b), and (c).

(a) For the rectangular section: I ¼ 1
12

bd3 ¼ 86:2 in
4
; I=c ¼ 1

6
bd2 ¼ 23:1 in

3
;

and A ¼ bd ¼ 18:60 in
2
. Therefore

smax ¼
Mmax

I=c
¼

33;750

23:1
¼ 1460 lb=in2

½by Eq: ð8:1-12Þ�

This stress occurs at x ¼ 75 in and is tension in the bottom fibers of the beam
and compression in the top. The maximum transverse shear stress isy

tmax ¼
3

2

Vmax

A
¼

3

2

1020

18:60
¼ 82 lb=in2

½by Eq: ð8:1-13Þ�

which is the horizontal and vertical shear stress at the neutral axis of the
section just to the left of the right support.
(b) For the routed section it is found (Appendix A) that the neutral axis is 4 in
from the base of the section and I ¼ 82:6 in

4
. The maximum transverse shear

stress on a horizontal plane occurs at the neutral axis since b is as small there
as anywhere, and so in Eq. (8.1-2) the product A0 �yy represents the statical

Figure 8.2

y The actual maximum shear stress for this example is found from a stress transfor-
mation of the maximum bending stress. Thus, at the outer fibers of the beam at x ¼ 75,
tmax ¼ 1

2
smax ¼ 1

2
1460 ¼ 730 lb=in2

.
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moment about the neutral axis of all that part of the section above the neutral
axis. Taking the moment of the flange and web portions separately, we find
A0 �yy ¼ ð2:75Þð2:3Þð2:30Þ þ ð1Þð1:15Þð0:575Þ ¼ 15:2 in

3
. Also, b ¼ 1:00 in.

Since the section is not symmetrical about the neutral axis, the fiber stresses
will be calculated at the section of maximum positive moment and at the
section of maximum negative moment. We have

At x ¼ 75 in: s ¼

ð33;750Þð4Þ

82:6
¼ 1630 lb=in2

ðtension in bottom fiberÞ

ð33;750Þð3:45Þ

82:6
¼ 1410 lb=in2

ðcompression in top fiberÞ

8>><
>>:

At x ¼ 160 in: s ¼

ð9600Þð4Þ

82:6
¼ 456 lb=in2

ðcompression in bottom fiberÞ

ð9600Þð3:45Þ

82:6
¼ 400 lb=in2

ðtension in top fibersÞ

8>><
>>:

It is seen that for this beam the maximum fiber stresses in both tension and
compression occur at the section of maximum positive bending moment. The
maximum transverse shear stress is

ðtmaxÞV ¼
ð1020Þð15:2Þ

ð82:6Þð1Þ
¼ 188 lb=in2

½by Eq: ð8:1-2Þ�

This is the maximum shear stress on a horizontal plane and occurs at the
neutral axis of the section just to the left of the right support. The actual
maximum shear stress is tmax ¼ 1

2
smax ¼ 1

2
� 1630 ¼ 815 lb=in2

.
(c) For the steel I-beam, the structural steel handbook gives I=c ¼ 3:00 in

3
and

t ¼ 0:190 in. Therefore

smax ¼
33;750

3
¼ 11;250 lb=in2

This stress occurs at x ¼ 75 in, where the beam is subject to tension in the
bottom fibers and compression in the top. The maximum transverse shear
stress is approximated by

ðtmaxÞV 

1020

ð4Þð0:19Þ
¼ 1340 lb=in2

Although this method of calculating t (where the shear force is assumed to be
carried entirely by the web) is only approximate, it is usually sufficiently
accurate to show whether or not this shear stress is important. If it indicates
that this shear stress may govern, then the stress at the neutral axis may be
calculated by Eq. (8.1-2). For standard I-beams, the allowable vertical shear is
given by the structural-steel handbooks, making computation unnecessary.

2. The beam is shown in Fig. 8.3 has a rectangular section 2 in wide and 4 in
deep and is made of spruce, where E ¼ 1;300;000 lb=in2

. It is required to
determine the deflection of the left end.

Solution. The solution will be effected first by superposition, using the
formulas of Table 8.1. The deflection y of the left end is the sum of the
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deflection y1 produced by the distributed load and the deflection y2 produced
by the concentrated load. Each of these is computed independently of the other
and added using superposition. Thus

y1 ¼ �40y ¼ ð�40Þ �
1

24

ð2:14Þð1403Þ

EI

� 	
¼ þ

9;800;000

EI

by formula for y at A, case 2e, where a ¼ 0, l ¼ 140 in and wa ¼

wl ¼ 2:14 lb=in. y2 is calculated as the sum of the deflection the 150-lb load
would produce if the beam were fixed at the left support and the deflection
produced by the fact that it actually assumes a slope there. The first part of the
deflection is given by the formula for max y (case 1a), and the second part is
found by multiplying the overhang (40 in) by the slope produced at the left end
of the 140-in span by a counterclockwise couple equal to 150ð40Þ ¼ 6000 lb-in
applied at that point (formula for y at A, case 3e, where a ¼ 0).

y2 ¼ �
1

3

ð150Þð403Þ

EI
þ ð�40Þ �

1

3

ð�6000Þð140Þ

EI

� 	
¼ �

14;400;000

EI

Adding algebraically, the deflection of the left end is

y ¼ y1 þ y2 ¼ �
4;600;000

EI
¼ �0:33 in ðdeflection is downwardÞ

The solution of this problem can also be effected readily by using Eq. (8.1-6).
The reaction at the left support due to the actual loads is 343 lb and the
reaction due to a unit load acting down at the left support is 1.286. If x is
measured from the extreme left end of the beam

M ¼ �150x þ 343hx � 40i � 2:14
hx � 40i2

2
and m ¼ �x þ 1:286hx � 40i

Simplifying the equations, we have

y ¼

ð
Mm

EI
dx

¼
1

EI

ð40

0

ð�150xÞð�xÞdx þ

ð180

40

ð�1:071x2 þ 278:8x � 15;430Þð0:286x � 51:6Þdx

� 	
¼ þ0:33 in

(Here the plus sign means that y is in the direction of the assumed unit load,
i.e., downward.)

This second solution involves much more labor than the first, and the
calculations must be carried out with great accuracy to avoid the possibility
of making a large error in the final result.

Figure 8.3
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3. A cast iron beam is simply supported at the left end and fixed at the right
end on a span of 100 cm. The cross section is 4 cm wide and 6 cm deep
ðI ¼ 72 cm4Þ. The modulus of elasticity of cast iron is 107 N=cm

2
, and the

coefficient of expansion is 0:000012 cm=cm=�C. It is desired to determine the
locations and magnitudes of the maximum vertical deflection and the maxi-
mum bending stress in the beam. The loading consists of a uniformly increas-
ing distributed load starting at 0 at 40 cm from the left end and increasing to
200 N=cm at the right end. In addition, the beam, which was originally 20�C, is
heated to 50�C on the top and 100�C on the bottom with the temperature
assumed to vary linearly from top to bottom.

Solution. Superimposing cases 2c and 6c of Table 8.1, the following reac-
tions are determined. (Note: For case 2c, wa ¼ 0, a ¼ 40 cm, wl ¼ 200 N=cm,
and l ¼ 100 cm; for case 6c, T1 ¼ 50�C, T2 ¼ 100�C, g ¼ 0:000012 cm=cm=�C,
t ¼ 6 cm, and a ¼ 0.)

RA ¼
200ð100 � 40Þ3ð4 � 100 þ 40Þ

40ð1003Þ
�

3ð107Þð72Þð0:000012Þð100 � 50Þ

2ð6Þð100Þ
¼ �604:8 N

MA ¼ 0 yA ¼ 0

yA ¼
�200ð100 � 40Þ3ð2 � 100 þ 3 � 40Þ

240ð107Þð72Þð100Þ
þ

0:000012ð100 � 50Þð�100Þ

4ð6Þ

¼ �0:0033 rad

Therefore

y ¼ �0:0033x �
604:8x3

6EI
�

200hx � 40i5

ð100 � 40Þð120ÞEI
þ

0:000012ð100 � 50Þx2

2ð6Þ

¼ �0:0033x � 1:4ð10�7Þx3 � 3:86ð10�11Þhx � 40i5 þ 5:0ð10�5Þx2

and

dy

dx
¼ �0:0033 � 4:2ð10�7Þx2 � 19:3ð10�11Þhx � 40i4 þ 10ð10�5Þx

The maximum deflection will occur at a position x1 where the slope dy=dx is
zero. At this time an assumption must be made as to which span, x1 < 40 or
x1 > 40, will contain the maximum deflection. Assuming that x1 is less than
40 cm and setting the slope equal to zero,

0 ¼ �0:0033 � 4:2ð10�7Þx2
1 þ 10ð10�5Þx1

Of the two solutions for x1, 39.7 and 198 cm, only the value of 39.7 cm is valid
since it is less than 40 cm. Substituting x ¼ 39:7 cm into the deflection equation
gives the maximum deflection of �0:061 cm. Similarly,

M ¼ �604:8x �
200

6ð100 � 40Þ
hx � 40i3
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which has a maximum negative value where x is a maximum, i.e., at the right
end:

Mmax ¼ �604:8ð100Þ �
200

6ð100 � 40Þ
ð100 � 40Þ3 ¼ �180;480 N-cm

smax ¼
Mc

I
¼

180;480ð3Þ

72
¼ 7520 N=cm2

4. The cast iron beam in Example 3 is to be simply supported at both ends and
carry a concentrated load of 10,000 N at a point 30 cm from the right end. It is
desired to determine the relative displacement of the lower edges of the end
section. For this example, case 1e can be used with a ¼ 70 cm:

RA ¼
10;000ð100 � 70Þ

100
¼ 3000 N MA ¼ 0

yA ¼
�10;000ð70Þ

6ð107Þð72Þð100Þ
ð200 � 70Þð100 � 70Þ ¼ �0:00632 rad; yA ¼ 0

yB ¼
10;000ð70Þ

6ð107Þð72Þð100Þ
ð1002 � 702Þ ¼ 0:00826 rad

Then

dy

dx
¼ �0:00632 þ 2:083ð10�6Þx2 �

10;000

2ð107Þð72Þ
hx � 70i2

¼ �0:00632 þ 2:083ð10�6Þx2 � 6:94ð10�6Þhx � 70i2

The shortening of the neutral surface of the beam is given in Eq. (8.1-14) to
be

Dl ¼
1

2

ðl

0

dy

dx

� �2

dx

¼
1

2

ð70

0

½�0:00632 þ 2:083ð10�6Þx2�
2 dx

þ
1

2

ð100

70

½�0:04033 þ 9:716ð10�4Þx � 4:857ð10�6Þx2�
2 dx

or

Dl ¼ 0:00135 cm ða shorteningÞ

In addition to the shortening of the neutral surface, the lower edge of the left
end moves to the left by an amount yAc or 0.00632(3) ¼ 0.01896 cm. Similarly,
the lower edge of the right end moves to the right by an amount yBc or
0.00826(3) ¼ 0.02478 cm. Evaluating the motion of the lower edges in this
manner is equivalent to solving Eq. (8.1-15) for the total strain in the lower
fibers of the beam.

The total relative motion of the lower edges of the end sections
is therefore a moving apart by an amount 0.01896 þ 0.02478 �

0.00135 ¼ 0.0424 cm.
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8.2 Composite Beams and Bimetallic Strips

Beams that are constructed of more than one material can be treated by

using an equivalent width technique if the maximum stresses in each of

the several materials remain within the proportional limit. An equiva-

lent cross section is developed in which the width of each component

parallel to the principal axis of bending is increased in the same

proportion that the modulus of elasticity of that component makes

with the modulus of the assumed material of the equivalent beam.

EXAMPLE

The beam cross section shown in Fig. 8.4(a) is composed of three portions of
equal width and depth. The top portion is made of aluminum for which
EA ¼ 10 � 106 lb=in2

; the center is made of brass for which EB ¼ 15 � 106 lb=in2
;

and the bottom is made of steel for which ES ¼ 30 � 106 lb=in2
. Figure 8.4(b)

shows the equivalent cross section, which is assumed to be made of aluminum.
For this equivalent cross section the centroid must be located and the moment
of inertia determined for the centroidal axis.

Solution

�yy ¼
3ð2Þð5Þ þ 4:5ð2Þð3Þ þ 9ð2Þð1Þ

6 þ 9 þ 18
¼ 2:27 in

Ix ¼
3ð23Þ

12
þ 6ð5 � 2:27Þ2 þ

4:5ð23Þ

12
þ 9ð3 � 2:27Þ2 þ

9ð23Þ

12
þ 18ð2:27 � 1Þ2

¼ 89:5 in
4

The equivalent stiffness EI of this beam is therefore 10 � 106ð89:5Þ, or
895 � 106 lb-in

2
.

A flexure stress computed by s ¼ Mc=Ix will give a stress in the equivalent
beam which can thereby be converted into the stress in the actual composite
beam by multiplying by the modulus ratio. If a bending moment of 300,000 lb-
in were applied to a beam with the cross section shown, the stress at the top
surface of the equivalent beam would be s ¼ 300;000ð6 � 2:27Þ=89:5, or
12,500 lb=in2

. Since the material at the top is the same in both the actual
and equivalent beams, this is also the maximum stress in the aluminum
portion of the actual beam. The stress at the bottom of the equivalent beam
would be s ¼ 300;000ð2:27Þ=89:5 ¼ 7620 lb=in2

. Multiplying the stress by the

Figure 8.4
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modulus ratio, the actual stress at the bottom of the steel portion of the beam
would be s ¼ 7620ð30=10Þ ¼ 22;900 lb=in2

.

Bimetallic strips are widely used in instruments to sense or control

temperatures. The following formula gives the equivalent properties of

the strip for which the cross section is shown in Fig. 8.5:

Equivalent EI ¼
wt3

btaEbEa

12ðtaEa þ tbEbÞ
K1 ð8:2-1Þ

or

K1 ¼ 4 þ 6
ta

tb

þ 4
ta

tb

� �2

þ
Ea

Eb

ta

tb

� �3

þ
Eb

Ea

tb

ta

ð8:2-2Þ

All the formulas in Table 8.1, cases 1 to 5, can be applied to the

bimetallic beam by using this equivalent value of EI. Since a bimetallic

strip is designed to deform when its temperature differs from To, the

temperature at which the strip is straight, Table 8.1, case 6, can be

used to solve for reaction forces and moments as well as deformations

of the bimetallic strip under a uniform temperature T . To do this, the

term gðT2 � T1Þ=t is replaced by the term 6ðgb � gaÞðT � ToÞðta þ tbÞ=
ðt2

bK1Þ and EI is replaced by the equivalent EI given by Eq. (8.2-1).

After the moments and deformations have been determined, the

flexure stresses can be computed. The stresses due to the bending

moments caused by the restraints and any applied loads are given by

the following expressions:

In the top surface of material a:

s ¼
�6M

wt2
bK1

2 þ
tb

ta

þ
Eata

Ebtb

� �
ð8:2-3Þ

In the bottom surface of material b:

s ¼
6M

wt2
bK1

2 þ
ta

tb

þ
Ebtb

Eata

� �
ð8:2-4Þ

If there are no restraints imposed, the distortion of a bimetallic strip

due to a temperature change is accompanied by flexure stresses in the

two materials. This differs from a beam made of a single material

which deforms free of stress when subjected to a linear temperature

Figure 8.5
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variation through the thickness if there are no restraints. Therefore

the following stresses must be added algebraically to the stresses

caused by the bending moments, if any:

In the top surface of material a:

s ¼
�ðgb � gaÞðT � ToÞEa

K1

3
ta

tb

þ 2
ta

tb

� �2

�
Ebtb

Eata

" #
ð8:2-5Þ

In the bottom surface of material b:

s ¼
ðgb � gaÞðT � ToÞEb

K1

3
ta

tb

þ 2 �
Ea

Eb

ta

tb

� �3
" #

ð8:2-6Þ

EXAMPLE

A bimetallic strip is made by bonding a piece of titanium alloy 1
4
in wide by

0.030 in thick to a piece of stainless steel 1
4
in wide by 0.060 in thick. For

titanium, E ¼ 17 � 106 lb=in2
and g ¼ 5:7 � 10�6 in=in=�F; for stainless steel,

E ¼ 28 � 106 lb=in2
and g ¼ 9:6 � 10�6 in=in=�F. It is desired to find the length

of bimetal required to develop a reaction force of 5 oz at a simply supported left
end when the right end is fixed and the temperature is raised 50�F; also the
maximum stresses must be determined.

Solution. First find the value of K1 from Eq. (8.2-2) and then evaluate the
equivalent stiffness from Eq. (8.2-1):

K1 ¼ 4 þ 6
0:03

0:06
þ 4

0:03

0:06

� �2

þ
17

28

0:03

0:06

� �3

þ
28

17

0:06

0:03
¼ 11:37

Equivalent EI ¼
0:25ð0:063Þð0:03Þð28 � 106Þð17 � 106Þ

12½0:03ð17 � 106Þ þ 0:06ð28 � 106Þ�
11:37 ¼ 333 lb-in

2

Under a temperature rise over the entire length, the bimetallic strip curves
just as a single strip would curve under a temperature differential. To use case
6c in Table 8.1, the equivalent to gðT2 � T1Þ=t must be found. This equivalent
value is given by

6ð9:6 � 10�6 � 5:7 � 10�6Þð50Þð0:03 þ 0:06Þ

ð0:062Þð11:37Þ
¼ 0:00257 in

�1

The expression for RA can now be obtained from case 6c in Table 8.1 and,
noting that a ¼ 0, the value of the length l can be determined:

RA ¼
�3ðl2 � a2Þ

2l3
EI

g
t
ðT2 � T1Þ ¼

�3

2l
ð333Þð0:00257Þ ¼

�5

16
lb

Therefore l ¼ 4:11 in.
The maximum bending moment is found at the fixed end and is equal to RAl:

max M ¼ � 5
16
ð4:11Þ ¼ �1:285 lb-in
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Combining Eqs. (8.2-3) and (8.2-5), the flexure stress on the top of the titanium
is

s ¼
�6ð�1:285Þ

0:25ð0:06Þ2ð11:37Þ
2 þ

0:06

0:03
þ

17

28

0:03

0:06

� �

�
ð9:6 � 10�6 � 5:7 � 10�6Þð50Þð17 � 106Þ

11:37
3

0:03

0:06
þ 2

0:03

0:06

� �2

�
28

17

0:06

0:03

" #

¼ 3242 þ 378 ¼ 3620 lb=in2

Likewise, the flexure stress on the bottom of the stainless steeel is

s ¼
6ð�1:285Þ

0:25ð0:062Þð11:37Þ
2 þ

0:03

0:06
þ

28

17

0:06

0:03

� 	

þ
ð9:6 � 10�6 � 5:7 � 10�6Þð50Þð28 � 106Þ

11:37
3

0:03

0:06
þ 2 �

17

28

0:03

0:06

� �3
" #

¼ �4365 þ 1644 ¼ �2720 lb=in2

8.3 Three-Moment Equation

The three-moment equation, which expresses the relationship between

the bending moments found at three consecutive supports in a contin-

uous beam, can be readily derived for any loading shown in Table 8.1.

This is accomplished by taking any two consecutive spans and eval-

uating the slope for each span at the end where the two spans join.

These slopes, which are expressed in terms of the three moments and

the loads on the spans, are then equated and the equation reduced to

its usual form.

EXAMPLE

Consider two contiguous spans loaded as shown in Fig. 8.6. In addition to the
loading shown, it is known that the left end of span 1 had settled an amount
y2 � y1 relative to the right end of the span, and similarly that the left end of
span 2 has settled an amount y3 � y2 relative to the right end. (Note that y1, y2,
and y3 are considered positive upward as usual.) The individual spans with
their loadings are shown in Fig. 8.7(a,b). Determine the relationship between
the applied loads and the moment at the intermediate support.

Solution. Using cases 2e and 3e from Table 8.1 and noting the relative
deflections mentioned above, the expression for the slope at the right end of

Figure 8.6

140 Formulas for Stress and Strain [CHAP. 8



span 1 is

y2 ¼
w1ðl

2
1 � a2

1Þ
2

24E1I1l1

�
w1ðl1 � a1Þ

2

360E1I1l1

ð8l2
1 þ 9a1l1 þ 3a2

1Þ

þ
M1l2

1

6E1I1l1

þ
�M2ðl

2
1 � 3a2

1Þ

6E1I1l1

þ
y2 � y1

l1

Similarly, using cases 1e and 3e from Table 8.1, the expression for the slope at
the left end of span 2 is

y2 ¼
�W2a2

6E2I2l2

ð2l2 � a2Þðl2 � a2Þ �
M2

6E2I2l2

ð2l2
2Þ �

�M3

6E2I2l2

ð2l2
2 � 6l2

2 þ 3l2
2Þ þ

y3 � y2

l2

Equating these slopes gives

M1l1

6E1I1

þ
M2l1

3E1I1

þ
M2l2

3E2I2

þ
M3l2

6E2I2

¼
�w1ðl1 � a1Þ

2

360E1I1l1

ð7l2
1 þ 21a1l1 þ 12a2

1Þ

�
y2 � y1

l1

�
W2a2

6E2I2l2

ð2l2 � a2Þðl2 � a2Þ þ
y3 � y2

l2

If M1 and M3 are known, this expression can be solved for M2: if not, similar
expressions for the adjacent spans must be written and the set of equations
solved for the moments.

The three-moment equation can also be applied to beams carrying

axial tension or compression in addition to transverse loading. The

procedure is exactly the same as that described above except the slope

formulas to be used are those given in Tables 8.8 and 8.9.

8.4 Rigid Frames

By superposition and the matching of slopes and deflections, the

formulas in Table 8.1 can be used to solve for the indeterminate

reactions in rigid frames or to determine the deformations where the

support conditions permit such deformations to take place. The term

rigid in this section simply means that any deformations are small

enough to have negligible effect on bending moments.

In Table 8.2 formulas are given for the indeterminate reactions and

end deformations for rigid frames consisting of three members. Only

in-plane deformations and only those due to bending moments have

Figure 8.7
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been included in the expressions found in this table. Since deforma-

tions due to transverse shear and axial loading are not included, the

results are limited to those frames made up of members which are long

in proportion to their depths (see assumptions 6 to 8 in Sec. 8.1). Each

member must be straight and of uniform cross section having a

principal axis lying in the plane of the frame. The elastic stability of

the frame, either in the plane of the frame or out of this plane, has not

been treated in developing Table 8.2. The effects of axial load on the

bending deformations, as documented in Tables 8.7–8.9, have not been

considered. A final check on a solution must verify that indeed these

effects can be neglected. Very extensive compilations of formulas for

rigid frames are available, notably those of Kleinlogel (Ref. 56) and

Leontovich (Ref. 57).

While Table 8.2 is obviously designed for frames with three

members where the vertical members both lie on the same side of

the horizontal member, its use is not limited to this configuration. One

can set the lengths of either of the vertical members, members 1 and 2,

equal to zero and solve for reactions and deformations of two-member

frames. The length of the horizontal member, member 3, should not be

set to zero for two reasons: (1) It does not generally represent a real

problem; and (2) the lengths of members 1 and 2 are assumed not to

change, and this adds a restraint to member 3 that would force it to

have zero slope if its length was very short. Another very useful

application of the expressions in Table 8.2 is to apply them to frames

where one of the two vertical members lies on the opposite side of the

horizontal member. Instead of forming a U-shape in the side view, it

forms a Z-shape. To do this one must change the signs of three

variables associated with the reversed member: (1) the sign of the

length of the reversed member, (2) the sign of the distance a which

locates any load on the reversed member, and (3) the sign of the

product EI of the reversed member. All the reactions and end-point

deflections retain their directions as given in the figures in Table 8.2;

that is, if member 1 is reversed and extends upward from the left end

of member 3, HA now acts at the upper end of member 1 and is

positive to the left as is dHA. Example 3 illustrates this application

as well as showing how the results of using Tables 8.1 and 8.2

together can be used to determine the deformations anywhere in a

given frame.

When the number of members is large, as in a framed building, a

relaxation method such as moment distribution might be used or a

digital computer could be programmed to solve the large number of

equations. In all rigid frames, corner or knee design is important;

much information and experimental data relating to this problem are

to be found in the reports published by the Fritz Engineering Labora-

tories of Lehigh University. The frames given in Table 8.2 are assumed

to have rigid corners; however, corrections can be made easily once the
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rigidity of a given corner design is known by making use of the

concentrated angular displacement loading with the displacement

positioned at the corner. This application is illustrated in Example 2.

EXAMPLES
1. The frame shown in Fig. 8.8(a) is fixed at the lower end of the right-hand
member and guided at the lower end of the left-hand member in such a way as
to prevent any rotation of this end but permitting horizontal motion if any is
produced by the loading. The configuration could represent the upper half of
the frame shown in Fig. 8.8(b); for this frame the material properties and
physical dimensions are given as l1 ¼ 40 in, l2 ¼ 20 in, l3 ¼ 15 in, E1 ¼

E2 ¼ E3 ¼ 30 � 106 lb=in2
, I1 ¼ 8 in

4
, I2 ¼ 10 in

4
, and I3 ¼ 4 in

4
. In addition to

the load P of 1000 lb, the frame has been subjected to a temperature rise of
50�F since it was assembled in a stress-free condition. The coefficient of
expansion of the material used in all three portions is 0.0000065 in=in=�F.

Solution. An examination of Table 8.2 shows the required end or support
conditions in case 7 with the loading cases f and q listed under case 5. For
cases 5 to 12 the frame constants are evaluated as follows:

CHH ¼
l3
1

3E1I1

þ
l3
1 � ðl1 � l2Þ

3

3E2I2

þ
l2
1l3

E3I3

¼

403

3ð8Þ
þ

403 � ð40 � 20Þ3

3ð10Þ
þ
ð402Þð15Þ

4

30ð106Þ

¼
2666:7 þ 1866:7 þ 6000

30ð106Þ
¼ 0:0003511 in=lb

Similarly

CHV ¼ CVH ¼ 0:0000675 in=lb

CHM ¼ CMH ¼ 0:00001033 lb
�1

CVV ¼ 0:0000244 in=lb

CVM ¼ CMV ¼ 0:00000194 lb
�1

CMM ¼ 0:000000359 ðlb-inÞ�1

Figure 8.8
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For case 7f

LFH ¼ W CHH � aCHM þ
a3

6E1I1

� �

¼ 1000 0:0003511 � 12ð0:00001033Þ þ
123

6ð30 � 106Þð8Þ

� 	
¼ 1000ð0:0003511 � 0:000124 þ 0:0000012Þ ¼ 0:2282 in

Similarly

LFV ¼ 0:0442 in and LFM ¼ 0:00632 rad

For case 7q

LFH ¼ �ðT � ToÞg3l3 ¼ �50ð0:0000065Þð15Þ ¼ �0:004875 in

LFV ¼ 0:0065 in and LFM ¼ 0 rad

For the combined loading

LFH ¼ 0:2282 � 0:004875 ¼ 0:2233 in

LFV ¼ 0:0507 in

LFM ¼ 0:00632 in

Now the left end force, moment, and displacement can be evaluated:

VA ¼
LFV CMM � LFM CVM

CVV CMM � C2
VM

¼
0:0507ð0:359 � 10�6Þ � 0:00632ð1:94 � 10�6Þ

ð24:4 � 10�6Þð0:359 � 10�6Þ � ð1:94 � 10�6Þ
2

¼ 1189 lb

MA ¼ 11;179 lb-in

dHA � 0:0274 in

Figure 8.9 shows the moment diagram for the entire frame.

2. If the joint at the top of the left vertical member in Example 1 had not been
rigid but instead had been found to be deformable by 10�7 rad for every inch-
pound of bending moment applied to it, the solution can be modified as follows.

Solution. The bending moment as the corner in question would be given by
MA � 28ð1000Þ, and so the corner rotation would be 10�7ðMA � 28;000Þ rad in a
direction opposite to that shown by yo in case 5a. Note that the position of yo is

Figure 8.9 (units are in lb-in)
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at the corner, and so a would be 40 in. Therefore, the following load terms due to
the corner deformation can be added to the previously determined load terms:

LFH ¼ �10�7ðMA � 28;000Þð40Þ

LFV ¼ 0

LFM ¼ �10�7ðMA � 28;000Þ

Thus the resultant load terms become

LFH ¼ 0:2233 � 4 � 10�6MA þ 0:112 ¼ 0:3353 � 4 � 10�6MA

LFV ¼ 0:0507 in

LFM ¼ 0:00632 � 10�7MA þ 0:0028 ¼ 0:00912 � 10�7MA

Again, the left end force, moment and displacement are evaluated:

VA ¼
0:0507ð0:359 � 10�6Þ � ð0:00912 � 10�7MAÞð1:94 � 10�6Þ

4:996 � 10�12

¼ 100 þ 0:0388MA

MA ¼
ð0:00912 � 10�7MAÞð24:4 � 10�6Þ � 0:0507ð1:94 � 10�6Þ

4:996 � 10�12

¼ 24;800 � 0:488MA

or

MA ¼ 16;670 lb-in

dHA ¼ �0:0460 in

VA ¼ 747 lb

3. Find the reactions and deformations at the four positions A to D in the
pinned-end frame shown in Fig. 8.10. All lengths are given in millimeters,
Mo ¼ 2000 N-mm, and all members are made of aluminum for which
E ¼ 7ð104ÞN=mm

2
with a constant cross section for which I ¼ 100 mm4.

Solution. Case 1h of Table 8.2 covers this combination of loading and end
supports, if, due to the upward reach of member 1, appropriate negative values
are used. The need for negative values is described in the introduction to Sec.

Figure 8.10
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8.4. Substitute the following material properties and physical dimensions into
case 1h: l1 ¼ �100 mm, l2 ¼ 150 mm, l3 ¼ 75 mm, a ¼ �ð100 � 40Þ ¼ �60 mm,
E1I1 ¼ �7ð106Þ N-mm2, and E2I2 ¼ E3I3 ¼ 7ð106Þ N-mm2. Using these data
gives the frame and load constants as

AHH ¼ 0:2708 in=lb; AHM ¼ AMH ¼ �0:0008036 lb
�1

AMM ¼ 0:00001786 ðlb-inÞ�1; LPH ¼ 0:0005464ð2000Þ ¼ 1:0928 in

LPM ¼ �0:000009286ð2000Þ ¼ �0:01857 rad

Using these frames and load terms in case 1, the pinned-end case, the reaction
and deformations are found to be

dHA ¼ 0 MA ¼ 0 HA ¼
LPH

AHH

¼ 4:0352 N ðto leftÞ

and

cA ¼ AMHHA � LPM ¼ 0:01533 rad ðclockwiseÞ

Applying the three independent statics equations to Fig. 8.10(a) results in

VA ¼ �13:214 N HB ¼ �4:0358 N and VB ¼ 13:214 N

Now treat each of the three members as separate bodies in equilibrium, and
find the deformations as pinned-end beams using equations from Table 8.1 as
appropriate.

For member 1 as shown in Fig. 8.10(b): Using case 3e twice, once for each of
the two moment loadings, gives

yA ¼
�2000

6ð7 � 106Þð100Þ
½2ð100Þ2 � 6ð60Þð100Þ þ 3ð60Þ2�

þ
1596:4

6ð7 � 106Þð100Þ
½2ð100Þ2 � 6ð100Þð100Þ þ 3ð100Þ2�

¼ �0:001325 rad

yC ¼
2000

6ð7 � 106Þð100Þ
½ð100Þ2 � 3ð60Þ2� �

1596:4

6ð7 � 106Þð100Þ
½ð100Þ2 � 3ð100Þ2�

¼ 0:007221 rad

To obtain the angle cA ¼ 0:01533 rad at position A, member 1 must be given an
additional rigid-body clockwise rotation of 0:01533 � 0:001325 ¼ 0:01401 rad.
This rigid-body motion moves position C to the left a distance of 1.401 mm and
makes the slope at position C equal to 0:007221 � 0:01401 ¼ �0:006784 rad
(clockwise).

For member 3 as shown in Fig. 8.10(c): Again use case 3e from Table 8.1
twice to get

yC ¼
�1596:4

6ð7 � 106Þð75Þ
½2ð75Þ2 � 0 þ 0� �

�605:35

6ð7 � 106Þð75Þ
½2ð75Þ2 � 6ð75Þð75Þ þ 3ð75Þ2�

¼ �0:006782 rad

yD ¼
1596:4

6ð7 � 106Þð75Þ
½ð75Þ2 � 0� þ

�605:35

6ð7 � 106Þð75Þ
½ð75Þ2 � 3ð75Þ2�

¼ 0:005013 rad
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No rigid-body rotation is necessary for member 3 since the left end has the
same slope as the lower end of member 1, which is as it should be.

For member 2 as shown in Fig. 8.10(d): Use case 3e from Table 8.1 to get

yD ¼
�605:35

6ð7 � 106Þð150Þ
½2ð150Þ2 � 0 þ 0� ¼ �0:004324 rad

yB ¼
605:35

6ð7 � 106Þð150Þ
½ð150Þ2 � 0� ¼ 0:002162 rad

To match the slope at the right end of member 3, a rigid-body counterclockwise
rotation of 0:005013 þ 0:00432 ¼ 0:009337 rad must be given to member 2.
This creates a slope cB ¼ 0:009337 þ 0:002162 ¼ 0:01150 rad counterclock-
wise and a horizontal deflection at the top end of 0.009337(150) ¼ 1.401 mm to
the left. This matches the horizontal deflection of the lower end of member 1 as
a final check on the calculations.

To verify that the effect of axial load on the bending deformations of the
members is negligible, the Euler load on the longest member is found to be
more than 100 times the actual load. Using the formulas from Table 8.8 would
not produce significantly different results from those in Table 8.1.

8.5 Beams on Elastic Foundations

There are cases in which beams are supported on foundations which

develop essentially continuous reactions that are proportional at each

position along the beam to the deflection of the beam at that position.

This is the reason for the name elastic foundation. Solutions are

available (Refs. 41 and 42) which consider that the foundation trans-

mits shear forces within the foundation such that the reaction force is

not directly proportional to the deflection at a given location but

instead is proportional to a function of the deflections near the given

location; these solutions are much more difficult to use and are not

justified in many cases since the linearity of most foundations is open

to question anyway.

It is not necessary, in fact, that a foundation be continuous. If a

discontinuous foundation, such as is encountered in the support

provided a rail by the cross ties, is found to have at least three

concentrated reaction forces in every half-wavelength of the deflected

beam, then the solutions provided in this section are adequate.

Table 8.5 provides formulas for the reactions and deflections at the

left end of a finite-length beam on an elastic foundation as well as

formulas for the shear, moment, slope, and deflection at any point x

along the length. The format used in presenting the formulas is

designed to facilitate programming for use on a digital computer or

programmable calculator.
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In theory the equations in Table 8.5 are correct for any finite-length

beam or for any finite foundation modulus, but for practical purposes

they should not be used when bl exceeds a value of 6 because the

roundoff errors that are created where two very nearly equal large

numbers are subtracted will make the accuracy of the answer ques-

tionable. For this reason, Table 8.6 has been provided. Table 8.6

contains formulas for semi-infinite- and infinite-length beams on

elastic foundations. These formulas are of a much simpler form since

the far end of the beam is assumed to be far enough away so as to have

no effect on the response of the left end to the loading. If bl > 6 and the

load is nearer the left end, this is the case.

Hetényi (Ref. 53) discusses this problem of a beam supported on an

elastic foundation extensively and shows how the solutions can be

adapted to other elements such as hollow cylinders. Hetényi (Ref. 51)

has also developed a series solution for beams supported on elastic

foundations in which the stiffness parameters of the beam and

foundation are not incorporated in the arguments of trigonometric

or hyperbolic functions. He gives tables of coefficients derived for

specific boundary conditions from which deformation, moments, or

shears can be found at any specific point along the beam. Any degree of

accuracy can be obtained by using enough terms in the series.

Tables of numerical values, Tables 8.3 and 8.4 are provided to assist

in the solution of the formulas in Table 8.5. Interpolation is possible for

values that are included but should be used with caution if it is noted

that differences of large and nearly equal numbers are being encoun-

tered. A far better method of interpolation for a beam with a single

load is to solve the problem twice. For the first solution move the load

to the left until bðl � aÞ is a value found in Table 8.3, and for the second

solution move the load similarly to the right. A linear interpolation

from these solutions should be very accurate.

Presenting the formulas for end reactions and displacements in

Table 8.5 in terms of the constants Ci and Cai is advantageous since

it permits one to solve directly for loads anywhere on the span. If the

loads are at the left end such that Ci ¼ Cai, then the formulas can be

presented in a simpler form as is done in Ref. 6 of Chap. 13 for

cylindrical shells. To facilitate the use of Table 8.5 when a concen-

trated load, moment, angular rotation, or lateral displacement is at

the left end (that is, a ¼ 0), the following equations are presented to

simplify the numerators:

C1C2 þ C3C4 ¼ C12; 2C2
1 þ C2C4 ¼ 2 þ C11

C2C3 � C1C4 ¼ C13; C2
2 � 2C1C3 ¼ C14

C2
1 þ C2

3 ¼ 1 þ C11; 2C2
3 � C2C4 ¼ C11

C2
2 þ C2

4 ¼ 2C14; 2C1C3 þ C2
4 ¼ C14
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EXAMPLES
1. A 6-in, 12.5-lb I-beam 20 ft long is used as a rail for an overhead crane and
is in turn being supported every 2 ft of its length by being bolted to the bottom
of a 5-in, 10-lb I-beam at midlength. The supporting beams are each 21.5 ft
long and are considered to be simply supported at the ends. This is a case of a
discontinuous foundation being analyzed as a continuous foundation. It is
desired to determine the maximum bending stresses in the 6-in beam as well
as in the supporting beams when a load of 1 ton is supported at one end of the
crane.

Solution. The spring constant for each supporting beam is 48EI=l3, or
ð48Þð30 � 106Þð12:1Þ=ð21:5 � 12Þ3 ¼ 1013 lb=in. If this is assumed to be distribu-
ted over a 2-ft length of the rail, the equivalent value of boko is 1.013=24 ¼ 42.2
lb=in per inch of deflection. Therefore

b ¼
boko

4EI

� �1=4

¼
42:2

4ð30 � 106Þð21:8Þ

� 	1=4

¼ 0:01127 in
�1

and

bl ¼ ð0:01127Þð240Þ ¼ 2:70

An examination of the deflection of a beam on an elastic foundation shows that
it varies cyclicly in amplitude with the sine and cosine of bx. A half-wavelength
of this cyclic variation would occur over a span l1, where bl1 ¼ p, or l1 ¼ p=
0:01127 ¼ 279 in. There is no question about there being at least three
supporting forces over this length, and so the use of the solution for a
continuous foundation is entirely adequate.

Since bl is less than 6, Table 8.5 will be used. Refer to case 1 where both
ends are free. It must be pointed out that a simple support refers to a reaction
force, developed by a support other than the foundation, which is large enough
to prevent any vertical deflection of the end of the beam. From the table we
find that RA ¼ 0 and MA ¼ 0; and since the load is at the left end, a ¼ 0. When
a ¼ 0, the Ca terms are equal to the C terms, and so the four terms C1, C2, C3,
and C4 are calculated:

C1 ¼ cosh bl cos bl ¼ 7:47ð�0:904Þ ¼ �6:76

C2 ¼ cosh bl sin bl þ sinhbl cos bl ¼ 7:47ð0:427Þ þ 7:41ð�0:904Þ ¼ �3:50

Similarly C3 ¼ 3:17, C4 ¼ 9:89, and C11 ¼ 54:7. (See Tables 8.3 and 8.4.)
Therefore,

yA ¼
2000

2ð30 � 106Þð21:8Þð0:011272Þ

ð�3:502Þ � ð2Þð3:17Þð�6:76Þ

54:7
¼ 0:01216 rad

yA ¼
2000

2ð30 � 106Þð21:8Þð0:011273Þ

ð9:89Þð�6:76Þ � ð3:17Þð�3:50Þ

54:7
¼ �1:092 in

SEC. 8.5] Beams; Flexure of Straight Bars 149



With the deformations at the left end known, the expression for the bending
moment can be written:

M ¼ �yA2EIb2F3 � yAEIbF4 �
W

2b
Fa2

¼ 1:092ð2Þð30 � 106Þð21:8Þð0:011272ÞF3 � 0:01216ð30 � 106Þð21:8Þð0:01127ÞF4

�
2000

2ð0:01127Þ
Fa2

¼ 181;400F3 � 89;600F4 � 88;700Fa2

Now substituting the expressions for Fa2, F3, and F4 gives

M ¼ 181;400 sinh bx sinbx � 89;600ðcosh bx sin bx � sinh bx cosbxÞ

� 88;700ðcosh bx sinbx þ sinh bx cos bxÞ

or

M ¼ 181;400 sinh bx sin bx � 178;300 coshbx sin bx þ 900 sinh bx cosbx

The maximiun value of M can be found by trying values of x in the
neighborhood of x ¼ p=4b ¼ p=4ð0:01127Þ ¼ 69:7 in, which would be the loca-
tion of the maximum moment if the beam were infinitely long (see Table 8.6).
This procedure reveals that the maximum moment occurs at x ¼ 66:5 in and
has a value of �55;400 lb-in.

The maximum stress in the 6-in I-beam is therefore 55,400(3)=21.8 ¼

7620 lb=in2
. The maximum stress in the supporting 5-in I-beams is found at

the midspan of the beam directly above the load. The deflection of this beam is
known to be 1.092 in, and the spring constant is 1013 lb=in, so that the center
load on the beam is 1.092(1013) ¼ 1107 lb. Therefore the maximum bending
moment is Pl=4 ¼ 1107ð21:5Þð12Þ=4 ¼ 71;400 lb-in and the maximum stress is
71,400(2.5)=12.1 ¼ 14;780 lb=in2

.

2. If the 6-in I-beam in Example 1 had been much longer but supported in the
same manner, Table 8.6 could have been used. Case 8 reveals that for an end
load the end deflection is �W=2EIb3

¼ �2000=2ð30 � 106Þð21:8Þð0:011273Þ ¼

�1:070 in and the maximum moment would have equaled �0:3225W=
b ¼ �0:3225ð2000Þ=0:01127 ¼ �57;200 in-lb at 69.7 in from the left end. We
should not construe from this example that increasing the length will always
increase the stresses; if the load had been placed elsewhere on the span, the
longer beam could have had the lower maximum stress.

3. An aluminum alloy beam 3 in wide, 2 in deep, and 60 in long is manufac-
tured with an initial concentrated angular deformation of 0.02 rad at
midlength; this initial shape is shown in Fig. 8.11(a). In use, the beam is
placed on an elastic foundation which develops 500 lb=in2

vertical upward
pressure for every 1 in it is depressed. The beam is loaded by two concentrated
loads of 4000 lb each and a uniformly distributed load of 80 lb=in over the
portion between the concentrated loads. The loading is shown in Fig. 8.11(b). It
is desired to determine the maximum bending stress in the aluminum beam.
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Solution. First determine the beam and foundation parameters:

E ¼ 9:5 � 106 lb=in2; I ¼ 1
12
ð3Þð23Þ ¼ 2 in

4; k0 ¼ 500 lb=in2=in; bo ¼ 3 in

b ¼
3ð500Þ

4ð9:5 � 106Þð2Þ

� 	1=4

¼ 0:0666; l ¼ 60 in; bl ¼ 4:0

C1 ¼ �17:85; C2 ¼ �38:50; C3 ¼ �20:65; C4 ¼ �2:83; C11 ¼ 744

An examination of Table 8.5 shows the loading conditions covered by the
superposition of three cases in which both ends are free: case 1 used twice with
W1 ¼ 4000 lb and a1 ¼ 15 in, and W2 ¼ 4000 lb and a2 ¼ 45 in; case 2 used
twice with w3 ¼ 80 lb=in and a3 ¼ 15 in, and w4 ¼ �80 lb=in and a4 ¼ 45 in;
case 5 used once with yo ¼ 0:02 and a ¼ 30 in.

The loads and deformations at the left end are now evaulated by summing
the values for the five different loads, which is done in the order in which the
loads are mentioned. But before actually summing the end values, a set of
constants involving the load positions must be determined for each case. For
case 1, load 1:

Ca1 ¼ cosh bð60 � 15Þ cos bð60 � 15Þ ¼ 10:068ð�0:99Þ ¼ �9:967

Ca2 ¼ �8:497

For case 1, load 2:

Ca1 ¼ 0:834; Ca2 ¼ 1:933

For case 2, load 3:

Ca2 ¼ �8:497; Ca3 ¼ 1:414

For case 2, load 4:

Ca2 ¼ 1:933; Ca3 ¼ 0:989

For case 5:

Ca3 ¼ 3:298; Ca4 ¼ 4:930

Figure 8.11
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Therefore RA ¼ 0 and MA ¼ 0.

yA ¼
4000

2EIb2

ð�38:50Þð�8:497Þ � ð2Þð�20:65Þð�9:967Þ

744

þ
4000

2EIb2

ð�38:50Þð1:933Þ � ð2Þð�20:65Þð0:834Þ

744

þ
80

2EIb3

ð�38:50Þð1:414Þ � ð�20:65Þð�8:497Þ

744

þ
�80

2EIb3

ð�38:50Þð0:989Þ � ð�20:65Þð1:933Þ

744

þ 0:02
ð�38:50Þð4:93Þ � ð2Þð�20:65Þð3:298Þ

744

¼
400

EIb2
ð�0:0568Þ þ

4000

EIb2
ð�0:02688Þ þ

80

EIb3
ð�0:1545Þ

�
80

EIb3
ð0:00125Þ þ 0:02ð�0:0721Þ

¼ �0:007582 rad

Similarly,

yA ¼ �0:01172 in

An examination of the equation for the transverse shear V shows that the
value of the shear passes through zero at x ¼ 15, 30, and 45 in. The maximum
positive bending moment occurs at x ¼ 15 in and is evaluated as follows,
noting again that RA and MA are zero:

M15 ¼ �ð�0:01172Þð2Þð9:5 � 106Þð2Þð0:066662Þ½sinhð0:06666Þð15Þ sin 1�

� ð�0:007582Þð9:5 � 106Þð2Þð0:06666Þðcosh 1 sin 1 � sinh 1 cos 1Þ

¼ 8330 lb-in

Similarly, the maximum negative moment at x ¼ 30 in is evaluated, making
sure that the terms for the concentrated load at 15 in and the uniformly
distributed load from 15 to 30 in are included:

M30 ¼ �13;000 lb-in

The maximum bending stress is given by s ¼ Mc=I and is found to be
6500 lb=in2

.

8.6 Deformation Due to the Elasticity of Fixed
Supports

The formulas in Tables 8.1, 8.2, 8.5, 8.6, and 8.8–8.10 that apply to

those cases where fixed or guided end supports are specified are based

on the assumption that the support is rigid and holds the fixed or

guided end truly horizontal or vertical. The slight deformation that

actually occurs at the support permits the beam to assume there a
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slope Dy, which for the conditions represented in Fig. 8.12, that is, a

beam integral with a semi-infinite supporting foundation, is given by

Dy ¼
16:67M

pEh2
1

þ
ð1 � nÞV

Eh1

Here M is the bending moment per unit width and V is the shear force

per unit width of the beam at the support; E is the modulus of

elasticity, and n is Poisson’s ratio for the foundation material; and

h1 ¼ h þ 1:5r (Ref. 54). The effect of this deformation is to increase the

deflections of the beam. For a cantilever, this increase is simply xDy,
but for other support conditions the concept of the externally created

angular deformation may be utilized (see Example 2 on page 144).

For the effect of many moment-loaded cantilever beams spaced

closely one above the next, see Ref. 67.

8.7 Beams under Simultaneous Axial and
Transverse Loading

Under certain conditions a beam may be subjected to axial tension or

compression in addition to the transverse loads. Axial tension tends to

straighten the beam and thus reduce the bending moments produced

by the transve:rse loads, but axial compression has the opposite effect

and may greatly increase the maximum bending moment and deflec-

tion and obviously must be less than the critical or buckling load. See

Chap. 15. In either case a solution cannot be effected by simple

superposition but must be arrived at by methods that take into

account the change in deflection produced by the axial load.

For any condition of loading, the maximum normal stress in an

extreme fiber is given by

smax ¼
P

A
�

Mc

I
ð8:7-1Þ

where P is the axial load (positive if tensile and negative if compres-

sive), A is the cross-sectional area of the beam, I=c is the section

modulus, and M is the maximum bending moment due to the

combined effect of axial and transverse loads. (Use the plus sign if

Figure 8.12
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M causes tension at the point in question and the minus sign if M

causes compression.)

It is the determination of M that offers difficulty. For some cases,

especially if P is small or tensile, it is permissible to ignore the small

additional moment caused by P and to take M equal to M 0, the bending

moment due to transverse loads only. Approximate formulas of the

type (Ref. 33)

ymax ¼
y0max

1 � ayP2=EI
; ymax ¼

y0max

1 � ayP2=EI

Mmax ¼
M 0

max

1 � aM P2=EI

ð8:7-2Þ

have been used, but the values of ay, ay, and aM are different for each

loading and each manner of supporting the beam.

Instead of tabulating the values of a, which give answers with

increasing error as P increases, Tables 8.7(a–d) gives values of the

coefficient CP which can be used in the expressions

yA ¼ CPy0A; yA ¼ CPy
0
A; MA ¼ CpM 0

A; etc: (8.7-3)

where the primed values refer to the laterally loaded beam without the

axial load and can be evaluated from expressions found in Table 8.1.

For those cases listed where the reactions are statically indeterminate,

the reaction coefficients given will enable the remaining reactions to

be evaluated by applying the principles of static equilibrium. The

given values of CP are exact, based on the assumption that deflections

due to transverse shear are negligible. This same assumption was

used in developing the equations for transverse shear, bending

moment, slope, and deflection shown in Tables 8.8 and 8.9.

Table 8.8 lists the general equations just mentioned as well as

boundary values and selected maximum values for the case of axial

compressive loading plus transverse loading. Since, in general, axial

tension is a less critical condition, where deflections, slopes, and

moments are usually reduced by the axial load, Table 8.9 is much

more compact and gives only the general equations and the left-end

boundary values.

Although the principle of superposition does not apply to the

problem considered here, this modification of the principle can be

used: The moment (or deflection) for a combination of transverse loads

can be found by adding the moments (or deflections) for each trans-

verse load combined with the entire axial load. Thus a beam supported

at the ends and subjected to a uniform load, a center load, and an axial

compression would have a maximum bending moment (or deflection)

given by the sum of the maximum moments (or deflections) for Table
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8.8, cases 1e and 2e, the end load being included once for each

transverse load.

A problem closely related to the beam under combined axial and

lateral loading occurs when the ends of a beam are axially restrained

from motion along the axis of the beam (held) and a lateral load is

applied. A solution is effected by equating the increase in length of the

neutral surface of the beam Pl=AE to the decrease in length due to the

curvature of the neutral surface 1
2

Ð 1

0
y2dx [Eq. (8.1-14)]. In general,

solving the resulting equation for P is difficult owing to the presence of

the hyperbolic functions and the several powers of the load P in the

equation. If the beam is long, slender, and heavily loaded, this will be

necessary for good accuracy; but if the deflections are small, the

deflection curve can be approximated with a sine or cosine curve,

obtaining the results given in Table 8.10. The following examples will

illustrate the use of the formulas in Tables 8.7–8.10.

EXAMPLES

1. A 4-in, 7.7-lb steel I-beam 20 ft long is simply supported at both ends and
simultaneously subjected to a transverse load of 50 lb=ft (including its own
weight), a concentrated lateral load of 600 lb acting vertically downward at a
position 8 ft from the left end, and an axial compression of 3000 lb. It is
required to determine the maximum fiber stress and the deflection at
midlength.

Solution. Here P ¼ 3000 lb; l ¼ 240 in; I ¼ 6 in
4
; I=c ¼ 3 in

3
; A ¼ 2:21 in

2
;

wa ¼ wl ¼
50
12

¼ 4:17 lb=in; and a ¼ 0 for case 2e; W ¼ 600 lb and a ¼ 96 in for
case 1e; k ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
P=EI

p
¼ 0:00408 in

�1
; kl ¼ 0:98. The solution will be carried out

(a) ignoring deflection, (b) using coefficients from Table 8.7 and (c) using
precise formulas from Table 8.8.

(a) RA ¼ 860 lb, and max M80 ¼ 860ð8Þ � 8ð50Þð4Þ ¼ 5280 lb-ft:

max compressive stress ¼ �
P

A
�

M

I=c
¼ �

3000

2:21
�

5280ð12Þ

3
¼ �22;475 lb=in2

For the uniform load (Table 8.1, case 2e):

yl=2 ¼
�5

384

wal4

EI
¼

�5ð4:17Þð2404Þ

384ð30 � 106Þð6Þ
¼ �1:00 in

For the concentrated load (Table 8.1, case 1e):

RA ¼ 360 lb

yA ¼
�600ð96Þ½2ð240Þ � 96�ð240 � 96Þ

6ð30 � 106Þð6Þð240Þ
¼ �0:123 rad

yl=2 ¼ �0:123ð120Þ þ
360ð1203Þ

6ð30 � 106Þð6Þ
�

600ð120 � 96Þ3

6ð30 � 106Þð6Þ
¼ �0:907 in

Thus
Total midlength deflection ¼ �1:907 in
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(b) From Table 8.7(b) (simply supported ends), coefficients are given for
concentrated loads at l=4 and l=2. Plotting curves of the coefficients versus
kl and using linear interpolation to correct for a ¼ 0:4l give a value of
CP ¼ 1:112 for the midlength deflection and 1.083 for the moment under the
load. Similarly, for a uniform load on the entire span ða ¼ 0Þ, the values of CP

are found to be 1.111 for the midlength deflection and 1.115 for the moment at
midlength. If it is assumed that this last coefficient is also satisfactory for the
moment at x ¼ 0:4l, the following deflections and moments are calculated:

Max M80 ¼ 360ð8Þð1:083Þ þ ½500ð8Þ � 8ð50Þð4Þ�ð1:115Þ ¼ 3120 þ 2680 ¼ 5800 lb-ft

Max compressive stress ¼ �
P

A
�

M

I=c
¼ �

3000

2:21
�

5800ð12Þ

3
¼ �24;560 lb=in2

Midlength deflection ¼ �0:907ð1:112Þ � 1:00ð1:111Þ ¼ �2:12 in

(c) From Table 8.8 cases 1e and 2e, RA ¼ 860 lb and

yA ¼
�600

3000

sin 0:00408ð240 � 96Þ

sin 0:98
�

240 � 96

240

� 	

þ
�4:17

0:00408ð3000Þ
tan

0:98

2
�

0:98

2

� �

¼
�600

3000

0:5547

0:8305
� 0:6

� �
� 0:341ð0:533 � 0:49Þ

¼ �0:0283 rad

Max M80 ¼
860

0:00408
sin 0:00408ð96Þ �

�0:0283ð3000Þ

0:00408
sin 0:392

�
4:17

0:004082
ð1 � cos 0:392Þ

¼ 80;500 þ 7950 � 19;000 ¼ 69;450 lb-in

Max compressive stress ¼ �
3000

2:21
�

69;450

3
¼ �24;500 lb=in2

Midlength deflection ¼
�0:0283

0:00408
sin 0:49 þ

860

0:00408ð3000Þ
ð0:49 � sin 0:49Þ

�
600

0:00408ð3000Þ
½0:00408ð120 � 96Þ

� sin 0:00408ð120 � 96Þ�

�
4:17

0:004082ð3000Þ

0:004082ð1202Þ

2

�

� 1 þ cos 0:00408ð120Þ

	
¼ �3:27 þ 1:36 � 0:00785 � 0:192 ¼ �2:11 in

The ease with which the coefficients CP can be obtained from Tables 8.7(a–d)
makes this a very desirable way to solve problems of axially loaded beams.
Some caution must be observed, however, when interpolating for the position
of the load. For example, the concentrated moment in Tables 8.7c and 8.7d
shows a large variation in CP for the end moments when the load position is
changed from 0.25 to 0.50, especially under axial tension. Note that there are
some cases in which CP either changes sign or increases and then decreases
when kl is increased; in these cases the loading produces both positive and
negative moments and deflections in the span.
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2. A solid round brass bar 1 cm in diameter and 120 cm long is rigidly fixed at
both ends by supports assumed to be sufficiently rigid to preclude any relative
horizontal motion of the two supports. If this bar is subjected to a transverse
center load of 300 N at midlength, what is the center deflection and what is the
maximum tensile stress in the bar?

Solution. Here P is an unknown tensile load; W ¼ 300 N and a ¼ 60 cm;
l ¼ 120 cm; A ¼ 0:785 cm2, I ¼ 0:0491 cm4; and E ¼ 10 � 106 N=cm

2
. (This

situation is described in Table 8.10, case 2.) The first equation is solved for ymax:

ymax þ
0:785

16ð0:0491Þ
y3

max ¼
300ð1203Þ

2ðp4Þð10 � 106Þð0:0491Þ

ymax þ y3
max ¼ 5:44

Therefore ymax ¼ 1:57 cm. The second equation is now solved for P:

P ¼
p2ð10 � 106Þð0:785Þ

4ð1202Þ
1:572 ¼ 3315 N

k ¼

ffiffiffiffiffiffi
P

EI

r
¼

3315

ð10 � 106Þð0:0491Þ

� 	1=2

¼ 0:0822 cm�1

kl ¼ 9:86

From Table 8.7, case 1d, the values of RA and MA can be calculated. (Note
that yA and yA are zero.) First evaluate the necessary constants:

C2 ¼ sinh 9:86 ¼ 9574:4

C3 ¼ cosh 9:86 � 1 ¼ 9574:4 � 1 ¼ 9573:4

C4 ¼ sinh 9:86 � 9:86 ¼ 9564:5

Ca3 ¼ cosh
9:86

2
� 1 ¼ 69:193 � 1 ¼ 68:193

Ca4 ¼ sinh 4:93 � 4:93 ¼ 69:186 � 4:93 ¼ 64:256

RA ¼ W
C3Ca3 � C2Ca4

C2
3 � C2C4

¼ 300
9573:4ð68:193Þ � 9574:4ð64:256Þ

9573:42 � 9574:4ð9564:5Þ
¼ 300ð0:5Þ

¼ 150 N

MA ¼
�W

k

C4Ca3 � C3Ca4

C2
3 � C2C4

¼
�300

0:0822

9564:5ð68:193Þ � 9573:4ð64:256Þ

74;900

¼
�300

0:0822
0:493 ¼ �1800 N-cm

Max tensile stress ¼
P

A
þ

Mc

I
¼

3315

0:785
þ

1800ð0:5Þ

0:0491
¼ 4220 þ 18;330

¼ 22;550 N=cm
2

Midlength deflection ¼
�1800

3315
cosh

9:86

2
� 1

� �
þ

150

3315ð0:0822Þ
ðsinh 4:93 � 4:93Þ

¼ �37:0 þ 35:4 ¼ �1:6 cm
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This compares favorably with the value ymax ¼ 1:57 cm obtained from the
equation which was based on the assumption of a cosine curve for the
deflection.

An alternative to working with the large numerical values of the hyperbolic
sines and cosines as shown in the preceding calculations would be to simplify
the equations for this case where the load is at the center by using the double-
angle identities for hyperbolic functions. If this is done here, the expressions
simplify to

RA ¼
W

2
MA ¼

�W

k
tanh

kl

4
yl=2 ¼

�W

kP

kl

4
� tanh

kl

4

� �

Using these expressions gives RA ¼ 150 N, MA ¼ �1800 N-cm and yl=2 ¼

�1:63 cm. Table 8.6 for axial compression gives the formulas for these special
cases, but when the lateral loads are not placed at midlength or any of the
other common locations, a desk calculator or digital computer must be used. If
tables of hyperbolic functions are employed, it should be kept in mind that
adequate solutions can be made using values of kl close to the desired values if
such values are given in the table and the desired ones are not. For example, if
the values for the arguments 9.86 and 4.93 are not available but values for 10
and 5 are (note that it is necessary to maintain the correct ratio a=l ), these
values could be used with no noticeable change in the results. Finally, an
energy approach, using Rayleigh’s technique, is outlined in Chap. 6, Sec. 13, of
Ref. 72. The method works well with simple, axially constrained, and uncon-
strained beams.

8.8 Beams of Variable Section

Stress. For a beam whose cross section changes gradually, Eqs.

(8.1-1), (8.1-4), and (8.1-10)–(8.1-12) (Sec. 8.1) apply with sufficient

accuracy; Eqs. (8.1-3) and (8.1-5)–(8.1-7) apply if I is treated as a

variable, as in the examples that follow. All the formulas given in

Table 8.1 for vertical shear and bending moments in statically deter-

minate beams apply, but the formulas given for statically indetermi-

nate beams and for deflection and slope are inapplicable to beams of

nonuniform section unless the section varies in such a way that I is

constant.
Accurate analysis (Ref. 3) shows that in an end-loaded cantilever

beam of rectangular section which is symmetrically tapered in the

plane of bending the maximum fiber stress is somewhat less than is

indicated by Eq. (8.1-12) the error amounting to about 5% for a surface

slope of 15� (wedge angle 30�) and about 10% for a surface slope of 20�.

See also Prob. 2.35 in Ref. 66. The maximum horizontal and vertical

shear stress is shown to occur at the upper and lower surfaces instead

of at the neutral axis and to be approximately three times as great as

the average shear stress on the section for slopes up to 20�. It is very

doubtful, however, if this shear stress is often critical even in wood

beams, although it may possibly start failure in short, heavily rein-

forced concrete beams that are deepened or ‘‘haunched’’ at the ends.
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Such a failure, if observed, would probably be ascribed to compression

since it would occur at a point of high compressive stress. It is also

conceivable, of course, that this shear stress might be of importance in

certain metal parts subject to repeated stress.

Abrupt changes in the section of a beam cause high local stresses,

the effect of which is taken into account by using the proper factor of

stress concentration (Sec. 3.10 and Table 17.1).

Deflection. Determining deflections or statically indeterminate reac-

tions for beams of variable section can be considered in two categories:

where the beam has a continuously varying cross section from one end

to the other, and where the cross section varies in a stepwise fashion.

Considering the first category, where the section varies continu-

ously, we sometimes find a variation where Eq. (8.1-5) can be inte-

grated directly, with the moment of inertia treated as a variable. This

has been accomplished in Ref. 20 for tapered beams of circular section,

but using the expressions presented, one must carry more than the

usual number of digits to get accurate results. In most instances,

however, this is not easy, if possible, and a more productive approach is

to integrate Eq. (8.1-6) numerically using small incremental lengths

Dx. This has been done for a limited number of cases, and the results

are tabulated in Tables 8.11(a)–(d).

These tables give coefficients by which the stated reaction forces or

moments or the stated deformations for uniform beams, as given in

Table 8.1, must be multiplied to obtain the comparable reactions or

deformations for the tapered beams. The coefficients are dependent

upon the ratio of the moment of inertia at the right end of the beam IB

to the moment of inertia at the left end IA, assuming that the uniform

beam has a moment of inertia IA. The coefficients are also dependent

upon the manner of variation between the two end values. This

variation is of the form Ix ¼ IAð1 þ Kx=lÞn, where x is measured from

the left end and K ¼ ðIB=IAÞ
1=n

� 1. Thus if the beam is uniform, n ¼ 0;

if the width of a rectangular cross section varies linearly, n ¼ 1; if the

width of a rectangular cross section varies parabolically, n ¼ 2; if the

depth of a rectangular cross section varies linearly, n ¼ 3; and if the

lateral dimensions of any cross section vary linearly and proportio-

nately, n ¼ 4. Beams having similar variations in cross section can be

analysed approximately by comparing the given variations to those

found in Table 8.11.

Coefficients are given for only a few values of a=l, so it is not

desirable to interpolate to determine coefficients for other values of

a=l. Instead it is advisable to determine the corrected deformations or

reactions with the loads at the tabulated values of a=l and then

interpolate. This allows the use of additional known values as shown

in the second example below. For beams with symmetric end condi-
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tions, such as both ends fixed or both ends simply supported, the data

given for any value of a=l < 0:5 can be used twice by reversing the

beam end for end.

EXAMPLES

1. A tapered beam 30 in long with a depth varying linearly from 2 in at the left
end to 4 in at the right end and with a constant width of 1.5 in is fixed on the
right end and simply supported on the left end. A concentrated clockwise
couple of 5000 lb-in is applied at midlength and it is desired to know the
maximum bending stress in the beam.

Solution. First determine the left-end reaction force for a uniform cross
section. From Table 8.1, case 3c, the left reaction is

RA ¼
�3Moðl

2 � a2Þ

2l3
¼

�3ð5000Þð302 � 152Þ

2ð303Þ
¼ �187:5 lb

For the tapered beam

IA ¼
1:5ð23Þ

12
¼ 1 in

4; IB ¼
1:5ð43Þ

12
¼ 8 in

4

In Table 8.11(c) for n ¼ 3, IB=IA ¼ 8; and for case 3c with the loading at l=2,
the coefficient is listed as 0.906. Therefore, the left-end reaction is
�187:5ð0:906Þ ¼ �170 lb

The maximum negative moment will occur just left of midlength and will
equal �170ð15Þ ¼ �2550 lb-in. The maximum positive moment will occur just
right of midlength and will equal �2550 þ 5000 ¼ 2450 lb-in. At midlength the
moment of inertia I ¼ 1:5ð33Þ=12 ¼ 3:37 in

4
, and so the maximum stress is

given by s ¼ Mc=I ¼ 2550ð1:5Þ=3:37 ¼ 1135 lb=in2
just left of midlength.

2. A machine part is an 800-mm-long straight beam with a variable wide-
flange cross section. The single central web has a constant thickness of 1.5 mm
but a linearly varying depth from 6 mm at the left end A to 10 mm at the right
end B. The web and flanges are welded together continuously over the entire
length and are also welded to supporting structures at each end to provide
fixed ends. A concentrated lateral load of 100 N acts normal to the central axis
of the beam parallel to the web at a distance of 300 mm from the left end. The
maximum bending stress and the deflection under the load are desired. The
modulus of elasticity is 70 GPa, or 70,000 N=mm

2
.

Solution. First determine the left-end reaction force and moment for a beam
of constant cross section. From Table 8.1, case 1d,

RA ¼
W

l3
ðl � aÞ2ðl þ 2aÞ ¼

100

8003
ð800 � 300Þ2ð800 þ 600Þ ¼ 68:36 N

MA ¼
�Wa

l2
ðl � aÞ2 ¼

�100ð300Þ

8002
ð800 � 300Þ2 ¼ �11;720 N-mm
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For the tapered beam,

IA ¼
4ð103Þ � 2:5ð63Þ

12
¼ 288:3 mm4

IB ¼
8ð143Þ � 6:5ð103Þ

12
¼ 1287:7 mm4

and at midlength where x ¼ l=2, the moment of inertia is given by

Il=2 ¼
6ð123Þ � 4:5ð83Þ

12
¼ 672:0 mm4

Using the formula for the variation of I with x and these three values for the
moment of inertia, approximate values for K and n can be found.

IB ¼ IAð1 þ K Þ
n; Il=2 ¼ IA 1 þ

K

2

� �n

1287:7

288:3
¼ 4:466 ¼ ð1 þ K Þ

n;
672

288:3
¼ 2:331 ¼ 1 þ

K

2

� �n

4:4661=n � 2ð2:331Þ1=n þ 1 ¼ 0

Solving this last expression gives 1=n ¼ 0:35, n ¼ 2:86, and K ¼ 0:689.
An examination of Tables 8.11(a–d) shows that for a fixed-ended beam with

a concentrated load, which is case 1d in Table 8.1, values of coefficients are
given only for a=l ¼ 0:25 and 0.50. For this problem a=l ¼ 0:375. Simple linear
interpolation is not sufficiently accurate. However, if one imagines the load at
a=l ¼ 0:25 the values for RA and MA can be found. This procedure can be
repeated for a=l ¼ 0:50. Two other sets of data are also available. If the load
were placed at the left end, a=l ¼ 0, MA ¼ 0, RA ¼ 100 N, and dMA=da ¼

�100 N. If the load were placed at the right end, a=l ¼ 1, RA ¼ 0, MA ¼ 0,
and dMA=da ¼ 0. The variations of the tabulated coefficients with IB=IA and
with n do not pose a comparable problem since many data are available.
Plotting curves for the variation with IB=IA and interpolating linearly between
n ¼ 2 and n ¼ 3 for n ¼ 2:86 give the coefficients used below to find the values
for RA and MA at a=l ¼ 0:25 and 0.50:

Untapered beam Tapered beam where n ¼ 2:86 and IB=IA ¼ 4:466

a=l 0.25 0.50 0.25 0.50

RA (N) 84.38 50.00 84.38(0.922) ¼ 77.80 50(0.0805) ¼ 40.25

MA (N-mm) �11;250 �10;000 �11;250ð0:788Þ ¼ �8865 �10;000ð0:648Þ ¼ �6480

Plotting these values of RA and MA versus a=l for the four positions allows
one to pick from the graphs at a=l ¼ 0:375, RA ¼ 60 N, and MA ¼

�8800 N-mm. The use of static equilibrium now gives MB ¼ �10;800 N-mm
and the moment at the load of 9200 N-mm. The bending stress at the left end is
found to be the largest.

sA ¼
MAcA

IA

¼
8800ð5Þ

288:3
¼ 152:6 MPa
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No correction coefficients for deflections are included for case ld in Table 8.11.
The deflection at the load position can be found from the information in this
table, however, if either end of the beam is isolated and treated as a cantilever
with an end load and an end moment. The moment of inertia at the load
position C is given by

IC ¼
5:5ð11:53Þ � 4ð7:53Þ

12
¼ 556:4 mm4

Treat the left portion of the beam as a 300-mm-long cantilever, using case 1a
with an end load of 60 N and case 3a with an end moment of 9200 N-mm.
Determine the correction coefficients for a=l ¼ 0, n ¼ 3, and the moment of
inertia ratio of 288.33=556.44 ¼ 0.518. Interpolation between data for n ¼ 2
and n ¼ 3 is not justified when considering the approximations already made
from plotted curves. Noting that all correction coefficients in Table 8.11 are
unity for IB=IA ¼ 1 and using data points for IB=IA ¼ 0:25 and 0.50, the
correction coefficients used below were found

yC ¼ �
60ð3003Þð1:645Þ

3ð70;000Þð556:4Þ
þ

9200ð3002Þð1:560Þ

2ð70;000Þð556:4Þ
¼ �22:8 þ 16:6 ¼ �6:2 mm

This deflection at the load can be checked by repeating the above procedure by
using the right-hand portion of the beam. The slope of the beam at the load can
also be used as a check.

Alternative solution. The solution just presented was intended to illus-
trate appropriate methods of interpolation with the limited load positions
shown in the tables. There is also an alternative solution involving super-
position of cases. Remove the fixity at end A and treat the 500-mm-long right
portion as a cantilever with an end load of 100 N. Use n ¼ 3 as being close
enough to n ¼ 2:86 and IB=IC ¼ 1287:7=556:4 ¼ 2:314. Interpolate between
IB=IC ¼ 2 and 4 to obtain from case 1a in Table 8.11(c) the correction
coefficients used below to calculate the slope and deflection at the load

yC ¼ �
100ð5003Þð0:555Þ

3ð70;000Þð556:4Þ
¼ �59:37 mm yC ¼

100ð5002Þð0:593Þ

2ð70;000Þð556:4Þ
¼ 0:1903 rad

Since the left portion is unloaded and remains straight, the end deflection and
slope are yA ¼ �59:37 � 300ð0:1903Þ ¼ �116:5 mm, and yA ¼ 0:1903 rad. Next
treat the complete beam as a cantilever under an end load RA and an end
moment MA. Let IA ¼ 228:3 mm4, IB=IA ¼ 4:466, and again let n ¼ 3. From
cases 1a and 3a in Table 8.11(c),

yA ¼
RAð8003Þð0:332Þ

3ð70;000Þð288:3Þ
þ

MAð8002Þð0:380Þ

2ð70;000Þð288:3Þ
¼ 2:808RA þ 0:00602MA

yA ¼ �
RAð8002Þð0:380Þ

2ð70;000Þð288:3Þ
�

MAð800Þð0:497Þ

ð70;000Þð288:3Þ
¼ �0:006024RA � 19:7ð10�6ÞMA

Adding the slopes and deflections from the load of 100 N to those above and
equating each to zero to represent the fixed end gives RA ¼ 60:3 N and
MA ¼ �8790 N-mm. This is a reasonable check on those values from the
first solution.
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The second category of determining deflections, where the cross

section varies in steps from one uniform section to another, can be

solved in several ways. Equation (8.1-5) can be integrated, matching

slopes and deflections at the transition sections, or Eq. (8.1-6) can be

integrated over the separate portions and summed to obtain the

desired deflections. A third method utilizes the advantages of the

step function and its application to beam deflections as given in

Table 8.1. In a given portion of the span where the cross section is

uniform it is apparent that the shape of the elastic curve will remain

the same if the internal bending moments and the moments of inertia

are increased or decreased in proportion. By this means, a modified

moment diagram can be constructed which could be applied to a beam

with a single constant cross section and thereby produce an elastic

curve identical to the one produced by the actual moments and the

several moments of inertia present in the actual span. It is also

apparent that this modified moment diagram could be produced by

adding appropriate loads to the beam. (See Refs. 29 and 65.) In

summary, then, a new loading is constructed which will produce the

required elastic curve, and the solution for this loading is carried out

by using the formulas in Table 8.1. This procedure will be illustrated

by the following example.

EXAMPLE

The beam shown in Fig. 8.13 has a constant depth of 4 in and a step increase in
the width from 2 to 5 in at a point 5 ft from the left end. The left end is simply
supported, and the right end is fixed; the loading is a uniform 200 lb=ft from
x ¼ 3 ft to the right end. Find the value of the reaction at the left end and the
maximum stress.

Solution. For the left 5 ft, I1 ¼ 2ð43Þ=12 ¼ 10:67 in
4
. For the right 5 ft,

I2 ¼ 5ð43Þ=12 ¼ 26:67 in
4
, or 2.5 times I1.

The same M=I diagram shown in Fig. 8.13(e) can be produced by the loading
shown in Fig. 8.14 acting upon a beam having a constant moment of inertia I2.
Note that all loads on the left portion simply have been increased by a factor of
2.5, while added loads at the 5-ft position reduce the effects of these added
loads to those previously present on the right portion.

To find the left-end reaction for the beam loaded as shown in Fig. 7.14(a),
use Table 8.1, case 1c, where W ¼ 1:5R1 � 600 and a ¼ 5; case 2c, where
wa ¼ wl ¼ 500 lb=ft and a ¼ 3 ft; case 2c, again, where wa ¼ wl ¼ �300 lb=ft
and a ¼ 5 ft; and finally case 3c, where Mo ¼ �ð7:5R1 � 600Þ and a ¼ 5 ft.
Summing the expressions for RA from these cases in the order above, we
obtain

RA ¼ 2:5R1 ¼
ð1:5R1 � 600Þð10 � 5Þ2

2ð103Þ
½2ð10Þ þ 5� þ

500ð10 � 3Þ3

8ð103Þ
½3ð10Þ þ 3�

þ
ð�300Þð10 � 5Þ3

8ð103Þ
½3ð10Þ þ 5� �

3½�ð7:5R1 � 600Þ�

2ð103Þ
ð102 � 52Þ

which gives R1 ¼ 244 lb.
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Figure 8.13

Figure 8.14
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From Fig. 8.13(a) we can observe that the maximum positive bending
moment will occur at x ¼ 4:22 ft, where the transverse shear will be zero.
The maximum moments are therefore

Max þ M ¼ 244ð4:22Þ �
200

2
ð1:222Þ ¼ 881 lb-ft

Max � M ¼ 244ð10Þ � 4900 ¼ �2460 lb-ft at the right end

The maximum stresses are s ¼ 881ð12Þð2Þ=10:67 ¼ 1982 lb=in2
at x ¼ 4:22 ft

and s ¼ 2460ð12Þð2Þ=26:67 ¼ 2215 lb=in2
at x ¼ 10 ft.

8.9 Slotted Beams

If the web of a beam is pierced by a hole or slot (Fig. 8.15), the stresses

in the extreme fibers a and b at any section B are given by

sa ¼ �
MA

I=c
�

VAxI1=ðI1 þ I2Þ

ðI=cÞ1
ðcompressionÞ

sb ¼
MA

I=c
þ

VAxI2=ðI1 þ I2Þ

ðI=cÞ2
ðtensionÞ

Here MA is the bending moment at A (midlength of the slot), VA is the

vertical shear at A, I=c is the section modulus of the net beam section

at B, I1 and I2 are the moments of inertia, and ðI=cÞ, and ðI=cÞ2 are the

section moduli of the cross sections of parts 1 and 2 about their own

central axes. M and V are positive or negative according to the usual

convention, and x is positive when measured to the right.

The preceding formulas are derived by replacing all forces acting on

the beam to the left of A by an equivalent couple MA and shear VA at A.

The couple produces a bending stress given by the first term of the

formula. The shear divides between parts 1 and 2 in proportion to

their respective I ’s and produces in each part an additional bending

stress given by the second term of the formula. The stress at any other

point in the cross section can be found similarly by adding the stresses

due to MA and those due to this secondary bending caused by the

shear. (At the ends of the slot there is a stress concentration at the

corners which is not taken into account here.)

Figure 8.15
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The above analysis applies also to a beam with multiple slots of

equal length; all that is necessary is to modify the term ðI1 þ I2Þ. The

numerator is still the I of the part in question and the denominator is

the sum of the I ’s of all the parts 1, 2, 3, etc. The formulas can also be

used for a rigid frame consisting of beams of equal length joined at

their ends by rigid members; thus in Fig. 8.15 parts 1 and 2 might

equally well be two separate beams joined at their ends by rigid

crosspieces.

8.10 Beams of Relatively Great Depth

In beams of small span=depth ratio, the transverse shear stresses are

likely to be high and the resulting deflection due to shear may not be

negligible. For span=depth ratios of 3 or more, the deflection ys due to

shear is found by the method of unit loads to be

ys ¼ F

ð
V v

AG
dx ð8:10-1Þ

or by Castigliano’s theorem to be

ys ¼
@Us

@P
ð8:10-2Þ

In Eq. (8.10-1), V is the vertical shear due to the actual loads, v is

the vertical shear due to a unit load acting at the section where the

deflection is desired, A is the area of the section, G is the modulus of

rigidity, F is a factor depending on the form of the cross section, and

the integration extends over the entire length of the beam, with due

regard to the signs of V and v. For three solid sections, a rectangle, a

triangle with base either up or down, and a trapezoid with parallel

sides top and bottom, F ¼ 6
5
; for a diamond-shaped section, F ¼ 31

30
; for a

solid circular section, F ¼ 10
9

; for a thin-walled hollow circular section,

F ¼ 2; for an I- or box section with flanges and webs of uniform

thickness,

F ¼ 1 þ
3ðD2

2 � D2
1ÞD1

2D3
2

t2

t1

� 1

� �� 	
4D2

2

10r2

where

D1 ¼ distance from neutral axis to the nearest surface of the flange

D2 ¼ distance from neutral axis to extreme fiber

t1 ¼ thickness of web ðor webs in box beamsÞ

t2 ¼ width of flange

r ¼ radius of gyration of section with respect to the neutral axis
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If the I- or box beam has flanges of nonuniform thickness, it may be

replaced by an ‘‘equivalent’’ section whose flanges, of uniform thick-

ness, have the same width and areas as those of the actual section

(Ref. 19). Approximate results may be obtained for I-beams using

F ¼ 1 and taking for A the area of the web.

Application of Eq. (8.10-1) to several common cases of loading yields

the following results:

End support; center load P ys ¼
1

4
F

Pl

AG

End support;uniform load w ys ¼
1

8
F

wl2

AG

Cantilever; end load P ys ¼ F
Pl

AG

Cantilever;uniform load w ys ¼
1

2
F

wl2

AG

In Eq. (8.10-2), Us ¼ F
Ð
ðV 2=2AGÞdx;P is a vertical load, real or

imaginary, applied at the section where ys is to be found, and the

other terms have the same meaning as in Eq. (8.10-1).

The deflection due to shear will usually be negligible in metal beams

unless the span=depth ratio is extremely small; in wood beams,

because of the small value of G compared with E, deflection due to

shear is much more important. In computing deflections it may be

allowed for by using for E a value obtained from bending tests (shear

deflection ignored) on beams of similar proportions or a value about

10% less than that found by testing in direct compression if the

span=depth ratio is between 12 and 24. For larger ratios the effect of

shear is negligible, and for lower ratios it should be calculated by the

preceding method.

For extremely short deep beams, the assumption of linear stress

distribution, on which the simple theory of flexure is based, is no

longer valid. Equation (8.1-1) gives sufficiently accurate results for

span=depth ratios down to about 3; for still smaller ratios it was

believed formerly that the actual stresses were smaller than the

formula indicates (Refs. 1 and 2), but more recent analyses by

numerical methods (Refs. 43 and 44) indicate that the contrary is

true. These analyses show that at s=d between 1.5 and 1, depending on

the manner of loading and support, the stress distribution changes

radically and the ratio of maximum stress to Mc=I becomes greater

than 1 and increases rapidly as s=d becomes still smaller. In the

following table, the influence of s=d on both maximum fiber stress

and maximum horizontal shear stress is shown in accordance with the

solution given in Ref. 43. Reference 44 gives comparable results, and

both strain-gage measurements (Ref. 45) and photoelastic studies (Ref.

46) support the conclusions reached in these analyses.
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Uniform load over entire l Uniform load over middle 1
12

l

Ratio

l=d

Ratio

span=d

max st

Mc=I

max sc

Mc=I

max t
V=A

max st

Mc=I

max sc

Mc=I

max t
V=A

3 2.875 1.025 1.030 1.58 0.970 1.655 1.57

2.5 2.395 1.046 1.035 1.60 0.960 1.965 1.60

2.0 1.915 1.116 1.022 1.64 0.962 2.525 1.70

1.5 1.4375 1.401 0.879 1.80 1.038 3.585 1.92

1 0.958 2.725 0.600 2.43 1.513 6.140 2.39

0.5 0.479 10.95 2.365 4.53 5.460 15.73 3.78
1
3

0.3193 24.70 5.160 6.05 12.35 25.55 7.23

These established facts concerning elastic stresses in short beams

seem incompatible with the contrary influence of s=d on modulus of

rupture, discussed in Sec. 8.15, unless it is assumed that there is a

very radical redistribution of stress as soon as plastic action sets in.

The stress produced by a concentrated load acting on a very short

cantilever beam or projection (gear tooth, sawtooth, screw thread) can

be found by the following formula, due to Heywood (Chap. 2, Ref. 28)

and modified by Kelley and Pedersen (Ref. 59). As given here, the

formula follows this modification, with some changes in notation.

Figure 8.16 represents the profile of the beam, assumed to be of

uniform thickness t. ED is the axis or center line of the beam; it

bisects the angle between the sides if these are straight; otherwise it is

drawn through the centers of two unequal inscribed circles. W repre-

sents the load; its line of action, or load line, intersects the beam

profile at C and the beam axis at O. The inscribed parabola, with

vertex at O, is tangent to the fillet on the tension side of the beam at A,

which is the point of maximum tensile stress. (A can be located by

making AF equal to FE by trial, F being the intersection of a

perpendicular to the axis at O and a trial tangent to the fillet.) B is

the corresponding point on the compression side, and D is the inter-

section of the beam axis with section AB. The dimensions a and e are

perpendicular, respectively, to the load line and to the beam axis, r is

the fillet radius, and b is the straight-line distance from A to C. The

tensile stress at A is given by

s ¼
W

t
1 þ 0:26

e

r

� �0:7
� 	

1:5a

e2
þ

cosb
2e

þ
0:45

ðbeÞ1=2

� 	
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Here the quantity in the first pair of brackets is the factor of stress

concentration for the fillet. In the second pair of brackets, the first

term represents the bending moment divided by the section modulus,

the second term represents the effect of the component of the load

along the tangent line, positive when tensile, and the third term

represents what Heywood calls the proximity effect, which may be

regarded as an adjustment for the very small span=depth ratio.

Kelley and Pedersen have suggested a further refinement in locat-

ing the point of maximum stress, putting it at an angular distance

equal to 25� � 1
2
a, positive toward the root of the fillet. Heywood

suggests locating this point at 30� from the outer end of the fillet,

reducing this to 12� as the ratio of b to e increases; also, Heywood

locates the moment of W about a point halfway between A and B

instead of about D. For most cases the slightly different procedures

seem to give comparable results and agree well with photoelastic

analysis. However, more recent experimental studies (1963), including

fatigue tests, indicate that actual stresses may considerably exceed

those computed by the formula (Ref. 63).

8.11 Beams of Relatively Great Width

Because of prevention of the lateral deformation that would normally

accompany the fiber stresses, wide beams, such as thin metallic strips,

are more rigid than the formulas of Sec. 8.1 indicate. This stiffening

effect is taken into account by using E=ð1 � n2Þ instead of E in the

formulas for deflection and curvature if the beams are very wide (Ref.

21). The anticlastic curvature that exists on narrow rectangular

beams is still present at the extreme edges of very wide beams, but

the central region remains flat in a transverse direction and trans-

Figure 8.16

SEC. 8.11] Beams; Flexure of Straight Bars 169



verse bending stresses equal to Poisson’s ratio times the longitudinal

bending stresses are present. For rectangular beams of moderate

width, Ashwell (Ref. 10) shows that the stiffness depends not only

upon the ratio of depth to width of the beam but also upon the radius of

curvature to which the beam is bent. For a rectangular beam of width

b and depth h bent to a radius of curvature r by a bending moment M ,

these variables are related by the expression 1=r ¼ M=KEI , where

I ¼ bh3=12, and the following table of values for K is given for several

values of Poisson’s ratio and for the quantity b2=rh.

b2=rh

Value of n 0.25 1.00 4.00 16.0 50.0 200. 800.

0.1000 1.0000 1.0003 1.0033 1.0073 1.0085 1.0093 1.0097

0.2000 1.0001 1.0013 1.0135 1.0300 1.0349 1.0383 1.0400

0.3000 1.0002 1.0029 1.0311 1.0710 1.0826 1.0907 1.0948

0.3333 1.0002 1.0036 1.0387 1.0895 1.1042 1.1146 1.1198

0.4000 1.0003 1.0052 1.0569 1.1357 1.1584 1.1744 1.1825

0.5000 1.0005 1.0081 1.0923 1.2351 1.2755 1.3045 1.3189

In very short wide beams, such as the concrete slabs used as

highway-bridge flooring, the deflection and fiber-stress distribution

cannot be regarded as uniform across the width. In calculating the

strength of such a slab, it is convenient to make use of the concept of

effective width, i.e., the width of a spanwise strip which, acting as a

beam with uniform extreme fiber stress equal to the maximum stress

in the slab, develops the same resisting moment as does the slab. The

effective width depends on the manner of support, manner of loading,

and ratio of breadth to span b=a. It has been determined by Holl (Ref.

22) for a number of assumed conditions, and the results are given in

the following table for a slab that is freely supported at each of two

opposite edges (Fig. 8.17). Two kinds of loading are considered, viz.

uniform load over the entire slab and load uniformly distributed over a

central circular area of radius c. The ratio of the effective width e to

the span a is given for each of a number of ratios of c to slab thickness

h and each of a number of b=a values.

Values of e=a for

Loading b=a ¼ 1 b=a ¼ 1:2 b=a ¼ 1:6 b=a ¼ 2 b=a ¼ 1

Uniform 0.960 1.145 1.519 1.900

Central, c ¼ 0 0.568 0.599 0.633 0.648 0.656

Central, c ¼ 0:125h 0.581 0.614 0.649 0.665 0.673

Central, c ¼ 0:250h 0.599 0.634 0.672 0.689 0.697

Central, c ¼ 0:500h 0.652 0.694 0.740 0.761 0.770
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For the same case (a slab that is supported at opposite edges and

loaded on a central circular area) Westergaard (Ref. 23) gives

e ¼ 0:58a þ 4c as an approximate expression for effective width.

Morris (Ref. 24) gives e ¼ 1
2
ec þ d as an approximate expression for

the effective width for midspan off-center loading, where ec is the

effective width for central loading and d is the distance from the load

to the nearer unsupported edge.

For a slab that is fixed at two opposite edges and uniformly loaded,

the stresses and deflections may be calculated with sufficient accuracy

by the ordinary beam formulas, replacing E by E=ð1 � n2Þ. For a slab

thus supported and loaded at the center, the maximum stresses occur

under the load, except for relatively large values of c, where they occur

at the midpoints of the fixed edges. The effective widths are approxi-

mately as given in the following table (values from the curves of Ref.

22). Here b=a and c have the same meaning as in the preceding table,

but it should be noted that values of e=b are given instead of e=a.

Values of e=b for

Max stress

Values of c b=a ¼ 1 b=a ¼ 1:2 b=a ¼ 1:6 b=a ¼ 2:0 at

0 0.51 0.52 0.53 0.53 Load

0:01a 0.52 0.54 0.55 0.55 Load

0:03a 0.58 0.59 0.60 0.60 Load

0:10a 0.69 0.73 0.81 0.86 Fixed edges

Holl (Ref. 22) discusses the deflections of a wide beam with two

edges supported and the distribution of pressure under the supported

edges. The problem of determining the effective width in concrete

slabs and tests made for that purpose are discussed by Kelley (Ref. 25),

who also gives a brief bibliography on the subject.

The case of a very wide cantilever slab under a concentrated load is

discussed by MacGregor (Ref. 26), Holl (Ref. 27), Jaramillo (Ref. 47),

Wellauer and Seireg (Ref. 48), Little (Ref. 49), Small (Ref. 50), and

others. For the conditions represented in Fig. 8.18, a cantilever plate

of infinite length with a concentrated load, the bending stress s at any

point can be expressed by s ¼ Kmð6P=t2Þ, and the deflection y at any

point by y ¼ KyðPa2=pDÞ, where Km and Ky are dimensionless coeffi-

Figure 8.17
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cients that depend upon the location of the load and the point, and D is

as defined in Table 11.2. For the load at x ¼ c, z ¼ 0, the stress at any

point on the fixed edge x ¼ 0, z ¼ z, and the deflection at any point on

the free edge x ¼ a, z ¼ z, can be found by using the following values of

Km and Ky:

z=a
c=a 0 0.25 0.50 1.0 1.5 2 1

Km 0.509 0.474 0.390 0.205 0.091 0.037 0

1.0 Ky 0.524 0.470 0.380 0.215 0.108 0.049 0

Km 0.428 0.387 0.284 0.140 0.059 0.023 0

0.75
Ky 0.318 0.294 0.243 0.138 0.069 0.031 0

0.50 Km 0.370 0.302 0.196 0.076 0.029 0.011 0

0.25 Km 0.332 0.172 0.073 0.022 0.007 0.003 0

These values are based on the analysis of Jaramillo (Ref. 47), who

assumes an infinite length for the plate, and are in good agreement, so

far as comparable, with coefficients given by MacGregor (Ref. 26).

They differ only slightly from results obtained by Holl (Ref. 27) for a

length=span ratio of 4 and by Little (Ref. 49) for a length=span ratio of

5 and are in good agreement with available test data.

Wellauer and Seireg (Ref. 48) discuss the results of tests on beams of

various proportions and explain and illustrate an empirical method by

which the Km values obtained by Jaramillo (Ref. 47) for the infinite

plate under concentrated loading can be used to determine approxi-

Figure 8.18
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mately the stress in a finite plate under an arbitrary transverse

loading.

The stresses corresponding to the tabulated values of Km are span-

wise (x direction) stresses; the maximum crosswise (z direction) stress

occurs under the load when the load is applied at the midpoint of the

free edge and is approximately equal to the maximum spanwise stress

for that loading.

Although the previous formulaes are based on the assumption of

infinite width of a slab, tests (Ref. 26) on a plate with a width of 8 1
2

in

and span a of 1 1
4

in showed close agreement between calculated and

measured deflections, and Holl’s analysis (Ref. 27), based on the

assumption of a plate width four times the span, gives results that

differ only slightly from MacGregor’s (Ref. 26). The formulas given

should therefore be applicable to slabs of breadth as small as four

times the span.

8.12 Beams with Wide Flanges; Shear Lag

In thin metal construction, box, T-, or I-beams with very wide thin

cover plates or flanges are sometimes used, and when a thin plate is

stiffened by an attached member, a portion of the plate may be

considered as a flange, acting integrally with the attached member

which forms the web; examples are to be found in ship hulls, floors,

tanks, and aircraft. In either type of construction the question arises

as to what width of flange or plate would be considered effective; i.e.,

what width, uniformly stressed to the maximum stress that actually

occurs, would provide a resisting moment equal to that of the actual

stresses, which are greatest near the web and diminish as the distance

from it increases.

This problem has been considered by several investigators; the

results tabulated on page 174 are due to Hildebrand and Reissner

(Ref. 38), Winter (Ref. 39), and Miller (Ref. 28).

Let b ¼ actual net width of the flange (or clear distance between

webs in continuous plate and stiffener construction), let l ¼ span, and

let b0 ¼ effective width of the flange at the section of maximum

bending moment. Then the approximate value of b0=b, which varies

with the loading and with the ratio l=b, can be found for beams of

uniform section in the table on p. 174. (In this table the case numbers

refer to the manner of loading and support represented in Table 8.1.)

See also Ref. 37.

Some of the more important conclusions stated in Ref. 38 can be

summarized as follows.

The amount of shear lag depends not only on the method of loading

and support and the ratio of span to flange width but also on the ratio

of G to E and on the ratio m ¼ ð3Iw þ IsÞ=ðIw þ IsÞ, where Iw and Is are
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Ratio of effective width to total width b0=b for wide flanges

Case no. and l=b
load positions

(from Table 8.1) Reference no. 1 1.25 1.50 1.75 2 2.5 3 4 5 6 8 10 15 20

1a. a ¼ 0 38 0.571 0.638 0.690 0.730 0.757 0.801 0.830 0.870 0.895 0.913 0.934 0.946

2a. wa ¼ wl;a ¼ 0 38 0.550 0.600 0.632 0.685 0.724 0.780 0.815 0.842 0.876 0.899

2a. wa ¼ 0;a ¼ 0 38 0.609 0.650 0.710 0.751 0.784 0.826 0.858

1e. a ¼ l=2 38 0.530 0.571 0.638 0.686 0.757 0.801 0.830 0.870 0.895 0.936 0.946

1e. a ¼ l=2 39 0.550 0.670 0.732 0.779 0.850 0.894 0.945

1e. a ¼ l=2 28 0.525 0.750

1e. a ¼ l=4 38 0.455 0.495 0.560 0.610 0.686 0.740 0.788 0.826 0.855 0.910 0.930

2e. wa ¼ wl;a ¼ 0 38 0.640 0.690 0.772 0.830 0.897 0.936 0.957 0.977 0.985 0.991 0.995

1
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the moments of inertia about the neutral axis of the beam of the side

plates and cover plates, respectively. (The values tabulated from Ref.

38 are for G=E ¼ 0:375 and m ¼ 2.) The value of b0=b increases with

increasing m, but for values of m between 1.5 and 2.5 the variation is

small enough to be disregarded. Shear lag at the critical section does

not seem to be affected appreciably by the taper of the beam in width,

but the taper in cover-plate thickness may have an important effect. In

beams with fixed ends the effect of shear lag at the end sections is the

same as for a cantilever of span equal to the distance from the point of

inflection to the adjacent end.

In Ref. 39 it is stated that for a given l=b ratio the effect of shear lag

is practically the same for box, I-, T-, and U-beams.

Flange in compression. The preceding discussion and tabulated

factors apply to any case in which the flange is subjected to tension

or to compression less than that required to produce elastic instability

(see Chap. 15). When a thin flange or sheet is on the compression side,

however, it may be stressed beyond the stability limit. For this

condition, the effective width decreases with the actual stress. A

formula for effective width used in aircraft design is

b0 ¼ Kt

ffiffiffiffi
E

s

r

where s is the maximum compressive stress (adjacent to the support-

ing web or webs) and K is a coefficient which may be conservatively

taken as 0.85 for box beams and 0.60 for a T- or an I-beam having

flanges with unsupported outer edges.

A theoretical analysis that takes into account both compressive

buckling and shear lag is described in Ref. 40. Problems involving

shear lag and buckling are most frequently encountered in design with

thin-gage metal; good guides to such design are the books ‘‘Cold-

Formed Steel Design Manual’’ in 5 parts including commentary,

published in 1982 by the American Iron and Steel Institute, and

‘‘Aluminum Construction Manual,’’ 4th ed., published in 1981 by the

Aluminum Association. See also Ref. 68.

8.13 Beams with Very Thin Webs

In beams with extremely thin webs, such as are used in airplane

construction, buckling due to shear will occur at stresses well below

the elastic limit. This can be prevented if the web is made shear-

resistant by the addition of stiffeners such as those used in plate

girders, but the number of these required may be excessive. Instead of

making the web shear-resistant, it may be permitted to buckle
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elastically without damage, the shear being carried wholly in diagonal

tension. This tension tends to pull the upper and lower flanges

together, and to prevent this, vertical struts are provided which

carry the vertical component of the diagonal web tension. A girder

so designed is, in effect, a Pratt truss, the web replacing the diagonal-

tension members and the vertical struts constituting the compression

members. In appearance, these struts resemble the stiffeners of an

ordinary plate girder, but their function is obviously quite different.

A beam of this kind is called a diagonal-tension field beam, or

Wagner beam, after Professor Herbert Wagner of Danzig, who is

largely responsible for developing the theory. Because of its rather

limited field of application, only one example of the Wagner beam will

be considered here, viz. a cantilever under end load.

Let P ¼ end load, h ¼ depth of the beam, t ¼ thickness of the web,

d ¼ spacing of the vertical struts, x ¼ distance from the loaded end to

the section in question, Ht and Hc ¼ total stresses in the tension and

compression flanges, respectively, at the given section, C ¼ total

compression on a vertical strut, and f ¼ unit diagonal tensile stress

in the web. Then

Ht ¼
Px

h
�

1

2
P; Hc ¼

Px

h
þ

1

2
P; C ¼

Pd

h
; f ¼

2P

ht

The vertical component of the web tension constitutes a beam

loading on each individual flange between struts; the maximum

value of the resulting bending moment occurs at the struts and is

given by Mf ¼
1
12

Pd2=h. The flexural stresses due to Mf must be added

to the stresses due to Ht or Hc, which may be found simply by dividing

Ht or Hc by the area of the corresponding flange.

The horizontal component of the web tension causes a bending

moment M ¼ 1
8
Ph in the vertical strut at the end of the beam unless

bending there is prevented by some system of bracing. This end strut

must also distribute the load to the web, and should be designed to

carry the load as a pin-ended column of length 1
2
h as well as to resist

the moment imposed by the web tension.

The intermediate struts are designed as pin-ended columns with

lengths somewhat less than h. An adjacent portion of the web is

included in the area of the column, the width of the strip considered

effective being 30t in the case of aluminum and 60t in the case of steel.

Obviously the preceding formulas will apply also to a beam with end

supports and center load if P is replaced by the reaction 1
2
P. Because of

various simplifying assumptions made in the analysis, these formulas

are conservative; in particular the formula for stress in the vertical

struts or stiffeners gives results much larger than actual stresses

that have been discovered experimentally. More accurate analyses,
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together with experimental data from various sources, will be found in

Refs. 30, 34, 35, 62, and 69–71.

8.14 Beams Not Loaded in Plane of Symmetry;
Flexural Center

The formulas for stress and deflection given in Sec. 8.1 are valid if the

beam is loaded in a plane of symmetry; they are also valid if the

applied loads are parallel to either principal central axis of the beam

section, but unless the loads also pass through the elastic axis, the

beam will be subjected to torsion as well as bending.

For the general case of a beam of any section loaded by a transverse

load P in any plane, therefore, the solution comprises the following

steps: (1) The load P is resolved into an equal and parallel force P0

passing through the flexural center Q of the section, and a twisting

couple T equal to the moment of P about Q; (2) P0 is resolved at Q into

rectangular components P0
u and P 0

v, each parallel to a principal central

axis of the section; (3) the flexural stresses and deflections due to P0
u

and P 0
v, are calculated independently by the formulas of Sec. 8.1 and

superimposed to find the effect of P0; and (4) the stresses due to T are

computed independently and superimposed on the stresses due to P 0,

giving the stresses due to the actual loading. (It is to be noted that T

may cause longitudinal fiber stresses as well as shear stresses. See

Sec. 10.3 and the example at the end of this section.) If there are

several loads, the effect of each is calculated separately and these

effects added. For a distributed load the same procedure is followed as

for a concentrated load.

The above procedure requires the determination of the position of

the flexural center Q. For any section having two or more axes of

symmetry (rectangle, I-beam, etc.) and for any section having a point

of symmetry (equilateral triangle, Z-bar, etc.), Q is at the centroid. For

any section having only one axis of symmetry, Q is on that axis but in

general not at the centroid. For such sections and for unsymmetrical

sections in general, the position of Q must be determined by calcula-

tion, direct experiment, or the soap-film method (Sec. 6.4).

Table 8.12 gives the position of the flexural center for each of a

number of sections.

Neutral axis. When a beam is bent by one or more loads that lie in a

plane not parallel to either principal central axis of the section, the

neutral axis passes through the centroid but is not perpendicular to

the plane of the loads. Let axes 1 and 2 be the principal central axes of

the section, and let I1 and I2 represent the corresponding moments of

inertia. Then, if the plane of the loads makes with axis 1 an angle a,
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the neutral axis makes with axis 2 an angle b such that tan b ¼

ðI2=I1Þ tan a. It can be seen from this equation that the neutral axis

tends to approach the principal central axis about which the moment

of inertia is least.

EXAMPLE

Figure 8.19(a) represents a cantilever beam of channel section under a
diagonal end load applied at one corner. It is required to determine the
maximum resulting fiber stress.

Solution. For the section (Fig. 8.19b): Iu ¼ 5:61 in
4
, Iv ¼ 19:9 in

4
;

b ¼ 3:875 in, h ¼ 5:75 in, and t ¼ 1
4

in. By the formula from Table 8.12, e ¼

b2h2t=4Iv ¼ 1:55 in; therefore the flexural center is at Q, as shown. When the
load is resolved into vertical and horizontal components at Q and a couple, the
results are as shown in Fig. 8.19(b). (Vertical and horizontal components are
used because the principal central axes u and v are vertical and horizontal.)

The maximum fiber stress will occur at the corner where the stresses due to
the vertical and horizontal bending moments are of the same kind; at the
upper-right corner f both stresses are tensile, and since f is farther from the u
axis than the lower-left corner g where both stresses are compressive, it will
sustain the greater stress. This stress will be simply the sum of the stresses
due to the vertical and horizontal components of the load, or

s ¼
940ð36Þð3Þ

19:9
þ

342ð36Þð2:765Þ

5:61
¼ 5100 þ 6070 ¼ 11;200 lb=in2

The effect of the couple depends on the way in which the inner end of the beam
is supported. If it is simply constrained against rotation in the planes of
bending and twisting, the twisting moment will be resisted wholly by shear
stress on the cross section, and these stresses can be found by the appropriate
torsion formula of Table 10.1. If, however, the beam is built in so that the
flanges are fixed in the horizontal plane, then part of the torque is resisted by
the bending rigidity of the flanges and the corresponding moment causes a
further fiber stress. This can be found by using the formulas of Sec. 10.3.

Figure 8.19
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For the channel section, K is given with sufficient accuracy by the formula
K ¼ ðt3=3Þðh þ 2bÞ (Table 9.2, case 1), which gives K ¼ 0:073 in

4
. Taking

G ¼ 12;000;000 lb=in2
, and E ¼ 30;000;000 lb=in2

, and the formula for Cw as

Cw ¼
h2b3t

12

2h þ 3b

h þ 6b
¼ 38:4 in

6

the value for b can be found. From Table 10.3, the formula for b is given as

b ¼
KG

CwE

� �1=2

¼
0:073ð12Þ

38:4ð30Þ

� 	1=2

¼ 0:0276

From Table 10.3, case 1b, the value of y00 at the wall is given as

y00 ¼
To

CwEb
tanhbl ¼

313

38:4ð30 � 106Þð0:0276Þ
tanh 0:0276ð36Þ ¼ 7:47ð10�6Þ in

�2

Therefore the longitudinal compressive stress at f can be found from the
expression for sx in Table 10.2, case 1, as

sx ¼
hb

2

h þ 3b

h þ 6b
Ey00 ¼

6ð4Þ

2

6 þ 3ð4Þ

6 þ 6ð4Þ
ð30Þð106Þð7:47Þð10�6Þ ¼ 1610 lb=in2

The resultant fiber stress at f is 11;200 � 1610 ¼ 9590 lb=in2
.

8.15 Straight Uniform Beams (Common Case);
Ultimate Strength

When a beam is stressed beyond the elastic limit, plane sections

remain plane or nearly so but unit stresses are no longer proportional

to strains and hence no longer proportional to distance from the

neutral surface. If the material has similar stress-strain curves in

tension and compression, the stress distribution above and below the

neutral surface will be similar and the neutral axis of any section

which is symmetric about a horizontal axis will still pass through the

centroid; if the material has different properties in tension and

compression, then the neutral axis will shift away from the side on

which the fibers yield the most; this shift causes an additional

departure from the stress distribution assumed by the theory outlined

in Sec. 8.1.

Failure In bending. The strength of a beam of ordinary proportions is

determined by the maximum bending moment it can sustain. For

beams of nonductile material (cast iron, concrete, or seasoned wood)

this moment may be calculated by the formula Mm ¼ s0ðI=cÞ if s0, the

modulus of rupture, is known. The modulus of rupture depends on the

material and other factors (see Sec. 3.11), and attempts have been

made to calculate it for a given material and section from the form of
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the complete stress-strain diagram. Thus for cast iron an approximate

value of s0 may be found by the formula s0 ¼ K
ffiffiffiffiffiffiffiffi
c=z0

p
st, where c is the

distance to the extreme fiber, z0 is the distance from the neutral axis to

the centroid of the tensile part of the section, and K is an experimental

coefficient equal to 6
5

for sections that are flat at the top and bottom

(rectangle, I, T, etc.) and 4
3

for sections that are pointed or convex at the

top and bottom (circle, diamond, etc.) (Ref. 4). Some tests indicate that

this method of calculating the breaking strength of cast iron is some-

times inaccurate but generally errs on the side of safety (Ref. 5).

In general, the breaking strength of a beam can be predicted best

from experimentally determined values of the rupture factor and

ultimate strength or the form factor and modulus of rupture. The

rupture factors are based on the ultimate tensile strength for all

materials except wood, for which it is based on compressive strength.

Form factors are based on a rectangular section. For structural steel,

wrought aluminum, and other ductile metals, where beams do not

actually break, the modulus of rupture means the computed fiber

stress at the maximum bending moment (Refs. 6 to 9).

When the maximum bending moment occurs at but one section, as

for a single concentrated load, the modulus of rupture is higher than

when the maximum moment extends over a considerable part of the

span. For instance, the modulus of rupture of short beams of brittle

material is about 20 percent higher when determined by center

loading than when determined by third-point loading. The disparity

decreases as the span=depth ratio increases.

Beams of ductile material (structural steel or aluminum) do not

ordinarily fracture under static loading but fail through excessive

deflection. For such beams, if they are of relatively thick section so as

to preclude local buckling, the maximum bending moment is that

which corresponds to plastic yielding throughout the section. This

maximum moment, or ‘‘plastic’’ moment, is usually denoted by Mp and

can be calculated by the formula Mp ¼ syZ, where sy is the lower yield

point of the material and Z, called the plastic section modulus, is the

arithmetical sum of the statical moments about the neutral axis of the

parts of the cross section above and below that axis. Thus, for a

rectangular section of depth d and width b,

Z ¼ ð1
2
bdÞð1

4
dÞ þ ð1

2
bdÞð1

4
dÞ ¼ 1

4
bd2

This method of calculating the maximum resisting moment of a

ductile-material beam is widely used in ‘‘plastic design’’ and is

discussed further in Sec. 8.16. It is important to note that when the

plastic moment has been developed, the neutral axis divides the cross-

sectional area into halves and so is not always a centroidal axis. It is

also important to note that the plastic moment is always greater than
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the moment required to just stress the extreme fiber to the lower yield

point. This moment, which may be denoted by My, is equal to syI=c,

and so

Mp

My

¼
Z

I=c

This ratio Z=ðI=cÞ, called the shape factor, depends on the form of the

cross section. For a solid rectangle it would be 1
4
bd2= 1

6
bd2, or 1.5; for an

I-section it is usually about 1.15. Table A.1 gives formulas or numer-

ical values for the plastic section modulus Z and for the shape factor

for most of the cross sections listed.

In tubes and beams of thin open section, local buckling or crippling

will sometimes occur before the full plastic resisting moment is

realized, and the length of the member will have an influence. Tubes

of steel or aluminum alloy generally will develop a modulus of rupture

exceeding the ultimate tensile strength when the ratio of diameter to

wall thickness is less than 50 for steel or 35 for aluminum. Wide-

flanged steel beams will develop the full plastic resisting moment

when the outstanding width=thickness ratio is less than 8.7 for

sy ¼ 33;000 lb=in2
or 8.3 for sy ¼ 36;000 lb=in2

. Charts giving the

effective modulus of rupture of steel, aluminum, and magnesium

tubes of various proportions may be found in Ref. 55.

Failure in shear. Failure by an actual shear fracture is likely to occur

only in wood beams, where the shear strength parallel to the grain is,

of course, small.

In I-beams and similar thin-webbed sections the diagonal compres-

sion that accompanies shear (Sec. 7.5) may lead to a buckling failure

(see the discussion of web buckling that follows), and in beams of cast

iron and concrete the diagonal tension that similarly accompanies

shear may cause rupture. The formula for shear stress [Eq. (8.1-2)]

may be considered valid as long as the fiber stresses do not exceed the

proportional limit, and therefore it may be used to calculate the

vertical shear necessary to produce failure in any case where the

ultimate shearing strength of the beam is reached while the fiber

stresses, at the section of maximum shear, are still within the propor-

tional limit.

Web buckling; local failure. An I-beam or similar thin-webbed member

may fail by buckling of the web owing to diagonal compression when

the shear stress reaches a certain value. Ketchum and Draffin (Ref.

11) and Wendt and Withey (Ref. 12) found that in light I-beams this

type of buckling occurs when the shear stress, calculated by
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t ¼ 1:25 V=web area (Ref. 11) or t ¼ V=Web area (Ref. 12), reaches a

value equal to the unit load that can be carried by a vertical strip of the

beam as a round-ended column. For the thin webs of the beams tested,

such a thin strip would be computed as a Euler column; for heavier

beams an appropriate parabolic or other formula should be used

(Chap. 12).

In plate girders, web buckling may be prevented by vertical or

diagonal stiffeners, usually consisting of double angles that are riveted

or welded, one on each side of the web. Steel-construction specifica-

tions (Ref. 13) require that such stiffeners be provided when h=t
exceeds 70 and v exceeds 64;000;000=ðh=tÞ2. Such stiffeners should

have a moment of inertia (figured for an axis at the center line of the

web) equal to at least 0:00000016H4 and should be spaced so that the

clear distance between successive stiffeners is not more than

11;000t=
ffiffiffi
v

p
or 84 in, whichever is least. Here h is the clear depth of

the web between flanges, t is the web thickness, v is the shear stress

V=ht, and H is the total depth of the web. In light-metal airplane

construction, the stiffeners are sometimes designed to have a moment

of inertia about an axis parallel to the web given by I ¼ ð2:29d=tÞ
ðVh=33EÞ

4=3, where V ¼ the (total) vertical shear and d ¼ the stiffener

spacing center to center (Ref. 14).

Buckling failure may occur also as a result of vertical compression

at a support or concentrated load, which is caused by either column-

type buckling of the web (Refs. 11 and 12) or crippling of the web at

the toe of the fillet (Ref. 15). To guard against this latter type of

failure, present specifications provide that for interior loads

R=tðN þ 2kÞ4 24;000 and for end reactions R=tðN þ kÞ4 24;000,

where R is the concentrated load or end reaction, t the web thickness,

N the length of bearing, and k the distance from the outer face of the

flange to the web toe of the fillet. Here R is in pounds and all linear

dimensions are in inches.

Wood beams will crush locally if the supports are too narrow or if

a load is applied over too small a bearing area. The unit bearing stress

in either case is calculated by dividing the force by the nominal

bearing area, no allowance being made for the nonuniform distribu-

tion of pressure consequent upon bending (Ref. 9). Metal beams also

may be subjected to high local pressure stresses; these are discussed in

Chap. 14.

Lateral buckling. The compression flange of an I-beam or similar

member may fail as a column as a result of lateral buckling if it is

unsupported. Such buckling may be elastic or plastic; that is, it may

occur at a maximum fiber stress below or above the elastic limit. In the

first case the buckling is an example of elastic instability, for which
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relevant formulas are given in Table 15.1. For buckling above the

elastic range analytical solutions are difficult to obtain, and empirical

expressions based on experiment are used (as will be shown to be true

also of the columns discussed in Chap. 12).

Moore (Ref. 16) found that standard I-beams fail by lateral buckling

when

s0 ¼ 40;000 � 60
ml

r

where s0 is the compressive stress in the extreme fiber [computed by

Eq. (8.1-1)], l is the span (in inches), r is the radius of gyration (in

inches) of the beam section about a central axis parallel to the web,

and m is a coefficient which depends on the manner of loading and

support and has the following values:

Loading and support Value of m

End supports, uniform load 0.667

End supports, midpoint load 0.500

End supports, single load at any point 0.500

End supports, loads at third points 0.667

End supports, loads at quarter points 0.750

End supports, loads at sixth points 0.833

Cantilever beam, uniform load 0.667

Cantilever beam, end load 1.000

Fixed-ended beam, uniform load 0.281

Fixed-ended beam, midpoint load 0.250

For very light I-beams, Ketchum and Draffin (Ref. 11) found that the

lower limit of test results is given by

s0 ¼ 24;000 � 40
ml

r

where the terms have the same meaning and m the same values as

given previously.

The beams tested by Moore generally failed at stresses below but

very close to the yield point and so probably could be regarded as

representing plastic buckling. The lighter beams tested by Ketchum

and Draffin, however, failed at stresses below the limit of proportion-

ality and are examples of elastic buckling.

In Ref. 13 rules are given for the reduction in allowable compressive

stress according to the unbraced length of the compression flange. A

review of the literature on this subject of the lateral buckling of

structural members and a bibliography through 1959 are to be found

in Ref. 58.
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Narrow rectangular beams may fail also as a result of buckling of

the compression edge. When this buckling occurs below the elastic

limit, the strength is determined by elastic stability; formulas for this

case are given in Table 15.1. For buckling at stresses beyond the

elastic limit, no simple formula for the critical stress can be given, but

methods for calculating this critical stress are given for aluminum

beams by Dumont and Hill (Ref. 17) and for wood beams by Trayer and

March (Ref. 18).

8.16 Plastic, or Ultimate Strength, Design

The foregoing discussion of beams and frames is based for the most

part on the assumption of purely elastic action and on the acceptance

of maximum fiber stress as the primary criterion of safety. These

constitute the basis of elastic analysis and design. An alternative and

often preferred method of design, applicable to rigid frames and

statically indeterminate beams made of materials capable of plastic

action, is the method of plastic, or ultimate strength, design. It is based

on the fact that such a frame or beam cannot deflect indefinitely or

collapse until the full plastic moment Mp (see Sec. 8.15) has been

developed at each of several critical sections. If it is assumed that the

plastic moment—a determinable couple—does indeed act at each such

section, then the problem becomes a statically determinate one and

the load corresponding to the collapse condition can be readily calcu-

lated.

A simple illustration of the procedure is afforded by the beam of Fig.

8.20(a), corresponding to case lc of Table 8.1. Suppose it is desired to

determine the maximum value of the load W that the beam can

support. It is shown by elastic analysis, and is indeed apparent from

inspection, that the maximum bending moments occur at the load and

at the left end of the beam. The maximum possible value of each such

moment is Mp. It is evident that the beam cannot collapse until the

Figure 8.20
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moment at each of these points reaches this value. Therefore, when W

has reached its maximum value and collapse is imminent, the beam is

acted on by the force system represented in Fig. 8.20(b); there is a

plastic hinge and a known couple Mp at each of the critical sections

and the problem is statically determinate. For equilibrium of the right

half, R ¼ Mp=ðl=2Þ and V1 ¼ R; and for equilibrium of the left half,

V2 ¼ W � R and ½W � Mp=ðl=2Þ�l=2 ¼ 2Mp or W ¼ 6Mp=l.
In attempting to predict the collapse load on the basis of elastic

analysis, it is easy to fall into the error of equating the maximum

elastic moment 3
16

Wl at the wall (Table 8.1) to Mp, thus obtaining

W ¼ 16
3

Mp=l. This erroneous procedure fails to take into account the

fact that as W increases and yielding commences and progresses at the

wall section, there is a redistribution of moments; the moment at the

wall becomes less than 3
16

Wl, and the moment at the load becomes

greater than 5
32

Wl until finally each moment becomes equal to Mp. An

important point to note is that although the elastic moments are

affected by even a very slight departure from the assumed condi-

tions—perfect fixity at one end and rigid support at the other—the

collapse load is not thus affected. So long as the constraints are rigid

enough to develop the plastic hinges as indicated, the ultimate load

will be the same. Similarly, the method does not require that the beam

be uniform in section, although a local reduction in section leading to

the formation of a hinge at some point other than those assumed, of

course, would alter the solution.

For a beam with multiple concentrated transverse loads or with

distributed transverse loads, the locations of hinges are not known and

must be assumed and verified. A virtual work approach to plastic

collapse may permit a more rapid analysis than does the use of

equilibrium equations, see Ref. 66. Verification consists of using the

equilibrium conditions to construct a moment diagram and determine

that no moments larger than the locally permitted values of the fully

plastic moment are present.

Since nonlinear behavior does not permit superposition of results,

one must consider all loads which are acting at a given time. If any of

the several loads on a beam tend to cancel the maximum moments due

to other loads, one must also consider the order in which the loads are

applied in service to assure that the partially loaded beam has not

collapsed before all loads have been applied.

Column 4 of Table A.1 contains an expression or a numerical value

for the plastic section modulus Z and for the shape factor SF ¼ Zc=I
for many of the cross sections. Using the plastic section modulus and

the value of the yield strength of the material, one can find the full

plastic moment Mp. Table 8.13 contains expressions for the loadings

which will cause plastic collapse and the locations of the plastic hinges

associated with each such loading.
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The following example problems illustrate (1) the direct use of the

tabulated material and (2) the use of the virtual work approach to a

problem where two loads are applied simultaneously and where one

plastic hinge location is not obvious.

EXAMPLES

1. A hollow aluminum cylinder is used as a transversely loaded beam 6 ft long
with a 3-in outer diameter and a 1-in inner diameter. It is fixed at both ends
and subjected to a distributed loading which increases linearly from zero at
midspan to a maximum value wl at the right end. The yield strength of this
material is 27,000 psi, and the value of Wlc at plastic collapse is desired.

Solution. From Table A.1 case 15, the expression for the plastic section
modulus is given as Z ¼ 1:333ðR3 � R3

i Þ, which gives

Z ¼ 1:333ð1:53 � 0:53Þ ¼ 4:33 in
3

and

Mp ¼ 4:33ð27;000Þ ¼ 117;000 lb-in

From Table 8.13 case 2d, with wa ¼ 0 for a uniformly increasing load, the
locations of the fully developed plastic hinges are at the two ends and at a
distance xh2 from the left end, where

xh2 ¼ a þ a2 � al þ
l2

3
�

a3

3l

� �1=2

Since l ¼ 72 in and a ¼ 86 in, the third hinge is found at xh2 ¼ 50:70 in. The
expression for the collapse load wlc is given as

wlc ¼
12Mpðl � aÞ

ðl � xh2Þðx
2
h2

� 3axh2 þ lxh2 þ a3=lÞ
¼ 1703 lb=in

2. A steel beam of trapezoidal section is shown in Fig. 8.21. It is 1500 mm long,
fixed at the right end and simply supported at the left end. The factor of safety
of the loading shown is to be determined based on plastic collapse under a
proportionately increased set of similar loads. The yield strength of the
material is 200 N=mm2 in both tension and compression. All dimensions are
in millimeters.

Solution. First evaluate Mp. An examination of Table A.1 shows that the
plastic section modulus for this cross section is not given. The yield strength in
tension and compression is the same, so half the cross-sectional area of

Figure 8.21
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2100 mm2 will be in tension and half in compression under a fully developed
plastic hinge. Calculations show that a horizontal axis 16.066 mm above the
base will divide this area into equal parts. The centroid of the upper portion is
7.110 mm above this axis, and the centroid of the lower portion is 7.814 mm
below. Therefore

Mp ¼ 200ð1050Þð7:110 þ 7:814Þ ¼ 3:134ð106Þ N-mm

Let the concentrated load at collapse Pc be accompanied by a uniformly
distributed load wc, which equals Pc=1000. During a virtual displacement of
the beam when plastic rotation is taking place about the fully developed
plastic hinges, the elastic deformations and any deformations due to the
development of the plastic hinges remain constant and can be neglected in
computing the work done by the loading. The angles shown in Fig. 8.22 are not
true slopes at these locations but merely represent the virtual rotations of the
fully developed plastic hinges. The location of hinge A is not known at this
point in the solution, but it is either under the concentrated load or somewhere
in the portion of the beam under the distributed load.

Trial 1. Assume that hinge A is under the concentrated load and the virtual
displacements are represented by Fig. 8.22(a). The work performed by the
loads during their vertical displacements is absorbed by the two plastic hinges.
The hinge at A rotates through the angle yþ f and the hinge at B through the
angle f. Thus

Mpðyþ fþ fÞ ¼ Pc1100yþ wcð900Þð450Þy

where wc ¼ Pc=1000 and from geometry 400f ¼ 1100y so that Pc ¼

4:319ð10�3ÞMp, and from the equilibrium of the entire beam one obtains
R1 ¼ 3:206ð10�3ÞMp. Using these two values and constructing a moment
diagram, one finds that a maximum moment of 1:190Mp will be present at a
distance of 742 mm from the left end.

Thus the assumption that hinge A was under the concentrated load was
incorrect. A second trial solution will be carried out by assuming that hinge A
is a distance a from the left end.

Trial 2. Figure 8.22(b) shows the virtual displacements for this second
assumption. Again set the virtual work done by the loading equal to the
energy absorbed by the two plastic hinges, or

Mpðyþ 2fÞ ¼ Pc400fþ
wcya2

2
þ wcð900 � aÞ 1500 � a �

900 � a

2

� �
f

Note that wc ¼ Pc=1000 and from geometery fð1500 � aÞ ¼ ya so that
Pc ¼ Mp½ð1500 þ aÞ=ð1345a � 0:75a2Þ�. A minimum value of Pc is desired so

Figure 8.22
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this expression is differentiated with respect to a and the derivative set equal
to zero. This leads to a ¼ 722:6 mm and Pc ¼ 3:830ð10�3ÞMp, a significantly
smaller value than before and one which leads to a moment diagram with a
maximum positive moment of Mp at a ¼ 722:6 mm and a maximum negative
moment of �Mp at the right end. This then is the correct solution, and
substituting the numerical value for Mp one gets Pc ¼ 12;000 N and
wc ¼ 12 N=mm. The applied loads were P ¼ 4000 N and w ¼ 4 N=mm, so the
factor of safety is 3.0.

Because of the simplicity, these examples may give an exaggerated

impression of the ease of plastic analysis, but they do indicate that

for any indeterminate structure with strength that is determined

primarily by resistance to bending, the method is well-suited to the

determination of ultimate load and—through the use of a suitable

factor of safety—to design. Its accuracy has been proved by good

agreement between computed and experimental ultimate loads for

both beams and frames. An extended discussion of plastic analysis is

not appropriate here, but the interested reader will find an extensive

literature on the subject (Refs. 60, 61).
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8.17 Tables

TABLE 8.1 Shear, moment, slope, and deflection formulas for elastic straight beams
NOTATION: W ¼ load (force); w ¼ unit load (force per unit length); Mo ¼ applied couple (force-length); yo externally created concentrated angular

displacement (radians); Do ¼ externally created concentrated lateral displacement; T1 and T2 ¼ temperatures on the top and bottom surfaces,

respectively (degrees). RA and RB are the vertical end reactions at the left and right, respectively, and are positive upward. MA and MB are the

reaction end moments at the left and right, respectively. All moments are positive when producing compression on the upper portion of the beam cross

section. The transverse shear force V is positive when acting upward on the left end of a portion of the beam. All applied loads, couples, and

displacements are positive as shown. All deflections are positive upward, and all slopes are positive when up and to the right. E is the modulus of

elasticity of the beam material, and I is the area moment of inertia about the centroidal axis of the beam cross section. g is the temperature coefficient

of expansion (unit strain per degree)

1. Concentrated intermediate load Transverse shear ¼ V ¼ RA � Whx � ai0

Bending moment ¼ M ¼ MA þ RAx � Whx � ai

Slope ¼ y ¼ yþ
MAx

EI
þ

RAx2

2EI
�

W

2EI
hx � ai2

Deflection ¼ y ¼ yA þ yAx þ
MAx2

2EI
þ

RAx3

6EI
�

W

6EI
hx � ai3

ðNote: see page 131 for a definition of the term hx � ain :Þ

End restraints,

reference no. Boundary values Selected maximum values of moments and deformations

1a. Left end free, right

end fixed (cantilever)
RA ¼ 0 MA ¼ 0 yA ¼

W ðl � aÞ2

2EI

yA ¼
�W

6EI
ð2l3 � 3l2a þ a3Þ

RB ¼ W MB ¼ �W ðl � aÞ

yB ¼ 0 yB ¼ 0

Max M ¼ MB; max possible value ¼ �Wl when a ¼ 0

Max y ¼ yA; max possible value ¼
Wl2

2EI
when a ¼ 0

Max y ¼ yA; max possible value ¼
�Wl3

3EI
when a ¼ 0

1b. Left end guided,

right end fixed
RA ¼ 0 MA ¼

W ðl � aÞ2

2l
yA ¼ 0

yA ¼
�W

12EI
ðl � aÞ2ðl þ 2aÞ

RB ¼ W MB ¼
�W ðl2 � a2Þ

2l

yB ¼ 0 yB ¼ 0

Max þ M ¼ MA; max possible value ¼
Wl

2
when a ¼ 0

Max � M ¼ MB; max possible value ¼
�Wl

2
when a ¼ 0

Max y ¼ yA; max possible value ¼
�Wl3

12EI
when a ¼ 0
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TABLE 8.1 Shear, moment, slope, and deflection formulas for elastic straight beams (Continued)

End restraints,

reference no. Boundary values Selected maximum values of moments and deformations

1c. Left end simply

supported right end

fixed

RA ¼
W

2l3
ðl � aÞ2ð2l þ aÞ MA ¼ 0

yA ¼
�Wa

4EIl
ðl � aÞ2 yA ¼ 0

RB ¼
Wa

2l3
ð3l2 � a2Þ yB ¼ 0

MB ¼
�Wa

2l2
ðl2 � a2Þ yB ¼ 0

Max þ M ¼
Wa

2l3
ðl � aÞ2ð2l þ aÞ at x ¼ a; max possible value ¼ 0:174Wl when a ¼ 0:366l

Max � M ¼ MB; max possible value ¼ �0:1924Wl when a ¼ 0:5773l

Max y ¼
�Wa

6EI
ðl � aÞ2

a

2l þ a

� �1=2

at x ¼ l
a

2l þ a

� �1=2

when a > 0:414l

Max y ¼
�Waðl2 � a2Þ

3

3EIð3l2 � a2Þ
2

at x ¼
lðl2 þ a2Þ

3l2 � a2
when a < 0:414l; max possible y ¼ �0:0098

Wl3

EI
when x ¼ a ¼ 0:414l

1d. Left end fixed, right

end fixed

RA ¼
W

l3
ðl � aÞ2ðl þ 2aÞ

MA ¼
�Wa

l2
ðl � aÞ2

yA ¼ 0 yA ¼ 0

RB ¼
Wa2

l3
ð3l � 2aÞ

MB ¼
�Wa2

l2
ðl � aÞ

yB ¼ 0 yB ¼ 0

Max þ M ¼
2Wa2

l3
ðl � aÞ2 at x ¼ a; max possible value ¼

Wl

8
when a ¼

l

2

Max � M ¼ MA if a <
l

2
; max possible value ¼ �0:1481Wl when a ¼

l

3

Max y ¼
�2W ðl � aÞ2a3

3EIðl þ 2aÞ2
at x ¼

2al

l þ 2a
if a >

l

2
; max possible value ¼

�Wl3

192EI
when x ¼ a ¼

l

2

1e. Left end simply

supported, right

end simply supported

RA ¼
W

l
ðl � aÞ MA ¼ 0

yA ¼
�Wa

6EIl
ð2l � aÞðl � aÞ yA ¼ 0

RB ¼
Wa

l
MB ¼ 0

yB ¼
Wa

6EIl
ðl2 � a2Þ yB ¼ 0

Max M ¼ RAa at x ¼ a; max possible value ¼
Wl

4
when a ¼

l

2

Max y ¼
�Wa

3EIl

l2 � a2

3

� �3=2

at x ¼ l �
l2 � a2

3

� �1=2

when a <
l

2
; max possible value ¼

�Wl3

48EI
at x

¼
l

2
when a ¼

l

2

Max y ¼ yA when a <
l

2
; max possible value ¼ �0:0642

Wl2

EI
when a ¼ 0:423l

1f. Left end guided, right

end simply supported

RA ¼ 0 MA ¼ W ðl � aÞ yA ¼ 0

yA ¼
�W ðl � aÞ

6EI
ð2l2 þ 2al � a2Þ

RB ¼ W MB ¼ 0

yB ¼
W

2EI
ðl2 � a2Þ yB ¼ 0

Max M ¼ MA for 0 < x < a; max possible value ¼ Wl when a ¼ 0

Max y ¼ yB; max possible value ¼
Wl2

2EI
when a ¼ 0

Max y ¼ yA; max possible value ¼
�Wl3

3EI
when a ¼ 0
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2. Partial distributed load Transverse shear ¼ V ¼ RA � wahx � ai�
wl � wa

2ðl � aÞ
hx � ai2

Bending moment ¼ M ¼ MA þ RAx �
wa

2
hx � ai2 �

wl � wa

6ðl � aÞ
hx � ai3

Slope ¼ y ¼ yA þ
MAx

EI
þ

RAx2

2EI
�

wa

6EI
hx � ai3 �

wl � wa

24EIðl � aÞ
hx � ai4

Deflection ¼ y ¼ yA þ yA þ yAx þ
MAx2

2EI
þ

RAx3

6EI
�

wa

24EI
hx � ai4 �

ðwl � waÞ

120EIðl � aÞ
hx � ai5

End restraints,

reference no. Boundary values Selected maximum values of moments and deformations

2a. Left end free, right

end fixed (cantilever)

RA ¼ 0 MA ¼ 0

yA ¼
wa

6EI
ðl � aÞ3 þ

wl � wa

24EI
ðl � aÞ3

yA ¼
�wa

24EI
ðl � aÞ3ð3l þ aÞ �

wl � wa

120EI
ðl � aÞ3ð4l þ aÞ

RB ¼
wa þ wl

2
ðl � aÞ

MB ¼
�wa

2
ðl � aÞ2 �

wl � wa

6
ðl � aÞ2

yB ¼ 0 yB ¼ 0

If a ¼ 0 and wl ¼ wa ðuniform load on entire spanÞ; then

Max M ¼ MB ¼
�wal2

2
Max y ¼ yA ¼

wal3

6EI

Max y ¼ yA ¼
�wal4

8EI

If a ¼ 0 and wa ¼ 0 ðuniformly increasing loadÞ; then

Max M ¼ MB ¼
�wll

2

6
Max y ¼ yA ¼

wll
3

24EI

Max y ¼ yA ¼
�wll

4

30EI

If a ¼ 0 and wl ¼ 0 ðuniformly decreasing loadÞ; then

Max M ¼ MB ¼
�wal2

3
Max y ¼ yA ¼

wal3

8EI

Max y ¼ yA ¼
�11wal4

120EI
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TABLE 8.1 Shear, moment, slope, and deflection formulas for elastic straight beams (Continued)

End restraints,

reference no. Boundary values Selected maximum values of moments and deformations

2b. Left end guided,

right end fixed

RA ¼ 0 yA ¼ 0

MA ¼
wa

6l
ðl � aÞ3 þ

wl � wa

24l
ðl � aÞ3

yA ¼
�wa

24EI
ðl � aÞ3ðl þ aÞ �

wl � wa

240EI
ðl � aÞ3ð3l þ 2aÞ

RB ¼
wa þ wl

2
ðl � aÞ

MB ¼
�wa

6l
ðl � aÞ2ð2l þ aÞ �

wl � wa

24l
ðl � aÞ2ð3l þ aÞ

yB ¼ 0 yB ¼ 0

If a ¼ 0 and wl ¼ wa ðuniform load on entire spanÞ; then

Max � M ¼ MB ¼
�wal2

3
Max þ M ¼ MA ¼

wal2

6

Max y ¼ yA ¼
�wal4

24EI

If a ¼ 0 and wa ¼ 0 ðuniformly increasing loadÞ; then

Max � M ¼ MB ¼
�wll

2

8
Max þ M ¼ MA ¼

wll
2

24

Max y ¼ yA ¼
�wll

4

80EI

If a ¼ 0 and wl ¼ 0 ðuniformly decreasing loadÞ; then

Max � M ¼ MB ¼
�5wal2

24
Max þ M ¼ MA ¼

wal2

8

Max y ¼ yA ¼
�7wal4

240EI

2c. Left end simply

supported, right end

fixed

RA ¼
wa

8l3
ðl � aÞ3ð3l þ aÞ þ

wl � wa

40l3
ðl � aÞ3ð4l þ aÞ

yA ¼
�wa

48EIl
ðl � aÞ3ðl þ 3aÞ �

wl � wa

240EIl
ðl � aÞ3ð2l þ 3aÞ

MA ¼ 0 yA ¼ 0

RB ¼
wa þ wl

2
ðl � aÞ � RA

MB ¼ RAl �
wa

2
ðl � aÞ2 �

wl � wa

6
ðl � aÞ2

yB ¼ 0 yB ¼ 0

If a ¼ 0 and wl ¼ wa ðuniform load on entire spanÞ; then

RA ¼ 3
8
wal RB ¼ 5

8
wal Max � M ¼ MB ¼

�wal2

8

Max þ M ¼
9wal2

128
at x ¼ 3

8
l Max y ¼ yA ¼

�wal3

48EI

Max y ¼ �0:0054
wal4

EI
at x ¼ 0:4215l

If a ¼ 0 and wa ¼ 0 ðuniformly increasing loadÞ; then

RA ¼
wll

10
RB ¼

2wll

5
Max � M ¼ MB ¼

�wll
2

15

Max þ M ¼ 0:0298wll
2 at x ¼ 0:4472l Max y ¼ yA ¼

�wll
3

120EI

Max y ¼ �0:00239
wll

4

EI
at x ¼ 0:4472l

If a ¼ 0 and wl ¼ 0 ðuniformly decreasing loadÞ; then

RA ¼ 11
40

wal RB ¼ 9
40

wal Max � M ¼ MB ¼ �7
120

wal2

Max þ M ¼ 0:0422wal2 at x ¼ 0:329l

Max y ¼ yA ¼
�wal3

80EI
Max y ¼ �0:00304

wal4

EI
;at x ¼ 0:4025l
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2d. Left end fixed, right

end fixed

RA ¼
wa

2l3
ðl � aÞ3ðl þ aÞ þ

wl � wa

20l3
ðl � aÞ3ð3l þ 2aÞ

MA ¼
�wa

12l2
ðl � aÞ3ðl þ 3aÞ �

wl � wa

60l2
ðl � aÞ3ð2l þ 3aÞ

yA ¼ 0 yA ¼ 0

RB ¼
wa þ wl

2
ðl � aÞ � RA

MB ¼ RAl þ MA �
wa

2
ðl � aÞ2 �

wl � wa

6
ðl � aÞ2

yB ¼ 0 yB ¼ 0

If a ¼ 0 and wl ¼ wa (uniform load on entire span), then

Max � M ¼ MA ¼ MB ¼
�wal2

12
Max þ M ¼

wal2

24
at x ¼

l

2

Max y ¼
�wal4

384EI
at x ¼

l

2

If a ¼ 0 and wa ¼ 0 (uniformly increasing load), then

RA ¼
3wll

20
MA ¼

�wll
2

30
RB ¼

7wll

20
Max � M ¼ MB ¼

�wll
2

20

Max þ M ¼ 0:0215wll
2 at x ¼ 0:548l

Max y ¼ �0:001309
wll

4

EI
at x ¼ 0:525l

2e. Left end simply

supported, right end

simply supported

RA ¼
wa

2l
ðl � aÞ2 þ

wl � wa

6l
ðl � aÞ2

MA ¼ 0 yA ¼ 0

yA ¼
�wa

24EIl
ðl � aÞ2ðl2 þ 2al � a2Þ

�
wl � wa

360EIl
ðl � aÞ2ð7l2 þ 6al � 3a2Þ

RB ¼
wa þ wl

2
ðl � aÞ � RA

yB ¼
wa

24EIl
ðl2 � a2Þ

2

þ
wl � wa

360EIl
ðl � aÞ2ð8l2 þ 9al þ 3a2Þ

MB ¼ 0 yB ¼ 0

If a ¼ 0 and wl ¼ wa (uniform load on entire span), then

RA ¼ RB ¼
wal

2
Max M ¼

wal2

8
at x ¼

l

2

Max y ¼ yB ¼
wal3

24EI
Max y ¼

�5wal4

384EI
at x ¼

l

2

If a ¼ 0 and wa ¼ 0 (uniformly increasing load), then

RA ¼
wll

6
RB ¼

wll

3
Max M ¼ 0:0641wll

2 at x ¼ 0:5773l

yA ¼
�7wll

3

360EI
yB ¼

wll
3

45EI

Max y ¼ �0:00653
wll

4

EI
at x ¼ 0:5195l
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TABLE 8.1 Shear, moment, slope, and deflection formulas for elastic straight beams (Continued)

End restraints,

reference no. Boundary values Selected maximum values of moments and deformations

2f. Left end guided,

right end simply

supported

RA ¼ 0 yA ¼ 0

MA ¼
wa

2
ðl � aÞ2 þ

wl � wa

6
ðl � aÞ2

yA ¼
�wa

24EI
ðl � aÞ2ð5l2 þ 2al � a2Þ

�
wl � wa

120EI
ðl � aÞ2ð9l2 þ 2al � a2Þ

RB ¼
wa þ wl

2
ðl � aÞ

yB ¼
wa

6EI
ðl � aÞ2ð2l þ aÞ þ

wl � wa

24EI
ðl � aÞ2ð3l þ aÞ

MB ¼ 0 yB ¼ 0

If a ¼ 0 and wl ¼ wa (uniform load on entire span), then

Max M ¼ MA ¼
wal2

2
Max y ¼ yB ¼

wal3

3EI

Max y ¼ yA ¼
�5wal4

24EI

If a ¼ 0 and wa ¼ 0 (uniformly increasing load), then

Max M ¼ MA ¼
wll

2

6
Max y ¼ yB ¼

wll
3

8EI

Max y ¼ yA ¼
�3wll

4

40EI

If a ¼ 0 and wl ¼ 0 (uniformly decreasing load), then

Max M ¼ MA ¼
wal2

3
Max y ¼ yB ¼

5wal3

24EI

Max y ¼ yA ¼
�2wal4

15EI

3. Concentrated intermediate moment Transverse shear ¼ V ¼ RA

Bending moment ¼ M ¼ MA þ RAx þ Mohx � ai0

Slope ¼ y ¼ yA þ
MAx

EI
þ

RAx2

2EI
þ

Mo

EI
hx � ai

Deflection ¼ y ¼ yA þ yAx þ
MAx2

2EI
þ

RAx3

6EI
þ

Mo

2EI
hx � ai2

End restraints,

reference no. Boundary values Selected maximum values of moments and deformations

3a. Left end free, right

end fixed (cantilever)

RA ¼ 0 MA ¼ 0

yA ¼
�Moðl � aÞ

EI

yA ¼
Moðl

2 � a2Þ

2EI

RB ¼ 0 MB ¼ Mo

yB ¼ 0 yB ¼ 0

Max M ¼ Mo

Max y ¼ yA; max possible value ¼
�Mol

EI
when a ¼ 0

Max y ¼ yA; max possible value ¼
Mol2

2EI
when a ¼ 0
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3b Left end guided,

right end fixed

RA ¼ 0 yA ¼ 0

MA ¼
�Moðl � aÞ

l

yA ¼
Moaðl � aÞ

2EI

RB ¼ 0 yB ¼ 0

MB ¼
Moa

l
yB ¼ 0

Max þ M ¼ MB; max possible value ¼ Mo when a ¼ l

Max � M ¼ MA; max possible value ¼ �Mo when a ¼ 0

Max y ¼ yA; max possible value ¼
Mol2

8EI
when a ¼

l

2

3c. Left end simply

supported, right end

fixed

RA ¼
�3Mo

2l3
ðl2 � a2Þ

yA ¼
Mo

4EIl
ðl � aÞð3a � lÞ

MA ¼ 0 yA ¼ 0

RB ¼
3Mo

2l3
ðl2 � a2Þ

MB ¼
Mo

2l2
ð3a2 � l2Þ

yB ¼ 0 yB ¼ 0

Max þ M ¼ Mo þ RAa just right of x ¼ a; max possible value ¼ Mo when a ¼ 0 or a ¼ l; min possible value

¼ 0:423Mo when a ¼ 0:577l

Max � M ¼
�3Moa

2l3
ðl2 � a2Þ just left of x ¼ a if a > 0:282l; max possible value ¼ �0:577Mo

when a ¼ 0:577l

Max � M ¼
�Mo

2l2
ðl2 � 3a2Þ at B if a < 0:282l; max possible value ¼ �0:5Mo when a ¼ 0

Max þ y ¼
Moðl � aÞ

6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ðl þ aÞ

p
EI

ð3a � lÞ3=2 at x ¼ l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3a � l

3l þ 3a

r
; max possible value ¼ 0:0257

Mol2

EI
at x ¼ 0:474l

when a ¼ 0:721l

Note: There is no positive deflection if a <
l

3

� �

Max � y occurs at x ¼
2l3

3ðl2 � a2Þ
1 �

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � 6

a

l

� �2

þ9
a

l

� �4
r #

; max possible value

"
¼

�M0l2

27EI
at x ¼

l

3

when a ¼ 0
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TABLE 8.1 Shear, moment, slope, and deflection formulas for elastic straight beams (Continued)

End restraints,

reference no. Boundary values Selected maximum values of moments and deformations

3d. Left end fixed, right

end fixed
RA ¼

�6Moa

l3
ðl � aÞ

MA ¼
�Mo

l2
ðl2 � 4al þ 3a2Þ

yA ¼ 0 yA ¼ 0

RB ¼ �RA

MB ¼
Mo

l2
ð3a2 � 2alÞ

yB ¼ 0 yB ¼ 0

Max þ M ¼
Mo

l3
ð4al2 � 9a2l þ 6a3Þ just right of x ¼ a; max possible value ¼ Mo when a ¼ l

Max � M ¼
Mo

l3
ð4al2 � 9a2l þ 6a3 � l3Þ just left of x ¼ a; max possible value ¼ �Mo when a ¼ 0

Max þ y ¼
2M3

A

3R2
AEI

at x ¼
l

3a
ð3a � lÞ; max possible value ¼ 0:01617

Mol2

EI
at x ¼ 0:565l when a ¼ 0:767l

Note: There is no positive deflection if a <
l

3

� �

3e. Left end simply

supported, right end

simply supported

RA ¼
�Mo

l

yA ¼
�Mo

6EIl
ð2l2 � 6al þ 3a2Þ

MA ¼ 0 yA ¼ 0

RB ¼
Mo

l

yB ¼
Mo

6EIl
ðl2 � 3a2Þ

MB ¼ 0 yB ¼ 0

Max þ M ¼
Mo

l
ðl � aÞ just right of x ¼ a; max possible value ¼ Mo when a ¼ 0

Max � M ¼
�Moa

l
just left of x ¼ a; max possible value ¼ �Mo when a ¼ l

Max þ y ¼
Moð6al � 3a2 � 2l2Þ

3=2

9
ffiffiffi
3

p
EIl

at x ¼ ð2al � a2 � 2
3
l2Þ

1=2 when a > 0:423l; max possible value

¼ 0:0642
Mol2

EI
at x ¼ 0:577l when a ¼ l ðNote: There is no positive deflection if a < 0:423lÞ

3f. Left end guided,

right end simply

supported

RA ¼ 0 yA ¼ 0

MA ¼ �Mo

yA ¼
Moa

2EI
ð2l � aÞ

RB ¼ 0 MB ¼ 0 yB ¼ 0

yB ¼
�Moa

EI

Max M ¼ �Mo for 0 < x < a

Max y ¼ yB; max possible value ¼
�Mol

EI
when a ¼ l

Max y ¼ yA; max possible value ¼
Mol2

2EI
when a ¼ l
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4. Intermediate externally

created angular deformation

Transverse shear ¼ V ¼ RA

Bending moment ¼ M ¼ MA þ RAx

Slope ¼ y ¼ yA þ
MAx

EI
þ

RAx2

2EI
þ yohx � ai0

Deflection ¼ y ¼ yA þ yAx þ
MAx2

2EI
þ

RAx3

6EI
þ yohx � ai

End restraints,

reference no. Boundary values Selected maximum values of moments and deformations

4a. Left end free, right

end fixed

RA ¼ 0 MA ¼ 0

yA ¼ �yo yA ¼ yoa

RB ¼ 0 MB ¼ 0

yB ¼ 0 yB ¼ 0

Max y ¼ yA;max possible value ¼ yol when a ¼ l

4b. Left end guided,

right end fixed

RA ¼ 0 MA ¼
�EIyo

l

yA ¼ 0 yA ¼ yo a �
l

2

� �

RB ¼ 0 MB ¼
�EIyo

l

yB ¼ 0 yB ¼ 0

Max M ¼ MA

Max þ y ¼ yA when a >
l

2
; max possible value ¼

yol

2
when a ¼ l

Max � y ¼
�yo

2l
ðl � aÞ2 at x ¼ a; max possible value ¼

�yol

2
when a ¼ 0

4c. Left end simply

supported, right end

fixed

MA ¼ 0 yA ¼ 0

RA ¼
�3EIayo

l3

yA ¼ �yo 1 �
3a

2l

� �

RB ¼ �RA

MB ¼
�3EIayo

l2

yB ¼ 0 yB ¼ 0

Max M ¼ MB; max possible value ¼
�3EIyo

l
when a ¼ l

Max þ y ¼ yoa 1 �
2l

3a

� �3=2

at x ¼ l 1 �
2l

3a

� �1=2

when a � 2
3
l; max possible value ¼ 0:1926yol at x ¼ 0:577l

when a ¼ l ðNote: There is no positive deflection if a <
2

3
lÞ

Max � y ¼ �yoa 1 �
3a

2l
þ

a3

2l3

� �
at x ¼ a; max possible value ¼ �0:232yol at x ¼ 0:366l when a ¼ 0:366l
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TABLE 8.1 Shear, moment, slope, and deflection formulas for elastic straight beams (Continued)

End restraints,

reference no. Boundary values Selected maximum values of moments and deformations

4d. Left end fixed, right

end fixed
RA ¼

6EIyo

l3
ðl � 2aÞ

MA ¼
2EIy

l2
ð3a � 2lÞ

yA ¼ 0 yA ¼ 0

RB ¼ �RA

MB ¼
2EIyo

l2
ðl � 3aÞ

yB ¼ 0 yB ¼ 0

Max þ M ¼ MB when a <
l

2
;max possible value ¼

2EIyo

l
when a ¼ 0

Max � M ¼ MA when a <
l

2
; max possible value ¼

�4EIyo

l
when a ¼ 0

Max þ y occurs at x ¼
l2

3ðl � 2aÞ
if a <

l

3
; max possible value ¼

4

27
lyo when a ¼ 0

Note: There is no positive deflection if
l

3
< a <

2

3
l

� �

Max � y ¼
�2yoa2

l3
ðl � aÞ2 at x ¼ a; max possible value ¼

�yol

8
when a ¼

l

2

4e. Left end simply

supported, right end

simply supported

RA ¼ 0 MA ¼ 0

yA ¼
�y
l
ðl � aÞ yA ¼ 0

RB ¼ 0 MB ¼ 0

yB ¼ 0 yB ¼
yo

l

Max y ¼
�yoa

l
ðl � aÞ at x ¼ a; max possible value ¼

�yol

4
when a ¼

l

2

4f. Left end guided,

right end simply

supported

RA ¼ 0 MA ¼ 0

yA ¼ 0 yA ¼ �yoðl � aÞ

RB ¼ 0 MB ¼ 0

yB ¼ 0 yB ¼ yo

Max y ¼ yA; max possible value ¼ �yol when a ¼ 0

5. Intermediate externally created lateral

displacement

Transverse shear ¼ V ¼ RA

Bending moment ¼ M ¼ MA þ RAx

Slope ¼ y ¼ yA þ
MAx

EI
þ

RAx2

2EI

Deflection ¼ y ¼ yA þ yAx þ
MAx2

2EI
þ

RAx3

6EI
þ Dohx � ai0
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5a. Left end free, right

end fixed

RA ¼ 0 MA ¼ 0

yA ¼ 0 yA ¼ �Do

RB ¼ 0 MB ¼ 0

yB ¼ 0 yB ¼ 0

Max y ¼ yA when x < a

5b. Left end guided,

right end fixed
RA ¼ 0 MA ¼ 0

yA ¼ 0 yA ¼ �Do

RB ¼ 0 MB ¼ 0

yB ¼ 0 yB ¼ 0

Max y ¼ yA when x < a

5c. Left end simply

supported, right end

fixed

RA ¼
3EIDo

l3
MA ¼ 0

yA ¼
�3Do

2l
yA ¼ 0

RB ¼ �RA MB ¼
3EIDo

l2

yB ¼ 0 yB ¼ 0

Max M ¼ MB Max y ¼ yA

Max þ y ¼
Do

2l3
ð2l3 þ a3 � 3l2aÞ just right of x ¼ a; max possible value ¼ Do when a ¼ 0

Max � y ¼
�Doa

2l3
ð3l2 � a2Þ just left of x ¼ a; max possible value ¼ �Do when a ¼ l

5d. Left end fixed, right

end fixed
RA ¼

12EIDo

l3
yA ¼ 0

MA ¼
�6EIDo

l2
yA ¼ 0

RB ¼ �RA MB ¼ �MA

yB ¼ 0 yB ¼ 0

Max þ M ¼ MB Max � M ¼ MA

Max y ¼
�3Do

2l
at x ¼

l

2

Max þ y ¼
Do

l3
ðl3 þ 2a3 � 3a2lÞ just right of x ¼ a; max possible value ¼ Do when a ¼ 0

Max � y ¼
�Doa2

l3
ð3l � 2aÞ just left of x ¼ a; max possible value ¼ �Do when a ¼ l

5e. Left end simply

supported, right end

simply supported

RA ¼ 0 MA ¼ 0

yA ¼ 0 yA ¼
�Do

l

RB ¼ 0 MB ¼ 0

yB ¼ 0 yB ¼
�Do

l

Max þ y ¼
Do

l
ðl � aÞ just right of x ¼ a; max possible value ¼ Do when a ¼ 0

Max � y ¼
�Doa

l
just left of x ¼ a; max possible value ¼ �Do when a ¼ l

5f. Left end guided, right

end simply supported
RA ¼ 0 MA ¼ 0

yA ¼ 0 yA ¼ �Do

RB ¼ 0 MB ¼ 0

yB ¼ 0 yB ¼ 0

Max y ¼ yA when x < a
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TABLE 8.1 Shear, moment, slope, and deflection formulas for elastic straight beams (Continued)

6. Uniform temperature

variation from top to bottom from a to l

g¼ temperature coefficient of expansion (unit strain/�) t¼depth of beam

Transverse shear ¼ V ¼ RA

Bending moment ¼ M ¼ MA þ RAx

Slope ¼ y ¼ yA þ
MAx

EI
þ

RAx2

2EI
þ
g
t
ðT2 � T1Þhx � ai

Deflection ¼ y ¼ yA þ yAx þ
MAx2

2EI
þ

RAx3

6EI
þ

g
2t

ðT2 � T1Þhx � ai2

End restraints,

reference no. Boundary values Selected maximum values of moments and deformations

6a. Left end free, right

end fixed

RA ¼ 0 MA ¼ 0

yA ¼
�g
t
ðT2 � T1Þðl � aÞ

yA ¼
g
2t

ðT2 � T1Þðl
2 � a2Þ

RB ¼ 0 MB ¼ 0

yB ¼ 0 yB ¼ 0

M ¼ 0 everywhere

Max y ¼ yA; max possible value ¼
�gl

t
ðT2 � T1Þ when a ¼ 0

Max y ¼ yA; max possible value ¼
gl2

2t
ðT2 � T1Þ when a ¼ 0

6b. Left end guided,

right end fixed

RA ¼ 0 yA ¼ 0

MA ¼
�EIg

lt
ðT2 � T1Þðl � aÞ

yA ¼
ag
2t

ðT2 � T1Þðl � aÞ

RB ¼ 0 MB ¼ MA

yB ¼ 0 yB ¼ 0

M ¼ MA everywhere; max possible value ¼
�EIg

t
ðT2 � T1Þ when a ¼ 0

Max y ¼
�ag
lt

ðT2 � T1Þðl � aÞ at x ¼ a; max possible value ¼
�gl
4t

ðT2 � T1Þ when a ¼
l

2

Max y ¼ yA; max possible value ¼
gl2

8t
ðT2 � T1Þ when a ¼

l

2

6c. Left end simply

supported, right end

fixed

MA ¼ 0 yA ¼ 0

RA ¼
�3EIg

2tl3
ðT2 � T1Þðl

2 � a2Þ

yA ¼
g

4tl
ðT2 � T1Þðl � aÞð3a � lÞ

RB ¼ �RA MB ¼ RAl

yB ¼ 0 yB ¼ 0

Max M ¼ MB; max possible value ¼
�3EIg

2t
ðT2 � T1Þ when a ¼ 0

Max þ y ¼
gðT2 � T1Þðl � aÞ

6t
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ðl þ aÞ

p ð3a � lÞ3=2 at x ¼ l
3a � l

3l þ 3a

� �1=2

; max possible value

¼ 0:0257
gl2

t
ðT2 � T1Þ at x ¼ 0:474l when a ¼ 0:721l ðNote: There is no positive deflection if a < l=3Þ

Max � y occurs at x ¼
2l3

3ðl2 � a2Þ
1 �

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � 6

a

l

� �2

þ 9
a

l

� �4
r" #

; max possible value ¼
�gl2

27t
ðT2 � T1Þ at x ¼

l

3

when a ¼ 0
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6d. Left end fixed, right

end fixed
RA ¼

�6EIag
tl3

ðT2 � T1Þðl � aÞ

MA ¼
EIg
tl2

ðT2 � T1Þðl � aÞð3a � lÞ

yA ¼ 0 yA ¼ 0

RB ¼ �RA

MB ¼
�EIg

tl2
ðT2 � T1Þðl � aÞð3a þ lÞ

yB ¼ 0 yB ¼ 0

Max þ M ¼ MA; max possible value ¼
EIg
3t

ðT2 � T1Þ when a ¼ 2
3
l

Note: There is no positive moment if a <
l

3

� �

Max � M ¼ MB; max possible value ¼
�4EIg

3t
ðT2 � T1Þ when a ¼

l

3

Max þ y ¼
2M2

A

3R2
AEI

at x ¼
l

3a
ð3l � aÞ; max possible value ¼ 0:01617

gl2

t
ðT2 � T1Þ at x ¼ 0:565l

when a ¼ 0:767l

�
Note: There is no positive deflection if a <

l

3

�

6e. Left end simply

supported, right end

simply supported

RA ¼ 0 MA ¼ 0 yA ¼ 0

yA ¼
�g
2tl

ðT2 � T1Þðl � aÞ2

RB ¼ 0 MB ¼ 0 yB ¼ 0

yB ¼
g

2tl
ðT2 � TlÞðl

2 � a2Þ

M ¼ 0 everywhere

Max þ y ¼ yB; max possible value ¼
gl
2t

ðT2 � T1Þ when a ¼ 0

Max � y ¼ yA; max possible value ¼
�gl
2t

ðT2 � T1Þ when a ¼ 0

Max y ¼
�g
8tl2

ðT2 � T1Þðl
2 � a2Þ

2; max possible value ¼
�gl2

8t
ðT2 � T1Þ at x ¼

l

2
when a ¼ 0

6f. Left end guided,

right end simply

supported

RA ¼ 0 MA ¼ 0 yA ¼ 0

yA ¼
�g
2t

ðT2 � T1Þðl � aÞ2

RB ¼ 0 MB ¼ 0 yB ¼ 0

yB ¼
g
l
ðT2 � T1Þðl � aÞ

M ¼ 0 everywhere

Max y ¼ yB; max possible value ¼
gl
t
ðT2 � T1Þ when a ¼ 0

Max y ¼ yA; max possible value ¼
�gl2

2t
ðT2 � T1Þ when a ¼ 0
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TABLE 8.1 Shear, moment, slope, and deflection formulas for elastic straight beams (Continued)



TABLE 8.2 Reaction and deflection formulas for in-plane loading of elastic frames
NOTATION: W ¼ load (force); w ¼ unit load (force per unit length); Mo ¼ applied couple (force-length); yo ¼ externally created concentrated angular displacement (radians); Do ¼ externally created

concentrated lateral displacement (length); T � To ¼ uniform temperature rise (degrees); T1 and T2 ¼ temperature on outside and inside, respectively (degrees). HA and HB are the horizontal end

reactions at the left and right, respectively, and are positive to the left; VA and VB are the vertical end reactions at the left and right, respectively, and are positive upwards; MA and MB are the

reaction moments at the left and right, respectively, and are positive clockwise. I1, I2, and I3 are the respective area moments of inertia for bending in the plane of the frame for the three members

(length to the fourth); E1, E2, and E3 are the respective moduli of elasticity (force per unit area); g1, g2, and g3 are the respective temperature coefficients of expansions (unit strain per degree)

General reaction and deformation expressions for cases 1–4, right end pinned in all four cases

Deformation equations:

Horizontal deflection at A ¼ dHA ¼ AHH HA þ AHM MA � LPH

Angular rotation at A ¼ cA ¼ AMH HA þ AMM MA � LPM

where AHH ¼
l3
1

3E1I1

þ
I3

2

3E2I2

þ
l3

3E3I3

ðl2
1 þ l1l2 þ l2

2Þ

AHM ¼ AMH ¼
l2
1

2E1I1

þ
l3

6E3I3

ð2l1 þ l2Þ

AMM ¼
l1

E1I1

þ
l3

3E3I3

and where LPH and LPM are loading terms given below for several types of load

(Note: VA, VB; and HB are to be evaluated from equilibrium equations after calculating HA and MA)

1. Left end pinned,

right end pinned

Since dHA ¼ 0 and MA ¼ 0;

HA ¼
LPH

AHH

and cA ¼ AMH HA � LPM

The loading terms are as follows:

Reference no., loading Loading terms

1a. Concentrated load on the

horizontal member

LPH ¼
Wa

6E3I3

3l1a � 2l1l3 � l2l3 �
a2

l3

ðl1 � l2Þ

� 	

LPM ¼
Wa

6E3I3

3a � 2l3 �
a2

l3

� �
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1b. Distributed load on the

horizontal member

LPH ¼
�wal3

3

24E3I3

ðl1 þ l2Þ �
ðwb � waÞl

3
3

360E3I3

ð7l1 þ 8l2Þ

LPM ¼
�7wal3

3

72E3I3

�
11ðwb � waÞl

3
3

180E3I3

1c. Concentrated moment on

the horizontal member

LPH ¼
Mo

6E3I3

6l1a � 2l1l3 � l2l3 �
3a2

l3

ðl1 � l2Þ

� 	

LPM ¼
Mo

6E3I3

4a � 2l3 �
3a2

l3

� �

1d. Concentrated angular

displacement on the

horizontal member

LPH ¼ yo l1 �
a

l3

ðl1 � l2Þ

� 	

LPM ¼ yo

2

3
�

a

l3

� �

1e. Concentrated laternal

displacement on the

horizontal member

LPH ¼
�Doðl1 � l2Þ

l3

ðNote: Do could also be an increase in the length l1 or a decrease in the length l2Þ

LPM ¼
�Do

l3

1f. Concentrated load on the

left vertical member

LPH ¼ W AHH � aAHM þ
a3

6E1I1

� �

LPM ¼ W AMH � aAMM þ
a2

2E1I1

� �

1g. Distributed load on the

left vertical member

LPH ¼ wa AHH l1 � AHM

l2
1

2
þ

l4
1

24E1I1

� �
þ ðwb � waÞ AHH

l1

2
� AHM

l2
1

3
þ

l4
1

30E1I1

� �

LPM ¼ wa

l3
1

6E1I1

þ
l1l3

6E3I3

ðl1 þ l2Þ

� 	
þ ðwb � waÞ

l3
1

24E1I1

þ
l1l3

36E3I3

ð2l1 þ 3l2Þ

� 	

1h. Concentrated moment

on the left vertical

member

LPH ¼ Mo

a2

2E1I1

� AHM

� �

LPM ¼ Mo

a

E1I1

� AMM

� �
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TABLE 8.2 Reaction and deflection formulas for in-plane loading of elastic frames (Continued)



TABLE 8.2 Reaction and deflection formulas for in-plane loading of elastic frames (Continued)

Reference no., loading Loading terms

1i. Concentrated angular

displacement on the left

vertical member

LPH ¼ yoðaÞ

LPM ¼ yoð1Þ

1j. Concentrated lateral

displacement on the

left vertical member

LPH ¼ Doð1Þ ðNote: Do could also be a decrease in the length l3Þ

LPM ¼ 0

1k. Concentrated load

on the right vertical

member

LPH ¼ W
1

6E2I2

ð3l2a2 � 2l3
2 � a3Þ �

l3

6E3I3

ðl2 � aÞðl1 þ 2l2Þ

� 	

LPM ¼ W
�l3

6E3I3

ðl2 � aÞ

� 	

1l. Distributed load on

the right vertical

member

LPH ¼ wa

�5l4
2

24E2I2

�
l2
2l3

12E3I3

ðl1 þ 2l2Þ

� 	
þ ðwb � waÞ

�3l4
2

40E2I2

�
l2
2l3

36E3I3

ðl1 þ 2l2Þ

� 	

LPM ¼ wa

�l2
2l3

12E3I3

� �
þ ðwb � waÞ

�l2
2l3

36E3I3

� �

1m. Concentrated moment

on the right vertical

member

LPH ¼ Mo

a

2E2I2

ð2l2 � aÞ þ
l3

6E3I3

ðl1 þ 2l2Þ

� 	

LPM ¼ Mo

l3

6E3I3

1n. Concentrated angular

displacement on the

right vertical member

LPH ¼ yoðl2 � aÞ

LPM ¼ 0

1p. Concentrated lateral

displacement on the

right vertical member

LPH ¼ Doð�1Þ ðNote: Do could also be an increase in the length l3Þ

LPM ¼ 0
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1q. Uniform temperature rise:

T ¼ uniform temperature

To ¼ unloaded temperature

LPH ¼ ðT � ToÞ g3l3 �
ðl1 � l2Þ

l3

ðg1l1 � g2l2Þ

� 	
g ¼ temperature coefficient of expansion ðunit strain=degreeÞ

LPM ¼ ðT � ToÞ
�1

l3

ðg1l1 � g2l2Þ

� 	

1r. Uniform temperature

differential from outside

to inside. Average

temperature is To

LPH ¼
ðT1 � T2Þ

2

g1l2
1

t1

þ
g2l2

2

t2

þ
g3l3ðl1 þ l2Þ

t3

� 	
t1; t2;and t3 are beam thicknesses from inside to outside

LPM ¼
ðT1 � T2Þ

2

4g1l1

t1

þ
g3l3

3t3

� �

2. Left and guided

horizontally, right end

pinned

Since cA ¼ 0 and HA ¼ 0

MA ¼
LPM

AMM

and dHA ¼ AHM MA � LPH

Use the loading terms for cases 1a to 1r

3. Left end roller

supported along the

horizontal,

right end pinned

Since HA and MA are both zero, this is a statically determinate case

dHA ¼ �LPH and cA ¼ �LPM

Use the loading terms for cases 1a to 1r

4. Left end fixed, right

end pinned

Since dHA ¼ 0 and cA ¼ 0,

HA ¼
AMM LPH � AHM LPM

AHH AMM � ðAHM Þ
2

and MA ¼
AHH LPM � AHM LPH

AHH AMM � ðAHM Þ
2

Use the loading terms for cases 1a to 1r
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TABLE 8.2 Reaction and deflection formulas for in-plane loading of elastic frames (Continued)



TABLE 8.2 Reaction and deflection formulas for in-plane loading of elastic frames (Continued)

General reaction and deformation expressions for cases 5–12, right end fixed in all eight cases:

Deformation equations:

Horizontal deflection at A ¼ dHA ¼ CHH HA þ CHV VA þ CHM MA � LFH

Vertical deflection at A ¼ dVA ¼ CVH HA þ CVV VA þ CVM MA � LFV

Angular rotation at A ¼ cA ¼ CMH HA þ CMV VA þ CMM MA � LFM

where CHH ¼
l3
1

3E1I1

þ
l3
1 � ðl1 � l2Þ

3

3E2I2

þ
l2
1l3

E3l3

CHV ¼ CVH ¼
l2l3

2E2I2

ð2l1 � l2Þ þ
l1l2

3

2E3I3

CHM ¼ CMH ¼
l2
1

2E1I1

þ
l2

2E2I2

ð2l1 � l2Þ þ
l1l3

E3I3

CVV ¼
l2l2

3

E2I2

þ
l3
3

3E3I3

CVM ¼ CMV ¼
l2l3

E2I2

þ
l2
3

2E3I3

CMM ¼
l1

E1I1

þ
l2

E2I2

þ
l3

E3l3

and where LFH , LFV , and LFM are loading terms given below for several types of load

(Note: If desired, HB , VB , and MB are to be evaluated from equilibrium equations after calculating HA, VA, and MA)

5. Left end fixed,

right end

fixed

Since dHA ¼ 0, dVA ¼ 0, and cA ¼ 0, these three equations are solved simultaneously for HA, VA, and MA:

CHH HA þ CHV VA þ CHM MA ¼ LFH

CVH HA þ CVV VA þ CVM MA ¼ LFV

CMH HA þ CMV VA þ CMM MA ¼ LFM

The loading terms are given below.

Reference no., loading Loading terms

5a. Concentrated load on

the horizontal

member

LFH ¼ W
l2

2E2I2

ð2l1 � l2Þðl3 � aÞ þ
l1

2E3I3

ðl3 � aÞ2
� 	

LFV ¼ W CVV � aCVM þ
a3

6E3I3

� �

LFM ¼ W
l2

E2I2

ðl3 � aÞ þ
1

2E3I3

ðl3 � aÞ2
� 	
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5b. Distributed load on

the horizontal member

LFH ¼ wa

l2l2
3

4E2I2

ð2l1 � l2Þ þ
l1l3

3

6E3I3

� 	
þ ðwb � waÞ

l2l2
3

12E2I2

ð2l1 � l2Þ þ
l1l3

3

24E3I3

� 	

LFV ¼ wa

l2l3
3

2E2I2

þ
l4
3

8E3I3

� �
þ ðwb � waÞ

l2l3
3

6E2I2

þ
l4
3

30E3I3

� �

LFM ¼ wa

l2l2
3

2E2I2

þ
l3
3

6E3I3

� �
þ ðwb � waÞ

l2l2
3

6E2I2

þ
l3
3

24E3I3

� �

5c. Concentrated moment on

the horizontal member

LFH ¼ Mo

�l2

2E2I2

ð2l1 � l2Þ �
l1

E3I3

ðl3 � aÞ

� 	

LFV ¼ Mo �CVM þ
a2

2E3I3

� �

LFM ¼ Mo

�l2

E2I2

�
1

E3I3

ðl3 � aÞ

� 	

5d. Concentrated angular

displacement on the

horizontal member

LFH ¼ yoðl1Þ

LFV ¼ yoðaÞ

LFM ¼ yoð1Þ

e

5e. Concentrated lateral

displacement on the

horizontal member

LFH ¼ 0

LFV ¼ Doð1Þ

LFM ¼ 0

5f. Concentrated load on

the left vertical member

LFH ¼ W CHH � aCHM þ
a3

6E1I1

� �

LFV ¼ W ðCVH � aCVM Þ

LFM ¼ W CMH � aCMM þ
a2

2E1I1

� �

5g. Distributed load on

the left vertical member

LFH ¼ wa CHH l1 � CHM

l2
1

2
þ

l4
1

24E1I1

� �
þ ðwb � waÞ CHH

l1

2
� CHM

l2
1

3
þ

l4
1

30E1I1

� �

LFV ¼ wa CVH l1 � CVM

l2
1

2

� �
þ ðwb � waÞ CVH

l1

2
� CVM

l2
1

3

� �

LFM ¼ wa CMH l1 � CMM

l2
1

2
þ

l3
1

6E1I1

� �
þ ðwb � waÞ CMH

l1

2
� CMM

l2
1

3
þ

l3
1

8E1I1

� �

S
E
C
.
8
.1
7
]

B
e
a
m
s
;
F
le
x
u
re

o
f
S
tra

ig
h
t
B
a
rs

2
0
7

TABLE 8.2 Reaction and deflection formulas for in-plane loading of elastic frames (Continued)



TABLE 8.2 Reaction and deflection formulas for in-plane loading of elastic frames (Continued)

Reference no., loading Loading terms

5h. Concentrated moment on

the left vertical member

LFH ¼ Mo �CHM þ
a2

2E1I1

� �

LFV ¼ Moð�CVM Þ

LFM ¼ Mo �CMM þ
a

E1I1

� �

5i. Concentrated angular

displacement on the left

vertical member

LFH ¼ yoðaÞ

LFV ¼ 0

LFM ¼ yoð1Þ

5j. Concentrated lateral

displacement on the left

vertical member

LFH ¼ Doð1Þ

LFV ¼ 0

LFM ¼ 0

5k. Concentrated load on the

right vertical member

LFH ¼
W

6E2I2

½3l1ðl2 � aÞ2 � 2l3
2 � a3 þ 3al2

2 �

LFV ¼
W

2E2I2

½l3ðl2 � aÞ2�

LFM ¼
W

2E2I2

ðl2 � aÞ2

5l. Distributed load on the

right vertical member

LFH ¼ wa

l3
2

24E2I2

ð4l1 � 3l2Þ

� 	
þ ðwb � waÞ

l3
2

120E2I2

ð5l1 � 4l2Þ

� 	

LFV ¼ wa

l3
2l3

6E2I2

þ ðwb � waÞ
l3
2l3

24E2I2

LfM ¼ wa

l3
2

6E2I2

þ ðwb � waÞ
l3
2

24E2I2

5m. Concentrated moment

on the right vertical

member

LFH ¼
Mo

2E2I2

½�2l1ðl2 � aÞ � a2 þ l2
2�

LFV ¼
Mo

E2I2

½�l3ðl2 � aÞ�

LFM ¼
Mo

E2I2

½�ðl2 � aÞ�
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5n. Concentrated angular

displacement on the right

vertical member

LFH ¼ yoðl1 � aÞ

LFV ¼ yoðl3Þ

LFM ¼ yoð1Þ

5p. Concentrated lateral

displacement on the right

vertical member

LFH ¼ Doð�1Þ ðNote: Do could also be an increase in the length l3Þ

LFV ¼ 0

LFM ¼ 0

5q. Uniform temperature rise:

T ¼ uniform temperature

To ¼ unloaded temperature

LFH ¼ ðT � ToÞð�g3l3Þ g ¼ temperature coefficient of expansion ðinches=inch=degreeÞ

LFV ¼ ðT � ToÞðg1l1 � g2l2Þ

LFM ¼ 0

5r. Uniform temperature

differential from outside

to inside; average

temperature is To

LFH ¼ ðT1 � T2Þ
l2
1g1

2t1

þ
l2g2

2t2

ð2l1 � l2Þ þ
l1l3g3

t3

� 	

LFV ¼ ðT1 � T2Þ
l2l3g2

t2

þ
l2
3g3

2t3

� �
t1; t2; and t3 are beam thicknesses from inside to outside

LFM ¼ ðT1 � T2Þ
l1g1

t1

þ
l2g2

t2

þ
l3g3

t3

� �

6. Left end pinned,

right end fixed

Since dHA ¼ 0; dVA ¼ 0 and MA ¼ 0,

HA ¼
LFH CVV � LFV CHV

CHH CVV � ðCHV Þ
2

VA ¼
LFV CHH � LFH CHV

CHH CVV � ðCHV Þ
2

cA ¼ CMH HA þ CMV VA � LFM

Use the loading terms for cases 5a to 5r

7. Left end guided

horizontally, right

end fixed

Since dVA ¼ 0;cA ¼ 0 and HA ¼ 0,

VA ¼
LFV CMM � LFM CVM

CVV CMM � ðCVM Þ
2

MA ¼
LFM CVV � LFV CVM

CVV CMM � ðCVM Þ
2

dHA ¼ CHV VA þ CHM MA � LFH

Use the loading terms for cases 5a to 5r
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TABLE 8.2 Reaction and deflection formulas for in-plane loading of elastic frames (Continued)

8. Left end guided vertically,

right end fixed

Since dHA ¼ 0;cA ¼ 0, and VA ¼ 0,

HA ¼
LFH CMM � LFM CHM

CHH CMM � ðCHM Þ
2

MA ¼
LFM CHH � LFH CHM

CHH CMM � ðCHM Þ
2

dVA ¼ CVH HA þ CVM MA � LFV

Use the loading terms for cases 5a to 5r

9. Left end roller supported

along the horizontal,

right end fixed

Since dVA ¼ 0;HA ¼ 0, and MA ¼ 0,

VA ¼
LFV

CVV

dHA ¼ CHV VA � LFH and cA ¼ CMV VA � LFM

Use the loading terms for cases 5a to 5r

10. Left end roller supported

along the vertical, right

end fixed

Since dHA ¼ 0;VA ¼ 0, and MA ¼ 0,

HA ¼
LFH

CHH

dVA ¼ CVH HA � LFV and cA ¼ CMH HA � LFM

Use the loading terms for cases 5a to 5r

11. Left end guided by

moment only (zero slope

at the left end), right

end fixed

Since cA ¼ 0;HA ¼ 0, and VA ¼ 0,

MA ¼
LFM

CMM

dHA ¼ CHM MA � LFH and dVA ¼ CVM MA � LFV

Use the loading terms for cases 5a to 5r

12. Left end free, right end

fixed

Since HA ¼ 0;VA ¼ 0 and MA ¼ 0, this is a statically determinate case. The deflections are given by

dHA ¼ �LFH dVA ¼ �LFV and cA ¼ �LFM

Use the loading terms for cases 5a to 5r
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TABLE 8.3 Numerical values for functions used in Table 8.5

bx F1 F2 F3 F4

0.00 1.00000 0.00000 0.00000 0.00000

0.10 0.99998 0.20000 0.01000 0.00067

0.20 0.99973 0.39998 0.04000 0.00533

0.30 0.99865 0.59984 0.08999 0.01800

0.40 0.99573 0.79932 0.15995 0.04266

0.50 0.98958 0.99792 0.24983 0.08331

0.60 0.97841 1.19482 0.35948 0.14391

0.70 0.96001 1.38880 0.48869 0.22841

0.80 0.93180 1.57817 0.63709 0.34067

0.90 0.89082 1.76067 0.80410 0.48448

1.00 0.83373 1.93342 0.98890 0.66349

1.10 0.75683 2.09284 1.19034 0.88115

1.20 0.65611 2.23457 1.40688 1.14064

1.30 0.52722 2.35341 1.63649 1.44478

1.40 0.36558 2.44327 1.87659 1.79593

1.50 0.16640 2.49714 2.12395 2.19590

1.60 �0.07526 2.50700 2.37456 2.64573

1.70 �0.36441 2.46387 2.62358 3.14562

1.80 �0.70602 2.35774 2.86523 3.69467

1.90 �1.10492 2.17764 3.09266 4.29076

2.00 �1.56563 1.91165 3.29789 4.93026

2.10 �2.09224 1.54699 3.47170 5.60783

2.20 �2.68822 1.07013 3.60355 6.31615

2.30 �3.35618 0.46690 3.68152 7.04566

2.40 �4.09766 �0.27725 3.69224 7.78428

2.50 �4.91284 �1.17708 3.62088 8.51709

2.60 �5.80028 �2.24721 3.45114 9.22607

2.70 �6.75655 �3.50179 3.16529 9.88981

2.80 �7.77591 �4.95404 2.74420 10.48317

2.90 �8.84988 �6.61580 2.16749 10.97711

3.00 �9.96691 �8.49687 1.41372 11.33837

3.20 �12.26569 �12.94222 �0.71484 11.50778

3.40 �14.50075 �18.30128 �3.82427 10.63569

3.60 �16.42214 �24.50142 �8.09169 8.29386

3.80 �17.68744 �31.35198 �13.66854 3.98752

4.00 �17.84985 �38.50482 �20.65308 �2.82906

4.20 �16.35052 �45.41080 �29.05456 �12.72446

4.40 �12.51815 �51.27463 �38.74857 �26.24587

4.60 �5.57927 �55.01147 �49.42334 �43.85518

4.80 5.31638 �55.21063 �60.51809 �65.84195

5.00 21.05056 �50.11308 �71.15526 �92.21037

5.20 42.46583 �37.61210 �80.07047 �122.53858

5.40 70.26397 �15.28815 �85.54576 �155.81036

5.60 104.86818 19.50856 �85.35442 �190.22206

5.80 146.24469 69.51236 �76.72824 �222.97166

6.00 193.68136 137.31651 �56.36178 �250.04146
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TABLE 8.4 Numerical values for denominators used in Table 8.5

bl C11 C12 C13 C14

0.00 0.00000 0.00000 0.00000 0.00000

0.10 0.00007 0.20000 0.00133 0.02000

0.20 0.00107 0.40009 0.01067 0.08001

0.30 0.00540 0.60065 0.03601 0.18006

0.40 0.01707 0.80273 0.08538 0.32036

0.50 0.04169 1.00834 0.16687 0.50139

0.60 0.08651 1.22075 0.28871 0.72415

0.70 0.16043 1.44488 0.45943 0.99047

0.80 0.27413 1.68757 0.68800 1.30333

0.90 0.44014 1.95801 0.98416 1.66734

1.00 0.67302 2.26808 1.35878 2.08917

1.10 0.98970 2.63280 1.82430 2.57820

1.20 1.40978 3.07085 2.39538 3.14717

1.30 1.95606 3.60512 3.08962 3.81295

1.40 2.65525 4.26345 3.92847 4.59748

1.50 3.53884 5.07950 4.93838 5.52883

1.60 4.64418 6.09376 6.15213 6.64247

1.70 6.01597 7.35491 7.61045 7.98277

1.80 7.70801 8.92147 9.36399 9.60477

1.90 9.78541 10.86378 11.47563 11.57637

2.00 12.32730 13.26656 14.02336 13.98094

2.10 15.43020 16.23205 17.10362 16.92046

2.20 19.21212 19.88385 20.83545 20.51946

2.30 23.81752 24.37172 25.36541 24.92967

2.40 29.42341 29.87747 30.87363 30.33592

2.50 36.24681 36.62215 37.58107 36.96315

2.60 44.55370 44.87496 45.75841 45.08519

2.70 54.67008 54.96410 55.73686 55.03539

2.80 66.99532 67.29005 67.92132 67.21975

2.90 82.01842 82.34184 82.80645 82.13290

3.00 100.33792 100.71688 100.99630 100.37775

3.20 149.95828 150.51913 150.40258 149.96510

3.40 223.89682 224.70862 224.21451 224.02742

3.60 334.16210 335.25438 334.46072 334.55375

3.80 498.67478 500.03286 499.06494 499.42352

4.00 744.16690 745.73416 744.74480 745.31240

4.20 1110.50726 1112.19410 1111.33950 1112.02655

4.40 1657.15569 1658.85362 1658.26871 1658.96679

4.60 2472.79511 2474.39393 2474.17104 2474.76996

4.80 3689.70336 3691.10851 3691.28284 3691.68805

5.00 5505.19766 5506.34516 5506.88918 5507.03673

5.20 8213.62683 8214.49339 8215.32122 8215.18781

5.40 12254.10422 12254.71090 12255.69184 12255.29854

5.60 18281.71463 18282.12354 18283.10271 18282.51163

5.80 27273.73722 27274.04166 27274.86449 27274.16893

6.00 40688.12376 40688.43354 40688.97011 40688.27990
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TABLE 8.5 Shear, moment, slope, and deflection formulas for finite-length beams on elastic foundations
NOTATION: W ¼ load (force); w ¼ unit load (force per unit length); Mo ¼ applied couple (force-length); yo ¼ externally created concentrated angular displacement (radians); Do ¼ externally created

concentrated lateral displacement (length); g ¼ temperature coefficient of expansion (unit strain per degree); T1 and T2 ¼ temperatures on top and bottom surfaces, respectively (degrees). RA and

RB are the vertical end reactions at the left and right, respectively, and are positive upward. MA and MB are the reaction end moments at the left and right, respectively, and all moments are positive

when producing compression on the upper portion of the beam cross section. The transverse shear force V is positive when acting upward on the left end of a portion of the beam. All applied loads,

couples, and displacements are positive as shown. All slopes are in radians, and all temperatures are in degrees. All deflections are positive upward and slopes positive when up and to the right.

Note that MA and RA are reactions, not applied loads. They exist only when necessary end restraints are provided.

The following constants and functions, involving both beam constants and foundation constants, are hereby defined in order to permit condensing the tabulated formulas which follow

ko ¼ foundation modulus (unit stress per unit deflection); bo ¼ beam width; and b ¼ ðboko=4EIÞ1=4. (Note: See page 131 for a definition of hx � ain :Þ The functions coshbhx � ai; sinhbhx � ai,

cos bhx � ai, and sin bhx � ai are also defined as having a value of zero if x < a.

F1 ¼ coshbx cosbx

F2 ¼ coshbx sinbx þ sinhbx cos bx

F3 ¼ sinhbx sin bx

F4 ¼ coshbx sinbx � sinhbx cos bx

Fa1 ¼hx � ai0 coshbhx � aicos bhx � ai

Fa2 ¼ coshbhx � aisinbhx � aiþ sinh bhx � aicosbhx � ai

Fa3 ¼ sinhbhx � aisin bhx � ai

Fa4 ¼ coshbhx � aisinbhx � ai� sinh bhx � aicosbhx � ai

Fa5 ¼hx � ai0 � Fa1

Fa6 ¼ 2bðx � aÞhx � ai0 � Fa2

C1 ¼ coshbl cos bl

C2 ¼ coshbl sin bl þ sinhbl cosbl

C3 ¼ sinhbl sinbl

C4 ¼ coshbl sin bl � sinhbl cosbl

Ca1 ¼ coshbðl � aÞ cosbðl � aÞ

Ca2 ¼ coshbðl � aÞ sinbðl � aÞ þ sinhbðl � aÞ cos bðl � aÞ

Ca3 ¼ sinhbðl � aÞ sin bðl � aÞ

Ca4 ¼ coshbðl � aÞ sinbðl � aÞ � sinhbðl � aÞ cos bðl � aÞ

Ca5 ¼ 1 � Ca1

Ca6 ¼ 2bðl � aÞ � Ca2

C11 ¼ sinh
2 bl � sin

2 bl

C12 ¼ coshbl sinhbl þ cos bl sinbl

C13 ¼ coshbl sinhbl � cos bl sinbl

C14 ¼ sinh
2 bl þ sin

2 bl

1. Concentrated intermediate load Transverse shear ¼ V ¼ RAF1 � yA2EIb3F2 � yA2EIb2F3 � MAbF4 � WFa1

Bending moment ¼ M ¼ MAF1 þ
RA

2b
F2 � yA2EIb2F3 � yAEIbF4 �

W

2b
Fa2

Slope ¼ y ¼ yAF1 þ
MA

2EIb
F2 þ

RA

2EIb2
F3 � yAbF4 �

W

2EIb2
Fa3

Deflection ¼ y ¼ yAF1 þ
yA

2b
F2 þ

MA

2EIb2
F3 þ

RA

4EIb3
F4 �

W

4EIb3
Fa4

If bl > 6, see Table 8.6

Expressions for RA, MA, yA, and yA are found below for several combinations of end restraints
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TABLE 8.5 Shear, moment, slope, and deflection formulas for finite-length beams on elastic foundations (Continued)

Right

end Free Guided Simply supported Fixed

Left

end

RA ¼ 0 MA ¼ 0

yA ¼
W

2EIb2

C2Ca2 � 2C3Ca1

C11

yA ¼
W

2EIb3

C4Ca1 � C3Ca2

C11

RA ¼ 0 MA ¼ 0

yA ¼
W

2EIb2

C2Ca3 � C4Ca1

C12

yA ¼
�W

2EIb3

C1Ca1 þ C3Ca3

C12

RA ¼ 0 MA ¼ 0

yA ¼
W

2EIb2

C1Ca2 þ C3Ca4

C13

yA ¼
�W

4EIb3

C4Ca4 þ C2Ca2

C13

RA ¼ 0 MA ¼ 0

yA ¼
W

2EIb2

2C1Ca3 þ C4Ca4

2 þ C11

yA ¼
W

2EIb3

C1Ca4 � C2Ca3

2 þ C11

F
re

e
G

u
id

e
d

RA ¼ 0 yA ¼ 0

MA ¼
W

2b
C2Ca2 � 2C3Ca1

C12

yA ¼
�W

4EIb3

2C1Ca1 þ C4Ca2

C12

RA ¼ 0 yA ¼ 0

MA ¼
W

2b
C2Ca3 � C4Ca1

C14

yA ¼
�W

4EIb3

C2Ca1 þ C4Ca3

C14

RA ¼ 0 yA ¼ 0

MA ¼
W

2b
C1Ca2 þ C3Ca4

1 þ C11

yA ¼
W

4EIb3

C1Ca4 � C3Ca2

1 þ C11

RA ¼ 0 yA ¼ 0

MA ¼
W

2b
2C1Ca3 þ C4Ca4

C12

yA ¼
W

4EIb3

C2Ca4 � 2C3Ca3

C12

S
im

p
ly

su
p

p
o
rt

e
d

MA ¼ 0 yA ¼ 0

RA ¼ W
C3Ca2 � C4Ca1

C13

yA ¼
W

2EIb2

C1Ca2 � C2Ca1

C13

MA ¼ 0 yA ¼ 0

RA ¼ W
C1Ca1 þ C3Ca3

1 þ C11

yA ¼
W

2EIb2

C1Ca3 � C3Ca1

1 þ C11

MA ¼ 0 yA ¼ 0

RA ¼
W

2

C2Ca2 þ C4Ca4

C14

yA ¼
W

4EIb2

C2Ca4 � C4Ca2

C14

MA ¼ 0 yA ¼ 0

RA ¼ W
C2Ca3 � C1Ca4

C13

yA ¼
W

2EIb2

C3Ca4 � C4Ca3

C13

F
ix

e
d

yA ¼ 0 yA ¼ 0

RA ¼ W
2C1Ca1 þ C4Ca2

2 þ C11

MA ¼
W

b
C1Ca2 � C2Ca1

2 þ C11

yA ¼ 0 yA ¼ 0

RA ¼ W
C4Ca3 þ C2Ca1

C12

MA ¼
W

b
C1Ca3 � C3Ca1

C12

yA ¼ 0 yA ¼ 0

RA ¼ W
C3Ca2 � C1Ca4

C13

MA ¼
W

2b
C2Ca4 � C4Ca2

C13

yA ¼ 0 yA ¼ 0

RA ¼ W
2C3Ca3 � C2Ca4

C11

MA ¼
W

b
C3Ca4 � C4Ca3

C11
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2. Partial uniformly distributed load Transverse shear ¼ V ¼ RAF1 � yA2EIb3F2 � yA2EIb2F3 � MAbF4 �
w

2b
Fa2

Bending moment ¼ M ¼ MAF1 þ
RA

2b
F2 � yA2EIb2F3 � yAEIbF4 �

w

2b2
Fa3

Slope ¼ y ¼ yAF1 þ
MA

2EIb
F2 þ

RA

2EIb2
F3 � yAbF4 �

w

4EIb3
Fa4

Deflection ¼ y ¼ yAF1 þ
yA

2b
F2 þ

MA

2EIb2
F3 þ

RA

4EIb3
F4 �

w

4EIb4
Fa5

If bl > 6, see Table 8.6

Expressions for RA, MA, yA, and yA are found below for several combinations of end restraints

Right

end Free Guided Simply supported Fixed

Left

end

RA ¼ 0 MA ¼ 0

yA ¼
w

2EIb3

C2Ca3 � C3Ca2

C11

yA ¼
w

4EIb4

C4Ca2 � 2C3Ca3

C11

RA ¼ 0 MA ¼ 0

yA ¼
w

4EIb3

C2Ca4 � C4Ca2

C12

yA ¼
�w

4EIb4

C1Ca2 þ C3Ca4

C12

RA ¼ 0 MA ¼ 0

yA ¼
w

2EIb3

C1Ca3 þ C3Ca5

C13

yA ¼
�w

4EIb4

C4Ca5 þ C2Ca3

C13

RA ¼ 0 MA ¼ 0

yA ¼
w

2EIb3

C1Ca4 þ C4Ca5

2 þ C11

yA ¼
w

4EIb4

2C1Ca5 � C2Ca4

2 þ C11

F
re

e
G

u
id

e
d

RA ¼ 0 yA ¼ 0

MA ¼
w

2b2

C2Ca3 � C3Ca2

C12

yA ¼
�w

4EIb4

C1Ca2 þ C4Ca3

C12

RA ¼ 0 yA ¼ 0

MA ¼
w

4b2

C2Ca4 � C4Ca2

C14

yA ¼
�w

8EIb4

C2Ca2 þ C4Ca4

C14

RA ¼ 0 yA ¼ 0

MA ¼
w

2b2

C1Ca3 þ C3Ca5

1 þ C11

yA ¼
w

4EIb4

C1Ca5 � C3Ca3

1 þ C11

RA ¼ 0 yA ¼ 0

MA ¼
w

2b2

C1Ca4 þ C4Ca5

C12

yA ¼
w

4EIb4

C2Ca5 � C3Ca4

C12

S
im

p
ly

su
p

p
o
rt

e
d

MA ¼ 0 yA ¼ 0

RA ¼
w

2b
2C2Ca3 � C4Ca2

C13

yA ¼
w

4EIb3

2C1Ca3 � C2Ca2

C13

MA ¼ 0 yA ¼ 0

RA ¼
w

2b
C1Ca2 þ C3Ca4

1 þ C11

yA ¼
w

4EIb3

C1Ca4 � C3Ca2

1 þ C11

MA ¼ 0 yA ¼ 0

RA ¼
w

2b
C2Ca3 þ C4Ca5

C14

yA ¼
w

4EIb3

C2Ca5 � C4Ca3

C14

MA ¼ 0 yA ¼ 0

RA ¼
w

2b
C2Ca4 � 2C1Ca5

C13

yA ¼
w

4EIb3

2C3Ca5 � C4Ca4

C13

F
ix

e
d

yA ¼ 0 yA ¼ 0

RA ¼
w

b
C1Ca2 þ C4Ca3

2 þ C11

MA ¼
w

2b2

2C1Ca3 � C2Ca2

2 þ C11

yA ¼ 0 yA ¼ 0

RA ¼
w

2b
C4Ca4 þ C2Ca2

C12

MA ¼
w

2b2

C1Ca4 � C3Ca2

C12

yA ¼ 0 yA ¼ 0

RA ¼
w

b
C3Ca3 � C1Ca5

C13

MA ¼
w

2b2

C2Ca5 � C4Ca3

C13

yA ¼ 0 yA ¼ 0

RA ¼
w

b
C3Ca4 � C2Ca5

C11

MA ¼
w

2b2

2C3Ca5 � C4Ca4

C11
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TABLE 8.5 Shear, moment, slope, and deflection formulas for finite-length beams on elastic foundations (Continued)

3. Partial uniformly increasing load Transverse shear ¼ V ¼ RAF1 � yA2EIb3F2 � yA2EIb2F3 � MAbF4 �
wFa3

2b2
ðl � aÞ

Bending moment ¼ M ¼ MAF1 þ
RA

2b
F2 � yA2EIb2F3 � yAEIbF4 �

wFa4

4b3
ðl � aÞ

Slope ¼ y ¼ yAF1 þ
MA

2EIb
F2 þ

RA

2EIb2
F3 � yAbF4 �

wFa5

4EIb4
ðl � aÞ

Deflection ¼ y ¼ yAF1 þ
yA

2b
F2 þ

MA

2EIb2
F3 þ

RA

4EIb3
F4 �

wFa6

8EIb5
ðl � aÞ

If bl > 6, see Table 8.6

Expressions for RA, MA, yA, and yA are found below for several combinations of end restraints

Right

end Free Guided Simply supported Fixed

Left

end

RA ¼ 0 MA ¼ 0

yA ¼
wðC2Ca4 � 2C3Ca3Þ

4EIb4
ðl � aÞC11

yA ¼
wðC4Ca3 � C3Ca4Þ

4EIb5
ðl � aÞC11

RA ¼ 0 MA ¼ 0

yA ¼
wðC2Ca5 � C4Ca3Þ

4EIb4
ðl � aÞC12

yA ¼
�wðC1Ca3 þ C3Ca5Þ

4EIb5
ðl � aÞC12

RA ¼ 0 MA ¼ 0

yA ¼
wðC1Ca4 þ C3Ca6Þ

4EIb4
ðl � aÞC13

yA ¼
�wðC2Ca4 þ C4Ca6Þ

8EIb5
ðl � aÞC13

RA ¼ 0 MA ¼ 0

yA ¼
wð2C1Ca5 þ C4Ca6Þ

4EIb4
ðl � aÞð2 þ C11Þ

yA ¼
wðC1Ca6 � C2Ca5Þ

4EIb5
ðl � aÞð2 þ C11Þ

F
re

e
G

u
id

e
d

RA ¼ 0 yA ¼ 0

MA ¼
wðC2Ca4 � 2C3Ca3Þ

4b3
ðl � aÞC12

yA ¼
�wð2C1Ca3 þ C4Ca4Þ

8EIb5
ðl � aÞC12

RA ¼ 0 yA ¼ 0

MA ¼
wðC2Ca5 � C4Ca3Þ

4b3
ðl � aÞC14

yA ¼
�wðC2Ca3 þ C4Ca5Þ

8EIb5
ðl � aÞC14

RA ¼ 0 yA ¼ 0

MA ¼
wðC1Ca4 þ C3Ca6Þ

4b3
ðl � aÞð1 þ C11Þ

yA ¼
wðC1Ca6 � C3Ca4Þ

8EIb5
ðl � aÞð1 þ C11Þ

RA ¼ 0 yA ¼ 0

MA ¼
wð2C1Ca5 þ C4Ca6Þ

4b3
ðl � aÞC12

yA ¼
wðC2Ca6 � 2C3Ca5Þ

8EIb5
ðl � aÞC12

S
im

p
ly

su
p

p
o
rt

e
d

MA ¼ 0 yA ¼ 0

RA ¼
wðC3Ca4 � C4Ca3Þ

2b2
ðl � aÞC13

yA ¼
wðC1Ca4 � C2Ca3Þ

4EIb4
ðl � aÞC13

MA ¼ 0 yA ¼ 0

RA ¼
wðC1Ca3 þ C3Ca5Þ

2b2
ðl � aÞð1 þ C11Þ

yA ¼
wðC1Ca5 � C3Ca3Þ

4EIb4
ðl � aÞð1 þ C11Þ

MA ¼ 0 yA ¼ 0

RA ¼
wðC2Ca4 þ C4Ca6Þ

4b2
ðl � aÞC14

yA ¼
wðC2Ca6 � C4Ca4Þ

8EIb4
ðl � aÞC14

MA ¼ 0 yA ¼ 0

RA ¼
wðC2Ca5 � C1Ca6Þ

2b2
ðl � aÞC13

yA ¼
wðC3Ca6 � C4Ca5Þ

4EIb4
ðl � aÞC13

F
ix

e
d

yA ¼ 0 yA ¼ 0

RA ¼
wð2C1Ca3 þ C4Ca4Þ

2b2
ðl � aÞð2 þ C11Þ

MA ¼
wðC1Ca4 � C2Ca3Þ

2b3
ðl � aÞð2 þ C11Þ

yA ¼ 0 yA ¼ 0

RA ¼
wðC4Ca5 þ C2Ca3Þ

2b2
ðl � aÞC12

MA ¼
wðC1Ca5 � C3Ca3Þ

2b3
ðl � aÞC12

yA ¼ 0 yA ¼ 0

RA ¼
wðC3Ca4 � C1Ca6Þ

2b2
ðl � aÞC13

MA ¼
wðC2Ca6 � C4Ca4Þ

4b3
ðl � aÞC13

yA ¼ 0 yA ¼ 0

RA ¼
wð2C3Ca5 � C2Ca6Þ

2b2
ðl � aÞC11

MA ¼
wðC3Ca6 � C4Ca5Þ

2b3
ðl � aÞC11

2
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4. Concentrated intermediate moment Transverse shear ¼ V ¼ RAF1 � yA2EIb3F2 � yA2EIb2F3 � MAbF4 � MobFa4

Bending moment ¼ M ¼ MAF1 þ
RA

2b
F2 � yA2EIb2F3 � yAEIbF4 þ MoFa1

Slope ¼ y ¼ yAF1 þ
MA

2EIb
F2 þ

RA

2EIb2
F3 � yAbF4 þ

Mo

2EIb
Fa2

Deflection ¼ y ¼ yAF1 þ
yA

2b
F2 þ

MA

2EIb2
F3 þ

RA

4EIb3
F4 þ

Mo

2EIb2
Fa3

If bl > 6, see Table 8.6

Expressions for RA, MA, yA, and yA are found below for several combinations of end restraints

Right

end Free Guided Simply supported Fixed

Left

end

RA ¼ 0 MA ¼ 0

yA ¼
�Mo

EIb
C3Ca4 þ C2Ca1

C11

yA ¼
Mo

2EIb2

2C3Ca1 þ C4Ca4

C11

RA ¼ 0 MA ¼ 0

yA ¼
�Mo

2EIb
C2Ca2 þ C4Ca4

C12

yA ¼
Mo

2EIb2

C3Ca2 � C1Ca4

C12

RA ¼ 0 MA ¼ 0

yA ¼
�Mo

EIb
C1Ca1 þ C3Ca3

C13

yA ¼
Mo

2EIb2

C4Ca3 þ C2Ca1

C13

RA ¼ 0 MA ¼ 0

yA ¼
�Mo

EIb
C1Ca2 þ C4Ca3

2 þ C11

yA ¼
�Mo

2EIb2

2C1Ca3 � C2Ca2

2 þ C11

F
re

e
G

u
id

e
d

RA ¼ 0 yA ¼ 0

MA ¼ �Mo

C2Ca1 þ C3Ca4

C12

yA ¼
�Mo

2EIb2

C1Ca4 � C4Ca1

C12

RA ¼ 0 yA ¼ 0

MA ¼
�Mo

2

C2Ca2 þ C4Ca4

C14

yA ¼
Mo

4EIb2

C4Ca2 � C2Ca4

C14

RA ¼ 0 yA ¼ 0

MA ¼ �Mo

C1Ca1 þ C3Ca3

1 þ C11

yA ¼
Mo

2EIb2

C3Ca1 � C1Ca3

1 þ C11

RA ¼ 0 yA ¼ 0

MA ¼ �Mo

C1Ca2 þ C4Ca3

C12

yA ¼
Mo

2EIb2

C3Ca2 � C2Ca3

C12

S
im

p
ly

su
p

p
o
rt

e
d

MA ¼ 0 yA ¼ 0

RA ¼ �Mob
2C3Ca1 þ C4Ca4

C13

yA ¼
�Mo

2EIb
2C1Ca1 þ C2Ca4

C13

MA ¼ 0 yA ¼ 0

RA ¼ �Mob
C3Ca2 � C1Ca4

1 þ C11

yA ¼
�Mo

2EIb
C1Ca2 þ C3Ca4

1 þ C11

MA ¼ 0 yA ¼ 0

RA ¼ �Mob
C2Ca1 þ C4Ca3

C14

yA ¼
�Mo

2EIb
C2Ca3 � C4Ca1

C14

MA ¼ 0 yA ¼ 0

RA ¼ �Mob
C2Ca2 � 2C1Ca3

C13

yA ¼
�Mo

2EIb
2C3Ca3 � C4Ca2

C13

F
ix

e
d

yA ¼ 0 yA ¼ 0

RA ¼ �Mo2b
C4Ca1 � C1Ca4

2 þ C11

MA ¼ �Mo

2C1Ca1 þ C2Ca4

2 þ C11

yA ¼ 0 yA ¼ 0

RA ¼ �Mob
C4Ca2 � C2Ca4

C12

MA ¼ �Mo

C1Ca2 þ C3Ca4

C12

yA ¼ 0 yA ¼ 0

RA ¼ �Mo2b
C3Ca1 � C1Ca3

C13

MA ¼ �Mo

C2Ca3 � C4Ca1

C13

yA ¼ 0 yA ¼ 0

RA ¼ �Mo2b
C3Ca2 � C2Ca3

C11

MA ¼ �Mo

2C3Ca3 � C4Ca2

C11
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TABLE 8.5 Shear, moment, slope, and deflection formulas for finite-length beams on elastic foundations (Continued)



TABLE 8.5 Shear, moment, slope, and deflection formulas for finite-length beams on elastic foundations (Continued)

5. Externally created concentrated angular

displacement

Transverse shear ¼ V ¼ RAF1 � yA2EIb3F2 � yA2EIb2F3 � MAbF4 � yo2EIb2Fa3

Bending moment ¼ M ¼ MAF1 þ
RA

2b
F2 � yA2EIb2F3 � yAEIbF4 � yoEIbFa4

Slope ¼ y ¼ yAF1 þ
MA

2EIb
F2 þ

RA

2EIb2
F3 � yAbF4 þ yoFa1

Deflection ¼ y ¼ yAF1 þ
yA

2b
F2 þ

MA

2EIb2
F3 þ

RA

4EIb3
F4 þ

y0

2b
Fa2

If bl > 6, see Table 8.6

Expressions for RA, MA, yA, and yA are found below for several combinations of end restraints

Right

end Free Guided Simply supported Fixed

Left

end

RA ¼ 0 MA ¼ 0

yA ¼ yo

C2Ca4 � 2C3Ca3

C11

yA ¼
yo

b
C4Ca3 � C3Ca4

C11

RA ¼ 0 MA ¼ 0

yA ¼ �yo

C2Ca1 þ C4Ca3

C12

yA ¼
yo

b
C3Ca1 � C1Ca3

C12

RA ¼ 0 MA ¼ 0

yA ¼ yo

C1Ca4 � C3Ca2

C13

yA ¼
yo

2b
C4Ca2 � C2Ca4

C13

RA ¼ 0 MA ¼ 0

yA ¼ �yo

2C1Ca1 þ C4Ca2

2 þ C11

yA ¼
�yo

b
C1Ca2 � C2Ca1

2 þ C11

F
re

e
G

u
id

e
d

RA ¼ 0 yA ¼ 0

MA ¼ yoEIb
C2Ca4 � 2C3Ca3

C12

yA ¼
�yo

2b
2C1Ca3 þ C4Ca4

C12

RA ¼ 0 yA ¼ 0

MA ¼ �yoEIb
C2Ca1 þ C4Ca3

C14

yA ¼
yo

2b
C4Ca1 � C2Ca3

C14

RA ¼ 0 yA ¼ 0

MA ¼ yoEIb
C1Ca4 � C3Ca2

1 þ C11

yA ¼
�yo

2b
C1Ca2 þ C3Ca4

1 þ C11

RA ¼ 0 yA ¼ 0

MA ¼ �yoEIb
2C1Ca1 þ C4Ca2

C12

yA ¼
yo

2b
2C3Ca1 � C2Ca2

C12

S
im

p
ly

su
p

p
o
rt

e
d

MA ¼ 0 yA ¼ 0

RA ¼ yo2EIb2 C3Ca4 � C4Ca3

C13

yA ¼ yo

C1Ca4 � C2Ca3

C13

MA ¼ 0 yA ¼ 0

RA ¼ yo2EIb2 C1Ca3 � C3Ca1

1 þ C11

yA ¼ �yo

C1Ca1 þ C3Ca3

1 þ C11

MA ¼ 0 yA ¼ 0

RA ¼ yoEIb2 C2Ca4 � C4Ca2

C14

yA ¼
�yo

2

C2Ca2 þ C4Ca4

C14

MA ¼ 0 yA ¼ 0

RA ¼ yo2EIb2 C1Ca2 � C2Ca1

C13

yA ¼ yo

C4Ca1 � C3Ca2

C13

F
ix

e
d

yA ¼ 0 yA ¼ 0

RA ¼ yo2EIb2 2C1Ca3 þ C4Ca4

2 þ C11

MA ¼ yo2EIb
C1Ca4 � C2Ca3

2 þ C11

yA ¼ 0 yA ¼ 0

RA ¼ yo2EIb2 C2Ca3 � C4Ca1

C12

MA ¼ �yo2EIb
C1Ca1 þ C3Ca3

C12

yA ¼ 0 yA ¼ 0

RA ¼ yo2EIb2 C1Ca2 þ C3Ca4

C13

MA ¼ �yoEIb
C2Ca2 þ C4Ca4

C13

yA ¼ 0 yA ¼ 0

RA ¼ yo2EIb2 C2Ca2 � 2C3Ca1

C11

MA ¼ yo2EIb
C4Ca1 � C3Ca2

C11

2
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6. Externally created concentrated lateral

displacement

Transverse shear ¼ V ¼ RAF1 � yA2EIb3F2 � yA2EIb2F3 � MAbF4 � Do2EIb3Fa2

Bending moment ¼ M ¼ MAF1 þ
RA

2b
F2 � yA2EIb2F3 � yAEIbF4 � Do2EIb2Fa3

Slope ¼ y ¼ yAF1 þ
MA

2EIb
F2 þ

RA

2EIb2
F3 � yAbF4 � DobFa4

Deflection ¼ y ¼ yAF1 þ
yA

2b
F2 þ

MA

2EIb2
F3 þ

RA

4EIb3
F4 þ DoFa1

If bl > 6, see Table 8.6

Expressions for RA, MA, yA, and yA are found below for several combinations of end restraints

Right

end Free Guided Simply supported Fixed

Left

end

RA ¼ 0 MA ¼ 0

yA ¼ Do2b
C2Ca3 � C3Ca2

C11

yA ¼ Do

C4Ca2 � 2C3Ca3

C11

RA ¼ 0 MA ¼ 0

yA ¼ Dob
C2Ca4 � C4Ca2

C12

yA ¼ �Do

C1Ca2 þ C3Ca4

C12

RA ¼ 0 MA ¼ 0

yA ¼ Do2b
C1Ca3 � C3Ca1

C13

yA ¼ Do

C4Ca1 � C2Ca3

C13

RA ¼ 0 MA ¼ 0

yA ¼ D02b
C1Ca4 � C4Ca1

2 þ C11

yA ¼ �Do

2C1Ca1 þ C2Ca4

2 þ C11

F
re

e
G

u
id

e
d

RA ¼ 0 yA ¼ 0

MA ¼ Do2EIb2 C2Ca3 � C3Ca2

C12

yA ¼ �Do

C1Ca2 þ C4Ca3

C12

RA ¼ 0 yA ¼ 0

MA ¼ DoEIb2 C2Ca4 � C4Ca2

C14

yA ¼
�Do

2

C2Ca2 þ C4Ca4

C14

RA ¼ 0 yA ¼ 0

MA ¼ Do2EIb2 C1Ca3 � C3Ca1

1 þ C11

yA ¼ �Do

C1Ca1 þ C3Ca3

1 þ C11

RA ¼ 0 yA ¼ 0

MA ¼ Do2EIb2 C1Ca4 � C4Ca1

C12

yA ¼ �Do

C2Ca1 þ C3Ca4

C12

S
im

p
ly

su
p

p
o
rt

e
d

MA ¼ 0 yA ¼ 0

RA ¼ Do2EIb3 2C3Ca3 � C4Ca2

C13

yA ¼ Dob
2C1Ca3 � C2Ca2

C13

MA ¼ 0 yA ¼ 0

RA ¼ Do2EIb3 C1Ca2 þ C3Ca4

1 þ C11

yA ¼ Dob
C1Ca4 � C3Ca2

1 þ C11

MA ¼ 0 yA ¼ 0

RA ¼ Do2EIb3 C2Ca3 � C4Ca1

C14

yA ¼ �Dob
C2Ca1 þ C4Ca3

C14

MA ¼ 0 yA ¼ 0

RA ¼ Do2EIb3 C2Ca4 þ 2C1Ca1

C13

yA ¼ �Dob
2C3Ca1 þ C4Ca4

C13

F
ix

e
d

yA ¼ 0 yA ¼ 0

RA ¼ Do4EIb3 C1Ca2 þ C4Ca3

2 þ C11

MA ¼ Do2EIb2 2C1Ca3 � C2Ca2

2 þ C11

yA ¼ 0 yA ¼ 0

RA ¼ Do2EIb3 C4Ca4 þ C2Ca2

C12

MA ¼ Do2EIb2 C1Ca4 � C3Ca2

C12

yA ¼ 0 yA ¼ 0

RA ¼ Do4EIb3 C3Ca3 þ C1Ca1

C13

MA ¼ �Do2EIb2 C2Ca1 þ C4Ca3

C13

yA ¼ 0 yA ¼ 0

RA ¼ Do4EIb3 C3Ca4 þ C2Ca1

C11

MA ¼ �Do2EIb2 2C3Ca1 þ C4Ca4

C11

S
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TABLE 8.5 Shear, moment, slope, and deflection formulas for finite-length beams on elastic foundations (Continued)



TABLE 8.5 Shear, moment, slope, and deflection formulas for finite-length beams on elastic foundations (Continued)

7. Uniform temperature differential from

top to bottom
Transverse shear ¼ V ¼ RAF1 � yA2EIb3F2 � yA2EIb2F3 � MAbF4 þ

T1 � T2

t
gEIbF4

Bending moment ¼ M ¼ MAF1 þ
RA

2b
F2 � yA2EIb2F3 � yAEIbF4 �

T1 � T2

t
gEIðF1 � 1Þ

Slope ¼ y ¼ yAF1 þ
MA

2EIb
F2 þ

RA

2EIb2
F3 � yAbF4 �

T1 � T2

2tb
gF2

Deflection ¼ y ¼ yAF1 þ
yA

2b
F2 þ

MA

2EIb2
F3 þ

RA

4EIb3
F4 �

T1 � T2

2tb2
gF3

If bl > 6, see Table 8.6

Expressions for RA, MA, yA, and yA are found below for several combinations of end restraints

Right

end Free Guided Simply supported Fixed

Left

end

RA ¼ 0 MA ¼ 0

yA ¼
ðT1 � T2Þg

bt

C1C2 þ C3C4 � C2

C11

yA ¼
�ðT1 � T2Þg

2b2t

C2
4 þ 2C1C3 � 2C3

C11

RA ¼ 0 MA ¼ 0

yA ¼
ðT1 � T2Þg

2bt

C2
2 þ C2

4

C12

yA ¼
�ðT1 � T2Þg

2b2t

C2C3 � C1C4

C12

RA ¼ 0 MA ¼ 0

yA ¼
ðT1 � T2Þg

bt

C2
1 þ C3 � C4

C13

yA ¼
�ðT1 � T2Þg

bt

C1C2 þ C3C4 � C2

C13

RA ¼ 0 MA ¼ 0

yA ¼
ðT1 � T2Þg

2b2t

C1C2 þ C3C1

2 þ C11

yA ¼
ðT1 � T2Þg

2b2t

2C1C3 � C2
2

2 þ C11

F
re

e
G

u
id

e
d

RA ¼ 0 yA ¼ 0

MA ¼
ðT1 � T2ÞgEI

t

C1C2 þ C3C4 � C2

C12

yA ¼
ðT1 � T2Þg

2b2t

C4

C12

RA ¼ 0 yA ¼ 0

MA ¼
ðT1 � T2ÞgEI

t

yA ¼ 0

RA ¼ 0 yA ¼ 0

MA ¼
ðT1 � T2ÞgEI

t

C2
1 þ C2

3 � C1

1 þ C11

yA ¼
ðT1 � T2Þg

2b2t

C3

1 þ C11

RA ¼ 0 yA ¼ 0

MA ¼
ðT1 � T2ÞgEI

t

yA ¼ 0

S
im

p
ly

su
p

p
o
rt

e
d

MA ¼ 0 yA ¼ 0

RA ¼
ðT1 � T2ÞgbEI

t

2C1C3 þ C2
4 � 2C3

C13

yA ¼
ðT1 � T2Þg

2bt

2C2
1 þ C2C4 � 2C1

C13

MA ¼ 0 yA ¼ 0

RA ¼
ðT1 � T2ÞgbEI

t

C2C3 � C1C4

1 þ C11

yA ¼
ðT1 � T2Þg

2bt

C1C2 þ C3C4

1 þ C11

MA ¼ 0 yA ¼ 0

RA ¼
ðT1 � T2ÞgbEI

t

C1C2 þ C3C4 � C2

C14

yA ¼
ðT1 � T2Þg

2bt

C2C3 � C1C4 þ C4

C14

MA ¼ 0 yA ¼ 0

RA ¼
ðT1 � T2ÞgbEI

t

C2
2 � 2C1C3

C13

yA ¼
ðT1 � T2Þg

2bt

2C2
3 � C2C4

C13

F
ix

e
d

yA ¼ 0 yA ¼ 0

RA ¼
ðT1 � T2Þg2bEI

t

�C4

2 þ C11

MA ¼
ðT1 � T2ÞgEI

t

2C2
1 þ C2C4 � 2C1

2 þ C11

yA ¼ 0 yA ¼ 0

RA ¼ 0

MA ¼
ðT1 � T2ÞgEI

t

yA ¼ 0 yA ¼ 0

RA ¼
ðT1 � T2ÞgbEI

t

�2C3

C13

MA ¼
ðT1 � T2ÞgEI

t

C2C3 � C1C4 þ C4

C13

yA ¼ 0 yA ¼ 0

RA ¼ 0

MA ¼
ðT1 � T2ÞgEI

t

2
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TABLE 8.6 Shear, moment, slope, and deflection formulas for semi-infinite beams on elastic foundations
NOTATION: All notation is the same as that for Table 8.5. No length is defined since these beams are assumed to extend from the left end, for which restraints are defined, to a length beyond that portion

affected by the loading. Note that MA and RA are reactions, not applied loads.

The following constants and functions, involving both beam constants and foundation constants, are hereby defined in order to permit condensing the tabulated formulas which follow

ko ¼ foundation modulus (unit stress per unit deflection); bo ¼ beam width; and b ¼ ðboko=4EIÞ1=4. (Note: See page 131 for a definition of hx � ain :Þ

F1 ¼ coshbx cos bx

F2 ¼ coshbx sin bx þ sinh bx cosbx

F3 ¼ sinhbx sin bx

F4 ¼ coshbx sin bx � sinh bx cosbx

A1 ¼ 0:5e�ba cos ba

A2 ¼ 0:5e�baðsinba � cosbaÞ

A3 ¼ �0:5e�ba sin ba

A4 ¼ 0:5e�baðsinba þ cosbaÞ

B1 ¼ 0:5e�bb cosbb

B2 ¼ 0:5e�bbðsin bb � cos bbÞ

B3 ¼ �0:5e�bb sinbb

B4 ¼ 0:5e�bbðsin bb þ cos bbÞ

Fa1 ¼hx � aÞ0 cosh bhx � aicosbhx � ai

Fa2 ¼ coshbhx � aisin bhx � aiþ sinh bhx � aicosbhx � ai

Fa3 ¼ sinhbhx � aisin bhx � ai

Fa4 ¼ coshbhx � aisin bhx � ai� sinh bhx � aicosbhx � ai

Fa5 ¼hx � ai0 � Fa1

Fa6 ¼ 2bðx � aÞhx � ai0 � Fa2

Fb1 ¼hx � bi0 coshbhx � bicosbhx � bi

Fb2 ¼ coshbhx � bisin bhx � biþ sinhhbx � bicos bhx � bi

Fb3 ¼ sinhbhx � bisin bhx � bi

Fb4 ¼ coshbhx � bisin b� bi� sinhbhx � bicos bhx � bi

Fb5 ¼hx � bi0 � Fb1

Fb6 ¼ 2bðx � bÞhx � bi0 � Fb2

Transverse shear ¼ V ¼ RAF1 � yA2EIb3F2 � yA2EIb2F3 � MAbF4 þ LTV

Bending moment ¼ M ¼ MAF1 þ
RA

2b
F2 � yA2EIb2F3 � yAEIbF4 þ LTM

Slope ¼ y ¼ yAF1 þ
MA

2EIb
F2 þ

RA

2EIb2
F3 � yAbF4 þ LTy

Deflection ¼ y ¼ yAF1 þ
yA

2b
F2 þ

MA

2EIb2
F3 þ

RA

4EIb3
F4 þ LTy

Expressions for RA, MA, yA, and yA are found below for several combinations of loading and left end restraints. The loading terms LTV , LTM , LTy; and LTy are given for each loading condition.

Left end

restraint

Loading,

reference no. Free Guided Simply supported Fixed Loading terms

1. Concentrated

intermediate load (if

ba > 3, see case 10)

RA ¼ 0 MA ¼ 0

yA ¼
�W

EIb2
A2

yA ¼
�W

EIb3
A1

(if a ¼ 0, see case 8)

RA ¼ 0 yA ¼ 0

MA ¼
�W

b
A2

yA ¼
�W

2EIb3
A4

MA ¼ 0 yA ¼ 0

RA ¼ 2WA1

yA ¼
W

EIb2
A3

yA ¼ 0 yA ¼ 0

RA ¼ 2WA4

MA ¼
2W

b
A3

LTV ¼ �WFa1

LTM ¼
�W

2b
Fa2

LTy ¼
�W

2EIb2
Fa3

LTy ¼
�W

4EIb3
Fa4
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TABLE 8.6 Shear, moment, slope, and deflection formulas for semi-infinite beams on elastic foundations (Continued)

Left end

restraint

Loading,

reference no. Free Guided Simply supported Fixed Loading terms

2. Uniformly distributed

load from a to b

RA ¼ 0 MA ¼ 0

yA ¼
�w

EIb3
ðB3 � A3Þ

yA ¼
�w

2EIb4
ðB2 � A2Þ

RA ¼ 0 yA ¼ 0

MA ¼
�w

b2
ðB3 � A3Þ

yA ¼
w

2EIb4
ðB1 � A1Þ

MA ¼ 0 yA ¼ 0

RA ¼
w

b
ðB2 � A2Þ

yA ¼
w

2EIb3
ðB4 � A4Þ

yA ¼ 0 yA ¼ 0

RA ¼
�2w

b
ðB1 � A1Þ

MA ¼
w

b2
ðB4 � A4Þ

LTV ¼
�w

2b
ðFa2 � Fb2Þ

LTM ¼
�w

2b2
ðFa3 � Fb3Þ

LTy ¼
�w

4EIb3
ðFa4 � Fb4Þ

LTy ¼
�w

4EIb4
ðFa5 � Fb5Þ

3. Uniform increasing

load from a to b

RA ¼ 0 MA ¼ 0

yA ¼
w

2EIb4

B4 � A4

b � a
� 2bB3

� �

yA ¼
w

2EIb5

B3 � A3

b � a
� bB2

� �

RA ¼ 0 yA ¼ 0

MA ¼
w

2b3

B4 � A4

b � a
� 2bB3

� �

yA ¼
�w

4EIb5

B2 � A2

b � a
� 2bB1

� �

MA ¼ 0 yA ¼ 0

RA ¼
�w

b2

B3 � A3

b � a
� bB2

� �

yA ¼
w

2EIb4

B1 � A1

b � a
þ bB4

� �

yA ¼ 0 yA ¼ 0

RA ¼
w

b2

B2 � A2

b � a
� 2bB1

� �

MA ¼
w

b3

B1 � A1

b � a
þ bB4

� �

LTV ¼
�w

2b2

Fa3 � Fb3

b � a
� bFb2

� �

LTM ¼
�w

4b3

Fa4 � Fb4

b � a
� 2bFb3

� �

LTy ¼
�w

4EIb4

Fa5 � Fb5

b � a
� bFb4

� �

LTy ¼
�w

8EIb5

Fa6 � Fb6

b � a
� 2bFb5

� �

4. Concentrated

intermediate moment

(if ba > 3, see case 11)

RA ¼ 0 MA ¼ 0

yA ¼
�2Mo

EIb
A1

yA ¼
Mo

EIb2
A4

ðif a ¼ 0; see case 9Þ

RA ¼ 0 yA ¼ 0

MA ¼ �2MoA1

yA ¼
�Mo

EIb2
A3

MA ¼ 0 yA ¼ 0

RA ¼ �2MobA4

yA ¼
Mo

EIb
A2

yA ¼ 0 yA ¼ 0

RA ¼ 4MobA3

MA ¼ 2MoA2

LTV ¼ �MobFa4

LTM ¼ MoFa1

LTy ¼
Mo

2EIb
Fa2

LTy ¼
Mo

2EIb2
Fa3

5. Externally created

concentrated angular

displacement

RA ¼ 0 MA ¼ 0

yA ¼ �2yoA4

yA ¼
�2yo

b
A3

RA ¼ 0 yA ¼ 0

MA ¼ �2yoEIbA4

yA ¼
yo

b
A2

MA ¼ 0 yA ¼ 0

RA ¼ 4yoEIb2A3

yA ¼ �2yoA1

yA ¼ 0 yA ¼ 0

RA ¼ �4yoEIb2A2

MA ¼ �4yoEIbA1

LTV ¼ �2yoEIb2Fa3

LTM ¼ �yoEIbFa4

LTy ¼ yoFa1

LTy ¼
yo

2b
Fa2
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6. Externally created

concentrated lateral

displacement

RA ¼ 0 MA ¼ 0

yA ¼ 4DobA3

yA ¼ 2DoA2

RA ¼ 0 yA ¼ 0

MA ¼ 4DoEIb2A3

yA ¼ �2DoA1

MA ¼ 0 yA ¼ 0

RA ¼ �4DoEIb3A2

yA ¼ �2DobA4

yA ¼ 0 yA ¼ 0

RA ¼ 8DoEIb3A1

MA ¼ �4DoEIb2A4

LTV ¼ �2DoEIb3Fa2

LTM ¼ �2DoEIb2Fa3

LTy ¼ �DobFa4

LTy ¼ DoFa1

7. Uniform temperature

differential from top to

bottom

RA ¼ 0 MA ¼ 0

yA ¼
T1 � T2

tb
g

yA ¼ �
T1 � T2

2tb2
g

RA ¼ 0 yA ¼ 0

MA ¼
T1 � T2

t
gEI

yA ¼ 0

MA ¼ 0 yA ¼ 0

RA ¼
T1 � T2

t
gEIb

yA ¼
T1 � T2

2tb
g

yA ¼ 0 yA ¼ 0

RA ¼ 0

MA ¼
T1 � T2

t
gEI

LTV ¼
T1 � T2

t
gEIbF4

LTM ¼
T1 � T2

t
gEIð1 � F1Þ

LTy ¼ �
T1 � T2

2tb
gF2

LTy ¼ �
T1 � T2

2tb2
gF3

Simple loads on semi-infinite and on infinite beams on elastic foundations

Loading, reference no. Shear, moment, and deformation equations Selected maximum values

8. Concentrated end load

on a semi-infinite

beam, left end free

V ¼ �We�bxðcosbx � sinbxÞ

M ¼ �
W

b
e�bx sin bx

y ¼
W

2EIb2
e�bxðcos bx þ sinbxÞ

y ¼ �
W

2EIb3
e�bx cosbx

Max V ¼ �W at x ¼ 0

Max M ¼ �0:3224
W

b
at x ¼

p
4b

Max y ¼
W

2EIb2
at x ¼ 0

Max y ¼
�W

2EIb3
at x ¼ 0

9. Concentrated end

moment on a

semi-infinite beam, left

end free

V ¼ �2Mobe�bx sin bx

M ¼ Moe�bxðcos bx þ sinbxÞ

y ¼ �
Mo

EIb
e�bx cos bx

y ¼ �
Mo

2EIb2
e�bxðsin bx � cos bxÞ

Max V ¼ �0:6448Mob at x ¼
p
4b

Max M ¼ Mo at x ¼ 0

Max y ¼ �
Mo

EIb
at x ¼ 0

Max y ¼
Mo

2EIb2
at x ¼ 0

S
E
C
.
8
.1
7
]

B
e
a
m
s
;
F
le
x
u
re

o
f
S
tra

ig
h
t
B
a
rs

2
2
3

TABLE 8.6 Shear, moment, slope, and deflection formulas for semi-infinite beams on elastic foundations (Continued)



TABLE 8.6 Shear, moment, slope, and deflection formulas for semi-infinite beams on elastic foundations (Continued )

Loading, reference no. Shear, moment, and deformation equations Selected maximum values

10. Concentrated load on an

infinite beam
V ¼ �

W

2
e�bx cosbx

M ¼
W

4b
e�bxðcos bx � sin bxÞ

y ¼
W

4EIb2
e�bx sin bx

y ¼ �
W

8EIb3
e�bxðcos bx þ sinbxÞ

Max V ¼ �
W

2
at x ¼ 0

Max M ¼
W

4b
at x ¼ 0

Max y ¼ 0:0806
W

EIb2
at x ¼

p
4b

Max y ¼ �
W

8EIb3
at x ¼ 0

11. Concentrated moment

on an infinite beam
V ¼ �

Mob
2

e�bxðcos bx þ sin bxÞ

M ¼
Mo

2
e�bx cosbx

y ¼ �
Mo

4EIb
e�bxðcos bx � sin bxÞ

y ¼ �
Mo

4EIb2
e�bx sinbx

Max V ¼ �
Mob

2
at x ¼ 0

Max M ¼
Mo

2
at x ¼ 0

Max y ¼ �
Mo

4EIb
at x ¼ 0

Max y ¼ �0:0806
Mo

EIb2
at x ¼

p
4b
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TABLE 8.7(a) Reaction and deflection coefficients for beams under simultaneous axial and transverse loading: cantilver end support

Axial compressive load, kl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pl2=EI

p
Axial tensile load, kl ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pl2=EI

p

Case no. in Table 8.1 Load location a=l Coefficient listed for 0.2 0.4 0.6 0.8 1.0 0.5 1.0 2.0 4.0 8.0

yA 1.0163 1.0684 1.1686 1.3455 1.6722 0.9092 0.7152 0.3885 0.1407 0.0410

1a. Conc. load 0 yA 1.0169 1.0713 1.1757 1.3604 1.7016 0.9054 0.7039 0.3671 0.1204 0.0312

MB 1.0136 1.0570 1.1402 1.2870 1.5574 0.9242 0.7616 0.4820 0.2498 0.1250

yA 1.0153 1.0646 1.1589 1.3256 1.6328 0.9142 0.7306 0.4180 0.1700 0.0566

0.5 yA 1.0195 1.0821 1.2026 1.4163 1.8126 0.8914 0.6617 0.2887 0.0506 0.0022

MB 1.0085 1.0355 1.0869 1.1767 1.3402 0.9524 0.8478 0.6517 0.4333 0.2454

yA 1.0158 1.0665 1.1638 1.3357 1.6527 0.9117 0.7228 0.4031 0.1552 0.0488

2a. Uniform load 0 yA 1.0183 1.0771 1.1900 1.3901 1.7604 0.8980 0.6812 0.3243 0.0800 0.0117

MB 1.0102 1.0427 1.1047 1.2137 1.4132 0.9430 0.8193 0.5969 0.3792 0.2188

yA 1.1050 1.0629 1.1548 1.3171 1.6161 0.9164 0.7373 0.4314 0.1851 0.0667

0.5 yA 1.0198 1.0835 1.2062 1.4239 1.8278 0.8896 0.6562 0.2794 0.0447 0.0015

MB 1.0059 1.0248 1.0606 1.1229 1.2357 0.9666 0.8925 0.7484 0.5682 0.3773

yA 1.0155 1.0652 1.1604 1.3287 1.6389 0.9135 0.7283 0.4137 0.1662 0.0552

2a. Uniformly increasing 0 yA 1.0190 1.0799 1.1972 1.4051 1.7902 0.8942 0.6700 0.3039 0.0629 0.0057

MB 1.0081 1.0341 1.0836 1.1701 1.3278 0.9543 0.8543 0.6691 0.4682 0.2930

yA 1.0147 1.0619 1.1523 1.3118 1.6056 0.9178 0.7415 0.4400 0.1951 0.0740

0.5 yA 1.0200 1.0843 1.2080 1.4277 1.8355 0.8887 0.6535 0.2748 0.0419 0.0012

MB 1.0046 1.0191 1.0467 1.0944 1.1806 0.9742 0.9166 0.8020 0.6489 0.4670

yA 1.0159 1.0670 1.1650 1.3382 1.6578 0.9110 0.7208 0.3992 0.1512 0.0465

2a. Uniformly decreasing 0 yA 1.0181 1.0761 1.1876 1.3851 1.7505 0.8992 0.6850 0.3311 0.0857 0.0136

MB 1.0112 1.0469 1.1153 1.2355 1.4559 0.9374 0.8018 0.5609 0.3348 0.1817

yA 1.0150 1.0633 1.1557 1.3189 1.6197 0.9159 0.7358 0.4284 0.1816 0.0642

0.5 yA 1.0198 1.0833 1.2056 1.4226 1.8253 0.8899 0.6571 0.2809 0.0456 0.0016

MB 1.0066 1.0276 1.0676 1.1372 1.2632 0.9628 0.8804 0.7215 0.5279 0.3324

yA 1.0169 1.0713 1.1757 1.3604 1.7016 0.9054 0.7039 0.3671 0.1204 0.0312

3a. Conc. moment 0 yA 1.0136 1.0570 1.1402 1.2870 1.5574 0.9242 0.7616 0.4820 0.2498 0.1250

MB 1.0203 1.0857 1.2116 1.4353 1.8508 0.8868 0.6481 0.2658 0.0366 0.0007

yA 1.0161 1.0677 1.1668 1.3418 1.6646 0.9101 0.7180 0.3932 0.1437 0.0409

0.5 yA 1.0186 1.0785 1.1935 1.3974 1.7747 0.8961 0.6754 0.3124 0.0664 0.0046

MB 1.0152 1.0641 1.1575 1.3220 1.6242 0.9147 0.7308 0.4102 0.1378 0.0183
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TABLE 8.7(b) Reaction and deflection coefficients for beams under simultaneous axial and transverse loading: simply supported ends

Axial compressive load, kl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pl2=EI

p
Axial tensile load, kl ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pl2=EI

p

Case no. in Table 8.1 Load location a=l Coefficient listed for 0.4 0.8 1.2 1.6 2.0 1.0 2.0 4.0 8.0 12.0

yl=2 1.0167 1.0702 1.1729 1.3546 1.6902 0.9069 0.7082 0.3751 0.1273 0.0596

yA 1.0144 1.0605 1.1485 1.3031 1.5863 0.9193 0.7447 0.4376 0.1756 0.0889
1e. Conc. load 0.25

yB 1.0185 1.0779 1.1923 1.3958 1.7744 0.8972 0.6805 0.3311 0.0990 0.0444

Ml=4 1.0101 1.0425 1.1039 1.2104 1.4025 0.9427 0.8158 0.5752 0.3272 0.2217

yl=2 1.0163 1.0684 1.1686 1.3455 1.6722 0.9092 0.7152 0.3885 0.1407 0.0694

0.50 yA 1.0169 1.0713 1.1757 1.3604 1.7016 0.9054 0.7039 0.3671 0.1204 0.0553

Ml=2 1.0136 1.0570 1.1402 1.2870 1.5574 0.9242 0.7616 0.4820 0.2498 0.1667

yl=2 1.0165 1.0696 1.1714 1.3515 1.6839 0.9077 0.7107 0.3797 0.1319 0.0630

2e. Uniform load 0 yA 1.0163 1.0684 1.1686 1.3455 1.6722 0.9092 0.7152 0.3885 0.1407 0.0694

Ml=2 1.0169 1.0713 1.1757 1.3604 1.7016 0.9054 0.7039 0.3671 0.1204 0.0553

y1=2 1.0165 1.0696 1.1714 1.3515 1.6839 0.9077 0.7107 0.3797 0.1319 0.0630

yA 1.0180 1.0759 1.1873 1.3851 1.7524 0.8997 0.6875 0.3418 0.1053 0.0475
0.50

yB 1.0149 1.0626 1.1540 1.3147 1.6099 0.9166 0.7368 0.4248 0.1682 0.0865

Ml=2 1.0169 1.0713 1.1757 1.3604 1.7016 0.9054 0.7039 0.3671 0.1204 0.0553

yl=2 1.0165 1.0696 1.1714 1.3515 1.6839 0.9077 0.7107 0.3797 0.1319 0.0630

yA 1.0172 1.0722 1.1781 1.3656 1.7127 0.9044 0.7011 0.3643 0.1214 0.0570
2e. Uniformly increasing 0

yB 1.0155 1.0651 1.1603 1.3280 1.6368 0.9134 0.7276 0.4097 0.1575 0.0803

Ml=2 1.0169 1.0713 1.1757 1.3604 1.7016 0.9054 0.7039 0.3671 0.1204 0.0553

yl=2 1.0167 1.0702 1.1729 1.3545 1.6899 0.9069 0.7084 0.3754 0.1278 0.0601

yA 1.0184 1.0776 1.1915 1.3942 1.7710 0.8976 0.6816 0.3329 0.1002 0.0450
0.50

yB 1.0140 1.0588 1.1445 1.2948 1.5702 0.9215 0.7516 0.4521 0.1936 0.1048

Ml=2 1.0183 1.0771 1.1900 1.3901 1.7604 0.8980 0.6812 0.3243 0.0800 0.0270

yl=2 1.0169 1.0713 1.1757 1.3604 1.7016 0.9054 0.7039 0.3671 0.1204 0.0553

3e. Conc. moment 0 yA 1.0108 1.0454 1.1114 1.2266 1.4365 0.9391 0.8060 0.5630 0.3281 0.2292

yB 1.0190 1.0801 1.1979 1.4078 1.7993 0.8945 0.6728 0.3200 0.0932 0.0417

yl=2 1.0161 1.0677 1.1668 1.3418 1.6646 0.9101 0.7180 0.3932 0.1437 0.0704

0.25 yA 1.0202 1.0852 1.2102 1.4318 1.8424 0.8873 0.6485 0.2595 0.0113 �0.0244

yB 1.0173 1.0728 1.1795 1.3682 1.7174 0.9035 0.6982 0.3571 0.1131 0.0512
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TABLE 8.7(c) Reaction and deflection coefficients for beams under simultaneous axial and transverse loading: left end simply supported,
right end fixed

Axial compressive load, kl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pl2=EI

p
Axial tensile load, kl ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pl2=EI

p

Case no. in Table 8.1 Load location a=l Coefficient listed for 0.6 1.2 1.8 2.4 3.0 1.0 2.0 4.0 8.0 12.0

yl=2 1.0190 1.0804 1.2005 1.4195 1.8478 0.9507 0.8275 0.5417 0.2225 0.1108

1c. Conc. load 0.25 yA 1.0172 1.0726 1.1803 1.3753 1.7530 0.9553 0.8429 0.5762 0.2576 0.1338

MB 1.0172 1.0728 1.1818 1.3812 1.7729 0.9554 0.8443 0.5881 0.3018 0.1940

0.50 yl=2 1.0170 1.0719 1.1786 1.3718 1.7458 0.9557 0.8444 0.5802 0.2647 0.1416

yA 1.0199 1.0842 1.2101 1.4406 1.8933 0.9485 0.8202 0.5255 0.2066 0.1005

MB 1.1037 1.0579 1.1432 1.2963 1.5890 0.9642 0.8733 0.6520 0.3670 0.2412

yl=2 1.0176 1.0742 1.1846 1.3848 1.7736 0.9543 0.8397 0.5694 0.2524 0.1323

2c. Uniform load 0 yA 1.0183 1.0776 1.1933 1.4042 1.8162 0.9524 0.8334 0.5561 0.2413 0.1263

MB 1.0122 1.0515 1.1273 1.2635 1.5243 0.9681 0.8874 0.6900 0.4287 0.3033

yl=2 1.0163 1.0689 1.1709 1.3549 1.7094 9.9575 0.8502 0.5932 0.2778 0.1505

0.50 yA 1.0202 1.0856 1.2139 1.4496 1.9147 0.9477 0.8179 0.5224 0.2087 0.1048

MB 1.0091 1.0383 1.0940 1.1920 1.3744 0.9760 0.9141 0.7545 0.5126 0.3774

yl=2 1.0170 1.0719 1.1785 1.3716 1.7453 0.9557 0.8444 0.5799 0.2637 0.1405

2c. Uniformly increasing 0 yA 1.0192 1.0814 1.2030 1.4255 1.8619 0.9502 0.8259 0.5394 0.2237 0.1136

MB 1.0105 1.0440 1.1084 1.2230 1.4399 0.9726 0.9028 0.7277 0.4799 0.3504

yl=2 1.0160 1.0674 1.1669 1.3463 1.6911 0.9584 0.8533 0.6003 0.2860 0.1571

0.50 yA 1.0202 1.0855 1.2138 1.4499 1.9165 0.9478 0.8183 0.5245 0.2141 0.1105

MB 1.0071 1.0298 1.0726 1.1473 1.2843 0.9813 0.9325 0.8029 0.5900 0.4573

yl=2 1.0180 1.0762 1.1895 1.3957 1.7968 0.9532 0.8359 0.5608 0.2431 0.1256

2c. Uniformly decreasing 0 yA 1.0177 1.0751 1.1868 1.3900 1.7857 0.9539 0.8383 0.5673 0.2531 0.1347

MB 1.0142 1.0600 1.1489 1.3098 1.6207 0.9630 0.8698 0.6470 0.3701 0.2495

yl=2 1.0165 1.0695 1.1725 1.3584 1.7169 0.9571 0.8490 0.5902 0.2743 0.1477

0.50 yA 1.0202 1.0856 1.2139 1.4495 1.9140 0.9477 0.8177 0.5216 0.2066 0.1026

MB 1.0104 1.0439 1.1078 1.2208 1.4327 0.9726 0.9023 0.7232 0.4625 0.3257

yl=2 1.0199 1.0842 1.2101 1.4406 1.8933 0.9485 0.8202 0.5255 0.2066 0.1005

3c. Conc. moment 0 yA 1.0122 1.0515 1.1273 1.2635 1.5243 0.9681 0.8874 0.6900 0.4287 0.3030

MB 1.0183 1.0779 1.1949 1.4105 1.8379 0.9525 0.8348 0.5684 0.2842 0.1704

0.50 yl=2 1.0245 1.1041 1.2613 1.5528 2.1347 0.9368 0.7812 0.4387 0.1175 0.0390

yA 1.0168 1.0707 1.1750 1.3618 1.7186 0.9562 0.8452 0.5760 0.2437 0.1176

MB 0.9861 0.9391 0.8392 0.6354 0.1828 1.0346 1.1098 1.1951 0.9753 0.7055
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TABLE 8.7(d) Reaction and deflection coefficients for beams under simultaneous axial and transverse loading: fixed ends

Axial compressive load, kl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pl2=EI

p
Axial tensile load, kl ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pl2=EI

p

Case no. in Table 8.1 Load location a=l Coefficient listed for 0.8 1.6 2.4 3.2 4.0 1.0 2.0 4.0 8.0 12.0

yl=2 1.0163 1.0684 1.1686 1.3455 1.6722 0.9756 0.9092 0.7152 0.3885 0.2228

RA 1.0007 1.0027 1.0064 1.0121 1.0205 0.9990 0.9960 0.9859 0.9613 0.9423
1d. Conc. load 0.25

MA 1.0088 1.0366 1.0885 1.1766 1.3298 0.9867 0.9499 0.8350 0.6008 0.4416

MB 1.0143 1.0603 1.1498 1.3117 1.6204 0.9787 0.9213 0.7583 0.4984 0.3645

yl=2 1.0163 1.0684 1.1686 1.3455 1.6722 0.9756 0.9092 0.7152 0.3885 0.2228

0.50 MA 1.0136 1.0570 1.1402 1.2870 1.5574 0.9797 0.9242 0.7616 0.4820 0.3317

Ml=2 1.0136 1.0570 1.1402 1.2870 1.5574 0.9797 0.9242 0.7616 0.4820 0.3317

yl=2 1.0163 1.0684 1.1686 1.3455 1.6722 0.9756 0.9092 0.7152 0.3885 0.2228

2d. Uniform load 0 MA 1.0108 1.0454 1.1114 1.2266 1.4365 0.9837 0.9391 0.8060 0.5630 0.4167

Ml=2 1.0190 1.0801 1.1979 1.4078 1.7993 0.9716 0.8945 0.6728 0.3200 0.1617

yl=2 1.0146 1.0667 1.1667 1.3434 1.6696 0.9741 0.9077 0.7141 0.3879 0.2224

RA 0.9982 0.9927 0.9828 0.9677 0.9453 1.0027 1.0106 1.0375 1.1033 1.1551
0.50

MA 1.0141 1.0595 1.1473 1.3045 1.5999 0.9789 0.9217 0.7571 0.4868 0.3459

MB 1.0093 1.0390 1.0950 1.1913 1.3622 0.9859 0.9470 0.8282 0.5976 0.4488

yl=2 1.0163 1.0684 1.1686 1.3455 1.6722 0.9756 0.9092 0.7152 0.3885 0.2228

RA 0.9995 0.9979 0.9951 0.9908 0.9845 1.0008 1.0030 1.0108 1.0303 1.0463
2d. Uniformly increasing 0

MA 1.0124 1.0521 1.1282 1.2627 1.5107 0.9814 0.9307 0.7818 0.5218 0.3750

MB 1.0098 1.0410 1.1001 1.2026 1.3870 0.9853 0.9447 0.8221 0.5904 0.4445

yl=2 1.0161 1.0679 1.1672 1.3427 1.6667 0.9758 0.9099 0.7174 0.3927 0.2274

RA 0.9969 0.9875 0.9707 0.9449 0.9070 1.0047 1.0182 1.0648 1.1815 1.2778
0.50

MA 1.0141 1.0595 1.1476 1.3063 1.6076 0.9790 0.9222 0.7602 0.4995 0.3647

MB 1.0075 1.0312 1.0755 1.1507 1.2819 0.9887 0.9573 0.8594 0.6582 0.5168

yl=2 1.0169 1.0713 1.1757 1.3604 1.7016 0.9746 0.9054 0.7039 0.3671 0.2001

RA 0.9993 0.9972 0.9932 0.9867 0.9763 1.0010 1.0038 1.0122 1.0217 1.0134

3d. Conc. moment 0.25 MA 1.0291 1.1227 1.3025 1.6203 2.2055 0.9563 0.8376 0.4941 �0.0440 �0.2412

MB 1.0151 1.0635 1.1571 1.3244 1.6380 0.9775 0.9164 0.7404 0.4517 0.3035

yl=2 1.0054 1.0220 1.0515 1.0969 1.1641 0.9918 0.9681 0.8874 0.6900 0.5346

0.50 RA 1.0027 1.0110 1.0260 1.0492 1.0842 0.9959 0.9842 0.9449 0.8561 0.7960

MA 1.0081 1.0331 1.0779 1.1477 1.2525 0.9877 0.9525 0.8348 0.5684 0.3881
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TABLE 8.8 Shear, moment, slope, and deflection formulas for beams under simultaneous axial compression and transverse loading
NOTATION: P ¼ axial compressive load (force); all other notation is the same as that for Table 8.1. P must be less than Pcr where Pcr ¼ K1p

2EI=l2 and where, for cases 1a–6a and 1f-6f, K1 ¼ 0:25; for

cases 1b–6b and 1e–6e; K1 ¼ 1; for cases 1c–6c, K1 ¼ 2:046; and for cases 1d–6d, K1 ¼ 4.

The following constants and functions are hereby defined in order to permit condensing the tabulated formulas which follow. k ¼ ðP=EIÞ1=2. (Note: See page 131 for a definition of hx � ain.) The

function sin khx � ai is also defined as having a value of zero if x < a

F1 ¼ cos kx Fa1 ¼hx � ai0 cos kðx � aÞ C1 ¼ cos kl Ca1 cos kðl � aÞ

F2 ¼ sin kx Fa2 ¼ sin khx � ai C2 ¼ sin kl Ca2 ¼ sin kðl � aÞ

F3 ¼ 1 � cos kx Fa3 ¼hx � ai0 ½1 � cos kðx � aÞ� C3 ¼ 1 � cos kl Ca3 ¼ 1 � cos kðl � aÞ

F4 ¼ kx � sin kx Fa4 ¼ khx � ai� sin khx � ai C4 ¼ kl � sin kl Ca4 ¼ kðl � aÞ � sin kðl � aÞ

Fa5 ¼
k2

2
hx � ai2 � Fa3 Ca5 ¼

k2

2
ðl � aÞ2 � Ca3

Fa6 ¼
k3

6
hx � ai3 � Fa4 Ca6 ¼

k3

6
ðl � aÞ3 � Ca4

(Note: MA and RA as well as MB and RB are reactions, not applied loads. They exist only when the

necessary end restraints are provided.)

1. Axial compressive load plus

concentrated intermediate

lateral load

Transverse shear ¼ V ¼ RAF1 � MAkF2 � yAPF1 � WFa1

Bending moment ¼ M ¼ MAF1 þ
RA

k
F2 �

yAP

k
F2 �

W

k
Fa2

Slope ¼ y ¼ yAF1 þ
MAk

P
F2 þ

RA

P
F3 �

W

P
Fa3

Deflection ¼ y ¼ yA þ
yA

k
F2 þ

MA

P
F3 þ

RA

kP
F4 �

W

kP
Fa4

End restraints,

reference no. Boundary values Selected maximum values of moments and deformations

1a. Left end free, right end

fixed (cantilever)

RA ¼ 0 MA ¼ 0 yA ¼
W

P

Ca3

C1

yA ¼
�W

kP

C2Ca3 � C1Ca4

C1

RB ¼ W yB ¼ 0 yB ¼ 0

MB ¼
�W

k

C2Ca3 þ C1Ca2

C1

Max M ¼ MB;max possible value ¼
�W

k
tan kl when a ¼ 0

Max y ¼ yA;max possible value ¼
W

P

1 � cos kl

cos kl
when a ¼ 0

Max y ¼ yA; max possible value ¼
�W

kP
ðtan kl � klÞ when a ¼ 0

1b. Left end guided, right end

fixed

RA ¼ 0 MA ¼
W

k

Ca3

C2

yA ¼ 0

yA ¼
�W

kP

C3Ca3 � C2Ca4

C2

RB ¼ W yB ¼ 0 yB ¼ 0

MB ¼
�W

k

cos ka � cos kl

sin kl

Max þ M ¼ MA;max possible value ¼
W

k
tan

kl

2
when a ¼ 0

Max � M ¼ MB; max possible value ¼
�W

k
tan

kl

2
when a ¼ 0

Max y ¼ yA; max possible value ¼
�W

kP
2 tan

kl

2
� kl

� �
when a ¼ 0
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TABLE 8.8 Shear, moment, slope, and deflection formulas for beams under simultaneous axial compression and transverse loading
(Continued)

End restraints,

reference no. Boundary values Selected maximum values of moments and deformations

1c. Left end simply supported,

right end fixed

RA ¼ W
C2Ca3 � C1Ca4

C2C3 � C1C4

MA ¼ 0

yA ¼
�W

P

C4Ca3 � C3Ca4

C2C3 � C1C4

yA ¼ 0

RB ¼ W � RA yB ¼ 0 yB ¼ 0

MB ¼
�W

k

kl sin ka � ka sin kl

sin kl � kl cos kl

Max � M ¼ MB; max possible value occurs when a ¼
1

k
cos�1 sin kl

kl

If a ¼ l=2 ðtransverse center loadÞ; then

RA ¼ W
sin kl � sin

kl

2
�

kl

2
cos kl

sin kl � kl cos kl

MB ¼ �Wl

sin
kl

2
1 � cos

kl

2

� �
sin kl � kl cos kl

1d. Left end fixed, right end

fixed

RA ¼ W
C3Ca3 � C2Ca4

C2
3 � C2C4

MA ¼
�W

k

C4Ca3 � C3Ca4

C2
3 � C2C4

yA ¼ 0 yA ¼ 0

RB ¼ W � RA yB ¼ 0 yB ¼ 0

MB ¼ MA þ RAl � W ðl � aÞ

Max � M ¼ MA if a <
l

2

If a ¼
l

2
ðtransverse center loadÞ; then

RA ¼ RB ¼
W

2
MB ¼ MA ¼

�W

2k
tan

kl

4

Max þ M ¼
W

2k
tan

kl

4
at x ¼

l

2

Max y ¼
�W

kP
tan

kl

4
�

kl

4

� �
at x ¼

l

2

1e. Left end simply supported,

right end simply supported

RA ¼
W

l
ðl � aÞ MA ¼ 0 yA ¼ 0

yA ¼
�W

P

sin kðl � aÞ

sin kl
�

l � a

l

� 	

RB ¼ W
a

l
MB ¼ 0 yB ¼ 0

yB ¼
W

P

sin ka

sin kl
�

a

l

� �

Max M ¼
W sin kðl � aÞ

k sin kl
sin ka at x ¼ a if

l

2
< a <

p
2k

Max M ¼
W sin kðl � aÞ

k sin kl
at x ¼

p
2k

if a >
p
2k

and a >
l

2
;

max possible value of M ¼
W

2k
tan

kl

2
at x ¼ a when a ¼

l

2

Max y ¼ yB if a >
l

2
; max possible value occurs when a ¼

1

k
cos�1 sin kl

kl

Max y occurs at x ¼
1

k
cos�1 ðl � aÞ sin kl

l sin kðl � aÞ
if a >

l

2
;

max possible value ¼
�W

2kP
tan

kl

2
�

kl

2

� �
at x ¼

l

2
when a ¼

l

2
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1f. Left end guided, right end

simply supported

RA ¼ 0 yA ¼ 0

MA ¼
W

k

sin kðl � aÞ

cos kl

yA ¼
�W

kp

sin kðl � aÞ

cos kl
� kðl � aÞ

� 	

RB ¼ W MB ¼ 0 yB ¼ 0

yB ¼
W

P

cos ka

cos kl
� 1

� �

Max M ¼ MA; max possible value ¼
W

k
tan kl when a ¼ 0

Max y ¼ yB; max possible value ¼
W

P

1 � cos kl

cos kl
when a ¼ 0

Max y ¼ yA; max possible value ¼
�W

kP
ðtan kl � klÞ when a ¼ 0

2. Axial compressive load plus

distributed lateral load

Transverse shear ¼ V ¼ RAF1 � MAkF2 � yAPF1 �
wa

k
Fa2 �

wl � wa

k2ðl � aÞ
Fa3

Bending moment ¼ M ¼ MAF1 þ
RA

k
F2 �

yAP

k
F2 �

wa

k2
Fa3 �

wl � wa

k3ðl � aÞ
Fa4

Slope ¼ y ¼ yAF1 þ
MAk

P
F2 þ

RA

P
F3 �

wa

kP
Fa4 �

wl � wa

k2Pðl � aÞ
Fa5

Deflection ¼ y ¼ yA þ
yA

k
F2 þ

MA

P
F3 þ

RA

kP
F4 �

wa

k2P
Fa5 �

wl � wa

k3Pðl � aÞ
Fa6

End restraints,

reference no. Boundary values Selected maximum values of moments and deformations

2a. Left end free, right end

fixed (cantilever)

RA ¼ 0 MA ¼ 0

yA ¼
wa

kP

Ca4

C1

þ
wl � wa

k2Pðl � aÞ

Ca5

C1

yA ¼
�wa

k2P

C2Ca4 � C1Ca5

C1

�
wl � wa

k3Pðl � aÞ

C2Ca5 � C1Ca6

C1

RB ¼
wa þ wl

2
ðl � aÞ yB ¼ 0

MB ¼
�wa

k2

C2Ca4 þ C1Ca3

C1

�
wl � wa

k3ðl � aÞ

C2Ca5 þ C1Ca4

C1

yB ¼ 0

If a ¼ 0 and wa ¼ wl (uniform load on entire span), then

Max M ¼ MB ¼
�wa

k2
1 þ kl tan kl �

1

cos kl

� �

Max y ¼ yA ¼
wa

kP

kl

cos kl
� tan kl

� �

Max y ¼ yA ¼
�wa

k2P
1 þ kl tan kl �

k2l2

2
�

1

cos kl

� �

If a ¼ 0 and wa ¼ 0 (uniformly increasing load), then

Max M ¼ MB ¼
�wl

k2
1 þ

kl

2
tan kl �

tan kl

kl

� �

Max y ¼ yA ¼
wl

kP

1

kl
þ

kl

2 cos kl
�

1

kl cos kl

� �

Max y ¼ yA ¼
�wl

k2P
1 þ

kl

2
tan kl �

k2l2

6
�

tan kl

kl

� �
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TABLE 8.8 Shear, moment, slope, and deflection formulas for beams under simultaneous axial compression and transverse loading
(Continued )

End restraints,

reference no. Boundary values Selected maximum values of moments and deformations

2b. Left end guided, right end

fixed

RA ¼ 0 yA ¼ 0

MA ¼
wa

k2

Ca4

C2

þ
wl � wa

k3ðl � aÞ

Ca5

C2

yA ¼
�wa

k2P

C3Ca4 � C2Ca5

C2

�
wl � wa

k3Pðl � aÞ

C3Ca5 � C2Ca6

C2

RB ¼
wa þ wl

2
ðl � aÞ yB ¼ 0

MB ¼
�wa

k2

C2Ca3 � C1Ca4

C2

�
ðw1 � waÞ

k3ðl � aÞ

C2Ca4 � C1Ca5

C2

yB ¼ 0

If a ¼ 0 and wa ¼ wl (uniform load on entire span), then

Max þ M ¼ MA ¼
wa

k2

kl

sin kl
� 1

� �

Max � M ¼ MB ¼
�wa

k2
1 �

kl

tan kl

� �

Max y ¼ yA ¼
�wal

kP
tan

kl

2
�

kl

2

� �

If a ¼ 0 and wa ¼ 0 (uniformly increasing load), then

Max þ M ¼ MA ¼
wl

k2

kl

2 sin kl
�

tanðkl=2Þ

kl

� �

Max � M ¼ MB ¼
�wl

k2
1 �

kl

2 tan kl
�

1 � cos kl

kl sin kl

� �

Max y ¼ yA ¼
�wl

k2P

kl

2
�

2

kl

� �
tan

kl

2
�

k2l2

6
þ 1

� 	

2c. Left end simply supported,

right end fixed

MA ¼ 0 yA ¼ 0

RA ¼
wa

k

C2Ca4 � C1Ca5

C2C3 � C1C4

þ
wl � wa

k2ðl � aÞ

C2Ca5 � C1Ca6

C2C3 � C1C4

yA ¼
�wa

kP

C4Ca4 � C3Ca5

C2C3 � C1C4

� 	
�

wl � wa

k2Pðl � aÞ

C4Ca5 � C3Ca6

C2C3 � C1C4

RB ¼
wa þ wl

2
ðl � aÞ � RA

MB ¼
�wa

k2

C2Ca5 � klC2Ca4

C2C3 � C1C4

þ Ca3

� �

�
ðwl � waÞ

k3ðl � aÞ

C2Ca6 � klC2Ca5

C2C3 � C1C4

þ Ca4

� �

yB ¼ 0 yB ¼ 0

If a ¼ 0 and wa ¼ wl (uniform load on entire span), then

Max y ¼ yA ¼
�wa

kP

4 � 2kl sin kl � ð2 � k2l2=2Þð1 þ cos klÞ

sin kl � kl cos kl

Max � M ¼ MB ¼
�wal

k

tan kl½tanðkl=2Þ � kl=2�

tan kl � kl

RA ¼
wa

k

kl sin kl � 1 þ ð1 � k2l2=2Þ cos kl

sin kl � kl cos kl

If a ¼ 0 and wa ¼ 0 (uniformly increasing load), then

Max y ¼ yA ¼
�wll

6P

2kl þ kl cos kl � 3 sin kl

sin kl � kl cos kl

Max � M ¼ MB ¼
�wl

k2

ðl � k2l2=3Þ tan kl � kl

tan kl � kl

RA ¼
wll

6

2 tan kl

tan kl � kl
�

6

k2l2
þ 1

� �
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2d. Left end fixed, right end

fixed

yA ¼ 0 yA ¼ 0

RA ¼
wa

k

C3Ca4 � C2Ca5

C2
3 � C2C4

þ
wl � wa

k2ðl � aÞ

C3Ca5 � C2Ca6

C2
3 � C2C4

MA ¼
�wa

k2

C4Ca4 � C3Ca5

C2
3 � C2C4

�
wl � wa

k3ðl � aÞ

C4Ca5 � C3Ca6

C2
3 � C2C4

RB ¼
wa þ wl

2
ðl � aÞ � RA

MB ¼ MA þ RAl �
wa

2
ðl � aÞ2 �

wl � wa

6
ðl � aÞ2

yB ¼ 0 yB ¼ 0

If a ¼ 0 and wa ¼ wl (uniform load on entire span), then

Max � M ¼ MA ¼ MB ¼
�wa

k2
1 �

kl=2

tanðkl=2Þ

� 	

Max þ M ¼
wa

k2

kl=2

sinðkl=2Þ
� 1

� 	
at x ¼

l

2

Max y ¼
�wal

2kP
tan

kl

4
�

kl

4

� �
at x ¼

l

2

RA ¼ RB ¼
wal

2

If a ¼ 0 and wa ¼ 0 (uniformly increasing load), then

Max � M ¼ MB ¼
�wl

k2
1 �

ðkl=2Þ sin kl � k2l2=6 � ðk2l2=3Þ cos kl

2 � 2 cos kl � kl sin kl

� 	

MA ¼
wll

6k

3 sin kl � klð2 þ cos klÞ

2 � 2 cos kl � kl sin kl

RA ¼
wl

k2l

k2l2

6

3 � 3 cos kl � kl sin kl

2 � 2 cos kl � kl sin kl
� 1

� �

2e. Left end simply supported,

right end simply supported

MA ¼ 0 yA ¼ 0

RA ¼
wa

2l
ðl � aÞ2 þ

wl � wa

6l
ðl � aÞ2

yA ¼
�wa

kP

1 � cos kðl � aÞ

sin kl
�

k

2l
ðl � aÞ2

� 	

�
wl � wa

kP

kðl � aÞ � sin kðl � aÞ

kðl � aÞ sin kl
�

k

6l
ðl � aÞ2

� 	

RB ¼
wa þ wl

2
ðl � aÞ � RA

MB ¼ 0 yB ¼ 0

yB ¼
wa

kP

cos ka � cos kl

sin kl
�

kðl2 � a2Þ

2l

� 	

þ
wl � wa

k2Pðl � aÞ

k2

6l
ð3al2 � 2l3 � a3Þ þ 1

�

�
sin ka þ kðl � aÞ cos kl

sin kl

	

If a ¼ 0 and wa ¼ wl (uniform load on entire span), then

Max þ M ¼
wa

k2

1

cosðkl=2Þ
� 1

� 	
at x ¼

l

2

Max y ¼ yB ¼ �yA ¼
wa

kP
tan

kl

2
�

kl

2

� �

Max y ¼
�wa

k2P

1

cosðkl=2Þ
�

k2l2

8
� 1

� 	
at x ¼

l

2

If a ¼ 0 and wa ¼ 0 ðuniformly increasing loadÞ; then

M ¼
wl

k2

sin kx

sin kl
�

x

l

� �
; max M occurs at x ¼

1

k
cos�1 sin kl

kl

yA ¼
�wl

kP

1

sin kl
�

1

kl
�

kl

6

� �

Max y ¼ yB ¼
wl

kP

1

kl
�

kl

3
�

1

tan kl

� �

y ¼
�wl

k2P

sin kx

sin kl
�

x

l
�

k2x

6l
ðl2 � x2Þ

� 	
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TABLE 8.8 Shear, moment, slope, and deflection formulas for beams under simultaneous axial compression and transverse loading
(Continued )

End restraints,

reference no. Boundary values Selected maximum values of moments and deformations

2f. Left end guided, right end

simply supported

RA ¼ 0 yA ¼ 0

MA ¼
wa

k2

Ca3

C1

þ
wl � wa

k3ðl � aÞ

Ca4

C1

yA ¼
�wa

k2P

Ca3

C1

�
k2

2
ðl � aÞ2

� 	

�
wl � wa

k3Pðl � aÞ

Ca4

C1

�
k3

6
ðl � aÞ3

� 	

RB ¼
wa þ wl

2
ðl � aÞ MB ¼ 0

yB ¼
wa

kP

sin kl � sin ka

cos kl
� kðl � aÞ

� 	

þ
wl � wa

k2Pðl � aÞ

kðl � aÞ sin kl � cos ka

cos kl
�

k2ðl � aÞ2

2
þ 1

" #

yB ¼ 0

If a ¼ 0 and wa ¼ wl (uniform load on entire span), then

Max M ¼ MA ¼
wa

k2

1

cos kl
� 1

� �

Max y ¼ yB ¼
wa

kP
ðtan kl � klÞ

Max y ¼ yA ¼
�wa

k2p

1

cos kl
� 1 �

k2l2

2

� �

If a ¼ 0 and wa ¼ 0 (uniformly increasing load), then

Max M ¼ MA ¼
wl

k3l

kl � sin kl

cos kl

Max y ¼ yB ¼
wl

k2Pl
1 �

k2l2

2
�

1 � kl sin kl

cos kl

� �

Max y ¼ yA ¼
�wl

k2P

kl � sin kl

kl cos kl
�

k2l2

6

� �

3. Axial compressive load plus concentrated

intermediate moment

Transverse shear ¼ V ¼ RAF1 � MAkF2 � yAPF1 � MokFa2

Bending moment ¼ M ¼ MAF1 þ
RA

k
F2 �

yAP

k
F2 þ MoFa1

Slope ¼ y ¼ yAF1 þ
MAk

P
F2 þ

RA

P
F3 þ

Mok

P
Fa2

Deflection ¼ y ¼ yA þ
yA

k
F2 þ

MA

P
F3 þ

RA

kP
F4 þ

Mo

P
Fa3

End restraints, reference no. Boundary values Selected maximum values of moments and deformations

3a. Left end free, right end

fixed (cantilever)

RA ¼ 0 MA ¼ 0

yA ¼
�Mok

P

sin kðl � aÞ

cos kl

yA ¼
Mo

P

cos ka

cos kl
� 1

� �

RB ¼ 0 yB ¼ 0 yB ¼ 0

MB ¼ Mo

cos ka

cos kl

Max M ¼ MB; max possible value ¼
Mo

cos kl
when a ¼ 0

Max y ¼ yA; max possible value ¼
�Mok

P
tan kl when a ¼ 0

Max y ¼ yA; max possible value ¼
Mo

P

1

cos kl
� 1

� �
when a ¼ 0
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3b. Left end guided, right end

fixed

RA ¼ 0 yA ¼ 0

MA ¼ �Mo

sin kðl � aÞ

sin kl

yA ¼
Mo

P

sin kðl � aÞ þ sin ka

sin kl
� 1

� 	

RB ¼ 0 yB ¼ 0 yB ¼ 0

MB ¼ Mo

sin ka

sin kl

Max þ M ¼ MB; max possible value ¼ Mo when a ¼ l

Max � M ¼ MA; max possible value ¼ �Mo when a ¼ 0

Max ¼
�Mok

P

sin kðl � aÞ

sin kl
at x ¼ a; max possible value ¼

�Mok

2P
tan

kl

2
when a ¼

l

2

Max y ¼ yA; max possible value ¼
Mo

P

1

cosðkl=2Þ
� 1

� 	
when a ¼

l

2

3c. Left end simply supported,

right end fixed

MA ¼ 0 yA ¼ 0

RA ¼ �Mok
cos ka � cos kl

sin kl � kl cos kl

yA ¼
�Mok

P

C3Ca3 � C4Ca2

C2C3 � C1C4

RB ¼ �RA yB ¼ 0 yB ¼ 0

MB ¼ Mo

sin kl � kl cos ka

sin kl � kl cos kl

If a ¼ 0 (concentrated end moment), then

RA ¼ �Mok
1 � cos kl

sin kl � kl cos kl

yA ¼
�Mok

P

2 � 2 cos kl � kl sin kl

sin kl � kl cos kl

MB ¼ �Mo

kl � sin kl

sin kl � kl cos kl

3d. Left end fixed, right end

fixed

yA ¼ 0 yA ¼ 0

RA ¼ �Mok
C3Ca2 � C2Ca3

C2
3 � C2C4

MA ¼ �Mo

C3Ca3 � C4Ca2

C2
3 � C2C4

RB ¼ �RA yB ¼ 0 yB ¼ 0

MB ¼ RAl þ MA þ Mo

If a ¼ l=2 (concentrated center moment), then

RA ¼ �Mok
½1= cosðkl=2Þ� � 1

2 tanðkl=2Þ � kl

MA ¼ �Mo

1 � cos kl � kl sinðkl=2Þ

2 � 2 cos kl � kl sin kl

At the center, y ¼ 0 and y ¼
�Mok

2P

� � 2 � 2 cos
kl

2
�

kl

2
sin

kl

2

sin
kl

2
�

kl

2
cos

kl

2

0
B@

1
CA
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TABLE 8.8 Shear, moment, slope, and deflection formulas for beams under simultaneous axial compression and transverse loading
(Continued)



TABLE 8.8 Shear, moment, slope, and deflection formulas for beams under simultaneous axial compression and transverse loading
(Continued )

End restraints,

reference no. Boundary values Selected maximum values of moments and deformations

3e. Left end simply supported,

right end simply supported

MA ¼ 0 yA ¼ 0

RA ¼
�Mo

l

yA ¼
Mo

Pl

kl cos kðl � aÞ

sin kl
� 1

� 	

RB ¼ �RA MB ¼ 0 yB ¼ 0

yB ¼
Mo

Pl

kl cos ka

sin kl
� 1

� �

If a ¼ 0 (concentrated moment at the left end), then

yA ¼
�Mo

Pl
1 �

kl

tan kl

� �

yB ¼
Mo

Pl

kl

sin kl
� 1

� �

M ¼ Mo cos kx 1 �
tan kx

tan kl

� �

If a ¼ l=2 (concentrated moment at the center), then

yA ¼ yB ¼
Mo

Pl

kl

2 sinðkl=2Þ
� 1

� 	
and y ¼ 0 at the center

3f. Left end guided, right end

simply supported

RA ¼ 0 yA ¼ 0

MA ¼ �Mo

cos kðl � aÞ

cos kl

yA ¼
Mo

P

cos kðl � aÞ

cos kl
� 1

� 	

RB ¼ 0 MB ¼ 0 yB ¼ 0

yB ¼
�Mok

P

sin ka

cos kl

Max M ¼ MA; max possible value ¼
�Mo

cos kl
when a ¼ l

Max y ¼ yB; max possible value ¼
�Mok

P
tan kl when a ¼ l

Max y ¼ ya; max possible value ¼
Mo

P

1

cos kl
� 1

� �
when a ¼ l

4. Axial compressive load plus externally

created concentrated angular displacement

Transverse shear ¼ V ¼ RAF1 � MAkF2 � yAPF1 � yoPFa1

Bending moment ¼ M ¼ MAF1 þ
RA

k
F2 �

yAP

k
F2 �

yoP

k
Fa2

Slope ¼ y ¼ yAF1 þ
MAk

P
F2 þ

RA

P
F3 þ yoFa1

Deflection ¼ y ¼ yA þ
yA

k
F2 þ

MA

P
F3 þ

RA

kP
F4 þ

yo

k
Fa2

2
3
6

F
o
rm

u
la
s
fo
r
S
tre

s
s
a
n
d
S
tra

in
[C
H
A
P
.
8



4a. Left end free, right end

fixed

RA ¼ 0 MA ¼ 0

yA ¼ �yo

cos kðl � aÞ

cos kl

yA ¼
yo

k

sin ka

cos kl

RB ¼ 0 yB ¼ 0 yB ¼ 0

MB ¼
yoP

k

sin ka

cos kl

Max M ¼ MB; max possible value ¼
yoP

k
tan kl when a ¼ l

Max y ¼ yA; max possible value ¼
�yo

cos kl
when a ¼ l

Max y ¼ yA; max possible value ¼
yo

k
tan kl when a ¼ l

4b. Left end guided, right end

fixed

RA ¼ 0 yA ¼ 0

MA ¼
�yoP

k

cos kðl � aÞ

sin kl

yA ¼
yo

k

cos kðl � aÞ � cos ka

sin kl

RB ¼ 0 yB ¼ 0 yB ¼ 0

MB ¼
�yoP

k

cos ka

sin kl

Max � M ¼ MB if a <
l

2
; max possible value ¼

�yoP

k sin kl
when a ¼ 0

Max � M ¼ MA if a >
l

2
; max possible value ¼

�yoP

k sin kl
when a ¼ l

Max þ y ¼ yA; max possible value ¼
yo

k
tan

kl

2
when a ¼ l

Max � y occurs at x ¼ a; max possible value ¼
�yo

k
tan

kl

2
at x ¼ 0 when a ¼ 0

4c. Left end simply supported,

right end fixed

MA ¼ 0 yA ¼ 0

RA ¼ �yoP
sin ka

sin kl � kl cos kl

yA ¼ �yo

C3Ca2 � C4Ca1

C2C3 � C1C4

RB ¼ �RA yB ¼ 0 yB ¼ 0 MB ¼ RAl

4d. Left end fixed, right end

fixed

yA ¼ 0 yA ¼ 0

RA ¼ �yoP
C3Ca1 � C2Ca2

C2
3 � C2C4

MA ¼
�yoP

k

C3Ca2 � C4Ca1

C2
3 � C2C4

RB ¼ �RA yB ¼ 0 yB ¼ 0 MB ¼ MA þ RAl

S
E
C
.
8
.1
7
]

B
e
a
m
s
;
F
le
x
u
re

o
f
S
tra

ig
h
t
B
a
rs

2
3
7

TABLE 8.8 Shear, moment, slope, and deflection formulas for beams under simultaneous axial compression and transverse loading
(Continued)



TABLE 8.8 Shear, moment, slope, and deflection formulas for beams under simultaneous axial compression and transverse loading
(Continued )

End restraints,

reference no. Boundary values Selected maximum values of moments and deformations

4e. Left end simply supported,

right end simply supported

MA ¼ 0 yA ¼ 0 RA ¼ 0

yA ¼ �yo

sin kðl � aÞ

sin kl

MB ¼ 0 yB ¼ 0 RB ¼ 0

yB ¼ yo

sin ka

sin kl

Max M ¼
yoP

k

sin kðl � aÞ sin ka

sin kl
at x ¼ a; max possible value ¼

yoP

k cosðkl=2Þ
when a ¼

l

2

Max y ¼ yA if a < l=2; max possible value ¼ �yo when a ¼ 0

Max y ¼
�yo

k

sin kðl � aÞ sin ka

sin kl
at; x ¼ a; max possible value ¼

�yo

k cosðkl=2Þ
when a ¼

l

2

4f. Left end guided, right end

simply supported

RA ¼ 0 yA ¼ 0

MA ¼
yoP

k

sin kðl � aÞ

cos kl

yA ¼
�yo

k

sin kðl � aÞ

cos kl

RB ¼ 0 MB ¼ 0 yB ¼ 0

yB ¼ yo

cos ka

cos kl

Max M ¼ MA; max possible value ¼
yoP

k
tan kl when a ¼ 0

Max y ¼ yB; max possible value ¼
yo

cos kl
when a ¼ 0

Max y ¼ yA; max possible value ¼
�yo

k
tan kl when a ¼ 0

5. Axial compressive load plus externally

created concentrated lateral displacement

Transverse shear ¼ V ¼ RAF1 � MAkF2 � yAPF1 þ DoPkFa2

Bending moment ¼ M ¼ MAF1 þ
RA

k
F2 �

yAP

k
F2 � DoPFa1

Slope ¼ y ¼ yAF1 þ
MAk

P
F2 þ

RA

P
F3 � DokFa2

Deflection ¼ y ¼ yA þ
yA

k
F2 þ

MA

P
F3 þ

RA

kP
F4 þ DoFa1

End restraints,

reference no. Boundary values Selected maximum values of moments and deformations

5a. Left end free, right end

fixed (cantilever)

RA ¼ 0 MA ¼ 0

yA ¼ Dok
sin kðl � aÞ

cos kl

yA ¼ �Do

cos ka

cos kl

RB ¼ 0 yB ¼ 0 yB ¼ 0

MB ¼ �DoP
cos ka

cos kl

Max M ¼ MB; max possible value ¼
�DoP

cos kl
when a ¼ 0

Max y ¼ yA; max possible value ¼ Dok tan kl when a ¼ 0

Max y ¼ yA; max possible value ¼
�Do

cos kl
when a ¼ 0
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5b. Left end guided, right end

fixed

RA ¼ 0 yA ¼ 0

MA ¼ DoP
sin kðl � aÞ

sin kl

yA ¼ �Do

sin kðl � aÞ þ sin ka

sin kl

RB ¼ 0 yB ¼ 0 yB ¼ 0 MB ¼ �DoP
sin ka

sin kl

Max þ M ¼ MA; max possible value ¼ DoP when a ¼ 0

Max � M ¼ MB; max possible value ¼ �DoP when a ¼ l

Max y ¼ yA; max possible value ¼
�Do

cosðkl=2Þ
when a ¼

l

2

5c. Left end simply supported,

right end fixed

MA ¼ 0 yA ¼ 0

RA ¼ DoPk
cos ka

sin kl � kl cos kl

yA ¼ �Dok
C3Ca1 þ C4Ca2

C2C3 � C1C4

RB ¼ �RA yB ¼ 0 yB ¼ 0 MB ¼ RAl

5d. Left end fixed, right end

fixed

yA ¼ 0 yA ¼ 0

RA ¼ DoPk
C3Ca2 þ C2Ca1

C2
3 � C2C4

MA ¼ �DoP
C3Ca1 þ C4Ca2

C2
3 � C2C4

RB ¼ �RA yB ¼ 0 yB ¼ 0 MB ¼ MA þ RAl

5e. Left end simply supported,

right end simply supported

RA ¼ 0 MA ¼ 0 yA ¼ 0

yA ¼ �Dok
cos kðl � aÞ

sin kl

RB ¼ 0 MB ¼ 0 yB ¼ 0

yB ¼ �Dok
cos ka

sin kl

Max þ M ¼ DoP
sin ka

sin kl
cos kðl � aÞ at x just left of a; max possible value ¼ DoP when a ¼ l

Max � M ¼ �DoP
cos ka

sin kl
sin kðl � aÞ at x just right of a; max possible value ¼ �DoP when a ¼ 0

Max þ y ¼ Do

cos ka

sin kl
sin kðl � aÞ at x just right of a; max possible value ¼ Do when a ¼ 0

Max � y ¼ �Do

sin ka

sin kl
cos kðl � aÞ at x just left of a; max possible value ¼ �Do when a ¼ l
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TABLE 8.8 Shear, moment, slope, and deflection formulas for beams under simultaneous axial compression and transverse loading
(Continued)



TABLE 8.8 Shear, moment, slope, and deflection formulas for beams under simultaneous axial compression and transverse loading
(Continued)

End restraints,

reference no. Boundary values Selected maximum values of moments and deformations

5f. Left end guided, right end

simply supported

RA ¼ 0 yA ¼ 0

MA ¼ DoP
cos kðl � aÞ

cos kl

yA ¼ �Do

cos kðl � aÞ

cos kl

RB ¼ 0 MB ¼ 0 yB ¼ 0 yB ¼ Dok
sin ka

cos kl

Max M ¼ MA; max possible value ¼
DoP

cos kl
when a ¼ l

Max y ¼ yB; max possible value ¼ Dok tan kl when a ¼ l

Max y ¼ yA; max possible value ¼
�Do

cos kl
when a ¼ l

6. Axial compressive load plus a uniform

temperature variation from top to bottom

in the portion from a to l; t is the

thickness of the beam

Transverse shear ¼ V ¼ RAF1 � MAkF2 � yAPF1 �
gðT2 � T1ÞP

kt
Fa2

Bending moment ¼ M ¼ MAF1 þ
RA

k
F2 �

yAP

k
F2 �

gðT2 � T1ÞEI

t
Fa3

Slope ¼ y ¼ yAF1 þ
MAk

P
F2 þ

RA

P
F3 þ

gðT2 � T1Þ

kt
Fa2

Deflection ¼ y ¼ yA þ
yA

k
F2 þ

MA

P
F3 þ

RA

kP
F4 þ

gðT2 � T1Þ

k2t
Fa3

End restraints,

reference no. Boundary values Selected maximum values of moments and deformations

6a. Left end free, right end

fixed

RA ¼ 0 MA ¼ 0

yA ¼
�gðT2 � T1Þ

kt

sin kðl � aÞ

cos kl

yA ¼
gðT2 � T1Þ

k2t

cos ka

cos kl
� 1

� �

RB ¼ 0 yB ¼ 0 yB ¼ 0 MB ¼ PyA

Max M ¼ MB max possible value ¼
gðT2 � T1ÞEI

t

1

cos kl
� 1

� �
when a ¼ 0

Max y ¼ yA; max possible value ¼
�gðT2 � T1Þ

kt
tan kl when a ¼ 0

Max y ¼ yA; max possible value ¼
gðT2 � T1Þ

k2t

1

cos kl
� 1

� �
when a ¼ 0

6b. Left end guided, right end

fixed

RA ¼ 0 yA ¼ 0

MA ¼
�gðT2 � T1ÞEI

t

sin kðl � aÞ

sin kl

yA ¼
gðT2 � T1Þ

k2t

C3Ca2 � C2Ca3

C2

RB ¼ 0 yB ¼ 0 yB ¼ 0

MB ¼
gðT2 � T1ÞEI

t

sin ka

sin kl
� 1

� �

Max � M ¼ MA; max possible value ¼
�gðT2 � T1ÞEI

t
when a ¼ l

ðNote: There is no positive moment in the beamÞ

Max y ¼
�gðT2 � T1Þ

kt

sin ka

sin kl
sin kðl � aÞ at x ¼ a;

max possible value ¼
�gðT2 � T1Þ

2kt
tan

kl

2
when a ¼

l

2

Max y ¼ yA; max possible value ¼
gðT2 � T1Þ

k2t

1

cosðkl=2Þ
� 1

� 	
when a ¼

l

2
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6c. Left end simply supported,

right end fixed

MA ¼ 0 yA ¼ 0

RA ¼
�gðT2 � T1ÞP

kt

cos ka � cos kl

sin kl � kl cos kl

yA ¼
�gðT2 � T1Þ

kt

C3Ca3 � C4Ca2

C2C3 � C1C4

RB ¼ �RA yB ¼ 0 yB ¼ 0 MB ¼ RAl

If a ¼ 0 (temperature variation over entire span), then

Max � M ¼ MB ¼
�gðT2 � T1ÞPl

kt

1 � cos kl

sin kl � kl cos kl

Max y ¼ yA ¼
�gðT2 � T1Þ

kt

2 � 2 cos kl � kl sin kl

sin kl � kl cos kl

6d. Left end fixed, right end

fixed

yA ¼ 0 yA ¼ 0

RA ¼
�gðT2 � T1ÞP

kt

C3Ca2 � C2Ca3

C2
3 � C2C4

MA ¼
�gðT2 � T1ÞEI

t

C3Ca3 � C4Ca2

C2
3 � C2C4

RB ¼ �RA yB ¼ 0 yB ¼ 0 MB ¼ MA þ RAl

If a ¼ 0 (temperature variation over entire span), then

RA ¼ RB ¼ 0

M ¼
�gðT2 � T1ÞEI

t
everywhere in the span

y ¼ 0 and y ¼ 0 everywhere in the span

6e. Left end simply supported,

right end simply supported

RA ¼ 0 MA ¼ 0 yA ¼ 0

yA ¼
�gðT2 � T1Þ

kt

1 � cos kðl � aÞ

sin kl

RB ¼ 0 MB ¼ 0 yB ¼ 0

yB ¼
gðT2 � T1Þ

kt

cos ka � cos kl

sin kl

Max y occurs at x ¼
1

k
tan�1 1 � cos kl cos ka

sin kl
;

max possible value ¼
�gðT2 � T1Þ

k2t

1

cosðkl=2Þ
� 1

� 	
at x ¼

l

2
when a ¼ 0

Max M ¼ Pðmax yÞ

Max y ¼ yB; max possible value ¼
gðT2 � T1Þ

kt
tan

kl

2
when a ¼ 0

6f. Left end guided, right end

simply supported

RA ¼ 0 yA ¼ 0

MA ¼
gðT2 � T1ÞEI

t

1 � cos kðl � aÞ

cos kl

yA ¼
�gðT2 � T1Þ

k2t

1 � cos kðl � aÞ

cos kl

RB ¼ 0 MB ¼ 0 yB ¼ 0

yB ¼
gðT2 � T1Þ

kt

sin kl � sin ka

cos kl

Max M ¼ MA; max possible value ¼
gðT2 � T1ÞEI

t

1

cos kl
� 1

� �
when a ¼ 0

Max y ¼ yA; max possible value ¼
�gðT2 � T1Þ

k2t

1

cos kl
� 1

� �
when a ¼ 0

Max y ¼ yB; max possible value ¼
gðT2 � T1Þ

kt
tan kl when a ¼ 0
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TABLE 8.8 Shear, moment, slope, and deflection formulas for beams under simultaneous axial compression and transverse loading
(Continued)



TABLE 8.9 Shear, moment, slope, and deflection formulas for beams under simultaneous axial tension and transverse loading
NOTATION: P ¼ axial tensile load (force); all other notation is the same as that for Table 8.1; see Table 8.8 for loading details.

The following constants and functions are hereby defined in order to permit condensing the tabulated formulas which follow. k ¼ ðP=EIÞ1=2. (Note: See page 131 for a definition of hx � ain.) The

function sinh khx � ai is also defined as having a value of zero if x < a

F1 ¼ cosh kx

F2 ¼ sinh kx

F3 ¼ cosh kx � 1

F4 ¼ sinh hx � kx

Fa1 ¼hx � ai0 cosh kðx � aÞ

Fa2 ¼ sinh khx � ai

Fa3 ¼hx � ai0 ½cosh kðx � aÞ � 1�

Fa4 ¼ sinh khx � ai� khx � ai

Fa5 ¼ Fa3 �
k2

2
hx � ai2

Fa6 ¼ Fa4 �
k3

6
hx � ai3

C1 ¼ cosh kl

C2 ¼ sinh kl

C3 ¼ cosh kl � 1

C4 ¼ sinh kl � kl

Ca1 ¼ cosh kðl � aÞ

Ca2 ¼ sinh kðl � aÞ

Ca3 ¼ cosh kðl � aÞ � 1

Ca4 ¼ sinh kðl � aÞ � kðl � aÞ

Ca5 ¼ Ca3 �
k2

2
ðl � aÞ2

Ca6 ¼ Ca4 �
k3

6
ðl � aÞ3

(Note: Load terms LTV , LTM , LTy , and LTy are found at

the end of the table for each of the several loadings.)

Axial tensile load plus lateral loading Transverse shear ¼ V ¼ RAF1 þ MAkF2 þ yAPF1 þ LTV

Bending moment ¼ M ¼ MAF1 þ
RA

k
F2 þ

yAP

k
F2 þ LTM

Slope ¼ y ¼ yAF1 þ
MAk

P
F2 þ

RA

P
F3 þ LTy

Deflection ¼ y ¼ yA þ
yA

k
F2 þ

MA

P
F3 þ

RA

Pk
F4 þ LTy

(Note: For each set of end restraints the two initial parameters not

listed are zero. For example, with the left end free and the right end

fixed, the values of RA and MA are zero.)

Lateral

load

End

restraints

Case 1, Concentrated

lateral load

Case 2, Distributed

lateral load

Case 3, Concentrated

moment

Case 4, Concentrated

angular displacement

Case 5, Concentrated

lateral displacement

Case 6, Uniform

temperature variation

yA W

P

Ca3

C1

wa

kP

Ca4

C1

þ
ðwl � waÞCa5

k2Pðl � aÞC1

�Mok

P

Ca2

C1

�yo

Ca1

C1

�Dok
Ca2

C1

�gðT2 � T1Þ

kt

Ca2

C1

yA �W

kP

C2Ca3

C1

� Ca4

� �
�wa

k2P

C2Ca4

C1

� Ca5

� �

þ
�ðwl � waÞ

k3Pðl � aÞ

C2Ca5

C1

� Ca6

� �
Mo

P

C2Ca2

C1

� Ca3

� �
yo

k

C2Ca1

C1

� Ca2

� �
Do

C2Ca2

C1

� Ca1

� �
gðT2 � T1Þ

k2t

C2Ca2

C1

� Ca3

� �
Left end

free, right

end fixed

(a)

2
4
2
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u
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s
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r
S
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s
s
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n
d
S
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H
A
P
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MA W

k

Ca3

C2

wa

k2

Ca4

C2

þ
wl � wa

k3ðl � aÞ

Ca5

C2

�Mo

Ca2

C2

�yoP

k

Ca1

C2

�DoP
Ca2

C2

�gðT2 � T1ÞP

k2t

Ca2

C2

yA �W

kP

C3Ca3

C2

� Ca4

� �
�wa

k2P

C3Ca4

C2

� Ca5

� �

þ
�ðwl � waÞ

k3Pðl � aÞ

C3Ca5

C2

� Ca6

� �
Mo

P

C3Ca2

C2

� Ca3

� �
yo

k

C3Ca1

C2

� Ca2

� �
Do

C3Ca2

C2

� Ca1

� �
gðT2 � T1Þ

k2t

C3Ca2

C2

� Ca3

� �

RA W
C2Ca3 � C1Ca4

C2C3 � C1C4

wa

k

C2Ca4 � C1Ca5

C2C3 � C1C4

þ
wl � wa

k2ðl � aÞ

C2Ca5 � C1Ca6

C2C3 � C1C4

�Mok
C2Ca2 � C1Ca3

C2C3 � C1C4

�yoP
C2Ca1 � C1Ca2

C2C3 � C1C4

DokP
C1Ca1 � C2Ca2

C2C3 � C1C4

�gðT2 � T1ÞP

kt

C2Ca2 � C1Ca3

C2C3 � C1C4

yA �W

P

C4Ca3 � C3Ca4

C2C3 � C1C4

�wa

kP

C4Ca4 � C3Ca5

C2C3 � C1C4

þ
�ðwl � waÞ

k2Pðl � aÞ

C4Ca5 � C3Ca6

C2C3 � C1C4

�Mok

P

C3Ca3 � C4Ca2

C2C3 � C1C4

�yo

C3Ca2 � C4Ca1

C2C3 � C1C4

Dok
C4Ca2 � C3Ca1

C2C3 � C1C4

�gðT2 � T1Þ

kt

C3Ca3 � C4Ca2

C2C3 � C1C4

RA W
C3Ca3 � C2Ca4

C2
3 � C2C4

wa

k

C3Ca4 � C2Ca5

C2
3 � C2C4

þ
wl � wa

k2ðl � aÞ

C3Ca5 � C2Ca6

C2
3 � C2C4

�Mok
C3Ca2 � C2Ca3

C2
3 � C2C4

�yoP
C3Ca1 � C2Ca2

C2
3 � C2C4

DoPk
C2Ca1 � C3Ca2

C2
3 � C2C4

�gðT2 � T1ÞP

kt

C3Ca2 � C2Ca3

C2
3 � C2C4

MA �W

k

C4Ca3 � C3Ca4

C2
3 � C2C4

�wa

k2

C4Ca4 � C3Ca5

C2
3 � C2C4

þ
�ðwl � waÞ

k3ðl � aÞ

C4Ca5 � C3Ca6

C2
3 � C2C4

�Mo

C3Ca3 � C4Ca2

C2
3 � C2C4

�yoP

k

C3Ca2 � C4Ca1

C2
3 � C2C4

DoP
C4Ca2 � C3Ca1

C2
3 � C2C4

�gðT2 � T1ÞP

k2t

C3Ca3 � C4Ca2

C2
3 � C2C4

RA
W

l
ðl � aÞ

wa

2l
ðl � aÞ2 þ

wl � wa

6l
ðl � aÞ2 �Mo

l
0 0 0

yA �W

Pkl

C4Ca2

C2

� Ca4

� �
�wa

Pk

kðl � aÞ2

2l
�

Ca3

C2

" #

þ
�ðwl � waÞ

Pk2ðl � aÞ

k2ðl � aÞ3

6l
�

Ca4

C2

" #
Mok

P

1

kl
�

Ca1

C2

� �
�yo

Ca2

C2

�Dok
Ca1

C2

�gðT2 � T1Þ

kt

Ca3

C2

Left end

guided,

right end

fixed (b)

Left end

simply

supported,

right end

fixed (c)

Left end

fixed, right

end fixed

(d)

Left end

simply

supported,

right end

simply

supported

(e)

S
E
C
.
8
.1
7
]

B
e
a
m
s
;
F
le
x
u
re

o
f
S
tra

ig
h
t
B
a
rs

2
4
3
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TABLE 8.9 Shear, moment, slope, and deflection formulas for beams under simultaneous axial tension and transverse loading (Continued)

Lateral

load

End

restraints

Case 1, Concentrated

lateral load

Case 2, Distributed

lateral load

Case 3, Concentrated

moment

Case 4, Concentrated

angular displacement

Case 5, Concentrated

lateral displacement

Case 6, Uniform

temperature variation

MA W

k

Ca2

C1

wa

k2

Ca3

C1

þ
wl � wa

k3ðl � aÞ

Ca4

C1

�Mo

Ca1

C1

�yoP

k

Ca2

C1

�DoP
Ca1

C1

�gðT2 � T1ÞP

k2t

Ca3

C1

yA �W

Pk

C3Ca2

C1

� Ca4

� �
�wa

k2P

k2ðl � aÞ2

2
�

Ca3

C1

" #

þ
�ðwl � waÞ

k3Pðl � aÞ

k3ðl � aÞ3

6
�

Ca4

C1

" #
mo

P
1 �

Ca1

C1

� �
�yo

k

Ca2

C1

�Do

Ca1

C1

�gðT2 � T1Þ

k2t

Ca3

C1

LTV �WFa1
�wa

k
Fa2 �

wl � wa

k2ðl � aÞ
Fa3

MokFa2 yoPFa1 DPkFa2 gðT2 � T1ÞP

kt
Fa2

LTM �W

k
Fa2

�wa

k2
Fa3 �

wl � wa

k3ðl � aÞ
Fa4

MoFa1 yoP

k
Fa2

DoPFa1 gðT2 � T1ÞP

k2t
Fa3

LTy �W

P
Fa3

�wa

Pk
Fa4 �

ðwl � waÞ

Pk2ðl � aÞ
Fa5

Mok

P
Fa2

yoFa1 DokFa2 gðT2 � T1Þ

kt
Fa2

LTy �W

Pk
Fa4

�wa

Pk2
Fa5 �

wl � wa

Pk3ðl � aÞ
Fa6

Mo

P
Fa3

yo

k
Fa2

DoFa1 gðT2 � T1Þ

k2t
Fa3

Left end

guided,

right end

simply

supported

(f)

Load terms

for all end

restraints

(a)–(f)

2
4
4
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o
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s
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r
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TABLE 8.10 Beams restrained against horizontal displacement at the ends

Case no., manner of

loading and support Formulas to solve for ymax and P

1. Ends pinned to rigid

supports, concentrated

center load W

ymax þ
A

4I
y3

max ¼
2Wl3

p4EI
ðSolve for ymaxÞ

P ¼
p2EA

4l2
y2

max

Use case 1e from Table 8.7(b) or Table 8.9 to determine maximum slopes and

moments after solving for P

2. Ends fixed to rigid

supports, concentrated

center load W

ymax þ
A

16I
y3

max ¼
Wl3

2p4EI
ðSolve for ymaxÞ

P ¼
p2EA

4l2
y2

max

Use case 1d from Table 8.7(d) or Table 8.9 to determine maximum slopes and

moments after solving for P

3. Ends pinned to rigid

supports, uniformly

distributed transverse

load w on entire span

ymax þ
A

4I
y3

max ¼
5wl4

4p4EI
ðSolve for ymaxÞ

P ¼
p2EA

4l2
y2

max

Use case 2e from Table 8.7(b) or Table 8.9 to determine maximum slopes and

moments after solving for P

4. Ends fixed to rigid

supports, uniformly

distributed transverse

load w on entire span

ymax þ
A

16I
y3

max ¼
wl4

4p4EI
ðSolve for ymaxÞ

P ¼
p2EA

4l2
y2

max

Use case 2d from Table 8.7(d) or Table 8.9 to determine maximum slopes and

moments after solving for P

5. Same as case 1, except

beam is perfectly flexible

like a cable or chain and

has an unstretched

length l

tan y� sin y ¼
W

2EA
or if y < 12�; y ¼

W

EA

� �1=3

P ¼
W

2 tan y

6. Same as case 3, except

beam is perfectly flexible

like a cable or chain and

has an unstretched

length l

ymax ¼ l
3wl

64EA

� �1=3

P ¼
wl2

8ymax
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TABLE 8.11(a) Reaction and deflection coefficients for tapered beams
Moments of inertia vary as ð1 þ Kx=lÞn, where n ¼ 1:0

IB=IA

Case no. in Load Multiplier

Table 8.1 location a=l listed for 0.25 0.50 2.0 4.0 8.0

yA 2.525 1.636 0.579 0.321 0.171
0 yA 2.262 1.545 0.614 0.359 0.201

yA 2.663 1.682 0.563 0.303 0.159
0.25 yA 2.498 1.631 0.578 0.317 0.168

1a
yA 2.898 1.755 0.543 0.284 0.146

0.50 yA 2.811 1.731 0.548 0.289 0.149

yA 3.289 1.858 0.521 0.266 0.135
0.75 yA 3.261 1.851 0.522 0.267 0.135

RA 1.055 1.028 0.972 0.946 0.926
0.25 yA 1.492 1.256 0.744 0.514 0.330

RA 1.148 1.073 0.936 0.887 0.852
1c

0.50 yA 1.740 1.365 0.682 0.435 0.261

RA 1.046 1.026 0.968 0.932 0.895
0.25

MA 1.137 1.077 0.905 0.797 0.686

RA 1.163 1.085 0.915 0.837 0.771
1d

0.50
MA 1.326 1.171 0.829 0.674 0.542

yA 1.396 1.220 0.760 0.531 0.342
0.25

yl=2 1.563 1.301 0.703 0.452 0.268

yA 1.524 1.282 0.718 0.476 0.293
1e

0.50
yl=2 1.665 1.349 0.674 0.416 0.239

2a. Uniform yA 2.711 1.695 0.561 0.302 0.158

load
0 yA 2.525 1.636 0.579 0.321 0.171

yA 2.864 1.742 0.547 0.289 0.149
0.25 yA 2.745 1.708 0.556 0.296 0.154

yA 3.091 1.806 0.532 0.275 0.140
0.50 yA 3.029 1.790 0.535 0.278 0.142

yA 3.435 1.890 0.516 0.262 0.132
0.75 yA 3.415 1.886 0.516 0.263 0.133

2c. Uniform RA 1.074 1.036 0.968 0.941 0.922

load
0 yA 1.663 1.326 0.710 0.473 0.296

RA 1.224 1.104 0.917 0.858 0.818
0.50 yA 1.942 1.438 0.653 0.403 0.237
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TABLE 8.11(a) Reaction and deflection coefficients for tapered beams (Continued)

IB=IA

Case no. in Load Multiplier

Table 8.1 location a=l listed for 0.25 0.50 2.0 4.0 8.0

2d. Uniform RA 1.089 1.046 0.954 0.911 0.872

load
0

MA 1.267 1.137 0.863 0.733 0.615

RA 1.267 1.130 0.886 0.791 0.717
0.50

MA 1.481 1.234 0.794 0.625 0.491

2e. Uniform yA 1.508 1.271 0.729 0.492 0.309

load
0

yl=2 1.678 1.352 0.676 0.420 0.243

yA 1.616 1.320 0.700 0.454 0.275
0.50

yl=2 1.765 1.389 0.658 0.398 0.225

2a. Uniformly yA 2.851 1.737 0.549 0.291 0.150

increasing
0 yA 2.711 1.695 0.561 0.302 0.158

load

yA 3.005 1.781 0.538 0.280 0.143
0.25 yA 2.915 1.757 0.543 0.285 0.147

yA 3.220 1.839 0.525 0.270 0.137
0.50 yA 3.172 1.827 0.527 0.272 0.138

yA 3.526 1.910 0.513 0.260 0.131
0.75 yA 3.511 1.907 0.513 0.260 0.131

2c. Uniformly RA 1.129 1.062 0.948 0.907 0.878

increasing
0 yA 1.775 1.372 0.686 0.442 0.269

load

RA 1.275 1.124 0.907 0.842 0.799
0.50 yA 2.063 1.479 0.639 0.388 0.225

2d. Uniformly RA 1.157 1.079 0.926 0.860 0.804

increasing
0

MA 1.353 1.177 0.833 0.685 0.559

load

RA 1.334 1.157 0.870 0.767 0.690
0.50

MA 1.573 1.269 0.777 0.601 0.468

2e. Uniformly yA 1.561 1.295 0.714 0.472 0.291

increasing
0

yl=2 1.722 1.370 0.667 0.409 0.234

load

yA 1.654 1.335 0.693 0.447 0.269
0.50

yl=2 1.806 1.404 0.651 0.392 0.221

yA 2.262 1.545 0.614 0.359 0.201
0 yA 1.848 1.386 0.693 0.462 0.297

yA 2.337 1.575 0.597 0.337 0.182
0.25 yA 2.095 1.492 0.627 0.367 0.203

yA 2.566 1.658 0.566 0.305 0.159
3a

0.50 yA 2.443 1.622 0.575 0.313 0.164

yA 3.024 1.795 0.532 0.275 0.140
0.75 yA 2.985 1.785 0.534 0.277 0.141
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TABLE 8.11(a) Reaction and deflection coefficients for tapered beams (Continued)

IB=IA

Case no. in Load Multiplier

Table 8.1 location a=l listed for 0.25 0.50 2.0 4.0 8.0

RA 0.896 0.945 1.059 1.118 1.173
0 yA 1.312 1.166 0.823 0.645 0.482

RA 1.016 1.014 0.977 0.952 0.929
3c

0.50 yA 1.148 1.125 0.794 0.565 0.365

RA 0.796 0.890 1.116 1.220 1.298
0.25

MA 1.614 1.331 0.653 0.340 0.106

RA 0.958 0.988 0.988 0.958 0.919
3d

0.50
MA 0.875 0.965 0.965 0.875 0.758

yA 1.283 1.159 0.818 0.631 0.460
0

yl=2 1.524 1.282 0.718 0.476 0.293

yA 1.628 1.338 0.666 0.393 0.208
3e

0.25
yl=2 1.651 1.345 0.671 0.408 0.229
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TABLE 8.11(b) Reaction and deflection coefficients for tapered beams
Moments of inertia vary as ð1 þ Kx=lÞn, where n ¼ 2:0

IB=IA

Case no. in Load Multiplier

Table 8.1 location a=l listed for 0.25 0.50 2.0 4.0 8.0

yA 2.729 1.667 0.589 0.341 0.194
0 yA 2.455 1.577 0.626 0.386 0.235

yA 2.872 1.713 0.572 0.320 0.176
0.25 yA 2.708 1.663 0.588 0.338 0.190

yA 3.105 1.783 0.549 0.296 0.157
1a

0.50 yA 3.025 1.761 0.555 0.301 0.161

yA 3.460 1.877 0.525 0.272 0.140
0.75 yA 3.437 1.872 0.526 0.273 0.140

RA 1.052 1.028 0.970 0.938 0.905
0.25 yA 1.588 1.278 0.759 0.559 0.398

RA 1.138 1.070 0.932 0.867 0.807
1c

0.50 yA 1.867 1.390 0.695 0.468 0.306

RA 1.049 1.027 0.969 0.934 0.895
0.25

MA 1.155 1.082 0.909 0.813 0.713

RA 1.169 1.086 0.914 0.831 0.753
1d

0.50
MA 1.358 1.177 0.833 0.681 0.548

yA 1.509 1.246 0.778 0.586 0.428
0.25

yl=2 1.716 1.334 0.721 0.501 0.334

yA 1.668 1.313 0.737 0.525 0.363
1e

0.50
yl=2 1.840 1.385 0.692 0.460 0.294

2a. Uniform yA 2.916 1.724 0.569 0.318 0.174
0 yA 2.729 1.667 0.589 0.341 0.194load

yA 3.067 1.770 0.554 0.301 0.161
0.25 yA 2.954 1.737 0.563 0.311 0.169

yA 3.282 1.830 0.537 0.283 0.148
0.50 yA 3.226 1.816 0.540 0.287 0.150

yA 3.580 1.906 0.518 0.266 0.136
0.75 yA 3.564 1.902 0.519 0.267 0.136

2c. Uniform RA 1.068 1.035 0.965 0.932 0.899

load
0 yA 1.774 1.349 0.723 0.510 0.351

RA 1.203 1.098 0.910 0.831 0.761
0.50 yA 2.076 1.463 0.664 0.430 0.271
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TABLE 8.11(b) Reaction and deflection coefficients for tapered beams (Continued)

IB=IA

Case no. in Load Multiplier

Table 8.1 location a=l listed for 0.25 0.50 2.0 4.0 8.0

2d. Uniform RA 1.091 1.046 0.954 0.909 0.865

load
0

MA 1.290 1.142 0.866 0.741 0.628

RA 1.267 1.129 0.833 0.779 0.689
0.50

MA 1.509 1.239 0.795 0.625 0.486

2e. Uniform yA 1.645 1.301 0.747 0.542 0.382

load
0

yl=2 1.853 1.387 0.694 0.463 0.298

yA 1.774 1.352 0.718 0.500 0.339
0.50

yl=2 1.955 1.426 0.675 0.438 0.274

2a. Uniformly yA 3.052 1.765 0.556 0.304 0.163

increasing
0 yA 2.916 1.724 0.569 0.318 0.174

load

yA 3.199 1.807 0.543 0.290 0.153
0.25 yA 3.116 1.784 0.550 0.297 0.158

yA 3.395 1.860 0.529 0.276 0.143
0.50 yA 3.354 1.849 0.532 0.279 0.144

yA 3.653 1.923 0.515 0.263 0.134
0.75 yA 3.641 1.921 0.515 0.263 0.134

2c. Uniformly RA 1.119 1.059 0.944 0.890 0.841

increasing
0 yA 1.896 1.396 0.698 0.475 0.315

load

RA 1.244 1.116 0.898 0.810 0.736
0.50 yA 2.196 1.503 0.649 0.411 0.255

2d. Uniformly RA 1.159 1.079 0.925 0.854 0.789

increasing
0

MA 1.379 1.182 0.836 0.691 0.565

load

RA 1.328 1.154 0.866 0.752 0.656
0.50

MA 1.596 1.272 0.777 0.598 0.457

2e. Uniformly yA 1.708 1.326 0.732 0.521 0.360

increasing
0

yl=2 1.904 1.407 0.684 0.451 0.286

load

yA 1.817 1.368 0.711 0.491 0.331
0.50

yl=2 2.001 1.442 0.668 0.430 0.268

yA 2.455 1.577 0.626 0.386 0.235
0 yA 2.000 1.414 0.707 0.500 0.354

yA 2.539 1.608 0.609 0.363 0.211
0.25 yA 2.286 1.526 0.641 0.400 0.243

yA 2.786 1.691 0.575 0.323 0.177
3a

0.50 yA 2.667 1.657 0.586 0.333 0.185

yA 3.234 1.821 0.538 0.284 0.148
0.75 yA 3.200 1.812 0.540 0.286 0.149
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TABLE 8.11(b) Reaction and deflection coefficients for tapered beams (Continued)

IB=IA

Case no. in Load Multiplier

Table 8.1 location a=l listed for 0.25 0.50 2.0 4.0 8.0

RA 0.900 0.946 1.062 1.132 1.212
0 yA 1.375 1.181 0.835 0.688 0.558

RA 1.021 1.015 0.977 0.946 0.911
3c

0.50 yA 1.223 1.148 0.814 0.622 0.451

RA 0.785 0.888 1.117 1.230 1.333
0.25

MA 1.682 1.347 0.660 0.348 0.083

RA 0.966 0.991 0.991 0.966 0.928
3d

0.50
MA 0.890 0.972 0.974 0.905 0.807

yA 1.364 1.179 0.833 0.682 0.549
0

yl=2 1.668 1.313 0.737 0.525 0.363

yA 1.801 1.376 0.686 0.441 0.263
3e

0.25
yl=2 1.826 1.382 0.690 0.454 0.284
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TABLE 8.11(c) Reaction and deflection coefficients for tapered beams
Moments of inertia vary as ð1 þ Kx=lÞn, where n ¼ 3:0

IB=IA

Case no. in Load Multiplier

Table 8.1 location a=l listed for 0.25 0.50 2.0 4.0 8.0

yA 2.796 1.677 0.593 0.349 0.204
0 yA 2.520 1.587 0.630 0.397 0.250

yA 2.939 1.722 0.575 0.327 0.184
0.25 yA 2.777 1.674 0.592 0.346 0.200

1a
yA 3.169 1.791 0.551 0.300 0.162

0.50 yA 3.092 1.770 0.558 0.307 0.167

yA 3.509 1.883 0.526 0.274 0.142
0.75 yA 3.488 1.878 0.527 0.275 0.143

RA 1.051 1.027 0.969 0.936 0.899
0.25 yA 1.626 1.286 0.764 0.573 0.422

RA 1.134 1.068 0.930 0.860 0.791
1c

0.50 yA 1.916 1.399 0.700 0.480 0.322

RA 1.050 1.027 0.969 0.934 0.895
0.25

MA 1.161 1.084 0.911 0.818 0.724

RA 1.171 1.086 0.914 0.829 0.748
1d

0.50
MA 1.378 1.179 0.834 0.684 0.553

yA 1.554 1.256 0.784 0.605 0.460
0.25

yl=2 1.774 1.346 0.728 0.519 0.362

yA 1.723 1.324 0.743 0.543 0.391
1e

0.50
yl=2 1.907 1.397 0.699 0.477 0.318

2a. Uniform yA 2.981 1.734 0.572 0.324 0.182

load
0 yA 2.796 1.677 0.593 0.349 0.204

yA 3.130 1.779 0.556 0.306 0.167
0.25 yA 3.020 1.747 0.566 0.317 0.176

yA 3.338 1.837 0.538 0.287 0.151
0.50 yA 3.285 1.823 0.542 0.291 0.154

yA 3.620 1.911 0.519 0.268 0.137
0.75 yA 3.606 1.097 0.520 0.269 0.138

2c. Uniform RA 1.066 1.034 0.965 0.928 0.891

load
0 yA 1.817 1.357 0.727 0.522 0.370

RA 1.194 1.096 0.908 0.821 0.741
0.50 yA 2.125 1.471 0.668 0.439 0.284
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TABLE 8.11(c) Reaction and deflection coefficients for tapered beams (Continued )

IB=IA

Case no. in Load Multiplier

Table 8.1 location a=l listed for 0.25 0.50 2.0 4.0 8.0

2d. Uniform RA 1.092 1.046 0.954 0.908 0.863

load
0

MA 1.297 1.144 0.867 0.745 0.635

RA 1.266 1.128 0.882 0.776 0.680
0.50

MA 1.517 1.240 0.796 0.626 0.487

2e. Uniform yA 1.697 1.311 0.753 0.560 0.411

load
0

yl=2 1.919 1.400 0.700 0.480 0.322

yA 1.833 1.363 0.724 0.517 0.365
0.50

yl=2 2.025 1.438 0.680 0.453 0.296

2a. Uniformly yA 3.115 1.773 0.559 0.309 0.169

increasing
0 yA 2.981 1.734 0.572 0.324 0.182

load

yA 3.258 1.815 0.545 0.294 0.157
0.25 yA 3.178 1.792 0.552 0.301 0.163

yA 3.446 1.866 0.531 0.279 0.146
0.50 yA 3.407 1.856 0.533 0.282 0.148

yA 3.687 1.927 0.516 0.264 0.135
0.75 yA 3.676 1.925 0.516 0.265 0.135

2c. Uniformly RA 1.114 1.058 0.942 0.885 0.829

increasing
0 yA 1.942 1.404 0.702 0.486 0.332

load

RA 1.233 1.113 0.895 0.800 0.713
0.50 yA 2.244 1.511 0.652 0.419 0.266

2d. Uniformly RA 1.159 1.078 0.925 0.853 0.785

increasing
0

MA 1.386 1.183 0.837 0.694 0.596

load

RA 1.325 1.153 0.865 0.747 0.645
0.50

MA 1.602 1.273 0.777 0.598 0.456

2e. Uniformly yA 1.764 1.337 0.738 0.538 0.387

increasing
0

yl=2 1.972 1.419 0.690 0.466 0.309

load

yA 1.878 1.379 0.717 0.508 0.356
0.50

yl=2 2.072 1.454 0.674 0.445 0.288

yA 2.520 1.587 0.630 0.397 0.250
0 yA 2.054 1.424 0.712 0.513 0.375

yA 2.607 1.619 0.613 0.373 0.224
0.25 yA 2.352 1.537 0.646 0.412 0.260

3a

yA 2.858 1.702 0.579 0.330 0.185
0.50 yA 2.741 1.668 0.590 0.342 0.194

yA 3.296 1.829 0.539 0.288 0.152
0.75 yA 3.264 1.821 0.542 0.290 0.153
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TABLE 8.11(c) Reaction and deflection coefficients for tapered beams (Continued )

IB=IA

Case no. in Load Multiplier

Table 8.1 location a=l listed for 0.25 0.50 2.0 4.0 8.0

RA 0.901 0.947 1.063 1.136 1.223
0 yA 1.401 1.186 0.839 0.701 0.583

3c

RA 1.022 1.015 0.977 0.945 0.906
0.50 yA 1.257 1.157 0.820 0.642 0.483

RA 0.781 0.887 1.117 1.233 1.343
0.25

MA 1.705 1.352 0.663 0.355 0.088

3d

RA 0.969 0.992 0.992 0.969 0.932
0.50

MA 0.897 0.975 0.977 0.916 0.828

yA 1.397 1.186 0.838 0.699 0.579
0

yl=2 1.723 1.324 0.743 0.543 0.391

3e

yA 1.868 1.389 0.693 0.460 0.289
0.25

yl=2 1.892 1.394 0.697 0.471 0.308
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TABLE 8.11(d) Reaction and deflection coefficients for tapered beams
Moments of inertia vary as ð1 þ Kx=lÞn, where n ¼ 4:0

IB=IA

Case no. in Load Multiplier

Table 8.1 location a=l listed for 0.25 0.50 2.0 4.0 8.0

yA 2.828 1.682 0.595 0.354 0.210
0 yA 2.552 1.593 0.632 0.402 0.258

yA 2.971 1.727 0.576 0.330 0.188
0.25 yA 2.811 1.679 0.593 0.350 0.206

1a

yA 3.200 1.796 0.553 0.303 0.165
0.50 yA 3.124 1.774 0.559 0.310 0.170

yA 3.532 1.886 0.527 0.276 0.143
0.75 yA 3.511 1.881 0.528 0.277 0.144

RA 1.051 1.027 0.969 0.935 0.896
0.25 yA 1.646 1.290 0.767 0.581 0.434

1c

RA 1.131 1.068 0.929 0.857 0.784
0.50 yA 1.941 1.404 0.702 0.485 0.331

RA 1.051 1.027 0.969 0.935 0.896
0.25

MA 1.164 1.085 0.912 0.821 0.730

1d

RA 1.172 1.086 0.914 0.828 0.746
0.50

MA 1.373 1.180 0.835 0.686 0.556

yA 1.578 1.260 0.787 0.615 0.476
0.25

yl=2 1.805 1.351 0.731 0.528 0.376

1e

yA 1.752 1.329 0.746 0.552 0.406
0.50

yl=2 1.941 1.404 0.702 0.485 0.331

2a. Uniform yA 3.013 1.738 0.573 0.328 0.187

load
0 yA 2.828 1.682 0.595 0.354 0.210

yA 3.161 1.783 0.558 0.309 0.170
0.25 yA 3.052 1.751 0.568 0.320 0.180

yA 3.365 1.841 0.539 0.289 0.154
0.50 yA 3.314 1.827 0.543 0.293 0.157

yA 3.639 1.913 0.520 0.269 0.138
0.75 yA 3.625 1.910 0.521 0.270 0.139

2c. Uniform RA 1.065 1.034 0.964 0.927 0.888

load
0 yA 1.839 1.361 0.729 0.528 0.380

RA 1.190 1.095 0.907 0.817 0.731
0.50 yA 2.151 1.476 0.670 0.443 0.290
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TABLE 8.11(d) Reaction and deflection coefficients for tapered beams (Continued )

IB=IA

Case no. in Load Multiplier

Table 8.1 location a=l listed for 0.25 0.50 2.0 4.0 8.0

2d. Uniform RA 1.092 1.046 0.954 0.908 0.862

load
0

MA 1.301 1.145 0.867 0.747 0.639

RA 1.266 1.128 0.882 0.774 0.676
0.50

MA 1.521 1.241 0.796 0.627 0.488

2e. Uniform yA 1.724 1.316 0.756 0.569 0.426

load
0

yl=2 1.953 1.406 0.703 0.488 0.335

yA 1.864 1.396 0.727 0.526 0.379
0.50

yl=2 2.061 1.445 0.683 0.461 0.307

2a. Uniformly yA 3.145 1.778 0.560 0.312 0.173

increasing
0 yA 3.013 1.738 0.573 0.328 0.187

load

yA 3.287 1.819 0.546 0.297 0.160
0.25 yA 3.207 1.796 0.553 0.304 0.166

yA 3.470 1.869 0.532 0.281 0.147
0.50 yA 3.432 1.859 0.534 0.284 0.150

yA 3.703 1.929 0.516 0.265 0.136
0.75 yA 3.692 1.927 0.517 0.266 0.136

2c. Uniformly RA 1.112 1.057 0.942 0.882 0.823

increasing
0 yA 1.966 1.408 0.704 0.492 0.340

load

RA 1.227 1.111 0.894 0.794 0.701
0.50 yA 2.269 1.515 0.653 0.423 0.271

2d. Uniformly RA 1.159 1.078 0.924 0.852 0.783

increasing
0

MA 1.390 1.184 0.837 0.695 0.572

load

RA 1.323 1.153 0.864 0.744 0.639
0.50

MA 1.605 1.274 0.777 0.598 0.456

2e. Uniformly yA 1.793 1.343 0.741 0.547 0.402

increasing
0

yl=2 2.007 1.425 0.693 0.475 0.321

load

yA 1.909 1.385 0.719 0.516 0.369
0.50

yl=2 2.108 1.461 0.677 0.453 0.299

yA 2.552 1.593 0.632 0.402 0.258
0 yA 2.081 1.428 0.714 0.520 0.386

yA 2.641 1.624 0.615 0.378 0.231
0.25 yA 2.386 1.543 0.648 0.419 0.270

3a

yA 2.893 1.707 0.581 0.334 0.190
0.50 yA 2.778 1.674 0.592 0.346 0.200

yA 3.326 1.833 0.540 0.290 0.154
0.75 yA 3.295 1.825 0.543 0.292 0.155
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TABLE 8.11(d) Reaction and deflection coefficients for tapered beams (Continued )

IB=IA

Case no. in Load Multiplier

Table 8.1 location a=l listed for 0.25 0.50 2.0 4.0 8.0

RA 0.902 0.947 1.063 1.138 1.227
0 yA 1.414 1.189 0.841 0.707 0.595

3c

RA 1.023 1.015 0.976 0.944 0.904
0.50 yA 1.275 1.161 0.823 0.652 0.499

RA 0.780 0.887 1.117 1.234 1.347
0.25

MA 1.716 1.354 0.665 0.359 0.092

3d

RA 0.971 0.993 0.993 0.971 0.935
0.50

MA 0.902 0.976 0.979 0.922 0.839

yA 1.414 1.189 0.841 0.707 0.595
0

yl=2 1.752 1.329 0.746 0.552 0.406

3e

yA 1.903 1.396 0.697 0.470 0.304
0.25

yl=2 1.927 1.401 0.700 0.480 0.321

SEC. 8.17] Beams; Flexure of Straight Bars 257



TABLE 8.12 Position of flexural center Q for different sections

Form of section Position of Q

1. Any narrow section

symmetrical about

the x axis; centroid

at x ¼ 0, y ¼ 0

e ¼
1 þ 3n
1 þ n

Ð
xt3dxÐ
t3dx

For narrow triangle (with n ¼ 0:25), e ¼ 0:187a (Refs. 32 and 52)

2. Beam composed of n

elements of any form,

connected of separate,

with common neutral axis

(e.g., multiple-spar

airplane wing)

e ¼
E2I2x2 þ E3I3x3 þ � � � þ EnInxn

E1I1 þ E2I2 þ E3I3 þ � � � þ EnIn

where I1, I2, etc., are moments of inertia of the several elements about the X axis

(that is, Q is at the centroid of the products EI for the several elements)

3. Semicircular area e ¼
8

15p
3 þ 4n
1 þ n

R ðQ is to right of centroid) (Refs. 1 and 64)

For any sector of solid or hollow circular area, see Ref. 32

4. Angle Leg 1 ¼ rectangle w1h1; leg 2 ¼ rectangle w2h2

I1 ¼ moment of inertia of leg 1 about Y1 (central axis)

I2 ¼ moment of inertia of leg about Y2 (central axis)

ey ¼
h1

2

I1

I1 þ I2

ðfor ex use X1 and X2 central axesÞ ðRef: 31Þ

If w1 and w2 are small, ex ¼ ey ¼ 0 (practically) and Q is at 0

5. Channel
e ¼ h

Ixy

Ix

where Ixy ¼ product of inertia of the half section (above X) with respect to axes X

and Y , and Ix ¼ moment of inertia of whole section with respect to axis X

If t is uniform, e ¼ ðb2 � t2=4Þh2t=4Ix

6. T e ¼
1

2
ðt1 þ t2Þ

1

1 þ d3
1t1=d

3
2t2

For a T-beam of ordinary proportions, Q may be assumed to be at 0
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TABLE 8.12 Position of flexural center Q for different sections (Continued )

7. I with unequal flanges

and thin web
e ¼ b

I2

I1 þ I2

where I1 and I2, respectively, denote moments of inertia about X axis of flanges 1

and 2

8. Hollow thin-walled

triangular section

e

h
¼

1

2 tan yð1 þ t sin y=thÞ

9. Hollow thin-walled section

bounded by a circular arc

and a straight edge

Ix ¼ tR3 y� sin y cos yþ
2th

3t
sin

3 y
� �

e

R
¼

2thR3 sin yðcos yþ t=thÞ

Ixðsin yþ thy=tÞ
sin y� y cos yþ

thy
3t

sin
2 y

� �

If y ¼ p=2

Ix ¼
tR3

2
pþ

4th

3t

� �
e

R
¼

4ð6 þ pth=tÞ

ð2 þ pth=tÞð3pþ 4t
h
=tÞ

Note: Expressions are valid

for 0 < y < p

10. Hollow thin-walled

rectangular section
Ix ¼

h3

12
ðt2 þ t3Þ þ

t1bh2

2

e

b
¼

bh2

12Ix

9t1 þ
t3h

b
�

12ðb þ t1h=t3Þ

2b=t1 þ h=t3 þ h=t2

� 	

11. For thin-walled sections, such as lipped channels, hat sections, and sectors of circular tubes, see Table 9.2. The

position of the flexural centers and shear centers coincide.
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TABLE 8.13 Collapse loads with plastic hinge locations for straight beams
NOTATION: Mp ¼ fully plastic bending moment (force-length); xh ¼ position of a plastic

hinge (length); Wc ¼ concentrated load necessary to produce plastic collapse of the beam

(force); wc ¼ unit load necessary to produce plastic collapse of the beam (force per unit

length); Moc ¼ applied couple necessary to produce plastic collapse (force-length). The

fully plastic bending moment Mp is the product of the yield strength of the matieral sys

and the plastic section modulus Z found in Table A.1 for the given cross sections

Reference no., end restraints Collapse loads with plastic hinge locations

1a. Left end free, right end

fixed (cantilever)
Wc ¼

Mp

l � a

xh ¼ l

1b. Left end guided, right end

fixed
Wc ¼

2Mp

l � a

0 � xh1 � a xh2 ¼ l

1c. Left end simply supported,

right end fixed
Wc ¼

Mpðl þ aÞ

aðl � aÞ

xh1 ¼ a xh2 ¼ l

1d. Left end fixed, right end

fixed
Wc ¼

2Mpl

aðl � aÞ

xh1 ¼ 0 xh2 ¼ a xh3 ¼ l

1e. Left end simply supported,

right end simply supported
Wc ¼

Mpl

aðl � aÞ

xh ¼ a

1f. Left end guided, right end

simply supported
Wc ¼

Mp

l � a

0 < xh < a
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TABLE 8.13 Collapse loads with plastic hinge locations for straight beams
(Continued )

Reference no., end restraints Collapse loads with plastic hinge locations

2a. Left end free, right end

fixed (cantilever)

If wl ¼ wa (uniform load), then

wac ¼
2Mp

ðl � aÞ2
xh ¼ l

If wa ¼ 0 (uniformly increasing load), then

wlc ¼
6Mp

ðl � aÞ2
xh ¼ l

If wl ¼ 0 (uniformly decreasing load), then

wac ¼
3Mp

ðl � aÞ2
xh ¼ l

2b. Left end guided, right end

fixed

If wl ¼ wa (uniform load), then

wac ¼
4Mp

ðl � aÞ2
xh1 ¼ a xh2 ¼ l

If wa ¼ 0 (uniformly increasing load), then

wlc ¼
12Mp

ðl � aÞ2
xh1 ¼ a xh2 ¼ l

If wl ¼ 0 (uniformly decreasing load), then

wac ¼
6Mp

ðl � aÞ2
xh1 ¼ a xh2 ¼ l

2c. Left end simply supported,

right end fixed

If wl ¼ wa (uniform load), then

wac ¼
2Mpðl þ xh1Þ

ðl � xh1Þðlxh1
� a2Þ

where xh1 ¼ ½2ðl2 þ a2Þ�
‘1=2

� l xh2 ¼ l

If wa ¼ 0 (uniformly increasing load), then

wlc ¼
6K1Mp

ðl � aÞ2
xh1 ¼ K2l xh2 ¼ l

a=l 0 0:2 0:4 0:6 0:8
K1 4:000 3:324 2:838 2:481 2:211

K2 0:500 0:545 0:616 0:713 0:838

If wl ¼ 0 (uniformly decreasing load), then

wac ¼
6K3Mp

ðl � aÞ2
xh1 ¼ K4l xh2 ¼ l

a=l 0 0:2 0:4 0:6 0:8
K3 3:596 2:227 1:627 1:310 1:122

K4 0:347 0:387 0:490 0:634 0:808
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TABLE 8.13 Collapse loads with plastic hinge locations for straight beams
(Continued )

Reference no., end restraints Collapse loads with plastic hinge locations

2d. Left end fixed, right end

fixed

If wl ¼ wa (uniform load), then

wac ¼
16Mpl2

ðl2 � a2Þ
2

xh1 ¼ 0 xh2 ¼
l2 þ a2

2l
xh3 ¼ l

If wa ¼ 0 (uniformly increasing load), then

wlc ¼
12Mpðl � aÞ

ðl � xh2Þðx
2
h2 � 3axh2 þ lxh2 þ a3=lÞ

xh1 ¼ 0 xh2 ¼ a þ a2 � al þ
l2

3
�

a3

3l

� �1=2

xh3 ¼ l

If wl ¼ 0 (uniformly decreasing load), then

wac ¼
12Mpðl � aÞ

ðl � xh2Þð2lxh2 � 3a2 � x2
h2 þ 2a3=lÞ

xh1 ¼ 0 xh2 ¼ l �
l2

3
� a2 þ

2a3

3l

� �1=2

xh3 ¼ l

2e. Left end simply supported,

right end simply

supported

If wl ¼ wa (uniform load), then

wac ¼
8Mpl2

ðl2 � a2Þ
2

xh ¼
l2 þ a2

2l

If wa ¼ 0 (uniformly increasing load), then

wlc ¼
6Mpðl � aÞ

ðl � xhÞðx
2
h � 3axh þ lxh þ a3=lÞ

xh ¼ a þ a2 � al þ
l2

3
�

a3

3l

� �1=2

If wl ¼ 0 (uniformly decreasing load), then

wac ¼
6Mpðl � aÞ

ðl � xhÞð2lxh � 3a2 � x2
h þ 2a3=lÞ

xh ¼ l �
l2

3
� a2 þ

2a3

3l

� �1=2

2f. Left end guided, right end

simply supported

If wl ¼ wa (uniform load), then

wac ¼
2Mp

ðl � aÞ2
04 xh 4a

If wa ¼ 0 (uniformly increasing load), then

wlc ¼
6Mp

ðl � aÞ2
04 xh 4a

If wl ¼ 0 (uniformly decreasing load), then

wac ¼
3Mp

ðl � aÞ2
04 xh 4a
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TABLE 8.13 Collapse loads with plastic hinge locations for straight beams
(Continued )

Reference no., end restraints Collapse loads with plastic hinge locations

3a. Left end free, right end

fixed (cantilever)

Moc ¼ Mp

a < xh < l

3b. Left end guided, right end

fixed

Moc ¼ 2Mp

0 < xh1 < a a < xh2 < l

3c. Left end simply supported,

right end fixed

If l=34a4 l, then Moc ¼ 2Mp

and two plastic hinges form, one on each side of and adjacent to the loading Mo

If 04a4 l=3, then

Moc ¼
Mpðl þ aÞ

l � a

xh1 ¼ a just to the right of the loading Mo xh2 ¼ l

3d. Left end fixed, right end

fixed

Moc ¼ 2Mp and two plastic hinges form, one on each side of and adjacent to the

loading Mo

If 0 < a < l=2, then a third hinge forms at the right end

If l=2 < a < l, then the third hinge forms at the left end

If a ¼ l=2, two hinges form at any two locations on one side of the load and one at

any location on the other side

3e. Left end simply supported,

right end simply supported

If 04a < l=2, then

Moc ¼
Mpl

l � a

xh ¼ a just to the right of the loading Mo

If l=2 < a4 l, then

Moc ¼
Mpl

a

xh ¼ a just to the right of the loading Mo

If a ¼ l=2, then

Moc ¼ 2Mp

and two plastic hinges form, one on each side of and adjacent to the loading Mo

3f. Left end guided, right end

simply supported

z

Moc ¼ Mp

0 < xh < a
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Chapter

9
Curved Beams

9.1 Bending in the Plane of the Curve

In a straight beam having either a constant cross section or a cross

section which changes gradually along the length of the beam, the

neutral surface is defined as the longitudinal surface of zero fiber

stress when the member is subjected to pure bending. It contains the

neutral axis of every section, and these neutral axes pass through the

centroids of the respective sections. In this section on bending in the

plane of the curve, the use of the many formulas is restricted to those

members for which that axis passing through the centroid of a given

section and directed normal to the plane of bending of the member is a

principal axis. The one exception to this requirement is for a condition

equivalent to the beam being constrained to remain in its original

plane of curvature such as by frictionless external guides.

To determine the stresses and deformations in curved beams satis-

fying the restrictions given above, one first identifies several cross

sections and then locates the centroids of each. From these centroidal

locations the curved centroidal surface can be defined. For bending in

the plane of the curve there will be at each section (1) a force N normal

to the cross section and taken to act through the centroid, (2) a shear

force V parallel to the cross section in a radial direction, and (3) a

bending couple M in the plane of the curve. In addition there will be

radial stresses sr in the curved beam to establish equilibrium. These

internal loadings are shown in Fig. 9.1(a), and the stresses and

deformations due to each will be evaluated.

Circumferential normal stresses due to pure bending. When a curved

beam is bent in the plane of initial curvature, plane sections remain

plane, but because of the different lengths of fibers on the inner and

outer portions of the beam, the distribution of unit strain, and there-

fore stress, is not linear. The neutral axis does not pass through the



centroid of the section and Eqs. (8.1-1) and (8.1-2) do not apply. The

error involved in their use is slight as long as the radius of curvature is

more than about eight times the depth of the beam. At that curvature

the errors in the maximum stresses are in the range of 4 to 5%. The

errors created by using the straight-beam formulas become large for

sharp curvatures as shown in Table 9.1, which gives formulas and

selected numerical data for curved beams of several cross sections and

for varying degrees of curvature. In part the formulas and tabulated

coefficients are taken from the University of Illinois Circular by

Wilson and Quereau (Ref. 1) with modifications suggested by Neuge-

bauer (Ref. 28). For cross sections not included in Table 9.1 and for

determining circumferential stresses at locations other than the

extreme fibers, one can find formulas in texts on advanced mechanics

of materials, for example, Refs. 29 and 36.

The circumferential normal stress sy is given as

sy ¼
My

Aer
ð9:1-1Þ

where M is the applied bending moment, A is the area of the cross

section, e is the distance from the centroidal axis to the neutral axis,

and y and r locate the radial position of the desired stress from the

neutral axis and the center of the curvature, respectively. See Fig.

9.1(b).

e ¼ R � rn ¼ R �
Að

area

dA=r
for

R

d
< 8 ð9:1-2Þ

Figure 9.1
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Equations (9.1-1) and (9.1-2) are based on derivations that neglect the

contribution of radial normal stress to the circumferential strain. This

assumption does not cause appreciable error for curved beams of

compact cross section for which the radial normal stresses are small,

and it leads to acceptable answers for beams having thin webs where,

although the radial stresses are higher, they occur in regions of the

cross section where the circumferential bending stresses are small.

The use of the equations in Table 9.1 and of Eqs. (9.1-1) and (9.1-2) is

limited to values of R=d > 0:6 where, for a rectangular cross section, a

comparison of this mechanics-of-materials solution [Eq. (9.1-1)] to the

solution using the theory of elasticity shows the mechanics of materi-

als solution to indicate stresses approximately 10% too large.

While in theory the curved-beam formula for circumferential bend-

ing stress, Eq. (9.1-1), could be used for beams of very large radii of

curvature, one should not use the expression for e from Eq. (9.1-2) for

cases where R=d, the ratio of the radius of the curvature R to the depth

of the cross section, exceeds 8. The calculation for e would have to be

done with careful attention to precision on a computer or calculator to

get an accurate answer. Instead one should use the following approx-

imate expression for e which becomes very accurate for large values of

R=d. See Ref. 29.

e �
Ic

RA
for

R

d
> 8 ð9:1-3Þ

where Ic is the area moment of inertia of the cross section about the

centroidal axis. Using this expression for e and letting R approach

infinity leads to the usual straight-beam formula for bending stress.

For complex sections where the table or Eq. (9.1-3) are inappro-

priate, a numerical technique that provides excellent accuracy can be

employed. This technique is illustrated on pp. 318–321 of Ref. 36.

In summary, use Eq. (9.1-1) with e from Eq. (9.1-2) for 0:6 < R=d < 8.

Use Eq. (9.1-1) with e from Eq. (9.1-3) for those curved beams

for which R=d > 8 and where errors of less than 4 to 5% are desired,

or use straight-beam formulas if larger errors are acceptable or if

R=d � 8.

Circumferential normal stresses due to hoop tension N(M¼ 0). The

normal force N was chosen to act through the centroid of the cross

section, so a constant normal stress N=A would satisfy equilibrium.

Solutions carried out for rectangular cross sections using the theory of

elasticity show essentially a constant normal stress with higher values

on a thin layer of material on the inside of the curved section and lower

values on a thin layer of material on the outside of the section. In most

engineering applications the stresses due to the moment M are much
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larger than those due to N, so the assumption of uniform stress due to

N is reasonable.

Shear stress due to the radial shear force V. Although Eq. (8.1-2) does

not apply to curved beams, Eq. (8.1-13), used as for a straight beam,

gives the maximum shear stress with sufficient accuracy in most

instances. Again an analysis for a rectangular cross section carried

out using the theory of elasticity shows that the peak shear stress in a

curved beam occurs not at the centroidal axis as it does for a straight

beam but toward the inside surface of the beam. For a very sharply

curved beam, R=d ¼ 0:7, the peak shear stress was 2:04V=A at a

position one-third of the way from the inner surface to the centroid.

For a sharply curved beam, R=d ¼ 1:5, the peak shear stress was

1:56V=A at a position 80% of the way from the inner surface to the

centroid. These values can be compared to a peak shear stress of

1:5V=A at the centroid for a straight beam of rectangular cross section.

If a mechanics-of-materials solution for the shear stress in a curved

beam is desired, the element in Fig. 9.2(b) can be used and moments

taken about the center of curvature. Using the normal stress distribu-

tion sy ¼ N=A þ My=AeR, one can find the shear stress expression to

be

try ¼
V ðR � eÞ

trAer2
ðRAr � QrÞ ð9:1-4Þ

where tr is the thickness of the section normal to the plane of

curvature at the radial position r and

Ar ¼

ðr

b

dA1 and Qr ¼

ðr

b

r1 dA1 ð9:1-5Þ

Figure 9.2
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Equation (9.1-4) gives conservative answers for the peak values of

shear stress in rectangular sections when compared to elasticity

solutions. The locations of peak shear stress are the same in both

analyses, and the error in magnitude is about 1%.

Radial stresses due to moment M and normal force N. Owing to the radial

components of the fiber stresses, radial stresses are present in a

curved beam; these are tensile when the bending moment tends to

straighten the beam and compressive under the reverse condition. A

mechanics-of-materials solution may be developed by summing radial

forces and summing forces perpendicular to the radius using the

element in Fig. 9.2.

sr ¼
R � e

trAer
ðM � NRÞ

ðr

b

dA1

r1

�
Ar

R � e

� �
þ

N

r
ðRAr � QrÞ

� �
ð9:1-6Þ

Equation (9.1-6) is as accurate for radial stress as is Eq. (9.1-4) for

shear stress when used for a rectangular cross section and compared

to an elasticity solution. However, the complexity of Eq. (9.1-6) coupled

with the fact that the stresses due to N are generally smaller than

those due to M leads to the usual practice of omitting the terms

involving N. This leads to the equation for radial stress found in

many texts, such as Refs. 29 and 36.

sr ¼
R � e

trAer
M

ðr

b

dA1

r1

�
Ar

R � e

� �
ð9:1-7Þ

Again care must be taken when using Eqs. (9.1-4), (9.1-6), and (9.1-7)

to use an accurate value for e as explained above in the discussion

following Eq. (9.1-3).

Radial stress is usually not a major consideration in compact

sections for it is smaller than the circumferential stress and is low

where the circumferential stresses are large. However, in flanged

sections with thin webs the radial stress may be large at the junction

of the flange and web, and the circumferential stress is also large at

this position. This can lead to excessive shear stress and the possible

yielding if the radial and circumferential stresses are of opposite sign.

A large compressive radial stress in a thin web may also lead to a

buckling of the web. Corrections for curved-beam formulas for sections

having thin flanges are discussed in the next paragraph but correc-

tions are also needed if a section has a thin web and very thick flanges.

Under these conditions the individual flanges tend to rotate about

their own neutral axes and larger radial and shear stresses are

developed. Broughton et al. discuss this configuration in Ref. 31.
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EXAMPLES

1. The sharply curved beam with an elliptical cross section shown in Fig. 9.3(a)
has been used in a machine and has carried satisfactorily a bending moment of
2ð106ÞN-mm. All dimensions on the figures and in the calculations are given in
millimeters. A redesign does not provide as much space for this part, and a
decision has been made to salvage the existing stock of this part by machining
10 mm from the inside. The question has been asked as to what maximum
moment the modified part can carry without exceeding the peak stress in the
original installation.

Solution. First compute the maximum stress in the original section by using
case 6 of Table 9.1. R ¼ 100; c ¼ 50;R=c ¼ 2;A ¼ pð50Þð20Þ ¼ 3142, e=c ¼

0:5½2 � ð22 � 1Þ1=2	 ¼ 0:1340, e ¼ 6:70, and rn ¼ 100 � 6:7 ¼ 93:3. Using these
values the stress si can be found as

si ¼
My

Aer
¼

2ð106Þð93:3 � 50Þ

3142ð6:7Þð50Þ
¼ 82:3 N=mm2

Alternatively one can find si from si ¼ kiMc=Ix, where ki is found to be 1.616 in
the table of values from case 6

si ¼
ð1:616Þð2Þð106Þð50Þ

pð20Þð50Þ3=4
¼ 82:3 N=mm2

Next consider the same section with 10 mm machined from the inner edge as
shown in Fig. 9.3(b). Use case 9 of Table 9.1 with the initial calculations based
on the equivalent modified circular section shown in Fig. 9.3(c). For this
configuration a ¼ cos�1ð�40=50Þ ¼ 2:498 rad ð143:1
Þ, sin a ¼ 0:6, cos a ¼ �0:8,
Rx ¼ 100, a ¼ 50, a=c ¼ 1:179, c ¼ 42:418, R ¼ 102:418, and R=c ¼ 2:415. In
this problem Rx > a, so by using the appropriate expression from case 9 one
obtains e=c ¼ 0:131 and e ¼ 5:548. R, c, and e have the same values for the
machined ellipse, Fig. 9.3(b), and from case 18 of Table A.1 the area is found to
be A ¼ 20ð50Þða� sin a cos aÞ ¼ 2978. Now the maximum stress on the inner
surface can be found and set equal to 82.3 N=mm2.

si ¼ 82:3 ¼
My

Aer
¼

M ð102:42 � 5:548 � 60Þ

2978ð5:548Þð60Þ

82:3 ¼ 37:19ð106ÞM ; M ¼ 2:21ð106ÞN-mm

One might not expect this increase in M unless consideration is given to the
machining away of a stress concentration. Be careful, however, to note that,

Figure 9.3
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although removing the material reduced the peak stress in this case, the part
will undergo greater deflections under the same moment that it carried before.

2. A curved beam with a cross section shown in Fig. 9.4 is subjected to a
bending moment of 107 N-mm in the plane of the curve and to a normal load of
80,000 N in tension. The center of the circular portion of the cross section has a
radius of curvature of 160 mm. All dimensions are given and used in the
formulas in millimeters. The circumferential stresses in the inner and outer
fibers are desired.

Solution. This section can be modeled as a summation of three sections: (1)
a solid circular section, (2) a negative (materials removed) segment of a circle,
and (3) a solid rectangular section. The section properties are evaluated in the
order listed above and the results summed for the composite section.

Section 1. Use case 6 of Table 9.1. R ¼ 160, b ¼ 200, c ¼ 100, R=c ¼ 1:6,Ð
dA=r ¼ 200½1:6 � ð1:62 � 1Þ1=2	 ¼ 220:54, and A ¼ pð1002Þ ¼ 31;416.

Section 2. Use case 9 of Table 9.1. a ¼ p=6 ð30
Þ, Rx ¼ 160, a ¼ 100,
Rx=a ¼ 1:6, a=c ¼ 18:55, c ¼ 5:391, R ¼ 252:0,

Ð
dA=r ¼ 3:595, and from case

20 of Table A.1, A ¼ 905:9.

Section 3. Use case 1 of Table 9.1. R ¼ 160 þ 100 cos 30
 þ 25 ¼ 271:6,
b ¼ 100, c ¼ 25, R=c ¼ 10:864, A ¼ 5000,

Ð
dA=r ¼ 100 lnð11:864=9:864Þ ¼

18:462.
For the composite section; A ¼ 31;416 � 905:9 þ 5000 ¼ 35;510, R ¼

½31;416ð160Þ�905:9ð252Þþ5000ð272:6Þ	=35;510 ¼ 173:37, c ¼ 113:37,
Ð

dA=r ¼

220:54 � 3:595 þ 18:462 ¼ 235:4, rn ¼ A=ð
Ð

dA=rÞ ¼ 35;510=235:4 ¼ 150:85, e ¼

R � rn ¼ 22:52.
Using these data the stresses on the inside and outside are found to be

si ¼
My

Aer
þ

N

A
¼

107ð150:85 � 60Þ

35;510ð22:52Þð60Þ
þ

80;000

35;510

¼ 18:93 þ 2:25 ¼ 21:18 N=mm2

so ¼
107ð150:85 � 296:6Þ

35;510ð22:52Þð296:6Þ
þ

80;000

35;510

¼ �6:14 þ 2:25 ¼ �3:89 N=mm
2

Curved beams with wide flanges. In reinforcing rings for large pipes,

airplane fuselages, and ship hulls, the combination of a curved sheet

and attached web or stiffener forms a curved beam with wide flanges.

Figure 9.4
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Formulas for the effective width of a flange in such a curved beam are

given in Ref. 9 and are as follows.

When the flange is indefinitely wide (e.g., the inner flange of a pipe-

stiffener ring), the effective width is

b0 ¼ 1:56
ffiffiffiffiffiffi
Rt

p

where b0 is the total width assumed effective, R is the mean radius of

curvature of the flange, and t is the thickness of the flange.

When the flange has a definite unsupported width b (gross width

less web thickness), the ratio of effective to actual width b0=b is a

function of qb, where

q ¼ 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð1 � n2Þ

R2t2

r

Corresponding values of qb and b0=b are as follows:

qb 1 2 3 4 5 6 7 8 9 10 11

b0=b 0.980 0.850 0.610 0.470 0.380 0.328 0.273 0.244 0.217 0.200 0.182

For the curved beam each flange should be considered as replaced by

one of corresponding effective width b0, and all calculations for direct,

bending, and shear stresses, including corrections for curvature,

should be based on this transformed section.

Bleich (Ref. 10) has shown that under a straightening moment

where the curvature is decreased, the radial components of the fiber

stresses in the flanges bend both flanges radially away from the web,

thus producing tension in the fillet between flange and web in a

direction normal to both the circumferential and radial normal stres-

ses discussed in the previous section. Similarly, a moment which

increases the curvature causes both flanges to bend radially toward

the web and produce compressive stresses in the fillet between flange

and web. The nominal values of these transverse bending stresses s0 in

the fillet, without any correction for the stress concentration at the

fillet, are given by js0j ¼ jbsmj, where sm is the circumferential bending

stress at the midthickness of the flange. This is less than the maxi-

mum value found in Table 9.1 and can be calculated by using Eq.

(9.1-1). See the first example problem. The value of the coefficient b
depends upon the ratio c2=Rt, where c is the actual unsupported

projecting width of the flange to either side of the web and R and t

have the same meaning they did in the expressions for b0 and q. Values

of b may be found from the following table; they were taken from Ref.

10, where values of b0 are also tabulated.
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c2=Rt ¼ 0 0.1 0.2 0.3 0.4 0.5 0.6 0.8

b ¼ 0 0.297 0.580 0.836 1.056 1.238 1.382 1.577

c2=Rt ¼ 1 1.2 1.4 1.5 2 3 4 5

b ¼ 1:677 1.721 1.732 1.732 1.707 1.671 1.680 1.700

Derivations of expressions for b0=b and for b are also found in Ref. 29.

Small differences in the values given in various references are due to

compensations for secondary effects. The values given here are conser-

vative.

In a similar way, the radial components of the circumferential

normal stresses distort thin tubular cross sections of curved beams.

This distortion affects both the stresses and deformations and is

discussed in the next section.

U-shaped members. A U-shaped member having a semicircular inner

boundary and a rectangular outer boundary is sometimes used as a

punch or riveter frame. Such a member can usually be analyzed as a

curved beam having a concentric outer boundary, but when the back

thickness is large, a more accurate analysis may be necessary. In Ref.

11 are presented the results of a photoelastic stress analysis of such

members in which the effects of variations in the several dimensions

were determined. See case 23, Table 17.1

Deflections. If a sharply curved beam is only a small portion of a

larger structure, the contribution to deflection made by the curved

portion can best be calculated by using the stresses at the inner and

outer surfaces to calculate strains and the strains then used to

determine the rotations of the plane sections. If the structure is

made up primarily of a sharply curved beam or a combination of

such beams, then refer to the next section.

9.2 Deflection of Curved Beams

Deflections of curved beams can generally be found most easily by

applying an energy method such as Castigliano’s second theorem. One

such expression is given by Eq. (8.1-7). The proper expression to use

for the complementary energy depends upon the degree of curvature

in the beam.

Deflection of curved beams of large radius. If for a curved beam the

radius of curvature is large enough such that Eqs. (8.1-1) and (8.1-2)

are acceptable, i.e., the radius of curvature is greater than 10 times

the depth, then the stress distribution across the depth of the beam is

very nearly linear and the complementary energy of flexure is given
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with sufficient accuracy by Eq. (8.1-3). If, in addition, the angular span

is great enough such that deformations due to axial stress from the

normal force N and the shear stresses due to transverse shear V can be

neglected, deflections can be obtained by applying Eqs. (8.1-3) and

(8.1-7) and rotations by Eq. (8.1-8). The following example shows how

this is done.

EXAMPLE

Figure 9.5 represents a slender uniform bar curved to form the quadrant of a
circle; it is fixed at the lower end and at the upper end is loaded by a vertical
force V, a horizontal force H, and a couple M0. It is desired to find the vertical
deflection dy, the horizontal deflection dx; and the rotation y of the upper end.

Solution. According to Castigliano’s second theorem, dy ¼ @U=@V , dx ¼

@U=@H, and y ¼ @U=@M0. Denoting the angular position of any section by x,
it is evident that the moment there is M ¼ VR sin x þ HRð1 � cos xÞ þ M0.
Disregarding shear and axial stress, and replacing ds by R dx, we have [Eq.
(8.1-3)]

U ¼ Uf ¼

ðp=2
0

½VR sin x þ HRð1 � cos xÞ þ M0	
2R dx

2EI

Instead of integrating this and then carrying out the partial differentiations,
we will differentiate first and then integrate, and for convenience suppress the
constant term EI until all computations are completed. Thus

dy ¼
@U

@V

¼

ðp=2
0

½VR sin x þ HRð1 � cos xÞ þ M0	ðR sin xÞR dx

¼ VR3ð1
2
x � 1

2
sin x cos xÞ � HR3ðcos x þ 1

2
sin

2
xÞ � M0R2 cos x

				
p=2

0

¼
ðp=4ÞVR3 þ 1

2
HR3 þ M0R2

EI

Figure 9.5
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dx ¼
@U

@H

¼

ðp=2
0

½VR sin x þ HRð1 � cos xÞ þ M0	Rð1 � cos xÞR dx

¼ VR3ð� cos x � 1
2
sin

2
xÞ þ HR3ð3

2
x � 2 sin x þ 1

2
sin x cos xÞ þ M0R2ðx � sin xÞ

				
p=2

0

¼

1
2
VR3 þ ð3

4
p� 2ÞHR3 þ ðp=2 � 1ÞM0R2

EI

y ¼
@U

@M0

¼

ðp=2
0

½VR sin x þ HRð1 � cos xÞ þ M0	R dx

¼ �VR2 cos x þ HR2ðx � sin xÞ þ M0Rx

				
p=2

0

¼
VR2 þ ðp=2 � 1ÞHR2 þ ðp=2ÞM0R

EI

The deflection produced by any one load or any combination of two loads is
found by setting the other load or loads equal to zero; thus, V alone would
produce dx ¼ 1

2
VR3=EI , and M alone would produce dy ¼ M0R2=EI . In this

example all results are positive, indicating that dx is in the direction of H; dy in
the direction of V , and y in the direction of M0.

Distortion of tubular sections. In curved beams of thin tubular section,

the distortion of the cross section produced by the radial components of

the fiber stresses reduces both the strength and stiffness. If the beam

curvature is not so sharp as to make Eqs. (8.1-1) and (8.1-4) inap-

plicable, the effect of this distortion of the section can be taken into

account as follows.

In calculating deflection of curved beams of hollow circular section,

replace I by KI, where

K ¼ 1 �
9

10 þ 12ðtR=a2Þ
2

(Here R ¼ the radius of curvature of the beam axis, a ¼ the outer

radius of tube section, and t ¼ the thickness of tube wall.) In calculat-

ing the maximum bending stress in curved beams of hollow circular

section, use the formulas

smax ¼
Ma

I

2

3K
ffiffiffiffiffiffi
3b

p at y ¼
affiffiffiffiffiffi
3b

p if
tR

a2
< 1:472
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or

smax ¼
Ma

I

1 � b
K

at y ¼ a if
tR

a2
> 1:472

where

b ¼
6

5 þ 6ðtR=a2Þ
2

and y is measured from the neutral axis. Torsional stresses and

deflections are unchanged.

In calculating deflection or stress in curved beams of hollow square

section and uniform wall thickness, replace I by

1 þ 0:0270n

1 þ 0:0656n
I

where n ¼ b4=R2t2. (Here R ¼ the radius of curvature of the beam axis,

b ¼ the length of the side of the square section, and t ¼ the thickness of

the section wall.)

The preceding formulas for circular sections are from von Kármán

(Ref. 4); the formulas for square sections are from Timoshenko (Ref. 5),

who also gives formulas for rectangular sections.

Extensive analyses have been made for thin-walled pipe elbows with

sharp curvatures for which the equations given above do not apply

directly. Loadings may be in-plane, out-of-plane, or in various combi-

nations (Ref. 8). Internal pressure increases and external pressure

decreases pipe-bend stiffness. To determine ultimate load capacities of

pipe bends or similar thin shells, elastic-plastic analyses, studies of the

several modes of instability, and the stabilizing effects of flanges and

the piping attached to the elbows are some of the many subjects

presented in published works. Bushnell (Ref. 7) included an extensive

list of references. Using numerical results from computer codes,

graphs of stress indices and flexibility factors provide design data

(Refs. 7, 19, and 34).

Deflection of curved beams of small radius. For a sharply curved beam,

i.e., the radius of curvature is less than 10 times the depth, the stress

distribution is not linear across the depth. The expression for the

complementary energy of flexure is given by

Uf ¼

ð
M2

2AEeR
R dx ¼

ð
M2

2AEe
dx ð9:2-1Þ

where A is the cross-sectional area, E is the modulus of elasticity, and e

is the distance from the centroidal axis to the neutral axis as given in

Table 9.1. The differential change in angle dx is the same as is used in
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the previous example. See Fig. 9.1. Also keep clearly in mind that the

bending in the plane of the curvature must be about a principal axis or

the restraints described in the first paragraph of Sec. 9.1 must be

present.

For all cross sections the value of the product AeR approaches the

value of the moment of inertia I when the radius of curvature becomes

greater than 10 times the depth. This is seen clearly in the following

table where values of the ratio AeR=I are given for several sections

and curvatures.

R=d
Case

no. Section 1 3 5 10

1 Solid rectangle 1.077 1.008 1.003 1.001

2 Solid circle 1.072 1.007 1.003 1.001

5 Triangle (base inward) 0.927 0.950 0.976 0.988

6 Triangle (base outward) 1.268 1.054 1.030 1.014

For curved beams of large radius the effect on deflections of the shear

stresses due to V and the circumferential normal stresses due to N

were small unless the length was small. For sharply curved beams the

effects of these stresses must be considered. Only the effects of the

radial stresses sr will be neglected. The expression for the comple-

mentary energy including all but the radial stresses is given by

Uf ¼

ð
M2

2AEe
dx þ

ð
FV 2R

2AG
dx þ

ð
N2R

2AE
dx �

ð
MN

AE
dx ð9:2-2Þ

where all the quantities are defined in the notation at the top of Table

9.2.

The last term, hereafter referred to as the coupling term, involves

the complementary energy developed from coupling the strains from

the bending moment M and the normal force N. A positive bending

moment M produces a negative strain at the position of the centroidal

axis in a curved beam, and the resultant normal force N passes

through the centroid. Reasons have been given for and against

including the coupling term in attempts to improve the accuracy of

calculated deformations (see Refs. 3 and 29). Ken Tepper, Ref. 30,

called attention to the importance of the coupling term for sharply

curved beams. The equations in Tables 9.2 and 9.3 have been modified

and now include the effect of the coupling term. With this change, the

formulas given in Tables 9.2 and 9.3 for the indeterminate reactions

and for the deformations are no longer limited to thin rings and arches
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but can be used as well for thick rings and arches. As before, for thin

rings and arches a and b can be set to zero with little error.

To summarize this discussion and its application to the formulas in

Tables 9.2 and 9.3, one can place a given curved beam into one of three

categories: a thin ring, a moderately thick ring, and a very thick or

sharply curved ring. The boundaries between these categories depend

upon the R=d ratio and the shape of the cross section. Reference to the

preceding tabulation of the ratio AeR=I will be helpful.

For thin rings the effect of normal stress due to N and shear stress

due to V can be neglected; i.e., set a and b equal to zero. For

moderately thick rings and arches use the equations as they are

given in Tables 9.2 and 9.3. For thick rings and arches replace the

moment of inertia I with the product AeR in all equations including

those for a and b. To illustrate the accuracy of this approach, the

previous example problem will be repeated but for a thick ring of

rectangular cross section. The rectangular cross section was chosen

because a solution can be obtained by using the theory of elasticity

with which to compare and evaluate the results.

EXAMPLE

Figure 9.6 represents a thick uniform bar of rectangular cross section having a
curved centroidal surface of radius R. It is fixed at the lower end, and the
upper end is loaded by a vertical force V , a horizontal force H, and a couple Mo.
It is desired to find the vertical deflection dy, the horizontal deflection dx, and
the rotation y of the upper end. Note that the deflections dy and dx are the
values at the free end and at the radial position R at which the load H is
applied.

First Solution. Again Castigliano’s theorem will be used. First find the
moment, shear, and axial force at the angular position x:

Mx ¼ VR sin x þ HRð1 � cos xÞ þ Mo

Vx ¼ V cos x þ H sin x

Nx ¼ �H cos x þ V sin x

Since the beam is to be treated as a thick beam the expression for comple-
mentary energy is given by

U þ

ð
M2

x

2AEe
dx þ

ð
FV 2

x R

2AG
dx þ

ð
N2

x R

2AE
dx �

ð
MxNx

AE
dx

Figure 9.6
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The deflections can now be calculated

dy ¼
@U

@V
¼

ðp=2
0

Mx

AEe
ðR sin xÞdx þ

ðp=2
0

FVxR

AG
ðcos xÞdx þ

ðp=2
0

NxR

AE
ðsin xÞdx

�

ðp=2
0

Mx

AE
ðsin xÞdx �

ðp=2
0

Nx

AE
ðR sin xÞdx

¼
ðp=4ÞVR3 þ 0:5HR3 þ MoR2

EAeR
þ

0:5RðpV=2 þ HÞ½2Fð1 þ nÞ � 1	 � Mo

AE

dx ¼
@U

@H
¼

ðp=2
0

MxR

AEe
ð1 � cos xÞdx þ

ðp=2
0

FVxR

AG
ðsin xÞdx þ

ðp=2
0

NxR

AE
ð� cos xÞdx

�

ðp=2
0

Mx

AE
ð� cos xÞdx �

ðp=2
0

NxR

AE
ð1 � cos xÞdx

¼
0:5VR3 þ ð3p=4 � 2ÞHR3 þ ðp=2 � 1ÞMoR2

EAeR

þ
0:5VR½2Fð1 þ nÞ � 1	 þ ðp=4ÞHR½2Fð1 þ nÞ þ 8=p� 1	 þ Mo

EA

y ¼
@U

@Mo

¼

ðp=2
0

Mx

AEe
ð1Þdx þ

ðp=2
0

FVxR

AG
ð0Þdx þ

ðp=2
0

NxR

AE
ð0Þdx �

ðp=2
0

Mx

AE
ð0Þdx

�

ðp=2
0

Nx

AE
ð1Þdx

¼
VR2 þ ðp=2 � 1ÞHR2 þ ðp=2ÞMoR

EAeR
þ

H � V

AE

There is no need to reduce these expressions further in order to make a
numerical calculation, but it is of interest here to compare to the solutions in
the previous example. Therefore, let a ¼ e=R and b ¼ FEe=GR ¼ 2Fð1 þ nÞ=R
as defined previously

dy ¼
ðp=4ÞVR3ð1 � aþ bÞ þ 0:5HR3ð1 � aþ bÞ þ MoR2ð1 � aÞ

EAeR

dx ¼
0:5VR3ð1 � aþ bÞ þ HR3½ð3p=4 � 2Þ þ ð2 � p=4Þaþ ðp=4Þb	

EAeR

þ
MoR2ðp=2 � 1 þ aÞ

EAeR

y ¼
VR2ð1 � aÞ þ HR2ðp=2 � 1 þ aÞ þ ðp=2ÞMoR

EAeR

Up to this point in the derivation, the cross section has not been specified. For
a rectangular cross section having an outer radius a and an inner radius b and
of thickness t normal to the surface shown in Fig. 9.6(b), the following
substitutions can be made in the deformation equations. Let n ¼ 0:3.

R ¼
a þ b

2
; A ¼ ða � bÞt; F ¼ 1:2 ðsee Sec. 8.10Þ

a ¼
e

R
¼ 1 �

2ða � bÞ

ða þ bÞ lnða=bÞ
; b ¼ 3:12a
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In the following table the value of a=b is varied from 1.1, where R=d ¼ 10:5, a
thin beam, to a=b ¼ 5:0, where R=d ¼ 0:75, a very thick beam. Three sets of
numerical values are compared. The first set consists of the three deformations
dy; dx, and y evaluated from the equations just derived and due to the vertical
load V . The second set consists of the same deformations due to the same
loading but evaluated by applying the equations for a thin curved beam from
the first example. The third set consists of the same deformations due to the
same loading but evaluated by applying the theory of elasticity. See Ref. 2. The
abbreviation MM in parentheses identifies the values from the mechanics-of-
materials solutions and the abbreviation EL similarly identifies those found
from the theory of elasticity.

From thick-beam theory From thin-beam theory

a=b R=d

dyðMMÞ

dyðELÞ

dxðMMÞ

dxðELÞ

yðMMÞ

yðELÞ

dyðMMÞ

dyðELÞ

dxðMMÞ

dxðELÞ

yðMMÞ

yðELÞ

1.1 10.5 0.9996 0.9990 0.9999 0.9986 0.9980 1.0012

1.3 3.83 0.9974 0.9925 0.9991 0.9900 0.9852 1.0094

1.5 2.50 0.9944 0.9836 0.9976 0.9773 0.9967 1.0223

1.8 1.75 0.9903 0.9703 0.9944 0.9564 0.9371 1.0462

2.0 1.50 0.9884 0.9630 0.9916 0.9431 0.9189 1.0635

3.0 1.00 0.9900 0.9485 0.9729 0.8958 0.8583 1.1513

4.0 0.83 1.0083 0.9575 0.9511 0.8749 0.8345 1.2304

5.0 0.75 1.0230 0.9763 0.9298 0.8687 0.8290 1.2997

If reasonable errors can be tolerated, the strength-of-materials solutions are
very acceptable when proper recognition of thick and thin beams is given.

Second Solution. Table 9.3 is designed to enable one to take any angular
span 2y and any single load or combination of loads and find the necessary
indeterminate reactions and the desired deflections. To demonstrate this use of
Table 9.3 in this example the deflection dx will be found due to a load H. Use of
case 12d, with load terms from case 5d and with y ¼ p=4 and f ¼ p=4. Both
load terms LFH and LFV are needed since the desired deflection dx is not
in the direction of either of the deflections given in the table. Let c ¼ m ¼

s ¼ n ¼ 0:7071.

LFH ¼ H
p
2

0:7071 þ
k1

2

p
2

0:7071 � 0:70713ð2Þ
h i

� k22ð0:7071Þ


 �

LFV ¼ H �
p
2

0:7071 �
k1

2

p
2

0:7071 þ 0:70713ð2Þ
h i

þ k24ð0:70713Þ


 �

dx ¼ ðdVA � dHAÞ0:7071 ¼
�R3

EAeR
ðLFV � LFH Þ0:7071

¼
�R3H

EAeR
�
p
2
�

k1

2

p
2
þ 2k2

� �
¼

R3H

EAeR

3p
4

� 2 þ 2 �
p
4

� �
aþ

p
4
b

� �

This expression for dx is the same as the one derived directly from Castigliano’s
theorem. For angular spans of 90 or 180
 the direct derivation is not difficult,
but for odd-angle spans the use of the equations in Table 9.3 is recommended.
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The use of the equations in Table 9.3 is also recommended when deflections
are desired at positions other than the load point. For example, assume the
deflections of the midspan of this arch are desired when it is loaded with the end
load H as shown in Fig. 9.7(a). To do this, isolate the span from B to C and find
the loads HB, VB, and MB which act at point B. This gives HB ¼ VB ¼ 0:7071H
and MB ¼ HRð1 � 0:7071Þ. Now, superpose cases 12c, 12d, and 12n using these
loads and y ¼ f ¼ p=8. In a problem with neither end fixed, a rigid-body motion
may have to be superposed to satisfy the boundary conditions.

Deflection of curved beams of variable cross section and=or radius. None

of the tabulated formulas applies when either the cross section or the

radius of curvature varies along the span. The use of Eqs. (9.2-1) and

(9.2-2), or of comparable expressions for thin curved beams, with

numerical integration carried out for a finite number of elements

along the span provides an effective means of solving these problems.

This is best shown by example.

EXAMPLE

A rectangular beam of constant thickness and a depth varying linearly along
the length is bent such that the centroidal surface follows the curve x ¼ 0:25y2

as shown in Fig. 9.8. The vertical deflection at the loaded end is desired. To
keep the use of specific dimensions to a minimum let the depth of the curved
beam at the fixed end ¼ 1:0, the thickness ¼ 0:5, and the horizontal location of
the load P ¼ 1:0. The beam will be subdivided into eight segments, each
spanning 0.25 units in the y direction. Normally a constant length along the
span is used, but using constant Dy gives shorter spans where moments are
larger and curvatures are sharper. The numerical calculations are also easier.
Use will be made of the following expressions in order to provide the tabulated

Figure 9.7

Figure 9.8
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information from which the needed summation can be found. Note that yi and
xi are used here as the y and x positions of the midlength of each segment

x ¼ 0:25y2;
dx

dy
¼ 0:5y;

d2x

d2y
¼ 0:5; Dl ¼ Dyð1 þ xiÞ

1=2

R ¼
½1 þ ðdx=dyÞ2	3=2

d2x=d2y

e

c
¼

R

c
�

2

ln½ðR=c þ 1Þ=ðR=c � 1Þ	
for

R

2c
< 8

[see Eq. (9.1-1) and case 1 of Table 9.1] or

e

c
¼

Ic

RAc
¼

tð2cÞ3

12ðRt2c2Þ
¼

c

3R
for

R

2c
> 8

[see Eq. (9.1-3)]:

The desired vertical deflection of the loaded end can be determined from
Castigliano’s theorem, using Eq. (9.2-2) for Uf in summation form rather than
integral form. This reduces to

d ¼
dU

dP
¼

P

E

P ðM=PÞ
2

eR
þ F

V

P

� �2

2ð1 þ nÞ þ
N

P

� �2

�2
M

P

N

P

" #
Dl

A

¼
P

E

PDl

A
½B	

where ½B	 and ½B	Dl=A are the last two columns in the following table. The
internal forces and moments can be determined from equilibrium equations as

M

P
¼ �ð1 � xiÞ; yi ¼ tan�1 dx

dy
; V ¼ P sin yi; and N ¼ �P cos yi

In the evaluation of the above equations for this problem, F ¼ 1:2 and n ¼ 0:3.
In the table below one must fill in the first five columns in order to find the
total length of the beam before the midsegment depth 2c can be found and the
table completed.

Element

no. yi xi R Dl c R=c

1 0.125 0.004 2.012 0.251 0.481 4.183

2 0.375 0.035 2.106 0.254 0.442 4.761

3 0.625 0.098 2.300 0.262 0.403 5.707

4 0.875 0.191 2.601 0.273 0.362 7.180

5 1.125 0.316 3.020 0.287 0.320 9.451

6 1.375 0.473 3.574 0.303 0.275 13.019

7 1.625 0.660 4.278 0.322 0.227 18.860

8 1.875 0.879 5.151 0.343 0.176 29.243

2.295
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Element

no. e=c M=P V=P N=P ½B	 ½B	
Dl

A

1 0.0809 �0.996 0.062 �0.998 11.695 6.092

2 0.0709 �0.965 0.184 �0.983 13.269 7.627

3 0.0589 �0.902 0.298 �0.954 14.370 9.431

4 0.0467 �0.809 0.401 �0.916 14.737 11.101

5 0.0354 �0.684 0.490 �0.872 14.007 12.569

6 0.0256 �0.527 0.567 �0.824 11.856 13.105

7 0.0177 �0.340 0.631 �0.776 8.049 11.431

8 0.0114 �0.121 0.684 �0.730 3.232 6.290

77.555

Therefore, the deflection at the load and in the direction of the load is
77:56P=E in whatever units are chosen as long as the depth at the fixed end
is unity. If one maintains the same length-to-depth ratio and the same shape,
the deflection can be expressed as d ¼ 77:56P=ðE2toÞ, where to is the constant
thickness of the beam.
Michael Plesha (Ref. 33) provided a finite-element solution for this configura-
tion and obtained for the load point a vertically downward deflection of 72.4
units and a horizontal deflection of 88.3 units. The 22 elements he used were
nine-node, quadratic displacement, Lagrange elements. The reader is invited
to apply a horizontal dummy load and verify the horizontal deflection.

9.3 Circular Rings and Arches

In large pipelines, tanks, aircraft, and submarines the circular ring is

an important structural element, and for correct design it is often

necessary to calculate the stresses and deflections produced in such a

ring under various conditions of loading and support. The circular

arch of uniform section is often employed in buildings, bridges, and

machinery.

Rings. A closed circular ring may be regarded as a statically indeter-

minate beam and analyzed as such by the use of Castigliano’s second

theorem. In Table 9.2 are given formulas thus derived for the bending

moments, tensions, shears, horizontal and vertical deflections, and

rotations of the load point in the plane of the ring for various loads and

supports. By superposition, these formulas can be combined so as to

cover almost any condition of loading and support likely to occur.

The ring formulas are based on the following assumptions: (1) The

ring is of uniform cross section and has symmetry about the plane of

curvature. An exception to this requirement of symmetry can be made

if moment restraints are provided to prevent rotation of each cross

section out of its plane of curvature. Lacking the plane of symmetry

and any external constraints, out-of-plane deformations will accom-

pany in-plane loading. Meck, in Ref. 21, derives expressions concern-
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ing the coupling of in-plane and out-of-plane deformations of circular

rings of arbitrary compact cross section and resulting instabilities.

(2) All loadings are applied at the radial position of the centroid

of the cross section. For thin rings this is of little concern, but for

radially thick rings a concentrated load acting in other than a radial

direction and not at the centroidal radius must be replaced by a

statically equivalent load at the centroidal radius and a couple. For

case 15, where the loading is due to gravity or a constant linear

acceleration, and for case 21, where the loading is due to rotation

around an axis normal to the plane of the ring, the proper distribu-

tion of loading through the cross section is accounted for in the

formulas. (3) It is nowhere stressed beyond the elastic limit. (4)

It is not so severely deformed as to lose its essentially circular

shape. (5) Its deflection is due primarily to bending, but for thicker

rings the deflections due to deformations caused by axial tension or

compression in the ring and=or by transverse shear stresses in the

ring may be included. To include these effects, we can evaluate

first the coefficients a and b, the axial stress deformation factor, and

the transverse shear deformation factor, and then the constants k1 and

k2. Such corrections are more often necessary when composite or

sandwich construction is employed. If no axial or shear stress correc-

tions are desired, a and b are set equal to zero and the values of k

are set equal to unity. (6) In the case of pipes acting as beams

between widely spaced supports, the distribution of shear stress

across the section of the pipe is in accordance with Eq. (8.1-2), and

the direction of the resultant shear stress at any point of the cross

section is tangential.

Note carefully the deformations given regarding the point or points

of loading as compared with the deformations of the horizontal and

vertical diameters. For many of the cases listed, the numerical values

of load and deflection coefficients have been given for several positions

of the loading. These coefficients do not include the effect of axial and

shear deformation.

No account has been taken in Table 9.2 of the effect of radial

stresses in the vicinity of the concentrated loads. These stresses

and the local deformations they create can have a significant effect

on overall ring deformations and peak stresses. In case 1 a reference

is made to Sec. 14.3 in which thick-walled rollers or rings are

loaded on the outer ends of a diameter. The stresses and deflections

given here are different from those predicted by the equations in

case 1. If a concentrated load is used only for purposes of super-

position, as is often the case, there is no cause for concern, but if an

actual applied load is concentrated over a small region and the ring is

sharply curved with thick walls, then one must be aware of the

possible errors.
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EXAMPLES

1. A pipe with a diameter of 13 ft and thickness of 1
2
in is supported at intervals

of 44 ft by rings, each ring being supported at the extremities of its horizontal
diameter by vertical reactions acting at the centroids of the ring sections. It is
required to determine the bending moments in a ring at the bottom, sides, and
top, and the maximum bending moment when the pipe is filled with water.

Solution. We use the formulas for cases 4 and 20 of Table 9.2. Taking the
weight of the water as 62.4 lb=ft3 and the weight of the shell as 20.4 lb=ft2, the
total weight W of 44 ft of pipe carried by one ring is found to be 401,100 lb.
Therefore, for case 20, W ¼ 401;100 lb; and for case 4, W ¼ 250;550 lb and
y ¼ p=2. Assume a thin ring, a ¼ b ¼ 0.

At bottom:

M ¼ MC ¼ 0:2387ð401;100Þð6:5Þð12Þ � 0:50ð200;550Þð78Þ

¼ 7:468ð106Þ � 7:822ð106Þ ¼ �354;000 lb-in

At top:

M ¼ MA ¼ 0:0796ð401;100Þð78Þ � 0:1366ð200;550Þð78Þ ¼ 354;000 lb-in

N ¼ NA ¼ 0:2387ð401;100Þ � 0:3183ð200;500Þ ¼ 31;900 lb

V ¼ VA ¼ 0

At sides:

M ¼ MA � NARð1 � uÞ þ VARz þ LTM

where for x ¼ p=2, u ¼ 0; z ¼ 1, and LTM ¼ ðWR=pÞð1 � u � xz=2Þ ¼
½401;100ð78Þ=p	 ð1 � p=4Þ ¼ 2:137ð106Þ for case 20, and LTM ¼ 0 for case 4
since z � s ¼ 0. Therefore

M ¼ 354;000 � 31;900ð78Þð1 � 0Þ þ 0 þ 2:137ð106Þ ¼ 2800 lb-in

The value of 2800 lb-in is due to the small differences in large numbers used in
the superposition. An exact solution would give zero for this value. It is
apparent that at least four digits must be carried.

To determine the location of maximum bending moment let 0 < x < p=2 and
examine the expression for M :

M ¼ MA � NARð1 � cos xÞ þ
WR

p
1 � cos x �

x sin x

2

� �

dM

dx
¼ �NAR sin x þ

WR

p
sin x �

WR

2p
sin x �

WRx

2p
cos x

¼ 31;950R sin x � 63;800Rx cos x
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At x ¼ x1, let dM=dx ¼ 0 or sin x1 ¼ 2x1 cos x1, which yields x1 ¼

66:8
ð1:166 radÞ. At x ¼ x1 ¼ 66:8
,

M ¼ 354;00 � 31;900ð78Þð1 � 0:394Þ þ
401;100ð78Þ

p
1 � 0:394 �

1:166ð0:919Þ

2

� �

¼ �455;000 lb-in (max negative moment)

Similarly, at x ¼ 113:2
, M ¼ 455;000 lb-in (max positive moment).
By applying the supporting reactions outside the center line of the ring at a

distance a from the centroid of the section, side couples that are each equal to
Wa=2 would be introduced. The effect of these, found by the formulas for case
3, would be to reduce the maximum moments, and it can be shown that the
optimum condition obtains when a ¼ 0:04R.

2. The pipe of Example 1 rests on soft ground, with which it is in contact over
150
 of its circumference at the bottom. The supporting pressure of the soil
may be assumed to be radial and uniform. It is required to determine the
bending moment at the top and bottom and at the surface of the soil. Also the
bending stresses at these locations and the change in the horizontal diameter
must be determined.

Solution. A section of pipe 1 in long is considered. The loading may be
considered as a combination of cases 12, 15, and 16. Owing to the weight of the
pipe (case 15, w ¼ 0:1416 lb=in), and letting KT ¼ k1 ¼ k2 ¼ 1, and a ¼ b ¼ 0,

MA ¼
0:1416ð78Þ2

2
¼ 430 lb-in

NA ¼
0:1416ð78Þ

2
¼ 5:52 lb

VA ¼ 0

and at x ¼ 180 � 150
2

¼ 105
 ¼ 1:833 rad,

LTM ¼ �0:1416ð782Þ½1:833ð0:966Þ � 0:259 � 1	 ¼ �440 lb-in

Therefore

M105
 ¼ 430 � 5:52ð78Þð1 þ 0:259Þ � 440 ¼ �552 lb-in

MC ¼ 1:5ð0:1416Þð78Þ ¼ 1292 lb-in

Owing to the weight of contained water (case 16, r ¼ 0:0361 lb=in3),

MA ¼
0:0361ð783Þ

4
¼ 4283 lb-in=in

NA ¼
0:0361ð782Þð3Þ

4
¼ 164:7 lb=in

VA ¼ 0
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and at x ¼ 105
,

LTM ¼ 0:0361ð783Þ 1 þ 0:259 �
1:833ð0:966Þ

2

� �
¼ 6400 lb-in=in

Therefore

M105
 ¼ 4283 � 164:7ð78Þð1 þ 0:259Þ þ 6400 ¼ �5490 lb-in=in

MC ¼
0:0361ð783Þð3Þ

4
¼ 12;850 lb-in=in

Owing to earth pressure and the reversed reaction (case 12, y ¼ 105
),

2wR sin y ¼ 2pRð0:1416Þ þ 0:0361pR2 ¼ 759 lb ðw ¼ 5:04 lb=inÞ

MA ¼
�5:04ð782Þ

p
½0:966 þ ðp� 1:833Þð�0:259Þ � 1ðp� 1:833 � 0:966Þ	

¼ �2777 in-lb

NA ¼
�5:04ð78Þ

p
½0:966 þ ðp� 1:833Þð�0:259Þ	 ¼ �78:5 lb

VA ¼ 0

LTM ¼ 0

M105
 ¼ �2777 þ 78:5ð78Þð1:259Þ ¼ 4930 lb-in

MC ¼ �5:04ð782Þ
1:833ð1 � 0:259Þ

p
¼ �13;260 lb-in

Therefore, for the 1 in section of pipe

MA ¼ 430 þ 4283 � 2777 ¼ 1936 lb-in

sA ¼
6MA

t2
¼ 46;500 lb=in2

M105
 ¼ �552 � 5490 þ 4930 ¼ �1112 lb-in

s105
 ¼ 26;700 lb=in2

MC ¼ 1292 þ 12;850 � 13;260 ¼ 882 lb-in

sC ¼ 21;200 lb=in2

The change in the horizontal diameter is found similarly by superimposing
the three cases. For E use 30ð106Þ=ð1 � 0:2852Þ ¼ 32:65ð106Þ lb=in2

, since a
plate is being bent instead of a narrow beam (see page 169). For I use the
moment of inertia of a 1-in-wide piece, 0.5 in thick:

I ¼ 1
12
ð1Þð0:53Þ ¼ 0:0104 in

4; EI ¼ 340;000 lb-in
2
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From case 12:

DDH ¼
�5:04ð784Þ

340;000

ðp� 1:833Þð�0:259Þ þ 0:966

2
�

2

p
ðp� 1:833 � 0:966Þ

� �

¼
�5:04ð78Þ4

340;000
ð0:0954Þ ¼ �52:37 in

From case 15:

DDH ¼
0:4292ð0:1416Þ784

340;000
¼ 6:616 in

From case 16:

DDH ¼
0:2146ð0:0361Þ785

340;000
¼ 65:79 in

The total change in the horizontal diameter is 20 in. It must be understood at
this point that the anwers are somewhat in error since this large a deflection
does violate the assumption that the loaded ring is very nearly circular. This
was expected when the stresses were found to be so large in such a thin pipe.

Arches. Table 9.3 gives formulas for end reactions and end deforma-

tions for circular arches of constant radius of curvature and constant

cross section under 18 different loadings and with 14 combinations of

end conditions. The corrections for axial stress and transverse shear

are accomplished as they were in Table 9.2 by the use of the constants

a and b. Once the indeterminate reactions are known, the bending

moments, axial loads, and transverse shear forces can be found from

equilibrium equations. If deformations are desired for points away

from the ends, the unit-load method [Eq. (8.1-6)] can be used or the

arch can be divided at the position where the deformations are desired

and either portion analyzed again by the formulas in Table 9.3.

Several examples illustrate this last approach. Note that in many

instances the answer depends upon the difference of similar large

terms, and so appropriate attention to accuracy must be given.

EXAMPLES

1. A WT4 � 6:5 structural steel T-beam is formed in the plane of its web into a
circular arch of 50-in radius spanning a total angle of 120
. The right end is
fixed, and the left end has a pin which is constrained to follow a horizontal slot
in the support. The load is applied through a vertical bar welded to the beam,
as shown in Fig. 9.9. Calculate the movement of the pin at the left end, the
maximum bending stress, and the rotation of the bar at the point of attach-
ment to the arch.

Solution. The following material and cross-sectional properties may be used
for this beam. E ¼ 30ð106Þ lb=in2

, G ¼ 12ð106Þ lb=in2
, Ix ¼ 2:90 in

4
, A ¼ 1:92 in

2
,

flange thickness¼ 0.254 in, and web thickness¼ 0.230 in. The loading on the
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arch can be replaced by a concentrated moment of 8000 lb-in and a horizontal
force of 1000 lb at a position indicated by f ¼ 20
 (0.349 rad). R ¼ 50 in and
y ¼ 60
 (1.047 rad). For these loads and boundary conditions, cases 9b and 9n
of Table 9.3 can be used.

Since the radius of 50 in is only a little more than 10 times the depth of 4 in,
corrections for axial load and shear will be considered. The axial-stress
deformation factor a ¼ I=AR2 ¼ 2:9=1:92ð502Þ ¼ 0:0006. The transverse-shear
deformation factor b ¼ FEI=GAR2, where F will be approximated here by
using F ¼ 1 and A ¼ web area ¼ 4ð0:23Þ ¼ 0:92. This gives b ¼ 1ð30Þð106Þ

ð2:90Þ=12ð106Þð0:92Þð502Þ ¼ 0:003. The small values of a and b indicate that
bending governs the deformations, and so the effect of axial load and trans-
verse shear will be neglected. Note that s ¼ sin 60
, c ¼ cos 60
, n ¼ sin 20
,
and m ¼ cos 20
.

For case 9b,

LFH ¼ 1000
1:0472 þ 0:3491

2
ð1 þ 2 cos 20
 cos 60
Þ �

sin 60
 cos 60


2

�

�
sin 20
 cos 20


2
� cos 20
 sin 60
 � sin 20
 cos 60


�

¼ 1000ð�0:00785Þ ¼ �7:85 lb

Similarly,

LFV ¼ 1000ð�0:1867Þ ¼ �186:7 lb and LFM ¼ 1000ð�0:1040Þ ¼ �104:0 lb

For the case 9n,

LFH ¼
8000

50
ð�0:5099Þ ¼ �81:59 lb

LFV ¼
8000

50
ð�1:6489Þ ¼ �263:8 lb

LFM ¼
8000

50
ð�1:396Þ ¼ �223:4 lb

Also,

BVV ¼ 1:0472 þ 2ð1:0472Þ sin
2

60
 � sin 60
 cos 60
 ¼ 2:1850 lb

BHV ¼ 0:5931 lb

BMV ¼ 1:8138 lb

Figure 9.9
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Therefore,

VA ¼ �
186:7

2:1850
�

263:8

2:1850
¼ �85:47 � 120:74 ¼ �206:2 lb

dHA ¼
503

30ð106Þð2:9Þ
½0:5931ð�206:2Þ þ 7:85 þ 81:59	 ¼ �0:0472 in

The expression for the bending moment can now be obtained by an
equilibrium equation for a position located by an angle x measured from the
left end:

Mx ¼ VAR½sin y� sinðy� xÞ	 þ 8000hx � ðy� fÞi0

� 1000R½cosðy� xÞ � cosf	hx � ðy� fÞi0

At x ¼ 40
� Mx ¼ �206:2ð50Þ½sin 60
 � sinð60
 � 40
Þ	 ¼ �5403 lb-in

At x ¼ 40
þ Mx ¼ �5403 þ 8000 ¼ 2597 lb-in

At x ¼ 60
 Mx ¼ �206:2ð50Þð0:866Þ þ 8000 � 1000ð50Þð1 � 0:940Þ

¼ �3944 lb-in

At x ¼ 120
 Mx ¼ 12;130 lb-in

The maximum bending stress is therefore

s ¼
12;130ð4 � 1:03Þ

2:9
¼ 12;420 lb=in2

To obtain the rotation of the arch at the point of attachment of the bar, we
first calculate the loads on the portion to the right of the loading and then
establish an equivalent symmetric arch (see Fig. 9.10). Now from cases 12a,
12b, and 12n, where y ¼ f ¼ 40
ð0:698 radÞ, we can determine the load terms:

For case 12a LFM ¼ �148½2ð0:698Þð0:643Þ	 ¼ �133 lb

For case 12b LFM ¼ 1010½0:643 þ 0:643 � 2ð0:698Þð0:766Þ	 ¼ 218 lb

For case 12n LFM ¼
2597

50
ð�0:698 � 0:698Þ ¼ �72:5 lb

Therefore, the rotation at the load is

cA ¼
�502

30ð106Þð2:9Þ
ð�133 þ 218 � 72:5Þ ¼ �0:00036 rad

We would not expect the rotation to be in the opposite direction to the
applied moment, but a careful examination of the problem shows that the
point on the arch where the bar is fastened moves to the right 0.0128 in.
Therefore, the net motion in the direction of the 1000-lb load on the end of the
8-in bar is 0.0099 in, and so the applied load does indeed do positive work on
the system.

Figure 9.10
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2. The deep circular arch of titanium alloy has a triangular cross section and
spans 120
 as shown in Fig. 9.11. It is driven by the central load P to produce
an acceleration of 40g. The tensile stress at A and the deformations at the
extreme ends are required. All dimensions given and used in the formulas are
in centimeters.

Solution. This is a statically determinate problem, so the use of information
from Table 9.3 is needed only to obtain the deformations. Superposing the
central load and the forces needed to produce the acceleration on the total span
can be accomplished readily by using cases 3a and 3h. This solution, however,
will provide only the horizontal and rotational deformations of the ends. Using
the symmetry one can also superpose the loadings from cases 12h and 12i on
the left half of the arch and obtain all three deformations. Performing both
calculations provides a useful check. All dimensions are given in centimeters
and used with expressions from Table 9.1, case 5, to obtain the needed factors
for this section. Thus, b ¼ 10, d ¼ 30, A ¼ 150, c ¼ 10, R ¼ 30, R=c ¼ 3,
e=c ¼ 0:155, e ¼ 1:55 and for the peak stresses, ki ¼ 1:368 and ko ¼ 0:697.
The titanium alloy has a modulus of elasticity of 117 GPa [11.7(106)N=cm2], a
Poisson’s ratio of 0.33, and a mass density of 4470 kg=m3, or 0.00447 kg=cm3.
One g of acceleration is 9.81 m=s2, and 1 cm of arc length at the centroidal
radius of 30 cm will have a volume of 150 cm3 and a mass of 0.6705 kg. This
gives a loading parallel to the driving force P of 0.6705(40)(9.81)¼ 263 N=cm of
centroidal arc length. Since this is a very sharply curved beam, R=d ¼ 1, one
must recognize that the resultant load of 263 N=cm does not act through the
centroid of the cross-sectional area but instead acts through the mass center of
the differential length. The radius to this point is given as Rcg and is found
from the expression Rcg=R ¼ 1 þ I=AR2, where I is the area moment of inertia
about the centroidal axis of the cross section. Therefore, Rcg=R ¼ 1 þ ðbd3=36Þ=
ðbd=2ÞR2 ¼ 1:056. Again due to the sharp curvature the axial- and shear-stress
contributions to deformation must be considered. From the introduction to
Table 9.3 we find that a ¼ h=R ¼ 0:0517 and b ¼ 2Fð1 þ nÞh=R ¼ 0:1650, where
F ¼ 1:2 for a triangular cross section as given in Sec. 8.10. Therefore,
k1 ¼ 1 � aþ b ¼ 1:1133, and k2 ¼ 1 � a ¼ 0:9483.

For a first solution use the full span and superpose cases 3a and 3h. To
obtain the load terms LPH and LPM use cases 1a and 1h.

For case 1a, W ¼ �263ð30Þð2p=3Þ ¼ �16;525 N, y ¼ 60
, f ¼ 0
, s ¼ 0:866,
c ¼ 0:500, n ¼ 0, and m ¼ 1:000.

LPH ¼ �16;525
p
3
ð0:866Þð0:5Þ � 0 þ

1:1133

2
ð0:52 � 1:02Þ

�

þ 0:9483ð0:5Þð0:5 � 1:0Þ

�

¼ �16;525ð�0:2011Þ ¼ 3323 N

Similarly, LPM ¼ 3575 N.

Figure 9.11
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For case 1h, w ¼ 263 N=cm, R ¼ 30, Rcg=R ¼ 1:056, y ¼ 60
, s ¼ 0:866, and
c ¼ 0:5000.

LPH ¼ 263ð30Þð�0:2365Þ ¼ �1866 N

and

LPM ¼ 263ð30Þð�0:2634Þ ¼ �2078 N

Returning now to case 3 where MA and HA are zero, one finds that VA ¼ 0 by
superposing the loadings. To obtain dHA and cA we superpose cases a and h
and substitute AhR for I because of the sharp curvature

dHA1 ¼ �303 3323 � 1866

11:7ð106Þð150Þð1:55Þð30Þ
¼ �482ð10�6Þ cm

cA1 ¼ �302 3575 � 2078

8:161ð1010Þ
¼ �16:5ð10�6Þ rad

Now for the second and more complete solution, use will be made of cases
12h and 12i. The left half spans 60
, so y ¼ 30
, s ¼ 0:5000, and c ¼ 0:8660. In
this solution the central symmetry axis of the left half being used is inclined at
30
 to the gravitational loading of 263 N=cm. Therefore, for case 5h, w ¼

263 cos 30
 ¼ 227:8 N=cm

LFH ¼ 227:8ð30Þ
1:1133

2
2

p
6

� �
ð0:8662Þ �

p
6
� 0:5ð0:866Þ

h i


þ 0:9483ð1:056 þ 1Þ
p
6
� 0:5ð0:866Þ

h i
þ 1:056ð2Þð0:866Þ

p
6

0:866 � 0:5
� �o

¼ 227:8ð30Þð�0:00383Þ ¼ �26:2 N

Similarly

LFV ¼ 227:8ð30Þð0:2209Þ ¼ 1510 N and LFM ¼ 227:8ð30Þð0:01867Þ ¼ 1276 N

For case 5i, w ¼ �263 sin 30
 ¼ �131:5 N=cm and again y ¼ 30


LFH ¼ �131:5ð30Þð0:0310Þ ¼ �122:3 N

LFV ¼ �131:5ð30Þð�0:05185Þ ¼ 204:5 N

LFM ¼ �131:5ð30Þð�0:05639Þ ¼ 222:5 N

Using case 12 and superposition of the loadings gives

dHA2 ¼ �303 �26:2 � 122:3

8:161ð1010Þ
¼ 49:1ð10�6Þ cm

dVA2 ¼ �303 1510 þ 204:5

8:161ð1010Þ
¼ �567ð10�6Þ cm

cA2 ¼ �302 1276 þ 222:5

8:161ð1010Þ
¼ �16:5ð10�6Þ rad

Although the values of cA from the two solutions check, one further step is
needed to check the horizontal and vertical deflections of the free ends. In the
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last solution the reference axes are tilted at 30
. Therefore, the horizontal and
vertical deflections of the left end are given by

dHA ¼ dHA2ð0:866Þ þ dVA2ð0:5Þ ¼ �241ð10�6Þ cm

dVA ¼ dHA2ð�0:5Þ þ dVA2ð0:866Þ ¼ �516ð10�6Þ cm

Again the horizontal deflection of �0.000241 cm for the left half of the arch
checks well with the value of �0.000482 cm for the entire arch. With the two
displacements of the centroid and the rotation of the end cross section now
known, one can easily find the displacements of any other point on the end
cross section.

To find the tensile stress at point A we need the bending moment at the
center of the arch. This can be found by integration as

M ¼

ðp=2
p=6

�263R dyðRcg cos yÞ ¼ �263RRcg sin y
				
p=2

p=6
¼ �125;000 N-cm

Using the data from Table 9.1, the stress in the outer fiber at the point A is
given by

sA ¼
koMc

I
¼

0:697ð125;000Þð20Þ

10ð303Þ=36
¼ 232 N=cm

2

9.4 Elliptical Rings

For an elliptical ring of semiaxes a and b, under equal and opposite

forces W (Fig. 9.12), the bending moment M1 at the extremities of the

major axis is given by M1 ¼ K1Wa, and for equal and opposite outward

forces applied at the ends of the minor axis, the moment M1 at the

ends of the major axis is given by M1 ¼ �K2Wa, where K1 and K2 are

coefficients which depend on the ratio a=b and have the following

values:

a=b 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7

K1 0.318 0.295 0.274 0.255 0.240 0.227 0.216 0.205

K2 0.182 0.186 0.191 0.195 0.199 0.203 0.206 0.208

a=b 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5

K1 0.195 0.185 0.175 0.167 0.161 0.155 0.150 0.145

K2 0.211 0.213 0.215 0.217 0.219 0.220 0.222 0.223

Burke (Ref. 6) gives charts by which the moments and tensions in

elliptical rings under various conditions of concentrated loading can be

found; the preceding values of K were taken from these charts.

Timoshenko (Ref. 13) gives an analysis of an elliptical ring (or other

ring with two axes of symmetry) under the action of a uniform
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outward pressure, which would apply to a tube of elliptical section

under internal pressure. For this case M ¼ Kpa2, where M is the

bending moment at a section a distance x along the ring from the end

of the minor axis, p is the outward normal pressure per linear inch,

and K is a coefficient that depends on the ratios b=a and x=S, where S

is one-quarter of the perimeter of the ring. Values of K are given in the

following table; M is positive when it produces tension at the inner

surface of the ring:

b=a

x=S
0.3 0.5 0.6 0.7 0.8 0.9

0 �0.172 �0.156 �0.140 �0.115 �0.085 �0.045

0.1 �0.167 �0.152 �0.135 �0.112 �0.082 �0.044

0.2 �0.150 �0.136 �0.120 �0.098 �0.070 �0.038

0.4 �0.085 �0.073 �0.060 �0.046 �0.030 �0.015

0.6 0.020 0.030 0.030 0.028 0.022 0.015

0.7 0.086 0.090 0.082 0.068 0.050 0.022

0.8 0.160 0.150 0.130 0.105 0.075 0.038

0.9 0.240 0.198 0.167 0.130 0.090 0.046

1.0 0.282 0.218 0.180 0.140 0.095 0.050

Values of M calculated by the preceding coefficients are correct only

for a ring of uniform moment of inertia I; if I is not uniform, then a

correction DM must be added. This correction is given by

DM ¼

�

ðx

0

M

I
dxðx

0

dx

I

The integrals can be evaluated graphically. Reference 12 gives charts

for the calculation of moments in elliptical rings under uniform radial

loading; the preceding values of K were taken from these charts.

Figure 9.12
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9.5 Curved Beams Loaded Normal to Plane of
Curvature

This type of beam usually presents a statically indeterminate problem,

the degree of indeterminacy depending upon the manner of loading

and support. Both bending and twisting occur, and it is necessary to

distinguish between an analysis that is applicable to compact or

flangeless sections (circular, rectangular, etc.) in which torsion does

not produce secondary bending and one that is applicable to flanged

sections (I-beams, channels, etc.) in which torsion may be accompanied

by such secondary bending (see Sec. 10.3). It is also necessary to

distinguish among three types of constraints that may or may not

occur at the supports, namely: (1) the beam is prevented from sloping,

its horizontal axis held horizontal by a bending couple; (2) the beam is

prevented from rolling, its vertical axis held vertical by a twisting

couple; and (3) in the case of a flanged section, the flanges are

prevented from turning about their vertical axes by horizontal second-

ary bending couples. These types of constraints will be designated here

as (1) fixed as to slope, (2) fixed as to roll, and (3) flanges fixed.

Compact sections. Table 9.4 treats the curved beam of uniform cross

section under concentrated and distributed loads normal to the plane

of curvature, out-of-plane concentrated bending moments, and concen-

trated and distributed torques. Expressions are given for transverse

shear, bending moment, twisting moment, deflection, bending slope,

and roll slope for 10 combinations of end conditions. To keep the

presentation to a reasonable size, use is made of the singularity

functions discussed in detail previously and an extensive list of

constants and functions is given. In previous tables the representative

functional values have been given, but in Table 9.4 the value of b
depends upon both bending and torsional properties, and so a useful

set of tabular values would be too large to present. The curved beam or

ring of circular cross section is so common, however, that numerical

coefficients are given in the table for b ¼ 1:3 which will apply to a solid

or hollow circular cross section of material for which Poisson’s ratio is

0.3.

Levy (Ref. 14) has treated the closed circular ring of arbitrary

compact cross section for six loading cases. These cases have been

chosen to permit apropriate superposition in order to solve a large

number of problems, and both isolated and distributed out-of-plane

loads are discussed. Hogan (Ref. 18) presents similar loadings and

supports. In a similar way the information in Table 9.4 can be used by

appropriate superposition to solve most out-of-plane loading problems

on closed rings of compact cross section if strict attention is given to
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the symmetry and boundary conditions involved. Several simple

examples of this reasoning are described in the following three cases.

1. If a closed circular ring is supported on any number of equally

spaced simple supports (two or more) and if identical loading on

each span is symmetrically placed relative to the center of the span,

then each span can be treated by boundary condition f of Table 9.4.

This boundary condition has both ends with no deflection or slope,

although they are free to roll as needed.

2. If a closed circular ring is supported on any even number of equally

spaced simple supports and if the loading on any span is antisym-

metrically placed relative to the center line of each span and

symmetrically placed relative to each support, then boundary

condition f can be applied to each full span. This problem can

also be solved by applying boundary condition g to each half span.

Boundary condition g has one end simply supported and slope-

guided and the other end simply supported and roll-guided.

3. If a closed circular ring is supported on any even number of equally

spaced simple supports (four or more) and if each span is symme-

trically loaded relative to the center of the span with adjacent spans

similarly loaded in opposite directions, then boundary condition i

can be applied to each span. This boundary condition has both ends

simply supported and roll-guided.

Once any indeterminate reaction forces and moments have been

found and the indeterminate internal reactions found at at least one

location in the ring, all desired internal bending moment, torques, and

transverse shears can be found by equilibrium equations. If a large

number of such calculations need be made, one should consider using a

theorem published in 1922 by Biezeno. For details of this theorem see

Ref. 32. A brief illustration of this work for loads normal to the plane of

the ring is given in Ref. 29.

A treatment of curved beams on elastic foundations is beyond the

scope of this book. See Ref. 20.

The following examples illustrate the applications of the formulas in

Table 9.4 to both curved beams and closed rings with out-of-plane

loads.

EXAMPLES

1. A piece of 8-in standard pipe is used to carry water across a passageway 40 ft
wide. The pipe must come out of a wall normal to the surface and enter normal
to a parallel wall at a position 16.56 ft down the passageway at the same
elevation. To accomplish this a decision was made to bend the pipe into two
opposite arcs of 28.28-ft radius with a total angle of 45
 in each arc. If it is
assumed that both ends are rigidly held by the walls, determine the maximum
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combined stress in the pipe due to its own weight and the weight of a full pipe
of water.

Solution. An 8-in standard pipe has the following properties: A ¼ 8:4 in
2
,

I ¼ 72:5 in
4
, w ¼ 2:38 lb=in, E ¼ 30ð106Þ lb=in2

, n ¼ 0:3, J ¼ 145 in
4
,

OD¼ 8.625 in, ID¼ 7.981 in, and t ¼ 0:322 in. The weight of water in a 1-in
length of pipe is 1.81 lb. Owing to the symmetry of loading it is apparent that
at the center of the span where the two arcs meet there is neither slope nor
roll. An examination of Table 9.4 reveals that a curved beam that is fixed at the
right end and roll- and slope-guided at the left end is not included among the
10 cases. Therefore, a solution will be carried out by considering a beam that is
fixed at the right end and free at the left end with a uniformly distributed load
over the entire span and both a concentrated moment and a concentrated
torque on the left end. (These conditions are covered in cases 2a, 3a, and 4a.)

Since the pipe is round, J ¼ 2I ; and since G ¼ E=2ð1 þ nÞ, b ¼ 1:3. Also note
that for all three cases f ¼ 45
 and y ¼ 0
. For these conditions, numerical
values of the coefficients are tabulated and the following expressions for the
deformations and moments can be written directly from superposition of the
three cases:

yA ¼ 0:3058
MoR2

EI
� 0:0590

ToR2

EI
� 0:0469

ð2:38 þ 1:81ÞR4

EI

YA ¼ �0:8282
MoR

EI
� 0:0750

ToR

EI
þ 0:0762

4:19R3

EI

cA ¼ 0:0750
MoR

EI
þ 0:9782

ToR

EI
þ 0:0267

4:19R3

EI

VB ¼ 0 þ 0 � 4:19Rð0:7854Þ

MB ¼ 0:7071Mo � 0:7071To � 0:2929ð4:19ÞR2

TB ¼ 0:7071Mo þ 0:7071To � 0:0783ð4:19ÞR2

Since both YA and cA are zero and R ¼ 28:28ð12Þ ¼ 339:4 in,

0 ¼ �0:8282Mo � 0:0750To þ 36;780

0 ¼ 0:0750Mo þ 0:9782To þ 12;888

Solving these two equations gives Mo ¼ 45;920 lb-in and To ¼ �16;700 lb-in.
Therefore,

yA ¼ �0:40 in; MB ¼ �97;100 lb-in

TB ¼ �17;000 lb-in; VB ¼ �1120 lb

The maximum combined stress would be at the top of the pipe at the wall
where s ¼ Mc=I ¼ 97;100ð4:3125Þ=72:5 ¼ 5575 lb=in2 and t ¼ Tr=J ¼ 17;100
ð4:3125Þ=145 ¼ 509 lb=in2

smax ¼
5775

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5775

2

� �2

þ5092

s
¼ 5819 lb=in2

2. A hollow steel rectangular beam 4 in wide, 8 in deep, and with 0.1-in wall
thickness extends over a loading dock to be used as a crane rail. It is fixed to a
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warehouse wall at one end and is simply supported on a post at the other. The
beam is curved in a horizontal plane with a radius of 15 ft and covers a total
angular span of 60
. Calculate the torsional and bending stresses at the wall
when a load of 3000 lb is 20
 out from the wall. Neglect the weight of the beam.

Solution. The beam has the following properties: R ¼ 180 in; f ¼

60
ðp=3 radÞ; y¼ 40
; f�y¼ 20
ðp=9 radÞ; I ¼ 1
12
½4ð83Þ�3:8ð7:83Þ	 ¼ 20:39 in

4
;

K ¼ 2ð0:12Þð7:92Þð3:92Þ=½8ð0:1Þ þ 4ð0:1Þ � 2ð0:12Þ	 ¼ 16:09 in
4

(see Table 10.1,
case 16); E ¼ 30ð106Þ; G ¼ 12ð106Þ; and b ¼ 30ð106Þð20:39Þ=12ð106Þð16:09Þ ¼
3:168. Equations for a curved beam that is fixed at one end and simply
supported at the other with a concentrated load are found in Table 9.4, case
1b. To obtain the bending and twisting moments at the wall requires first the
evaluation of the end reaction VA, which, in turn, requires the following
constants:

C3 ¼ �3:168
p
3
� sin 60


� �
�

1 þ 3:168

2

p
3

cos 60
 � sin 60

� �

¼ 0:1397

Ca3 ¼ �3:168
p
9
� sin 20


� �
� Ca2 ¼ 0:006867

Similarly,

C6 ¼ C1 ¼ 0:3060; Ca6 ¼ Ca1 ¼ 0:05775

C9 ¼ C2 ¼ �0:7136; Ca9 ¼ Ca2 ¼ �0:02919

Therefore,

VA ¼ 3000
�0:02919ð1 � cos 60
Þ � 0:05775 sin 60
 þ 0:006867

�0:7136ð1 � cos 60
Þ � 0:3060 sin 60
 þ 0:1397
¼ 359:3 lb

MB ¼ 359:3ð180Þðsin 60
Þ � 3000ð180Þðsin 20
Þ ¼ �128;700 lb-in

TB ¼ 359:3ð180Þð1 � cos 60
Þ � 3000ð180Þð1 � cos 20
Þ ¼ �230 lb-in

At the wall,

s ¼
Mc

I
¼

128;700ð4Þ

20:39
¼ 25;240 lb=in2

t ¼

VA0 �yy

Ib
¼

ð3000 � 359:3Þ½4ð4Þð2Þ � 3:9ð3:8Þð1:95Þ	

20:39ð0:2Þ
¼ 2008 lb=in2

(due to transverse shear)

T

2tða � tÞðb � tÞ
¼

230

2ð0:1Þð7:9Þð3:9Þ
¼ 37:3 lb=in2

(due to torsion)

8>>>>>>>><
>>>>>>>>:

3. A solid round aluminum bar is in the form of a horizontal closed circular
ring of 100-in radius resting on three equally spaced simple supports. A load of
1000 lb is placed midway between two supports, as shown in Fig. 9.13(a).
Calculate the deflection under this load if the bar is of such diameter as to
make the maximum normal stress due to combined bending and torsion equal
to 20,000 lb=in2. Let E ¼ 10ð106Þ lb=in2

and n ¼ 0:3.

Solution. The reactions RB;RC , and RD are statically determinate, and a
solution yields RB ¼ �333:3 lb and RC ¼ RD ¼ 666:7 lb. The internal bending
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and twisting moments are statically indeterminate, and so an energy solution
would be appropriate. However, there are several ways that Table 9.4 can be
used by superimposing various loadings. The method to be described here is
probably the most straightforward.

Consider the equivalent loading shown in Fig. 9.13(b), where RB ¼

�333:3 lb and RA ¼ �1000 lb. The only difference is in the point of zero
deflection. Owing to the symmetry of loading, one-half of the ring can be
considered slope-guided at both ends, points A and B. Case 1f gives tabulated
values of the necessary coefficients for f ¼ 180
 and y ¼ 60
. We can now solve
for the following values:

VA ¼ �666:7ð0:75Þ ¼ �500 lb

MA ¼ �666:7ð100Þð�0:5774Þ ¼ 38;490 lb-in

cA ¼
�666:7ð1002Þ

EI
ð�0:2722Þ ¼

1:815ð106Þ

EI

TA ¼ 0 yA ¼ 0 YA ¼ 0

MB ¼ �666:7ð100Þð�0:2887Þ ¼ 19;250 lb-in

M60
 ¼ �666:7ð100Þð0:3608Þ ¼ �24;050 lb-in

The equations for M and T can now be examined to determine the location of
the maximum combined stress:

Mx ¼ �50;000 sin x þ 38;490 cos x þ 66;667 sinðx � 60
Þhx � 60
i0

Tx ¼ �50;000ð1 � cos xÞ þ 38;490 sin x þ 66;667½1 � cosðx � 60
Þ	hx � 60
i0

A careful examination of the expression for M shows no maximum values
except at the ends and at the position of the load The torque, however, has a
maximum value of 13,100 in-lb at x ¼ 37:59
 and a minimum value of
�8790 in-lb at x ¼ 130:9
. At these same locations the bending moments are
zero. At the position of the load, the torque T ¼ 8330 lb-in. Nowhere is the
combined stress larger than the bending stress at point A. Therefore,

sA ¼ 20;000 ¼
MAc

I
¼

38;490d=2

ðp=64Þd4
¼

392;000

d3

which gives

d ¼ 2:70 in and I ¼ 2:609 in
4

Figure 9.13
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To obtain the deflection under the 1000-lb load in the original problem, first
we must find the deflection at the position of the load of 666.7 lb in Fig. 9.13(b).
At x ¼ 60
,

yx ¼ 0 þ 0 þ
1:815ð106Þð100Þ

10ð106Þ2:609
ð1 � cos 60
Þ þ

38;490ð1002Þ

10ð106Þð2:609Þ
F1

þ 0 þ
�500ð1003Þ

10ð106Þð2:609Þ
F3

where

F1 ¼
1 þ 1:3

2

p
3

sin 60
 � 1:3ð1 � cos 60
Þ ¼ 0:3029 and F3 ¼ 0:1583

Therefore,

y60 ¼ 3:478 þ 5:796 � 3:033 ¼ 6:24 in

If the entire ring were now rotated as a rigid body about point B in order to
lower points C and D by 6.24 in, point A would be lowered a distance of
6.24(2)=(1 þ cos 60
)¼ 8.32 in, which is the downward deflection of the 1000-lb
load.

The use of a fictitious support, as was done in this problem at point A, is
generalized for asymmeric loadings, both in-plane and out-of-plane, by Barber
in Ref. 35.

Flanged sections. The formulas in Table 9.4 for flangeless or compact

sections apply also to flanged sections when the ends are fixed as to

slope only or when fixed as to slope and roll but not as to flange

bending and if the loads are distributed or applied only at the ends. If

the flanges are fixed or if concentrated loads are applied within the

span, the additional torsional stiffness contributed by the bending

resistance of the flanges [warping restraint (see Sec. 10.3)] may

appreciably affect the value and distribution of twisting and bending

moments. The flange stresses caused by the secondary bending or

warping may exceed the primary bending stresses. References 15 to 17

and 22 show methods of solution and give some numerical solutions for

simple concentrated loads on curved I-beams with both ends fixed

completely. Brookhart (Ref. 22) also includes results for additional

boundary conditions and uniformly distributed loads. Results are

compared with cases where the warping restraint was not considered.

Dabrowski (Ref. 23) gives a thorough presentation of the theory of

curved thin-walled beams and works out many examples including

multispan beams and beams with open cross sections, closed cross

sections, and cross sections which contain both open and closed

elements; an extensive bibliography is included. Vlasov (Ref. 27) also

gives a very thorough derivation and discusses, among many other

topics, vibrations, stability, laterally braced beams of open cross
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section, and thermal stresses. He also examines the corrections

necessary to account for shear deformation in flanges being warped.

Verden (Ref. 24) is primarily concerned with multispan curved beams

and works out many examples. Sawko and Cope (Ref. 25) and Meyer

(Ref. 26) apply finite-element analysis to curved box girder bridges.
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9.6 Tables

TABLE 9.1 Formulas for curved beams subjected to bending in the plane of the curve
NOTATION: R ¼ radius of curvature measured to centroid of section; c ¼distance from centroidal axis to extreme fiber on concave side of beam; A ¼area

of section; e ¼distance from centroidal axis to neutral axis measured toward center of curvature; I ¼moment of inertia of cross section about centroidal

axis perpendicular to plane of curvature; and ki ¼ si=s and ko ¼ so=s where si ¼actual stress in exteme fiber on concave side, so ¼actual stress in

extreme fiber on convex side, and s ¼fictitious unit stress in corresponding fiber as computed by ordinary flexure formula for a straight beam

Form and dimensions of cross section,

reference no. Formulas Values of
e

c
;ki , and ko for various values of

R

c

1. Solid rectangular section e

c
¼

R

c
�

2

ln
R=c þ 1

R=c � 1

ðNote : e=c; ki; and ko

are independent of

the width bÞ

ki ¼
1

3e=c

1 � e=c

R=c � 1

ko ¼
1

3e=c

1 þ e=c

R=c þ 1

ð
area

dA

r
¼ b

R=c þ 1

R=c � 1

R

c
¼ 1:20 1.40 1.60 1.80 2.00 3.00 4.00 6.00 8.00 10.00

e

c
¼ 0:366 0.284 0.236 0.204 0.180 0.115 0.085 0.056 0.042 0.033

ki ¼ 2:888 2.103 1.798 1.631 1.523 1.288 1.200 1.124 1.090 1.071

ko ¼ 0:566 0.628 0.671 0.704 0.730 0.810 0.853 0.898 0.922 0.937

2. Trapezoidal section d

c
¼

3ð1 þ b1=bÞ

1 þ 2b1=b
;

c1

c
¼

d

c
� 1

e

c
¼

R

c
�

1
2
ð1 þ b1=bÞðd=cÞ

2

R

c
þ

c1

c
�

b1

b

R

c
� 1

� �� �
ln

R=c þ c1=c

R=c � 1

� �
� 1 �

b1

b

� �
d

c

ki ¼
1

2e=c

1 � e=c

R=c � 1

1 þ 4b1=b þ ðb1=bÞ
2

ð1 þ 2b1=bÞ
2

ko ¼
c1=c

2e=c

c1=c þ h=c

R=c þ c1=c

1 þ 4b1=b þ ðb1=bÞ
2

ð2 þ b1=bÞ
2

(Note: while e=c;ki , ko depend upon the width ratio b1=b,

they are independent of the width b)

ðWhen b1=b ¼ 1
2
Þ

R

c
¼ 1:20 1.40 1.60 1.80 2.00 3.00 4.00 6.00 8.00 10.00

e

c
¼ 0:403 0.318 0.267 0.232 0.206 0.134 0.100 0.067 0.050 0.040

ki ¼ 3:011 2.183 1.859 1.681 1.567 1.314 1.219 1.137 1.100 1.078

ko ¼ 0:544 0.605 0.648 0.681 0.707 0.790 0.836 0.885 0.911 0.927

3
0
4
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o
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u
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s
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r
S
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s
s
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n
d

S
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H
A

P
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3. Triangular section,

base inward

e

c
¼

R

c
�

4:5

R

c
þ 2

� �
ln

R=c þ 2

R=c � 1

� �
� 3

; c ¼
d

3

ki ¼
1

2e=c

1 � e=c

R=c � 1

ko ¼
1

4e=c

2 þ e=c

R=c þ 2

(Note: e=c; ki, and ko are independent of the width b)

R

c
¼ 1:20 1.40 1.60 1.80 2.00 3.00 4.00 6.00 8.00 10.00

e

c
¼ 0:434 0.348 0.296 0.259 0.232 0.155 0.117 0.079 0.060 0.048

ki ¼ 3:265 2.345 1.984 1.784 1.656 1.368 1.258 1.163 1.120 1.095

ko ¼ 0:438 0.497 0.539 0.573 0.601 0.697 0.754 0.821 0.859 0.883

4. Triangular section, base

outward

e

c
¼

R

c
�

1:125

1:5 �
R

c
� 1

� �
ln

R=c þ 0:5

R=c � 1

; c ¼
2d

3

ki ¼
1

8e=c

1 � e=c

R=c � 1

ko ¼
1

4e=c

2e=c þ 1

2R=c þ 1

(Note: e=c; ki, and ko are independent of the width b1)

R

c
¼ 1:20 1.40 1.60 1.80 2.00 3.00 4.00 6.00 8.00 10.00

e

c
¼ 0:151 0.117 0.097 0.083 0.073 0.045 0.033 0.022 0.016 0.013

ki ¼ 3:527 2.362 1.947 1.730 1.595 1.313 1.213 1.130 1.094 1.074

ko ¼ 0:636 0.695 0.735 0.765 0.788 0.857 0.892 0.927 0.945 0.956

5. Diamond e

c
¼

R

c
�

1

R

c
ln 1 �

c

R

� �2
� �

þ ln
R=c þ 1

R=c � 1

ki ¼
1

6e=c

1 � e=c

R=c � 1

ko ¼
1

6e=c

1 þ e=c

R=c þ 1

ð
area

dA

r
¼ b

R

c
ln 1 �

c

R

� �2
� �

þ ln
R=c þ 1

R=c � 1

� �

(Note: e=c; ki, and ko are independent of the width b)

R

c
¼ 1:200 1.400 1.600 1.800 2.000 3.000 4.000 6.000 8.000 10.000

e

c
¼ 0:175 0.138 0.116 0.100 0.089 0.057 0.042 0.028 0.021 0.017

ki ¼ 3:942 2.599 2.118 1.866 1.709 1.377 1.258 1.159 1.115 1.090

ko ¼ 0:510 0.572 0.617 0.652 0.681 0.772 0.822 0.875 0.904 0.922

ð
area

dA

r
¼ b

R

3c
þ

2

3

� �
ln

R=c þ 2

R=c � 1

� �
� 1

� �

ð
area

dA

r
¼ b1 1 �

2

3

R

c
� 1

� �
ln

R=c þ 0:5

R=c � 1

� �

S
E

C
.
9
.6

]
C

u
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TABLE 9.1 Formulas for curved beams subjected to bending in the plane of the curve (Continued)

Form and dimensions of cross section,

reference no. Formulas Values of
e

c
;ki , and ko for various values of

R

c

6. Solid circular or

elliptical section e

c
¼

1

2

R

c
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R

c

� �2

�1

s2
4

3
5

ki ¼
1

4e=c

1 � e=c

R=c � 1

ko ¼
1

4e=c

1 þ e=c

R=c þ 1
;

ð
area

dA

r
¼ pb

R

c
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R

c

� �2

�1

s2
4

3
5

(Note: e=c; ki, and ko are independent of the width b)

R

c
¼ 1:20 1.40 1.60 1.80 2.00 3.00 4.00 6.00 8.00 10.000

e

c
¼ 0:268 0.210 0.176 0.152 0.134 0.086 0.064 0.042 0.031 0.025

ki ¼ 3:408 2.350 1.957 1.748 1.616 1.332 1.229 1.142 1.103 1.080

ko ¼ 0:537 0.600 0.644 0.678 0.705 0.791 0.837 0.887 0.913 0.929

7. Solid semicircle or

semiellipse, base inward

(Note: For a semicircle,

b=2 ¼ d)

R ¼ Rx þ c;
d

c
¼

3p
4

(Note: e=c; ki and ko are independent of the width b)

ki ¼
0:3879

e=c

1 � e=c

R=c � 1

ko ¼
0:2860

e=c

e=c þ 1:3562

R=c þ 1:3562

For Rx 5d:R=c5 3:356 andð
area

dA

r
¼

pRxb

2d
� b �

b

d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2

x � d2
p p

2
� sin

�1 d

Rx

� �

e

c
¼

R

c
�

ðd=cÞ2=2

R

c
� 2:5 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R

c
� 1

� �2

�
d

c

� �2
s

1 �
2

p
sin

�1 d=c

R=c � 1

� �

For Rx < d : R=c < 3:356 andð
area

dA

r
¼

pRxb

2d
� b þ

b

d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 � R2

x

p
ln

d þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 � R2

x

p
Rx

e

c
¼

R

c
�

ðd=cÞ2=2

R

c
� 2:5 þ

2

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d

c

� �2

�
R

c
� 1

� �2
s

ln
d=c þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðd=cÞ2 � ðR=c � 1Þ2

q
R=c � 1

R

c
¼ 1:200 1.400 1.600 1.800 2.000 3.000 4.000 6.000 8.000 10.000

e

c
¼ 0:388 0.305 0.256 0.222 0.197 0.128 0.096 0.064 0.048 0.038

ki ¼ 3:056 2.209 1.878 1.696 1.579 1.321 1.224 1.140 1.102 1.080

ko ¼ 0:503 0.565 0.609 0.643 0.671 0.761 0.811 0.867 0.897 0.916
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8. Solid semicircle or

semiellipse, base outward

(Note: for a semicircle, b=2 ¼ dÞ

R ¼ Rx � c1;
d

c
¼

3p
3p� 4

;
c1

c
¼

4

3p� 4

(Note: e=c; ki, and ko are independent of the width b)

ð
area

dA

r
¼

pRxb

2d
þ b �

b

d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2

x � d2
p p

2
þ sin

�1 d

Rx

� �

e

c
¼

R

c
�

ðd=cÞ2=2

R

c
þ

10

3p� 4
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R

c
þ

c1

c

� �2

�
d

c

� �2
s

1 þ
2

p
sin

�1 d=c

R=c þ c1=c

� �

ki ¼
0:2109

e=c

1 � e=c

R=c � 1

ko ¼
0:2860

e=c

e=c þ 0:7374

R=c þ 0:7374

R

c
¼ 1:200 1.400 1.600 1.800 2.000 3.000 4.000 6.000 8.000 10.000

e

c
¼ 0:244 0.189 0.157 0.135 0.118 0.075 0.055 0.036 0.027 0.021

ki ¼ 3:264 2.262 1.892 1.695 1.571 1.306 1.210 1.130 1.094 1.073

ko ¼ 0:593 0.656 0.698 0.730 0.755 0.832 0.871 0.912 0.933 0.946
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TABLE 9.1 Formulas for curved beams subjected to bending in the plane of the curve (Continued)

Form and dimensions of cross section,

reference no. Formulas Values of
e

c
;ki , and ko for various values of

R

c

9. Segment of a solid circle,

base inward

Note: R; c; e=c;ki , and ko are all

independent of the width of the

segment provided all horizontal

elements of the segment change

width proportionately. There-

fore to use these expressions for

a segment of an ellipse, find the

circle which has the same radial

dimensions Rx; ri , and d and

evaluate e=c; ki, and ko which

have the same values for both

the circle and ellipse. To find

dA=r for the ellipse, multiply

the value of dA=r for the

circle by the ratio of the

horizontal to vertical semi-

axes for the ellipse. See the

example.

R ¼ Rx þ c þ a cos a

a

c
¼

3a� 3 sin a cos a

3 sin a� 3a cos a� sin
3 a

;
c1

c
¼

3a� 3 sin a cos a� 2 sin
3 a

3 sin a� 3a cos a� sin
3 a

ki ¼
I

Ac2

1

e=c

1 � e=c

R=c � 1

where expressions for I and A are found in Table A.1, case 19

ko ¼
I

Ac2

1

ðe=cÞðc1=cÞ

e=c þ c1=c

R=c þ c1c

For Rx 5a : R=c5 ða=cÞð1 þ cos aÞ þ 1 andð
area

dA

r
¼ 2Rxa� 2a sin a� 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2

x � a2
p p

2
� sin

�1 a þ Rx cos a
Rx þ a cos a

� �
e

c
¼

R

c
�

ða� sin a cos aÞa=c

2aRx

a
� 2 sin a� 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rx

a

� �2

�1

s
p
2
� sin

�1 1 þ ðRx=aÞ cos a
Rx=a þ cos a

� �

(Note: Values of sin
�1

between �p=2 and p=2 are to be taken in above

expressions.)

For Rx < a:R=c < ða=cÞð1 þ cos aÞ þ 1 andð
area

dA

r
¼ 2Rxa� 2a sin aþ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � R2

x

p
ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � R2

x

p
sin aþ a þ Rx cos a

Rx þ a cos a

e

c
¼

R

c

�
ða� sin a cos aÞa=c

2aRx

a
� 2 sin aþ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 �

Rx

a

� �2
s

ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � ðRx=aÞ

2
q

sin aþ 1 þ ðRx=aÞ cos a

Rx=a þ cos a

For a ¼ 60
 :

R

c
¼ 1:200 1.400 1.600 1.800 2.000 3.000 4.000 6.000 8.000 10.000

e

c
¼ 0:401 0.317 0.266 0.232 0.206 0.134 0.101 0.067 0.051 0.041

ki ¼ 3:079 2.225 1.891 1.707 1.589 1.327 1.228 1.143 1.104 1.082

ko ¼ 0:498 0.560 0.603 0.638 0.665 0.755 0.806 0.862 0.893 0.913

For a ¼ 30
 :

R

c
¼ 1:200 1.400 1.600 1.800 2.000 3.000 4.000 6.000 8.000 10.000

e

c
¼ 0:407 0.322 0.271 0.236 0.210 0.138 0.103 0.069 0.052 0.042

ki ¼ 3:096 2.237 1.900 1.715 1.596 1.331 1.231 1.145 1.106 1.083

ko ¼ 0:495 0.556 0.600 0.634 0.662 0.752 0.803 0.860 0.891 0.911
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10. Segment of a solid

circle, base outward

Note: R; c; e=c;ki, and ko are

all independent of the width of

the segment provided all hori-

zontal elements of the segment

change width proportionately.

To use these expressions for a

segment of an ellipse, refer to

the explanation in case 9.

R ¼ Rx þ c � a

a

c
¼

3a� 3 sin a cos a

3a� 3 sin a cos a� 2 sin
3 a

;
c1

c
¼

3 sin a� 3a cos a� sin
3 a

3a� 3 sin a cos a� 2 sin
3 a

ki ¼
I

Ac2

1

e=c

1 � e=c

R=c � 1

where expressions for I and A are found in Table A.1, case 19

ko ¼
I

Ac2

1

ðe=cÞðc1=cÞ

e=c þ c1=c

R=c þ c1=cð
area

dA

r
¼ 2Rxaþ 2a sin a� 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2

x � a2
p p

2
þ sin

�1 a � Rx cos a
Rx � a cos a

� �
e

c
¼

R

c
�

ða� sin a cos aÞa=c

2aRx

a
þ 2 sin a� 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rx

a

� �2

�1

s
p
2
þ sin

�1 1 � ðRx=aÞ cos a
Rx=a � cos a

� �

(Note: Values of sin
�1

between �p=2 and p=2 are to be taken in above

expressions.)

For a ¼ 60
 :

R

c
¼ 1:200 1.400 1.600 1.800 2.000 3.000 4.000 6.000 8.000 10.000

e

c
¼ 0:235 0.181 0.150 0.129 0.113 0.071 0.052 0.034 0.025 0.020

ki ¼ 3:241 2.247 1.881 1.686 1.563 1.301 1.207 1.127 1.092 1.072

ko ¼ 0:598 0.661 0.703 0.735 0.760 0.836 0.874 0.914 0.935 0.948

For a ¼ 30
 :

R

c
¼ 1:200 1.400 1.600 1.800 2.000 3.000 4.000 6.000 8.000 10.000

e

c
¼ 0:230 0.177 0.146 0.125 0.110 0.069 0.051 0.033 0.025 0.020

ki ¼ 3:232 2.241 1.876 1.682 1.560 1.299 1.205 1.126 1.091 1.072

ko ¼ 0:601 0.663 0.706 0.737 0.763 0.838 0.876 0.916 0.936 0.948

11. Hollow circular section e

c
¼

1

2

2R

c
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R

c

� �2

�1

s
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R

c

� �2

�
c1

c

� �2

s2
4

3
5

ki ¼
1

4e=c

1 � e=c

R=c � 1
1 þ

c1

c

� �2
� �

ko ¼
1

4e=c

1 þ e=c

R=c þ 1
1 þ

c1

c

� �2
� �

(Note: For thin-walled tubes the discussion on page 277 should

be considered)

(When c1=c ¼ 1
2
)

R

c
¼ 1:20 1.40 1.60 1.80 2.00 3.00 4.00 6.00 8.00 10.00

ki ¼ 3:276 2.267 1.895 1.697 1.573 1.307 1.211 1.130 1.094 1.074

e

c
¼ 0:323 0.256 0.216 0.187 0.166 0.107 0.079 0.052 0.039 0.031

ko ¼ 0:582 0.638 0.678 0.708 0.733 0.810 0.852 0.897 0.921 0.936
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TABLE 9.1 Formulas for curved beams subjected to bending in the plane of the curve (Continued)

Form and dimensions of cross section,

reference no. Formulas Values of
e

c
;ki , and ko for various values of

R

c

12. Hollow elliptical section

12a. Inner and outer

perimeters are ellipses,

wall thickness is not

constant

e

c
¼

R

c
�

1
2
½1 � ðb1=bÞðc1=cÞ	

R

c
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R

c

� �2

�1

s
�

b1=b

c1=c

R

c
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R

c

� �2

�
c1

c

� �2

s2
4

3
5

ki ¼
1

4e=c

1 � e=c

R=c � 1

1 � ðb1=bÞðc1=cÞ
3

1 � ðb1=bÞðc1=cÞ

ko ¼
1

4e=c

1 þ e=c

R=c þ 1

1 � ðb1=bÞðc1=cÞ
3

1 � ðb1=bÞðc1=cÞ

(Note: While e=c;ki , and ko depend upon the width ratio b1=b,

they are independent of the width b)

(When b1=b ¼ 3
5
; c1=c ¼ 4

5
Þ

R

c
¼ 1:20 1.40 1.60 1.80 2.00 3.00 4.00 6.00 8.00 10.00

e

c
¼ 0:345 0.279 0.233 0.202 0.178 0.114 0.085 0.056 0.042 0.034

ki ¼ 3:033 2.154 1.825 1.648 1.535 1.291 1.202 1.125 1.083 1.063

ko ¼ 0:579 0.637 0.677 0.709 0.734 0.812 0.854 0.899 0.916 0.930

12b. Constant wall thickness,

midthickness perimeter is

an ellipse (shown dashed)

Note: There is a limit on the

maximum wall thickness

allowed in this case. Cusps will

form on the inner perimeter

at the ends of the major axis if

this maximum is exceeded. If

p=q4 1, then tmax ¼ 2p2=q. If

p=q5 1, then tmax ¼ 2q2=p

There is no closed-form solution for this case, so numerical solutions were run for the ranges 1:2 < R=c < 5; 0 < t < tmax; 0:2 < p=q < 5. Results are

expressed below in terms of the solutions for case 12a for which c ¼ p þ t=2; c1 ¼ p � t=2; b ¼ 2q þ t, and b1 ¼ 2q � t.
e

c
¼ K1

e

c
from case 12a

� �
; ki ¼ K2ðki from case 12aÞ

ko ¼ K3ðko from case 12a)

where K1;K2, and K3 are given in the following table and are essentially independent of t and R=c.

p=q 0.200 0.333 0.500 0.625 1.000 1.600 2.000 3.000 4.000 5.000

K1 0.965 0.985 0.995 0.998 1.000 1.002 1.007 1.027 1.051 1.073

K2 1.017 1.005 1.002 1.001 1.000 1.000 1.000 0.998 0.992 0.985

K3 0.982 0.992 0.998 0.999 1.000 1.002 1.004 1.014 1.024 1.031
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13. T-beam or channel section d

c
¼

2½b1=b þ ð1 � b1=bÞðt=dÞ	

b1=b þ ð1 � b1=bÞðt=dÞ
2
;

c1

c
¼

d

c
� 1

e

c
¼

R

c
�

ðd=cÞ½b1=b þ ð1 � b1=bÞðt=dÞ	

b1

b
ln

d=c þ R=c � 1

ðd=cÞðt=dÞ þ R=c � 1
þ ln

ðd=cÞðt=dÞ þ R=c � 1

R=c � 1

ki ¼
Ic

Ac2ðR=c � 1Þ

1 � e=c

e=c

where
Ic

Ac2
¼

1

3

d

c

� �2
b1=b þ ð1 � b1=bÞðt=dÞ

3

b1=b þ ð1 � b1=bÞðt=dÞ

" #
� 1

ko ¼
Ic

Ac2ðe=cÞ

d=c þ e=c � 1

R=c þ d=c � 1

1

d=c � 1

(Note: While e=c;ki , and ko depend upon the width ratio b1=b,

they are independent of the width b)

(When b1=b ¼ 1
4
; t=d ¼ 1

4
)

R

c
¼ 1:200 1.400 1.600 1.800 2.000 3.000 4.000 6.000 8.000 10.000

e

c
¼ 0:502 0.419 0.366 0.328 0.297 0.207 0.160 0.111 0.085 0.069

ki ¼ 3:633 2.538 2.112 1.879 1.731 1.403 1.281 1.176 1.128 1.101

ko ¼ 0:583 0.634 0.670 0.697 0.719 0.791 0.832 0.879 0.905 0.922

14. Symmetrical I-beam

or hollow rectangular

section

e

c
¼

R

c
¼

2½t=c þ ð1 � t=cÞðb1=bÞ	

ln
R=c2 þ ðR=c þ 1Þðt=cÞ � 1

ðR=cÞ2 � ðR=c � 1Þðt=cÞ � 1
þ

b1

b
ln

R=c � t=c þ 1

R=c þ t=c � 1

ki ¼
Ic

Ac2ðR=c � 1Þ

1 � e=c

e=c

where
Ic

Ac2
¼

1

3

1 � ð1 � b1=bÞð1 � t=cÞ3

1 � ð1 � b1=bÞð1 � t=cÞ

ko ¼
Ic

Ac2ðR=c þ 1Þ

1 þ e=c

e=c

(Note: While e=c;ki , and ko depend upon the width ratio b1=b,

they are independent of the width b)

(When b1=b ¼ 1
3
; t=d ¼ 1

6
)

R

c
¼ 1:20 1.40 1.60 1.80 2.00 3.00 4.00 6.00 8.00 10.00

e

c
¼ 0:489 0.391 0.330 0.287 0.254 0.164 0.122 0.081 0.060 0.048

ki ¼ 2:156 1.876 1.630 1.496 1.411 1.225 1.156 1.097 1.071 1.055

ko ¼ 0:666 0.714 0.747 0.771 0.791 0.853 0.886 0.921 0.940 0.951
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TABLE 9.1 Formulas for curved beams subjected to bending in the plane of the curve (Continued)

Form and dimensions of cross section,

reference no. Formulas Values of
e

c
;ki , and ko for various values of

R

c

15. Unsymmetrical I-beam

section

A ¼ bd½b1=b þ ð1 � b2=bÞðt=dÞ � ðb1=b � b2=bÞð1 � t1=dÞ	

d

c
¼

2A=bd

ðb1=b � b2=bÞð2 � t1=dÞðt1=dÞ þ ð1 � b2=bÞðt=dÞ
2
þ b2=b

e

c
¼

R

c
�

ðA=bdÞðd=cÞ

ln
R=c þ t=c � 1

R=c � 1
þ

b2

b
ln

R=c þ c1=c � t1=c

R=c þ t=c � 1
þ

b1

b
ln

R=c þ c1=c

R=c þ c1=c � t1=c

ki ¼
Ic

Ac2ðR=c � 1Þ

1 � e=c

e=c

where
Ic

Ac2
¼

1

3

d

c

� �2
b1=b þ ð1 � b2=bÞðt=dÞ

3
� ðb1=b � b2=bÞð1 � t1=dÞ

3

b1=b þ ð1 � b2=bÞðt=dÞ � ðb1=b � b2=bÞð1 � t1=dÞ

" #
� 1

ko ¼
Ic

Ac2ðe=cÞ

d=c þ e=c � 1

R=c þ d=c � 1

1

d=c � 1

(Note: While e=c;ki , and ko depend upon the width ratios b1=b and b2=b,

they are independent of the width b)

(When b1=b ¼ 2
3
; b2=b ¼ 1

6
; t1=d ¼ 1

6
; t=d ¼ 1

3
)

R

c
¼ 1:20 1.40 1.60 1.80 2.00 3.00 4.00 6.00 8.00 10.00

e

c
¼ 0:491 0.409 0.356 0.318 0.288 0.200 0.154 0.106 0.081 0.066

ki ¼ 3:589 2.504 2.083 1.853 1.706 1.385 1.266 1.165 1.120 1.094

ko ¼ 0:671 0.721 0.754 0.779 0.798 0.856 0.887 0.921 0.938 0.950
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TABLE 9.2 Formulas for circular rings
NOTATION: W ¼ load (force); w and v¼unit loads (force per unit of circumferential length); r ¼unit weight of contained liquid (force per unit volume); Mo ¼ applied couple

(force-length). MA;MB;MC , and M are internal moments at A;B;C, and x, respectively, positive as shown. NA;N;VA, and V are internal forces, positive as shown.

E ¼modulus of elasticity (force per unit area); n ¼Poisson’s ratio; A ¼ cross-sectional area (length squared); R ¼ radius to the centroid of the cross section (length); I ¼ area

moment of inertia of ring cross section about the principal axis perpendicular to the plane of the ring (length4). [Note that for a pipe or cylinder, a representative segment of

unit axial length may be used by replacing EI by Et3=12ð1 � n2Þ.] e ¼positive distance measured radially inward from the centroidal axis of the cross section to the neutral

axis of pure bending (see Sec. 9.1). y; x, and f are angles (radians) and are limited to the range zero to p for all cases except 18 and 19; s ¼ sin y; c ¼ cos y,

z ¼ sin x;u ¼ cos x;n ¼ sinf, and m ¼ cosf.

DDV and DDH are changes in the vertical and horizontal diameters, respectively, and an increase is positive. DL is the change in the lower half of the vertical diameter or

the vertical motion relative to point C of a line connecting points B and D on the ring. Similarly DLW is the vertical motion relative to point C of a horizontal line connecting

the load points on the ring. DLWH is the change in length of a horizontal line connecting the load points on the ring. c is the angular rotation (radians) of the load point in the

plane of the ring and is positive in the direction of positive y. For the distributed loadings the load points just referred to are the points where the distributed loading starts,

i.e., the position located by the angle y. The reference to points A;B, and C and to the diameters refer to positions on a circle of radius R passing through the centroids of the

several sections; i.e., diameter¼ 2R. It is important to consider this when dealing with thick rings. Similarly, all concentrated and distributed loadings are assumed to be

applied at the radial position of the centroid with the exception of the cases where the ring is loaded by its own weight or by dynamic loading, cases 15 and 21. In these two

cases the actual radial distribution of load is considered. If the loading is on the outer or inner surfaces of thick rings, an equivalent loading at the centroidal radius R must

be used. See the examples to determine how this might be accomplished.

The hoop-stress deformation factor is a ¼ I=AR2 for thin rings or a ¼ e=R for thick rings. The transverse (radial) shear deformation factor is b ¼ FEI=GAR2 for thin rings

or b ¼ 2Fð1 þ nÞe=R for thick rings, where G is the shear modulus of elasticity and F is a shape factor for the cross section (see Sec. 8.10). The following constants are defined

to simplify the expressions whcih follow. Note that these constants are unity if no correction for hoop stress or shear stress is necessary or desired for use with thin rings.

k1 ¼ 1 � aþ b; k2 ¼ 1 � a.

General formulas for moment, hoop load, and radial shear

M ¼ MA � NARð1 � uÞ þ VARz þ LTM

N ¼ NAu þ VAz þ LTN

V ¼ �NAz þ VAu þ LTV

where LTM ;LTN , and LTV are load terms given below for several types of load.

Note: Due to symmetry in most of the cases presented, the loads beyond 180
 are not included in the load terms. Only for cases 16, 17,

and 19 should the equations for M;N, and V be used beyond 180
 .

Note: The use of the bracket hx � yi0 is explained on page 131 and has a value of zero unless x > y
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TABLE 9.2 Formulas for circular rings (Continued)

Reference no., loading, and load terms Formulas for moments, loads, and deformations and some selected numerical values

1.

LTM ¼
�WRz

2
LTN ¼

�Wz

2

LTv ¼
�Wu

2

MA ¼
WRk2

p

NA ¼ 0

VA ¼ 0

DDH ¼
WR3

EI

k1

2
� k2 þ

2k2
2

p

� �

DDV ¼
�WR3

EI

�
pk1

4
�

2k2
2

p

�

Max þ M ¼ MA ¼ 0:3183WRk2

Max � M ¼ MB ¼ �ð0:5 � 0:3183k2ÞWR

If a ¼ b ¼ 0;

DDH ¼ 0:1366
WR3

EI
and DDV ¼ �0:1488

WR3

EI

Note: For concentrated loads on thick-walled rings, study the material

in Sec. 14.3 on hollow pins and rollers. Radial stresses under the

concentrated loads have a significant effect not considered here.

2.

LTM ¼ �WRðc � uÞhx � yi0

LTN ¼ Wuhx � yi0

LTV ¼ �Wzhx � yi0

MA ¼
�WR

p
½ðp� yÞð1 � cÞ � sðk2 � cÞ	

MC ¼
�WR

p
½yð1 þ cÞ � sðk2 þ cÞ	

NA ¼
�W

p
½p� yþ sc	

VA ¼ 0

DDH ¼

�WR3

EIp
½0:5pk1ðy� scÞ þ 2k2yc � 2k2

2s	 if y4
p
2

�WR3

EIp
½0:5pk1ðp� yþ scÞ � 2k2ðp� yÞc � 2k2

2s	 if y5
p
2

8>><
>>:

DDV ¼
WR3

EI

k1s2

2
� k2 1 � c þ

2yc

p

� �
þ

2k2
2s

p

� �

DL ¼

WR3

EI

yc

2
þ

k1ðy� scÞ

2p
� k2

yc

p
þ

s

2

� �
þ

k2
2s

p

� �
if y4p=2

WR3

EI

ðp� yÞc
2

þ
k1ðy� sc � pc2Þ

2p
� k2 1 þ

yc

p
�

s

2

� �
þ k2

2s=p
� �

if y5p=2

8>>><
>>>:

DLW ¼
WR3

EIp
½ðp� yÞysc þ 0:5k1s2ðy� scÞ þ k2ð2ys2 � ps2 � yc � yÞ þ k2

2sð1 þ cÞ	

DLWH ¼
�WR3

EIp
½ðp� yÞ2yc2 � k1ðpsc þ s2c2 � 2ysc � pyþ y2

Þ � 2k2scðp� 2yÞ � 2k2
2s2	

Dc ¼
�WR2

EIp
½ðp� yÞyc � k2sðsc þ p� 2yÞ	

Max þ M ¼
WRsðk2 � c2Þ

p
at x ¼ y

Max � M ¼

MA if y4
p
2

MC if y5
p
2

8><
>:

If a ¼ b ¼ 0;M ¼ KM WR;N ¼ KN W ;DD ¼ KDDWR3=EI;

Dc ¼ KDcWR2=EI; etc:

y 30
 45
 60


KMA
�0.0903 �0.1538 �0.1955

KMy
0.0398 0.1125 0.2068

KNA
�0.9712 �0.9092 �0.8045

KDDH
�0.0157 �0.0461 �0.0891

KDDV
0.0207 0.0537 0.0930

KDL 0.0060 0.0179 0.0355

KDLW
0.0119 0.0247 0.0391

KDLWH
�0.0060 �0.0302 �0.0770

KDc 0.0244 0.0496 0.0590
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3.

LTM ¼ Mohx � yi0

LTN ¼ 0

LTV ¼ 0

MA ¼
�Mo

p
p� y�

2sk2

k1

� �

MC ¼
Mo

p
y�

2sk2

k1

� �

NA ¼
Mo

Rp
2sk2

k1

� �

VA ¼ 0

DDH ¼

MoR2

EI
k2

2y
p

� s

� �
if y4

p
2

MoR2

EI
k2

2y
p

� 2 þ s

� �
if y5

p
2

8>>><
>>>:

DDV ¼
MoR2

EI
k2

2y
p

� 1 þ c

� �

DL ¼

�MoR2

EI

y
2
�

k2ðyþ sÞ

p

� �
if y4

p
2

�MoR2

EI

p� y
2

�
k2ðyþ s þ pcÞ

p

� �
if y5

p
2

8>>><
>>>:

DLW ¼
�MoR2

EIp
½ðp� yÞys � k2ðs

3 þ yþ ycÞ	

DLWH ¼
MoR2

EIp
½2ycðp� yÞ þ 2k2sð2y� p� scÞ	

Dc ¼
MoR

EIp
yðp� yÞ �

2s2k2
2

k1

� �

Max þ M ¼
Mo

p
yþ

2sck2

k1

� �
at x just greater than y

Max � M ¼
�Mo

p
p� y�

2sck2

k1

� �
at x just less than y

If a ¼ b ¼ 0;M ¼ KM Mo;N ¼ KN Mo=R;DD ¼ KDDMoR2=EI;

Dc ¼ KDcMoR=EI; etc:

y 30
 45
 60
 90


KMA
�0.5150 �0.2998 �0.1153 0.1366

KNA
0.3183 0.4502 0.5513 0.6366

KMy
�0.5577 �0.4317 �0.3910 �0.5000

KDDH
�0.1667 �0.2071 �0.1994 0.0000

KDDV
0.1994 0.2071 0.1667 0.0000

KDL 0.0640 0.0824 0.0854 0.0329

KDLW
0.1326 0.1228 0.1022 0.0329

KDLWH
�0.0488 �0.0992 �0.1180 0.0000

KDc 0.2772 0.2707 0.2207 0.1488
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TABLE 9.2 Formulas for circular rings (Continued)

Reference no., loading, and load terms Formulas for moments, loads, and deformations and some selected numerical values

4.

LTM ¼ WRðz � sÞhx � yi0

LTN ¼ Wzhx � yi0

LTV ¼ Wuhx � yi0

MA ¼
�WR

p
½sðs � pþ yÞ þ k2ð1 þ cÞ	

MC ¼
�WR

p
½sy� s2 þ k2ð1 þ cÞ	

NA ¼
�W

p
s2

VA ¼ 0

DDH ¼

�WR3

EIp
pk1 1 �

s2

2

� �
� 2k2ðp� ysÞ þ 2k2

2ð1 þ cÞ

� �
if y4

p
2

�WR3

EIp
pk1s2

2
� 2sk2ðp� yÞ þ 2k2

2ð1 þ cÞ

� �
if y5

p
2

8>>><
>>>:

DDV ¼
WR3

EIp
pk1ðp� y� scÞ

2
þ k2sðp� 2yÞ � 2k2

2ð1 þ cÞ

� �

DL ¼

WR3

2EI
ys þ k1

p
2
�

s2

p

� �
� k2 1 � c þ

2ys

p

� ��

�
2k2

2ð1 þ cÞ

p

�
ify4

p
2

WR3

2EI
sðp� yÞ þ k1 p� y� sc �

s2

p

� �
� k2 1 þ c þ

2ys

p

� ��

�
2k2

2ð1 þ cÞ

p

�
if y5

p
2

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

DLW ¼
WR3

EIp

�
ys2ðp� yÞ þ

pk1ðp� y� sc � s4=pÞ
2

þ k2sðpc � 2y� 2ycÞ � k2
2ð1 þ cÞ2

�

DLWH ¼
�WR3

EIp
½2yscðp� yÞ þ k1s2ðy� scÞ

�2k2ðps2 � ys2 þ yc þ yc2Þ þ 2k2
2sð1 þ cÞ	

Dc ¼
WR2

EIp
½�ysðp� yÞ þ k2ðyþ yc þ s3Þ	

Max þ M occurs at an angular position x1 ¼ tan�1 �p
s2

if y < 106:3


Max þ M occurs at the load if y5 106:3


Max � M ¼ MC

If a ¼ b ¼ 0;M ¼ KM WR;N ¼ KN W ;DD ¼ KDDWR3=EI;

Dc ¼ KDcWR2=EI; etc:

y 30
 60
 90
 120
 150


KMA
�0.2569 �0.1389 �0.1366 �0.1092 �0.0389

KNA
�0.0796 �0.2387 �0.3183 �0.2387 �0.0796

KMC
�0.5977 �0.5274 �0.5000 �0.4978 �0.3797

KMy
�0.2462 �0.0195 0.1817 0.2489 0.1096

KDDH
�0.2296 �0.1573 �0.1366 �0.1160 �0.0436

KDDV
0.2379 0.1644 0.1488 0.1331 0.0597

KDL 0.1322 0.1033 0.0933 0.0877 0.0431

KDLW
0.2053 0.1156 0.0933 0.0842 0.0271

KDLWH
�0.0237 �0.0782 �0.1366 �0.1078 �0.0176

KDc 0.1326 0.1022 0.0329 �0.0645 �0.0667
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5.

LTM ¼ �WR sinðx � yÞhx � yi0

LTN ¼ �W sinðx � yÞhx � yi0

LTV ¼ �W cosðx � yÞhx � yi0

MA ¼
�WR

p
½sðp� yÞ � k2ð1 þ cÞ	

MC ¼
�WR

p
½sy� k2ð1 þ cÞ	

NA ¼
�W

p
sðp� yÞ

VA ¼ 0

DDH ¼

�WR3

EI
k1

ys

2
� c

� �
þ 2k2c �

2k2
2ð1 þ cÞ

p

� �
if y4

p
2

�WR3

EI

k1sðp� yÞ
2

�
2k2

2ð1 þ cÞ

p

� �
if y5

p
2

8>>><
>>>:

DDV ¼
WR3

EI

k1ðs � pc þ ycÞ

2
� k2s þ

2k2
2ð1 þ cÞ

p

� �

DL ¼

WR3

2EI
k1

ys

p
�
pc

2

� �
� k2ð1 � cÞ þ

2k2
2ð1 þ cÞ

p

� �
if y4

p
2

WR3

2EI
k1

ys

p
� pc þ yc

� �
þ k2ð1 þ c � 2sÞ

�

þ
2k2

2ð1 þ cÞ

p

�
if y5

p
2

8>>>>>>>>><
>>>>>>>>>:

DLW ¼
WR3

EI



k1

s � s3ð1 � y=pÞ � cðp� yÞ
2

þ k2

�
ysð1 þ cÞ

p
� s

�

þ
k2

2ð1 þ cÞ2

p

�

DLWH ¼
�WR3

EIp
½k1sðp� yÞðy� scÞ þ 2yck2ð1 þ cÞ � 2sk2

2ð1 þ cÞ	

Dc ¼
WR2

EIp
½ps2 � yð1 þ c þ s2Þ	k2

Max þ M ¼ MC if y4 60


Max þ M occurs at the load if y > 60
 where

My ¼
WR

p
½k2ð1 þ cÞ � scðp� yÞ	

Max � M ¼
MC if y5 90


MA if 60
 4y490




Max � M occurs at an angular

position x1 ¼ tan�1 �pc

ys
if y4 60


If a ¼ b ¼ 0;M ¼ KM WR;N ¼ KN W ;DD ¼ KDDWR3=EI;

Dc ¼ KDcWR2=EI; etc:

y 30
 60
 90
 120
 150


KMA
0.1773 �0.0999 �0.1817 �0.1295 �0.0407

KNA
�0.4167 �0.5774 �0.5000 �0.2887 �0.0833

KMC
0.5106 0.1888 �0.1817 �0.4182 �0.3740

KMy
0.2331 0.1888 0.3183 0.3035 0.1148

KDDH
0.1910 0.0015 �0.1488 �0.1351 �0.0456

KDDV
�0.1957 �0.0017 0.1366 0.1471 0.0620

KDL �0.1115 �0.0209 0.0683 0.0936 0.0447

KDLW
�0.1718 �0.0239 0.0683 0.0888 0.0278

KDLWH
0.0176 �0.0276 �0.1488 �0.1206 7 0.0182

KDc �0.1027 0.0000 0.0000 0.0833 �0.0700
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TABLE 9.2 Formulas for circular rings (Continued)

Reference no., loading, and load terms Formulas for moments, loads, and deformations and some selected numerical values

6.

LTM ¼ �WR½1 � cosðx � yÞ	hx � yi0

LTN ¼ W cosðx � yÞhx � yi0

LTV ¼ �W sinðx � yÞhx � yi0

MA ¼
�WR

p
½sð1 þ k2Þ � ðp� yÞð1 � cÞ	

MC ¼
�WR

p
½sðk2 � 1Þ þ yð1 þ cÞ	

NA ¼
�W

p
½s þ ðp� yÞc	

VA ¼ 0

DDH ¼

�WR3

EI

k1ðs þ ycÞ

2
� 2k2 s �

y
p

� �
þ

2k2
2s

p

� �
if y4

p
2

�WR3

EI

k1ðs þ pc � ycÞ

2
� 2k2 1 �

y
p

� �
þ

2k2
2s

p

� �
if y5

p
2

8>>><
>>>:

DDV ¼
WR3

EI

k1sðp� yÞ
2

þ k2 1 � c �
2y
p

� �
�

2k2
2s

p

� �

DL ¼

WR3

EI

y
2
þ

k1ðp
2s þ 2yc � 2sÞ

4p
� k2

s

2
þ

y
p

� �
�

k2
2s

p

� �
if y4

p
2

WR3

EI

p
2
�

y
2
þ

k1ðps � ys þ yc=p� s=p� cÞ

2

�

� k2

y
p
þ

s

2
þ c

� �
�

k2
2s

p
	 if y5

p
2

8>>>>>>>>><
>>>>>>>>>:

DLW ¼
WR3

EIp

�
ysðp� yÞ þ

k1sðysc � s2 � scpþ p2 � ypÞ
2

� k2yð1 þ s2 þ cÞ � k2
2sð1 þ cÞ

�

DLWH ¼
�WR3

EIp
½2ycðp� yÞ � k1ðsc2p� 2ysc2 þ s2c � ycp

þ y2c � ys3Þ � 2k2sðp� yþ ycÞ þ 2k2
2s2	

Dc ¼
�WR2

EIp
½yðp� yÞ � k2sðyþ s þ pc � ycÞ	

Max þ M ¼
WR

p
½ps sin x1 � ðs � ycÞ cos x1 � k2s � y	

at an angular position x1 ¼ tan�1 �ps

s � yc

ðNote : x1 > y and x1 > p=2Þ

Max � M ¼ MC

If a ¼ b ¼ 0;M ¼ KM WR;N ¼ KN W ;DD ¼ KDDWR3=EI;

Dc ¼ KDcWR2=EI; etc:

y 30
 60
 90
 120
 150


KMA
�0.2067 �0.2180 �0.1366 �0.0513 �0.0073

KNA
�0.8808 �0.6090 �0.3183 �0.1090 �0.0148

KMC
�0.3110 �0.5000 �0.5000 �0.3333 �0.1117

KDDH
�0.1284 �0.1808 �0.1366 �0.0559 �0.0083

KDDV
0.1368 0.1889 0.1488 0.0688 0.0120

KDL 0.0713 0.1073 0.0933 0.0472 0.0088

KDLW
0.1129 0.1196 0.0933 0.0460 0.0059

KDLWH
�0.0170 �0.1063 �0.1366 �0.0548 7 0.0036

KDc 0.0874 0.1180 0.0329 �0.0264 �0.0123
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7. Ring under any number of

equal radial forces equally

spaced

For 0 < x < y M ¼
WRðu=s � k2=yÞ

2
N ¼

Wu

2s
V ¼

�Wz

2s

Max þ M ¼ MA ¼
WRð1=s � k2=yÞ

2
Max � M ¼

�WR

2

k2

y
�

c

s

� �
at each load position

Radial displacement at each load point ¼ DRB ¼
WR3

EI

k1ðy� scÞ

4s2
þ

k2c

2s
�

k2
2

2y

� �

Radial displacement at x ¼ 0; 2y; . . . ¼ DRA ¼
�WR3

EI

k1ðs � ycÞ

4s2
�

k2

2s
þ

k2
2

2y

� �

8.

Note: y5
p
2

� �

LTM ¼
�wR2

2
ðz � sÞ2hx � yi0

LTN ¼ �wRzðz � sÞhx � yi0

LTV ¼ �wRuðz � sÞhx � yi0

MA ¼
wR2

2p
pðs2 � 0:5Þ �

sc � y
2

� s2 yþ
2s

3

� �
� k2ð2s þ sc � pþ yÞ

� �

MC ¼
�wR2

2p
p
2
þ

sc

2
�

y
2
þ ys2 �

2s3

3
þ k2ð2s þ sc � pþ yÞ

� �

NA ¼
�wRs3

3p

VA ¼ 0

DDH ¼
�wR4

2EIp

�
k1ps3

3
þ k2ðp� 2ps2 � yþ 2ys2 þ scÞ

þ 2k2
2ð2s þ sc � pþ yÞ

�

DDV ¼
wR4

2EIp

�
k1p ps � ys � 2

3
� c þ

c3

3

� �
� k2ðpc2 þ sc � yþ 2ys2Þ

� 2k2
2ð2s þ sc � pþ yÞ

�

DL ¼
wR4

4EIp

�
pðp� yÞ

2s2 � 1

2
�
psc

2
� 2pk1

2
3
� ps þ c þ ys �

c3

3
þ

s3

3p

� �

� k2ðsc þ p� yþ 2ys2 þ 2sp� p2 þ pyþ pscÞ � 2k2
2ð2s þ sc � pþ yÞ

�

Max þ M occurs at an angular position x1 where x1 > y; x1 > 123:1
;and

tan x1 þ
3pðs � sin x1Þ

s3
¼ 0

Max � M ¼ MC

If a ¼ b ¼ 0;M ¼ KM wR2;N ¼ KN wR;DD ¼ KDDwR4=EI ; etc:

If a ¼ b ¼ 0;M ¼ KM WR;DR ¼ KDRWR3=EI

y 15
 30
 45
 60
 90


KMA
0.02199 0.04507 0.07049 0.09989 0.18169

KMB
�0.04383 �0.08890 �0.13662 �0.18879 �0.31831

KDRB
0.00020 0.00168 0.00608 0.01594 0.07439

KDRA
�0.00018 �0.00148 �0.00539 �0.01426 �0.06831

y 90
 120
 135
 150


KMA
�0.0494 �0.0329 �0.0182 �0.0065

KNA
�0.1061 �0.0689 �0.0375 �0.0133

KMC
�0.3372 �0.2700 �0.1932 �0.1050

KDDH
�0.0533 �0.0362 �0.0204 �0.0074

KDDV
0.0655 0.0464 0.0276 0.0108

KDL 0.0448 0.0325 0.0198 0.0080
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TABLE 9.2 Formulas for circular rings (Continued)

Reference no., loading, and load terms Formulas for moments, loads, and deformations and some selected numerical values

9.

Note: y5
p
2

� �

LTM ¼
wR2

6s
ðz � sÞ3hx � yi0

LTN ¼
wRz

s2
ðz � sÞ2hx � yi0

LTV ¼
wRu

2s
ðz � sÞ2hx � yi0

MA ¼
wR2

36ps
fðp� yÞð6s3 � 9sÞ � 3s4 þ 8 þ 8c � 5s2c � 6k2½3sðs � pþ yÞ þ s2c þ 2 þ 2c	g

MC ¼
�wR2

36ps
f9sðp� yÞ þ 6ys3 � 3s4 � 8 � 8c þ 5s2c þ 6k2 ½3sðs � pþ yÞ þ s2c þ 2 þ 2c	g

NA ¼
�wRs3

12p

VA ¼ 0

DDH ¼
�wR4

18EIp
3k1ps3

4
� k2 ðp� yÞð6s2 � 9Þ þ

8ð1 þ cÞ

s
� 5sc

� �
þ 6k2

2 sc þ
2ð1 þ cÞ

s
� 3ðp� y� sÞ

� �
 �

DDV ¼
wR4

18EIp



18pk1

s

4
þ

1

16s

� �
ðp� yÞ �

13c

48
�

s2c

24
�

1

3

� �
þ k2 ðp� yÞð3s2 � 9Þ � 3s2yþ

8ð1 þ cÞ

s
� 5sc

� �
� 6k2

2 sc þ
2ð1 þ cÞ

s
� 3ðp� y� sÞ

� ��

DL ¼
wR4

EI
ðp� yÞ

s2

12
�

1

8

� �
þ

1 þ c

9s
�

5sc

72
þ k1

ðp� yÞð12s þ 3=sÞ � 13c � 2s2c � 16 � 2s3=p
48

�

� k2

ð1 þ cÞð2p� 8
3
Þ=s � 3ðp� yÞðp� 1Þ þ 2ys2 þ 3ps þ scðpþ 5

3
Þ

12p
� k2

2

3ðs � pþ yÞ þ 2ð1 þ cÞs þ sc

6p

�

Max þ M occurs at an angular position x1 where x1 > y; x1 > 131:1
; and tan x1 þ
6pðs � sin x1Þ

2

s4
¼ 0

Max � M ¼ MC

If a ¼ b ¼ 0;M ¼ KM wR2;N ¼ KN wR;DD ¼ KDDwR4=EI; etc:

y 90
 120
 135
 150


KMA
�0.0127 �0.0084 �0.0046 �0.0016

KNA
�0.0265 �0.0172 �0.0094 �0.0033

KMC
�0.1263 �0.0989 �0.0692 �0.0367

KDDH
�0.0141 �0.0093 �0.0052 �0.0019

KDDV
0.0185 0.0127 0.0074 0.0028

KDL 0.0131 0.0092 0.0054 0.0021
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10.

LTM ¼
�wR2

2
ðc � uÞ2hx � yi0

LTN ¼ wRuðc � uÞhx � yi0

LTV ¼ �wRzðc � uÞhx � yi0

MA ¼
�wR2

4p
ðp� yÞð4c þ 2s2 � 1Þ þ s 4 �

4s2

3
� c

� �
� 2k2ðp� yþ scÞ

� �

MC ¼
�wR2

4p
3pþ yþ 4yc � 2ys2 � 4s � sc þ

4s3

3
� 2k2ðp� yþ scÞ

� �

NA ¼
�wR

p
pc þ s � yc �

s3

3

� �

VA ¼ 0

DDH ¼

�wR4

6EIp
½pk1ðs

3 þ 3yc þ 4 � 3sÞ þ 3k2ðp� yþ 2yc2 � scÞ � 6k2
2ðp� yþ scÞ	 for y4

p
2

�wR4

2EIp
pk1 cðp� yÞ þ s �

s3

3

� �
þ k2 ½ðp� yÞð2s2 � 1Þ � sc	 � 2k2

2ðp� yþ scÞ


 �
for y5

p
2

8>>><
>>>:

DDV ¼
wR4

3EIp
fpk1ð2 � c3 þ 3cÞ þ 3k2 ½2ys2 � yþ sc � pð1 þ 2c þ s2Þ	 þ 6k2

2ðp� yþ scÞg

DL ¼

wR4

12EIp
½1:5pðy� 2ys2 � scÞ þ 2k1ð2pþ s3 þ 3yc � 3sÞ þ 3k2ðsc þ ypþ 2ys2 � 3p� y� pscÞ þ 6k2

2ðp� yþ scÞ	 for y4
p
2

wR4

12EIp
f1:5p½ðp� yÞð1 � 2s2Þ þ sc	 þ 2k1ð2pþ s3 þ 3yc � 3s � pc3Þ þ 3k2½ðpþ 1Þðp� yþ scÞ þ 2ys2 � 4pð1 þ cÞ	 þ 6k2

2ðp� yþ scÞg for y5
p
2

8>>><
>>>:

Max þ M occurs at an angular position x1 where x1 > y; x1 > 90
; and x1 ¼ cos�1 s3=3 þ yc � s

p

Max � M ¼ MC

If a ¼ b ¼ 0;M ¼ KM wR2;N ¼ KN wR;DD ¼ KDDwR4=EI; etc:

y 0
 30
 45
 60
 90
 120
 135
 150


KMA
�0.2500 �0.2434 �0.2235 �0.1867 �0.0872 �0.0185 �0.0052 �0.00076

KNA
�1.0000 �0.8676 �0.7179 �0.5401 �0.2122 �0.0401 �0.0108 �0.00155

KMC
�0.2500 �0.2492 �0.2448 �0.2315 �0.1628 �0.0633 �0.0265 �0.00663

KDDH
�0.1667 �0.1658 �0.1610 �0.1470 �0.0833 �0.0197 �0.0057 �0.00086

KDDV
0.1667 0.1655 0.1596 0.1443 0.0833 0.0224 0.0071 0.00118

KDL 0.0833 0.0830 0.0812 0.0756 0.0486 0.0147 0.0049 0.00086
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TABLE 9.2 Formulas for circular rings (Continued)

Reference no., loading, and load terms Formulas for moments, loads, and deformations and some selected numerical values

11.

LTM ¼
�wR2

6ð1 þ cÞ
ðc � uÞ3hx � yi0

LTN ¼
wRu

2ð1 þ cÞ
ðc � uÞ2hx � yi0

LTV ¼
�wRz

2ð1 þ cÞ
ðc � uÞ2hx � yi0

MA ¼
�wR2

ð1 þ cÞp
ðp� yÞ

3 þ 12c2 þ 2c þ 4cs2

24
�

3s3c � 3s � 5s3

36
þ

5sc

8
� k2

pc

2
�
yc

2
þ

s3

3
þ

sc2

2

� �� �

MC ¼
�wR2

ð1 þ cÞp
ðp� yÞ

�3 � 12c2 þ 2c þ 4cs2

24
þ
pð1 þ cÞ3

6
þ

3s3c þ 3s þ 5s3

36
�

5sc

8
� k2

pc

2
�
yc

2
þ

s3

3
þ

sc2

2

� �" #

NA ¼
�wR

ð1 þ cÞp
ðp� yÞ

1 þ 4c2

8
þ

5sc

8
�

s3c

12

� �

VA ¼ 0

DDH ¼

�wR4

EIð1 þ cÞp
pk1

yþ 4yc2 � 5sc

16
þ

s3c þ 16c

24

� �
� k2

5sc2 þ 3yc þ 6ys2c � 8s

18
�
pc

2

� �
� k2

2 cðp� yÞ þ
2s3

3
þ sc2

� �
 �
for y4

p
2

�wR4

EIð1 þ cÞp
pk1 ðp� yÞ

1 þ 4c2

16
þ

5sc

16
�

s3c

24

� �
� k2

5sc2 � 8s

18
� ðp� yÞ

c þ 2s2c

6

� �
� k2

2 cðp� yÞ þ s �
s3

3

� �
 �
for y5

p
2

8>>><
>>>:

DDV ¼
wR4

EIð1 þ cÞ
k1

ð1 þ cÞ2

6
�

s4

24

" #
þ k2

5sc2 þ 3yc þ 6ys2c � 8s

18p
þ

s2

2
þ

c3

6
� c �

2

3

� �
þ k2

2

cðp� yÞ þ s � s3=3

p

( )

DL ¼

wR4

EIð1 þ cÞ



3s þ 5s3 þ 6yc3 � 9yc � 16

72
þ k1

c

3
þ

1

16
þ

12yc2 þ 3yþ 2s3c � 15sc

48p

� �

þ k2

1 � s3

6
�

cð3 þ sc � yÞ
4

þ
3yc þ 6ys2c � 3s � 5s3

36p

�
þ k2

2

cðp� yÞ=2 þ sc2=2 þ s3=3

p

� �
for y4

p
2

wR4

EIð1 þ cÞ



�ðp� yÞcð1 þ 2s2Þ

24
�

sc2

24
�

s3

9
þ k1

c

3
þ

1

16
�

c4

24
þ

12yc2 þ 3yþ 2s3c � 15sc

48p

� �

þ k2

2s � 2 þ sc2

12
þ

cðp� y� 3 � 2cÞ

4
þ

3yc þ 6ys2c � 3s � 5s3

36p

� �
þ k2

2

3cðp� yÞ þ 2s þ sc2

6p

�
for y5

p
2

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

Max þ M occurs at an angular position x1 where x1 > y; x1 > 96:8
; and x1 ¼ arccos c � ðc2 þ 0:25Þ 1 �
y
p

� �
þ

scð5 � 2s2=3Þ

4p

� �1=2
( )

Max � M ¼ MC

If a ¼ b ¼ 0;M ¼ KM wR2;N ¼ KN wR;DD ¼ KDDwR4=EI; etc:

y 0
 30
 45
 60
 90
 120
 135
 150


KMA
�0.1042 �0.0939 �0.0808 �0.0635 �0.0271 7 0.0055 �0.0015 �0.00022

KNA
�0.3125 �0.2679 �0.2191 �0.1628 �0.0625 7 0.0116 �0.0031 �0.00045

KMC
�0.1458 �0.1384 �0.1282 �0.1129 �0.0688 �0.0239 �0.0096 �0.00232

KDDH
�0.8333 �0.0774 �0.0693 �0.0575 �0.0274 7 0.0059 �0.0017 �0.00025

KDDV
0.0833 0.0774 0.0694 0.0579 0.0291 0.0071 0.0022 0.00035

KDL 0.0451 0.0424 0.0387 0.0332 0.0180 0.0048 0.0015 0.00026
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12.

LTM ¼ �wR2 ½1 � cosðx � yÞ	hx � yi0

LTN ¼ �wR½1 � cosðx � yÞ	hx � yi0

LTV ¼ �wR sinðx � yÞhx � yi0

MA ¼
�wR2

p
½s þ pc � yc � k2ðp� y� sÞ	

MC ¼
�wR2

p
½p� s þ yc � k2ðp� y� sÞ	

NA ¼
�wR

p
ðs þ pc � ycÞ

VA ¼ 0

DDH ¼

�wR4

EI

k1ðs þ ycÞ

2
þ 2k2ð1 � sÞ �

2k2
2ðp� y� sÞ

p

� �
for y4

p
2

�wR4

EI

k1ðs þ pc � ycÞ

2
�

2k2
2ðp� y� sÞ

p

� �
for y5

p
2

8>>><
>>>:

DDV ¼
wR4

EI

k1sðp� yÞ
2

� k2ð1 þ cÞ þ
2k2

2ðp� y� sÞ

p

� �

DL ¼

wR4

2EIp
k1

p2s

2
� s þ yc

� �
þ k2pðy� s � 2Þ þ 2k2

2ðp� y� sÞ

� �
for y4

p
2

wR4

2EIp
½k1ðp

2s � pys � pc � s þ ycÞ þ k2pðp� y� s � 2 � 2cÞ þ 2k2
2ðp� y� sÞ	 for y5

p
2

8>>><
>>>:

Max þ M occurs at an angular position x1 where x1 > y; x1 > 90
; and x1 ¼ tan�1 �ps

s � yc

Max � M ¼ MC

If a ¼ b ¼ 0;M ¼ KM wR2;N ¼ KN wR;DD ¼ KDDwR4=EI , etc.

y 30
 60
 90
 120
 150


KMA
�0.2067 �0.2180 �0.1366 �0.0513 �0.0073

KNA
�0.8808 �0.6090 �0.3183 �0.1090 �0.0148

KMC
�0.3110 �0.5000 �0.5000 �0.3333 �0.1117

KDDH
�0.1284 �0.1808 �0.1366 �0.0559 �0.0083

KDDV
0.1368 0.1889 0.1488 0.0688 0.0120

KDL 0.0713 0.1073 0.0933 0.0472 0.0088

S
E

C
.
9
.6

]
C

u
rv

e
d

B
e
a
m

s
3
2
3

TABLE 9.2 Formulas for circular rings (Continued)



TABLE 9.2 Formulas for circular rings (Continued )

Reference no., loading, and load terms Formulas for moments, loads, and deformations and some selected numerical values

13.

The radial pressure wx varies linearly

with x from 0 at x ¼ y to w at x ¼ p.

LTM ¼
�wR2

p� y
ðx � y� zc þ usÞhx � yi0

LTN ¼
�wR

p� y
ðx � y� zc þ usÞhx � yi0

LTV ¼
�wR

p� y
ð1 � uc � zsÞhx � yi0

MA ¼
�wR2

pðp� yÞ
2 þ 2c � sðp� yÞ þ k2 1 þ c �

ðp� yÞ2

2

" #( )

MC ¼
�wR2

pðp� yÞ
pðp� yÞ � 2 � 2c � syþ k2 1 þ c �

ðp� yÞ2

2

" #( )

NA ¼
�wR

pðp� yÞ
½2 þ 2c � sðp� yÞ	

VA ¼ 0

Max þ M occurs at an angular position x1

where x1 > y; x1 > 103:7
; and x1 is found from

1 þ c þ
sy
2

� �
sin x1 þ c cos x1 � 1 ¼ 0

Max � M ¼ MC

DDH ¼

�wR4

EIðp� yÞ
k1 1 �

sy
2

� �
þ k2ðp� 2y� 2cÞ þ k2

2

2 þ 2c � ðp� yÞ2

p

( )
for y4

p
2

�wR4

EIðp� yÞ
k1 1 þ c �

sðp� yÞ
2

� �
þ k2

2

2 þ 2c � ðp� yÞ2

p

( )
for y5

p
2

8>>>><
>>>>:

DDV ¼
wR4

EIðp� yÞ
k1

s þ cðp� yÞ
2

� k2ðp� y� sÞ � k2
2

2 þ 2c � ðp� yÞ2

p

( )

DL ¼

wR4

2EIpðp� yÞ
k1

p2c

2
� 2c þ 2p� 2 � ys

� �
� k2p 2ðp� yÞ � 1 þ c �

p2

4
þ
y2

2

" #
� k2

2½2 þ 2c � p� yÞ2
( )

for y4
p
2

wR4

2EIpðp� yÞ
k1 ½pcðp� yÞ þ 2ps � 2c � 2 � ys	 � k2p 2ðp� yÞ þ 1 þ c � 2s �

ðp� yÞ2

2

" #
� k2

2½2 þ 2c � ðp� yÞ2	

( )
for y5

p
2

8>>>>><
>>>>>:
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14.

The radial pressure wx varies with

ðx � yÞ2 from 0 at x ¼ y to w at

x ¼ p

LTM ¼
�wR2

ðp� yÞ2
½ðx � yÞ2 � 2

þ 2uc þ 2zs	hx � yi0

LTN ¼
�wR

ðp� yÞ2
½ðx � yÞ2 � 2

þ 2uc þ 2zs	hx � yi0

LTV ¼
�2wR

ðp� yÞ2
ðx � y� zc þ usÞ

�hx � yi0

MA ¼
�wR2

pðp� yÞ2

(
2ðp� yÞð2 � cÞ � 6s þ k2

"
2ðp� y� sÞ

�
ðp� yÞ3

3

#)

MC ¼
�wR2

pðp� yÞ2

(
2yð2 � cÞ þ 6s � 6pþ pðp� yÞ2

þ k2 2ðp� y� sÞ �
ðp� yÞ3

3

" #)

NA ¼
�wR

pðp� yÞ2
½2ðp� yÞð2 � cÞ � 6s	

Max þ M occurs at an angular position x1

where x1 > y; x1 > 108:6
; and x1 is found from

ðx1 � yþ s cos x1Þ þ ð3s � 2pþ 2y� ycÞ sin x1 ¼ 0

Max � M ¼ MC

VA ¼ 0

DDH ¼

�wR4

EIðp� yÞ2

(
k1

 
p2

4
� 6 � y2s þ 3s � 3yc þ

3p
2

þ c þ ys � 2y

!
þ k2

 
p2

2
� 4 þ 4s � 2ypþ 2y2

!
� 2k2

2

ðp� yÞ3 � 6ðp� y� sÞ

3p

)
for y4

p
2

�wR4

EIðp� yÞ2

(
k1½ð2 � cÞðp� yÞ � 3s	 � 2k2

2

ðp� yÞ3 � 6ðp� y� sÞ

3p

)
for y5

p
2

8>>>><
>>>>:

DDV ¼
wR4

EIðp� yÞ2

(
k1 ½2 þ 2c � sðp� yÞ	 þ k2ð2 þ 2c � ðp� yÞ2	 þ 2k2

2

ðp� yÞ3 � 6ðp� y� sÞ

3p

)
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TABLE 9.2 Formulas for circular rings (Continued)

Reference no., loading, and load terms Formulas for moments, loads, and deformations and some selected numerical values

14. Continued

DL ¼

wR4

EIðp� yÞ2
k1

3s þ 2y� yc

p
þ p� 2y�

ps

2

�

þ k2 2 þ s � yþ

p3

8
þ
y3

6
�
yp2

4
� ðp� yÞ2

" #
þ k2

2

ðp� yÞ3 � 6ðp� y� sÞ

3p
g for y4

p
2

wR4

EIðp� yÞ2
k1

3s þ 2y� yc

p
� sðp� yÞ þ 3c

� �
þ k2

ðp� yÞ3

6
� ðp� yÞ2 � pþ yþ s þ 2 þ 2c

" #
þ k2

2

ðp� yÞ3 � 6ðp� y� sÞ

3p

( )
for y5

p
2

8>>>><
>>>>:

15. Ring supported at base and loaded

by own weight per unit length of

circumference w

LTM ¼ �wR2 ½xz þ KT ðu � 1Þ	

LTN ¼ �wRxz

LTV ¼ �wRxu

MA ¼ wR2 k2 � 0:5 �
ðKT � 1Þb

k1

� �
where KT ¼ 1 þ

I

AR2

MC ¼ wR2 k2 þ 0:5 þ
ðKT � 1Þb

k1

� �

NA ¼ wR 0:5 þ
ðKT � 1Þk2

k1

� �

VA ¼ 0

DDH ¼
wR3

EAe

k1p
2

� k2pþ 2k2
2

� �

DDV ¼
�wR3

EAe

k1p
2

4
� 2k2

2

� �

DL ¼
�wR3

EAe
1 þ

3k1p
2

16
�

k2p
2

� k2
2 þ ðKT � 1Þa

� �

Note: The constant KT accounts for the radial

distribution of mass in the ring.

Max þ M ¼ MC

Max � M occurs at an angular position x1where

x1

tan x1

¼ �0:5 þ
ðKT � 1Þb

k1

For a thin ring where KT � 1,

Max � M ¼ �wR2ð1:6408 � k2Þ at x ¼ 105:23


If a ¼ b ¼ 0;

MA ¼
wR2

2

NA ¼
wR

2

DDH ¼ 0:4292
wR4

EI

DDV ¼ �0:4674
wR4

EI

DL ¼ �0:2798
wR4

EI

Max þ M ¼ 3
2
wR2 at C

3
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16. Unit axial segment of pipe filled

with liquid of weight per unit

volume r and supported at the base

LTM ¼ rR3 1 � u �
xz

2

� �

LTN ¼ rR2 1 � u �
xz

2

� �

LTV ¼ rR2 z

2
�

xu

2

� �

MA ¼ rR3 0:75 �
k2

2

� �

MC ¼ rR3 1:25 �
k2

2

� �

NA ¼ 0:75rR2

VA ¼ 0

DDH ¼
rR512ð1 � n2Þ

Et3

k1p
4

þ k2 2 �
p
2

� �
� k2

2

� �

DDV ¼
�rR512ð1 � n2Þ

Et3

k1p
2

8
� 2k2 þ k2

2

� �

DL ¼
�rR512ð1 � n2Þ

Et3

k13p2

32
� k2 0:5 þ

p
4

� �
þ

k2
2

2

� �

Note: For this case and case 17,

a ¼
t2

12R2ð1 � n2Þ

b ¼
t2

6R2ð1 � nÞ
where t ¼ pipe wall thickness

Max þ M ¼ MC

Max � M ¼ �rR3 k2

2
� 0:1796

� �
at x ¼ 105:23


If a ¼ b ¼ 0;

DDH ¼ 0:2146
rR512ð1 � n2Þ

Et3

DDV ¼ �0:2337
rR512ð1 � n2Þ

Et3

DL ¼ �0:1399
rR512ð1 � n2Þ

Et3

17. Unit axial segment of pipe partly

filled with liquid of weight per unit

volume r and supported at the base

Note: see case 16 for expressions for a and b

MA ¼
rR3

4p
f2ys2 þ 3sc � 3yþ pþ 2pc2 þ 2k2½sc � 2s þ ðp� yÞð1 � 2cÞ	g

NA ¼
rR2

4p
½3sc þ ðp� yÞð1 þ 2c2Þ	

VA ¼ 0

DDH ¼

rR53ð1 � n2Þ

2Et3p
k1pðsc þ 2p� 3yþ 2yc2Þ þ 8k2p 2c � sc �

p
2
þ y

� �
þ 8k2

2 ½ðp� yÞð1 � 2cÞ þ sc � 2s	
n o

for y4
p
2

rR53ð1 � n2Þ

2Et3p
fk1p½ðp� yÞð1 þ 2c2Þ þ 3sc	 þ 8k2

2½ðp� yÞð1 � 2cÞ þ sc � 2s	g for y5
p
2

8>>><
>>>:

DDV ¼
�rR53ð1 � n2Þ

2Et3p
fk1p½s

2 þ ðp� yÞðp� yþ 2scÞ	 � 4k2pð1 þ cÞ2 � 8k2
2½ðp� yÞð1 � 2cÞ þ sc � 2s	g
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TABLE 9.2 Formulas for circular rings (Continued)

Reference no., loading, and load terms Formulas for moments, loads, and deformations and some selected numerical values

17. Continued

LTM ¼
rR3

2
½2c � zðx � yþ scÞ

� uð1 þ c2Þ	hx � yi0

LTN ¼
rR2

2
½2c � zðx � yþ scÞ

� uð1 þ c2Þ	hx � yi0

LTV ¼
rR2

2
½zc2 � uðx � yþ scÞ	

�hx � yi0

DL ¼

�rR53ð1 � n2Þ

2Et3p
k1 2yc2 þ y� 3sc þ p2 sc � yþ

3p
4

� �� �
þ 2k2p½2 þ 2yc � 2s � 4c � pþ y� sc	 � 4k2

2 ½ðp� yÞð1 � 2cÞ þ sc � 2s	


 �
for y4

p
2

�rR53ð1 � n2Þ

2Et3p
fk1½2yc2 þ y� 3sc þ pðp� yÞðp� yþ 2scÞ � 3pc2	 þ 2k2p½2s � 2ð1 þ cÞ2 � sc � ðp� yÞð1 � 2cÞ	 � 4k2

2½ðp� yÞð1 � 2cÞ þ sc � 2s	g for y5
p
2

8>>><
>>>:

Max þ M ¼ MC ¼
rR3

4p
f4pc þ pþ 2yc2 þ y� 3sc þ 2k2 ½ðp� yÞð1 � 2cÞ þ sc � 2s	g

Max � M occurs at an angular position where x1 > y; x1 > 105:23
; and x1 is found from

ðyþ 2yc2 � 3sc � pÞ tan x1 þ 2pðy� sc � x1Þ ¼ 0

If a ¼ b ¼ 0;M ¼ KMrR3;N ¼ KNrR2;DD ¼ KDDrR512ð1 � n2Þ=Et3; etc.

y 0
 30
 45
 60
 90
 120
 135
 150


KMA
0.2500 0.2290 0.1935 0.1466 0.0567 0.0104 0.0027 0.00039

KNA
0.7500 0.6242 0.4944 0.3534 0.1250 0.0216 0.0056 0.00079

KMC
0.7500 0.7216 0.6619 0.5649 0.3067 0.0921 0.0344 0.00778

KDDH
0.2146 0.2027 0.1787 0.1422 0.0597 0.0115 0.0031 0.00044

KDDV
�0.2337 �0.2209 �0.1955 �0.1573 �0.0700 �0.0150 �0.0043 �0.00066

KDL �0.1399 �0.1333 �0.1198 �0.0986 �0.0465 �0.0106 �0.0031 �0.00050
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18.

v ¼
W

2pR
ðsinf� sin yÞ

LTM ¼ �
WR

2p
ðn � sÞðx � zÞ

þ WRðz � sÞhx � yi0

� WRðz � nÞhx � fi0

LTN ¼
W

2p
ðn � sÞz

þ Wzhx � yi0

� Wzhx � fi0

LTV ¼
�W

2p
ðn � sÞð1 � uÞ

þ Wuhx � yi0

� Wuhx � fi0

MA ¼
WR

2p
½n2 � s2 � ðp� fÞn þ ðp� yÞs � k2ðc � mÞ	

NA ¼
W

2p
ðn2 � s2Þ

VA ¼
W

2p
ðy� fþ s � n þ sc � nmÞ

If a ¼ b ¼ 0;M ¼ KM WR;N ¼ KN W ;V ¼ KV W

y f� y 30
 45
 60
 90
 120
 135
 150
 180


KMA
�0.1899 �0.2322 �0.2489 �0.2500 �0.2637 �0.2805 �0.2989 �0.3183

0
 KNA
0.0398 0.0796 0.1194 0.1592 0.1194 0.0796 0.0398 0.0000

KVA
�0.2318 �0.3171 �0.3734 �0.4092 �0.4022 �0.4080 �0.4273 �0.5000

KMA
�0.0590 �0.0613 �0.0601 �0.0738 �0.1090 �0.1231 �0.1284 �0.1090

30
 KNA
0.0796 0.1087 0.1194 0.0796 �0.0000 �0.0291 �0.0398 �0.0000

KVA
�0.1416 �0.1700 �0.1773 �0.1704 �0.1955 �0.2279 �0.2682 �0.3408

KMA
�0.0190 �0.0178 �0.0209 �0.0483 �0.0808 �0.0861 �0.0808 �0.0483

45
 KNA
0.0689 0.0796 0.0689 0.0000 �0.0689 �0.0796 �0.0689 �0.0000

KVA
�0.0847 �0.0920 �0.0885 �0.0908 �0.1426 �0.1829 �0.2231 �0.2749

KMA
�0.0011 �0.0042 �0.0148 �0.0500 �0.0694 �0.0641 �0.0500 �0.0148

60
 KNA
0.0398 0.0291 �0.0000 �0.0796 �0.1194 �0.1087 �0.0796 0.0000

KVA
�0.0357 �0.0322 �0.0288 �0.0539 �0.1266 �0.1668 �0.1993 �0.2243

KMA
�0.0137 �0.0305 �0.0489 �0.0683 �0.0489 �0.0305 �0.0137 0.0000

90
 KNA
�0.0398 �0.0796 �0.1194 �0.1592 �0.1194 �0.0796 �0.0398 0.0000

KVA
0.0069 0.0012 �0.0182 �0.0908 �0.1635 �0.1829 �0.1886 �0.1817
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TABLE 9.2 Formulas for circular rings (Continued)

Reference no., loading, and load terms Formulas for moments, loads, and deformations and some selected numerical values

19.

LTM ¼
�Mo

2p
ðx � zÞ þ Mohx � yi0

LTN ¼
Moz

2pR

LTV ¼
�Mo

2pR
ð1 � uÞ

MA ¼
�Mo

2p
p� y�

2k2s

k1

� �

NA ¼
Mo

pR

k2s

k1

� �

VA ¼
�Mo

2pR
1 þ

2k2c

k1

� �

Max þ M ¼
Mo

2
for x just greater than y

Max � M ¼
�Mo

2
for x just less than y

At x ¼ yþ 180
;M ¼ 0

Other maxima are; for a ¼ b ¼ 0

M
�0:1090Mo at x ¼ yþ 120


0:1090M0 at x ¼ yþ 240





If a ¼ b ¼ 0;M ¼ kM Mo;N ¼ KN Mo=R;V ¼ KV Mo=R

y 0
 30
 45
 60
 90
 120
 135
 150
 180


KMA
�0.5000 �0.2575 �0.1499 �0.0577 0.0683 0.1090 0.1001 0.0758 0.0000

KNA
0.0000 0.1592 0.2251 0.2757 0.3183 0.2757 0.2250 0.1592 0.0000

KVC
�0.4775 �0.4348 �0.3842 �0.3183 �0.1592 0.0000 0.0659 0.1165 0.1592
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20. Bulkhead or supporting ring

in pipe, supported at bottom and

carrying total load W transferred

by tangential shear v distributed

as shown

LTM ¼
WR

p
1 � u �

xz

2

� �

LTN ¼
�W

2p
xz

LTV ¼
W

2p
ðz � xuÞ

for 0 < x < 180


MA ¼
WR

2p
ðk2 � 0:5Þ

MC ¼
WR

2p
ðk2 þ 0:5Þ

NA ¼
0:75W

p

VA ¼ 0

DDH ¼
WR3

EI

k1

4
�

k2

2
þ

k2
2

p

� �

DDV ¼
�WR3

EI

k1p
8

�
k2

2

p

� �

DL ¼
�WR3

4EIp
4 þ k1

3p2

8
� k2ðpþ 2Þ � 2k2

2

� �

Max þ M ¼ MC

Max � M ¼
�WR

4p
ð3:2815 � 2k2Þ at x ¼ 105:2


If a ¼ b ¼ 0;

MA ¼ 0:0796WR

NA ¼ 0:2387W

VA ¼ 0

DDH ¼ 0:0683
WR3

EI

DDV ¼ �0:0744
WR3

EI

DR ¼ �0:0445
WR3

EI
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TABLE 9.2 Formulas for circular rings (Continued )

Reference no., loading, and load terms Formulas for moments, loads, and deformations and some selected numerical values

21. Ring rotating at angular rate

o rad=s about an axis perpendicular

to the plane of the ring. Note the

requirement of symmetry of the

cross section in Sec. 9.3.

d ¼ mass density of ring material

LTM ¼ do2AR3

(
KT ð1 � uÞ

�
Ro

R
½xz � KT ð1 � uÞ	

)

LTN ¼ do2AR2 KT ð1 � uÞ �
Ro

R
xz

� �

LTV ¼ do2AR2

"
zKT ð2u � 1Þ �

Ro

R
xu

#

MA ¼ do2AR3 KT aþ
Ro

R
k2 � 0:5 �

ðKT � 1Þb
k1

� �
 �

where KT ¼ 1 þ
I

AR2

MC ¼ do2AR3 KT aþ
Ro

R
k2 þ 0:5 þ

ðKT � 1Þb
k1

� �
 �

NA ¼ do2AR2 KT þ
Ro

R
0:5 þ ðKT � 1Þ

k2

k1

� �
 �

VA ¼ 0

DDH ¼
do2R4

Ee
2KT k2aþ

Ro

R

k1p
2

� k2pþ 2k2
2

� �� �

DDV ¼
do2R4

Ee
2KT k2a�

Ro

R

k1p
2

4
� 2k2

2

� ��

DL ¼
do2R4

Ee
KT k2a�

Ro

R

k13p2

16
þ k2 �

k2p
2

� k2
2 þ KT a

� �� �

Note: The constant KT accounts for the radial

distribution of mass in the ring.

Max þ M ¼ MC

Max � M occurs at an angular position x1 where

x1

tan x1

¼ �0:5 þ
ðKT � 1Þb

k1

For a thin ring where KT � 1;

Max � M ¼ �do2AR3 Ro

R
ð1:6408 � k2Þ � a

� �
at x ¼ 105:23
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TABLE 9.3 Reaction and deformation formulas for circular arches
NOTATION: W ¼ load (force); w ¼unit load (force per unit of circumferential length); Mo ¼ applied couple (force-length). yo ¼ externally created concentrated angular

displacement (radians); Do ¼ externally created concentrated radial displacement; T � To ¼ uniform temperature rise (degrees); T1 and T2 ¼ temperatures on outside and

inside, respectively (degrees). HA and HB are the horizontal end reactions at the left and right, respectively, and are positive to the left; VA and VB are the vertical end

reactions at the left and right ends, respectively, and are positive upward; MA and MB are the reaction moments at the left and right, respectively, and are positive

clockwise. E ¼ modulus of elasticity (force per unit area); n ¼Poisson’s ratio; A is the cross-sectional area; R is the radius ot the centroid of the cross section; I ¼ area

moment of inertia of arch cross section about the principal axis perpendicular to the plane of the arch. [Note that for a wide curved plate or a sector of a cylinder, a

representative segment of unit axial length may be used by replacing EI by Et3=12ð1 � n2Þ:	 e is the positive distance measured radially inward from the centroidal axis of

the cross section to the neutral axis of pure bending (see Sec. 9.1). y (radians) is one-half of the total subtended angle of the arch and is limited to the range zero to p. For an

angle y close to zero, round-off errors may cause troubles; for an angle y close to p, the possibility of static or elastic instability must be considered. Deformations have been

assumed small enough so as to not affect the expressions for the internal bending moments, radial shear, and circumferential normal forces. Answers should be examined to

be sure that such is the case before accepting them. f (radians) is the angle measured counterclockwise from the midspan of the arch to the position of a concentrated load or

the start of a distributed load. s ¼ sin y; c ¼ cos y;n ¼ sinf, and m ¼ cosf. g ¼ temperature coefficient of expansion.

The references to end points A and B refer to positions on a circle of radius R passing through the centroids of the several sections. It is important to note this carefully

when dealing with thick rings. Similarly, all concentrated and distributed loadings are assumed to be applied at the radial position of the centroid with the exception of

cases h and i where the ring is loaded by its own weight or by a constant linear acceleration. In these two cases the actual radial distribution of load is considered. If the

loading is on the outer or inner surfaces of thick rings, a statically equivalent loading at the centroidal radius R must be used. See examples to determine how this might be

accomplished.

The hoop-stress deformation factor is a ¼ I=AR2 for thin rings or a ¼ e=R for thick rings. The transverse- (radial-) shear deformation factor is b ¼ FEI=GAR2 for thin rings

or b ¼ 2Fð1 þ nÞe=R for thick rings, where G is the shear modulus of elasticity and F is a shape factor for the cross section (see Sec. 8.10). The following constants are defined

to simplify the expressions which follow. Note that these constants are unity if no correction for hoop stress or shear stress is necessary or desired for use with thin rings.

k1 ¼ 1 � aþ b; k2 ¼ 1 � a:

General reaction and expressions for cases 1–4; right end pinned in all four cases, no vertical motion at the left end

Deformation equations:

Horizontal deflection at A ¼ dHA ¼
R3

EI
AHH HA þ AHM

MA

R
� LPH

� �

Angular rotation at A ¼ cA ¼
R2

EI
AMH HA þ AMM

MA

R
� LPM

� �

where AHH ¼ 2yc2 þ k1ðy� scÞ � k22sc

AMH ¼ AHM ¼ k2s � yc

AMM ¼
1

4s2
½2ys2 þ k1ðyþ scÞ � k22sc	

and where LPH and LPM are loading terms given below for several types of load.

(Note: If desired, VA;VB , and HB can be evaluated from equilibrium equations after calculating HA and MA)
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TABLE 9.3 Reaction and deformation formulas for circular arches (Continued )

1. Left end pinned, right end

pinned

Since dHA ¼ 0 and MA ¼ 0,

HA ¼
LPH

AHH

and cA ¼
R2

EI
ðAMH HA � LPM Þ

The loading terms are given below.

Reference no., loading Loading terms and some selected numerical values

1a. Concentrated vertical load LPH ¼ W ysc � fnc þ
k1

2
ðc2 � m2Þ þ k2cðc � mÞ

� �

LPM ¼
W

2
fn � ys þ

k1

2s2
ðyn � fs þ snc � snmÞ � k2ðc � mÞ

� �
For a ¼ b ¼ 0

1b. Concentrated horizontal

load
LPH ¼ W yc2 þ fmc þ

k1

2
ðyþ f� sc � nmÞ � k2cðs þ nÞ

� �

LPM ¼
W

2
�yc � fm þ

k1

2s2
ðyc � ym þ sm2 � scmÞ þ k2ðs þ nÞ

� �
For a ¼ b ¼ 0

1c. Concentrated radial load LPH ¼ W ycðcn þ smÞ þ
k1

2
ðyn þ fn � scn � s2mÞ � k2cð1 þ sn � cmÞ

� �

LPM ¼
W

2
�yðcn þ smÞ þ

k1

2s2
ðycn � fsmÞ þ k2ð1 þ sn � cmÞ

� �
For a ¼ b ¼ 0

y 30
 60
 90


f 0
 15
 0
 30
 0
 45


LPH

W
�0.0143 �0.0100 �0.1715 �0.1105 �0.5000 �0.2500

LPM

W
�0.0639 �0.0554 �0.2034 �0.1690 �0.2854 �0.1978

y 30
 60
 90


f 0
 15
 0
 30
 0
 45


LPH

W
0.0050 0.0057 0.1359 0.1579 0.7854 0.9281

LPM

W
0.0201 0.0222 0.1410 0.1582 0.3573 0.4232

y 30
 60
 90


f 0
 15
 0
 30
 0
 45


LPH

W
�0.0143 �0.0082 �0.1715 �0.0167 �0.5000 0.4795

LPM

W
�0.0639 �0.0478 �0.2034 �0.0672 �0.2854 0.1594
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1d. Concentrated tangential

load
LPH ¼ W ycðcm � snÞ þ fc þ

k1

2
ðym þ fm � scm � c2nÞ � k2cðsm þ cnÞ

� �

LPM ¼
W

2
yðsn � cmÞ � fþ

k1

2s2
ðycm � yþ fsn � sc þ smÞ þ k2ðsm þ cnÞ

� �
For a ¼ b ¼ 0

1e. Uniform vertical load on

partial span
LPH ¼

wR

4

"
ycð1 þ 4sn þ 2s2Þ þ fcðm2 � n2Þ � cðsc þ mnÞ

þ
2k1

3
ðn3 � 3ns2 � 2s3Þ þ 2k2cð2cn þ cs � y� f� mnÞ

#

LPM ¼
wR

8

(
mn þ sc � yð4sn þ 2s2 þ 1Þ � fðm2 � n2Þ

þ
k1

s

y
s
ðn2 þ s2Þ þ 2ðc � mÞ � 2

3
ðc3 � m3Þ þ cðn2 � s2Þ � 2fn

� �

þ 2k2ðyþ fþ mn � sc � 2cnÞ

)

If f ¼ 0 (the full span is loaded)

LPH ¼
wR

6
½3cð2ys2 þ y� scÞ � 4k1s3 þ 6k2cðsc � yÞ	

LPM ¼
wR

4
½sc � y� 2ys2 þ 2k2ðy� scÞ	

For a ¼ b ¼ 0

1f. Uniform horizontal load on

left side only
LPH ¼

wR

12
½3ycð1 � 6c2 þ 4cÞ þ 3sc2 þ k1ð6y� 6sc � 12yc þ 12c � 8s3Þ

þ 6k2cð3sc � 2s � yÞ	

LPM ¼
wR

8

(
6yc2 � y� 4yc � sc þ

k1

3s2
½sð2 � 3c þ c3Þ � 3yð1 � cÞ2 	

þ 2k2ðyþ 2s � 3scÞ

)

For a ¼ b ¼ 0

y 30
 60
 90


f 0
 15
 0
 30
 0
 45


LPH

W
0.0050 0.0081 0.1359 0.1920 0.7854 0.8330

LPM

W
0.0201 0.0358 0.1410 0.2215 0.3573 0.4391

y 30
 60
 90


f 0
 15
 0
 30
 0
 45


LPH

wR
�0.0046 �0.0079 �0.0969 �0.1724 �0.3333 �0.6280

LPM

wR
�0.0187 �0.0350 �0.1029 �0.2031 �0.1667 �0.3595

y 30
 60
 90


LPH

wR
0.0010 0.0969 1.1187

LPM

wR
0.0040 0.1060 0.5833
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TABLE 9.3 Reaction and deformation formulas for circular arches (Continued )

Reference no., loading Loading terms and some selected numerical values

1g. Uniform horizontal load on

right side only
LPH ¼

wR

12
½3ycð1 þ 2c2 � 4cÞ þ 3sc2 þ 2k1ð2s3 � 3yþ 3scÞ þ 6k2cð2s � sc � yÞ	

LPM ¼
wR

8

(
4yc � 2yc2 � y� sc �

k1

3s2
½sð2 � 3c þ c3Þ � 3yð1 � cÞ2	

þ 2k2ðy� 2s þ scÞ

)

For a ¼ b ¼ 0

1h. Vertical loading

uniformly distributed

along the circumference

(by gravity or linear

acceleration)

(Note: The full span is

loaded)

LPH ¼ wR 2y2sc þ
k1

2
þ k2

� �
ð2yc2 � y� scÞ þ

Rcg

R
½k2ðy� scÞ � 2cðs � ycÞ	


 �

LPM ¼ wR
Rcg

R
þ k2

� �
ðs � ycÞ � y2s

� �

where Rcg is the radial distance to the center of mass for a differential length

of the circumference for radially thicker arches. Rcg=R ¼ 1 þ Ic=ðAR2Þ. Ic is

the area moment of inertia about the centroidal axis of the cross section.

For radially thin arches let Rcg ¼ R. See the discussion on page 333.

For a ¼ b ¼ 0 and for Rcg ¼ R

1i. Horizontal loading

uniformly distributed

along the circumference

(by gravity or linear

acceleration)

(Note: The full span is

loaded)

LPH ¼ wRy½2yc2 þ k1ðy� scÞ � 2k2sc	

LPM ¼
wR

2s
�2y2sc þ

k1

2s
ð2y2c þ ys þ s2cÞ þ k2ð2ys2 � y� scÞ

�

�
Rcg

R
ðk1 � k2Þðyþ scÞ

�

See case 1h for a definition of the radius Rcg

For a ¼ b ¼ 0 and for Rcg ¼ R

1j. Partial uniformly distributed

radial loading
LPH ¼ wRc yð1 � cm þ snÞ þ

k1

2c
ðscm þ c2n � ym � fmÞ þ k2ðsm þ cn � y� fÞ

� �

LPM ¼
wR

2
yðcm � 1 � snÞ þ

k1

2s2
½y� ycm � fsn þ sc � smÞ þ k2ðyþ f� sm � cnÞ

� �

If f ¼ y (the full span is loaded)

LPH ¼ wRc½2ys2 � k1ðy� scÞ � 2k2ðy� scÞ	

LPM ¼ wR½�ys2 þ k2ðy� scÞ	

For a ¼ b ¼ 0

y 30
 60
 90


LPH

wR
�0.0004 �0.0389 �0.4521

LPM

wR
�0.0015 �0.0381 �0.1906

y 30
 60
 90


LPH

wR
�0.0094 �0.2135 �0.7854

LPM

wR
�0.0440 �0.2648 �0.4674

y 30
 60
 90


LPH

wR
0.0052 0.2846 2.4674

LPM

wR
0.0209 0.2968 1.1781

y 30
 60
 90


f 0
 15
 0
 30
 0
 45


LPH

wR
�0.0050 �0.0081 �0.1359 �0.1920 �0.7854 �0.8330

LPM

wR
�0.0201 �0.0358 �0.1410 �0.2215 �0.3573 �0.4391
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1k. Partial uniformly increasing

distributed radial loading
LPH ¼

wR

yþ f

(
ycðyþ f� cn � smÞ þ

k1

2
½nðsc � y� fÞ þ s2m þ 2c � 2m	

þ k2 scn þ s2m �
c

2
ðyþ fÞ2 þ c � m

h i)

LPM ¼
wR

yþ f

(
y
2
ðcn þ sm � y� fÞ þ

k1

4s2
½ðyþ fÞðyþ scÞ þ fsm � ycn

�2s2 � 2sn	 þ
k2

4
½ðyþ fÞ2 þ 2cm � 2sn � 2	

)

If f ¼ y (the full span is loaded)

LPH ¼
wRc

y
yðy� csÞ �

k1s

2c
ðy� scÞ � k2ðy

2
� s2Þ

� �

LPM ¼
wR

2y
ysc � y2

þ
k1

2s2
ðy2

þ ysc � 2s2Þ þ k2ðy
2
� s2Þ

� �

For a ¼ b ¼ 0

1l. Partial second-order

increase in distributed

radial loading

LPH ¼
wRc

ðyþ fÞ2

(
yðyþ fÞ2 � 2yð1 � cm þ snÞ þ

k1

c
½ðyþ fÞð2c þ mÞ

� cðsm þ cnÞ � 2n � 2s	 þ
k2

3
½6ðyþ f� sm � cnÞ � ðyþ fÞ3	

)

LPM ¼
wR

ðyþ fÞ2

(
yð1 � cm þ snÞ �

y
2
ðyþ fÞ2

þ
k1

4s2
½ðyþ fÞ2ðyþ scÞ þ 2sðfn þ 3m � 3cÞ � 4s2ðyþ fÞ � 2yð1 � cmÞ	

þ k2 sm þ cn � y� fþ
ðyþ fÞ3

6

" #)

If f ¼ y (the full span is loaded)

LPH ¼
wR

6y2
½6y3c � 6ys2c þ 3k1ð3yc � 3s þ s3Þ þ 2k2ð3yc � 2y3c � 3sc2Þ	

LPM ¼
wR

2y2
ys2 � y3

þ k1

y
2s2

ðy2
þ ysc � 2s2Þ þ k2 sc � yþ

2y3

3

 !" #

For a ¼ b ¼ 0

y 30
 60
 90


f 0
 15
 0
 30
 0
 45


LPH

wR
�0.0018 �0.0035 �0.0518 �0.0915 �0.3183 �0.5036

LPM

wR
�0.0072 �0.0142 �0.0516 �0.0968 �0.1366 �0.2335

y 30
 60
 90


f 0
 15
 0
 30
 0
 45


LPH

wR
�0.0010 �0.0019 �0.0276 �0.0532 �0.1736 �0.3149

LPM

wR
�0.0037 �0.0077 �0.0269 �0.0542 �0.0726 �0.1388
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TABLE 9.3 Reaction and deformation formulas for circular arches (Continued )

Reference no., loading Loading terms and some selected numerical values

1m. Partial uniformly

distributed tangential

loading

LPH ¼
wR

2
f2ycðcn þ smÞ � cðy2

� f2
Þ

þk1½nðyþ fÞ þ cðcm � sn � 2Þ þ e	 þ k22cðcm � sn � 1Þg

LPM ¼
wR

4

(
y2

� f2
� 2yðcn þ smÞ

þ
k1

s2
½yðcn � cs � y� fÞ � fsðc þ mÞ þ 2sðs þ nÞ	 þ k22ð1 þ sn � cmÞ

)

If f ¼ y (the full span is loaded)

LPH ¼ wR½2yc2s þ k1sðy� scÞ � 2k2cs2 	

LPM ¼ wR �ysc þ
k1

2s2
ð2s2 � ysc � y2

Þ þ k2s2

� �

For a ¼ b ¼ 0

1n. Concentrated couple LPH ¼
Mo

R
ðfc � k2nÞ

LPM ¼
Mo

4s2R
½�2s2f� k1ðyþ scÞ þ k22sm	

For a ¼ b ¼ 0

1p. Concentrated angular

displacement
LPH ¼

yoEI

R2
ðm � cÞ

LPM ¼
yoEI

R2

1

2
þ

n

2s

� �

1q. Concentrated radial

displacement
LPH ¼

DoEI

R3
n

LPM ¼
DoEI

R3
�

m

2s

� �

y 30
 60
 90


f 0
 15
 0
 30
 0
 45


LPH

wR
0.0010 0.0027 0.0543 0.1437 0.5000 1.1866

LPM

wR
0.0037 0.0112 0.0540 0.1520 0.2146 0.5503

y 30
 60
 90


f 0
 15
 0
 30
 0
 45


LPH R

Mo

0.0000 �0.0321 0.0000 �0.2382 0.0000 �0.7071

LPM R

Mo

0.0434 �0.1216 0.0839 �0.2552 0.1073 �0.4318
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1r. Uniform temperature rise

over that span to the right

of point Q

LPH ¼ �ðT � ToÞ
gEI

R2
ðs þ nÞ

LPM ¼ ðT � ToÞ
gEI

2R2s
ðm � cÞ

T ¼uniform temperature

To ¼unloaded temperature

1s. Linear temperature

differential through the

thickness t for that span

to the right of point Q

LPH ¼ ðT1 � T2Þ
gEI

Rt
ðn þ s � yc � fcÞ

LPM ¼ ðT1 � T2Þ
gEI

2Rts
ðys þ fs � m þ cÞ

where t is the radial thickness and To , the unloaded temperature, is the temperature at the radius of the centroid

2. Left end guided horizontally,

right end pinned

Since cA ¼ 0 and HA ¼ 0

MA ¼
LPM

AMM

R and dHA ¼
R3

EI
AHM

MA

R
� LPH

� �

Use load terms given above for cases 1a–1s

3. Left end roller supported in

vertical direction only, right

end pinned

Since both MA and HA are zero, this is a statically determinate case:

dHA ¼
�R3

EI
LPH and cA ¼

�R2

EI
LPM

Use load terms given above for cases 1a–1s
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TABLE 9.3 Reaction and deformation formulas for circular arches (Continued )

4. Left end fixed, right

end pinned

Since dHA ¼ 0 and cA ¼ 0,

HA ¼
AMM LPH � AHM LPM

AHH AMM � A2
HM

and
MA

R
¼

AHH LPM � AHM LPH

AHH AMM � A2
HM

Use load terms given above for cases 1a–1s

General reaction and deformation expressions for cases 5–14, right end fixed in all 10 cases.

Deformation equations:

Horizontal deflection at A ¼ dHA ¼
R3

EI
BHH HA þ BHV VA þ BHM

MA

R
� LFH

� �

Vertical deflection at A ¼ dVA ¼
R3

EI
BVH HA þ BVV VA þ BVM

MA

R
� LFV

� �

Angular rotation at A ¼ cA ¼
R2

EI
BMH HA þ BMV VA þ BMM

MA

R
� LFM

� �

where BHH ¼ 2yc2 þ k1ðy� scÞ � k22sc

BHV ¼ BVH ¼ �2ysc þ k22s2

BHM ¼ BMH ¼ �2yc þ k22s

BVV ¼ 2ys2 þ k1ðyþ scÞ � k22sc

BVM ¼ BMV ¼ 2ys

BMM ¼ 2y
and where LFH , LFV , and LFM are loading terms given below for several types of load

(Note: If desired, HB , VB , and MB can be evaluated from equilibrium equations after calculating HA;VA, and MA)

5. Left end fixed, right end fixed Since dHA ¼ 0; dVA ¼ 0, cA ¼ 0, these equations must be solved simultaneously for HA;VA, and MA=R

The loading terms are given in cases 5a–5s

BHH HA þ BHV VA þ BHM MA=R ¼ LFH

BVH HA þ BVV VA þ BVM MA=R ¼ LFV

BMH HA þ BMV VA þ BMM MA=R ¼ LFM
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Reference no., loading Loading terms and some selected numerical values

5a. Concentrated vertical load LFH ¼ W �ðyþ fÞcn þ
k1

2
ðc2 � m2Þ þ k2ð1 þ sn � cmÞ

� �

LFV ¼ W ðyþ fÞsn þ
k1

2
ðyþ fþ sc þ nmÞ � k2ð2sc � sm þ cnÞ

� �

LFM ¼ W ½ðyþ fÞn þ k2ðm � cÞ	

For a ¼ b ¼ 0

5b. Concentrated horizontal

load
LFH ¼ W ðyþ fÞmc þ

k1

2
ðyþ f� sc � nmÞ � k2ðsm þ cnÞ

� �

LFV ¼ W �ðyþ fÞsm þ
k1

2
ðc2 � m2Þ þ k2ð1 � 2c2 þ cm þ snÞ

� �

LFM ¼ W ½�ðyþ fÞm þ k2ðs þ nÞ	

For a ¼ b ¼ 0

5c. Concentrated radial load LFH ¼ W
k1

2
ðyn þ fn � scn � s2mÞ þ k2ðm � cÞ

� �

LFV ¼ W
k1

2
ðym þ fm þ scm þ c2nÞ þ k2ðs þ n � 2scm � 2c2nÞ

� �

LFM ¼ W ½k2ð1 þ sn � cmÞ	

For a ¼ b ¼ 0

y 30
 60
 90


f 0
 15
 0
 30
 0
 45


LFH

W
0.0090 0.0253 0.1250 0.3573 0.5000 1.4571

LFV

W
0.1123 0.2286 0.7401 1.5326 1.7854 3.8013

LFM

W
0.1340 0.3032 0.5000 1.1514 1.0000 2.3732

y 30
 60
 90


f 0
 15
 0
 30
 0
 45


LFH

W
�0.0013 0.0011 �0.0353 0.0326 �0.2146 0.2210

LFV

W
�0.0208 �0.0049 �0.2819 �0.0621 �1.0708 �0.2090

LFM

W
�0.0236 0.0002 �0.1812 0.0057 �0.5708 0.0410

y 30
 60
 90


f 0
 15
 0
 30
 0
 45


LFH

W
0.0090 0.0248 0.1250 0.3257 0.5000 1.1866

LFV

W
0.1123 0.2196 0.7401 1.2962 1.7854 2.5401

LFM

W
0.1340 0.2929 0.5000 1.0000 1.0000 1.7071
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TABLE 9.3 Reaction and deformation formulas for circular arches (Continued )

Reference no., loading Loading terms and some selected numerical values

5d. Concentrated tangential

load
LFH ¼ W ðyþ fÞc þ

k1

2
ðym þ fm � scm � c2nÞ � k2ðs þ nÞ

� �

LFV ¼ W �ðyþ fÞs �
k1

2
ðyn þ fn þ scn þ s2mÞ þ k2ð2s2m þ 2scn þ c � mÞ

� �
LFM ¼ W ½�y� fþ k2ðsm þ cnÞ	

For a ¼ b ¼ 0

5e. Uniform vertical load on

partial span
LFH ¼

wR

4

(
c½ð1 � 2n2Þðyþ fÞ � sc � mn	 �

2k1

3
ð2s3 þ 3s2n � n3Þ

þ 2k2 ½s þ 2n þ sn2 � cðyþ fþ mnÞ	

)

LFV ¼
wR

4

(
s½ð1 � 2m2Þðyþ fÞ þ sc þ mn	 þ

2k1

3
½3nðyþ fþ scÞ

þ 3m � m3 � 2c3	 þ 2k2½sðyþ f� 2sc þ nm � 4cnÞ � cn2	

)

LFM ¼
wR

4
½ð1 � 2m2Þðyþ fÞ þ nm þ sc þ 2k2ðyþ fþ nm � sc � 2cnÞ	

If f ¼ y (the full span is loaded)

LFH ¼
wR

2
ycð1 � 2s2Þ � sc2 �

k14s3

3
þ k22ðs3 þ s � cyÞ

� �

LFV ¼ wR

�
s

2
ðys2 � yc2 þ scÞ þ k1sðyþ scÞ þ k2sðy� 3scÞ

�
LFM ¼ wR½1

2
ðys2 � yc2 þ scÞ þ k2ðy� scÞ	

For a ¼ b ¼ 0

y 30
 60
 90


f 0
 15
 0
 30
 0
 45


LFH

W
�0.0013 �0.0055 �0.0353 �0.1505 �0.2146 �0.8741

LFV

W
�0.0208 �0.0639 �0.2819 �0.8200 �1.0708 �2.8357

LFM

W
�0.0236 �0.0783 �0.1812 �0.5708 �0.5708 �1.6491

y 30
 60
 90


f 0
 15
 0
 30
 0
 45


LFH

wR
0.0012 0.0055 0.0315 0.1471 0.1667 0.8291

LFV

wR
0.0199 0.0635 0.2371 0.7987 0.7260 2.6808

LFM

wR
0.0226 0.0778 0.1535 0.5556 0.3927 1.5531
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5f. Uniform horizontal load on

left side only
LFH ¼

wR

4

"
ycð4s2 � 1Þ þ sc2 þ 2k1 y� 2yc � sc þ 2sc2 þ

2s2

3

� �
þ 2k2ðsc2 � s3 � ycÞ

#

LFV ¼
wR

4

(
� ysð4s2 � 1Þ � s2c �

2k1

3
ð1 � 3c2 þ 2c3Þ þ 2k2½ys þ 2ð1 � cÞð1 � 2c2Þ	

)

LFM ¼
wR

4
½�yð4s2 � 1Þ � sc þ 2k2ð2s � 3sc þ yÞ	

For a ¼ b ¼ 0

5g. Uniform horizontal load on

right side only
LFH ¼

wR

4
sc2 � yc þ

2k1

3
ð2s3 þ 3sc � 3yÞ þ 2k2ðs � ycÞ

� �

LFV ¼
wR

4
ys � s2c þ

2k1

3
ð1 � 3c2 þ 2c3Þ � 2k2ð2 � 4c2 þ 2c3 � ysÞ

� �

LFM ¼
wR

4
½y� sc þ 2k2ðy� 2s þ scÞ	

For a ¼ b ¼ 0

5h. Vertical loading uniformly

distributed along the

circumference (by gravity

or linear acceleration)

(Note: The full span is

loaded)

LFH ¼ wR
k1

2
ð2yc2 � y� scÞ þ k2

Rcg

R
þ 1

� �
ðy� scÞ þ

Rcg

R
2cðyc � sÞ

� �

LFV ¼ wR k1yðyþ scÞ þ 2k2sðs � 2ycÞ �
Rcg

R
2sðyc � sÞ

� �

LFM ¼ 2wR
Rcg

R
þ k2

� �
ðs � ycÞ

See case 1h for a definition of the radius Rcg

For a ¼ b ¼ 0 and Rcg ¼ R

y 30
 60
 90


LFH

wR
0.0005 0.0541 0.6187

LFV

wR
0.0016 0.0729 0.4406

LFM

wR
0.0040 0.1083 0.6073

y 30
 60
 90


LFH

wR
0.0000 0.0039 0.0479

LFV

wR
0.0009 0.0448 0.3448

LFM

wR
0.0010 0.0276 0.1781

y 30
 60
 90


LFH

wR
0.0149 0.4076 2.3562

LFV

wR
0.1405 1.8294 6.4674

LFM

wR
0.1862 1.3697 4.0000
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TABLE 9.3 Reaction and deformation formulas for circular arches (Continued )

Reference no., loading Loading terms and some selected numerical values

5i. Horizontal loading

uniformly distributed along

the circumference (by

gravity or linear

acceleration)

(Note: The full span is

loaded)

LFH ¼ wR k1yðy� scÞ þ
Rcg

R
2sðyc � k2sÞ

� �

LFV ¼ wR
k1

2
ð2yc2 � y� scÞ þ

Rcg

R
þ 1

� �
k2ðsc � yÞ þ 2k2 �

Rcg

R

� �
2ys2

� �

LFM ¼ wR k2 �
Rcg

R

� �
2ys

See case 1h for a definition of the radius Rcg

For a ¼ b ¼ 0 and Rcg ¼ R

5j. Partial uniformly distributed

radial loading
LFH ¼ wR

k1

2
ðscm þ c2n � ym � fmÞ þ k2ðs þ n � yc � fcÞ

� �

LFV ¼ wR
k1

2
ðyn þ fn þ scn þ s2mÞ þ k2ðys þ fs � 2scn þ 2c2m � c � mÞ

� �
LFM ¼ wR½k2ðyþ f� sm � cnÞ	

If f ¼ y (the full span is loaded)

LFH ¼ wR½k1cðsc � yÞ þ 2k2ðs � ycÞ	

LFV ¼ wR½k1sðyþ scÞ þ 2k2sðy� 2scÞ	

LFM ¼ wR½2k2ðy� scÞ	

For a ¼ b ¼ 0

5k. Partial uniformly increasing

distributed radial loading
LFH ¼

wR

yþ f

(
k1

2
½scn � ðyþ fÞn þ 2c � m � c2m	

þ
k2

2
½ðyþ fÞð2s � yc � fcÞ þ 2c � 2m	

)

LFV ¼
wR

yþ f

(
k1

2
½2s þ 2n � ðyþ fÞm � smc � c2nÞ

þ
k2

2
½ðyþ fÞðys þ fs � 2cÞ � 2s � 2n þ 4smc þ 4c2n	

)

LFM ¼
wR

yþ f
k2

2
½ðyþ fÞ2 þ 2ðcm � sn � 1Þ	


 �

If f ¼ y (the full span is loaded)

LFH ¼
wR

2y
½k1sðsc � yÞ þ 2k2yðs � ycÞ	

LFV ¼
wR

2y
½k1ð2s � sc2 � ycÞ þ 2k2ð2sc2 þ sy2

� s � ycÞ	

LFM ¼
wR

2y
½k2ðy

2
� s2Þ	

For a ¼ b ¼ 0

y 30
 60
 90


LFH

wR
0.0009 0.0501 0.4674

LFV

wR
�0.0050 �0.1359 �0.7854

LFM

wR
0.0000 0.0000 0.0000

y 30
 60
 90


f 0
 15
 0
 30
 0
 45


LFH

wR
0.0013 0.0055 0.0353 0.1505 0.2146 0.8741

LFV

wR
0.0208 0.0639 0.2819 0.8200 1.0708 2.8357

LFM

wR
0.0236 0.0783 0.1812 0.5708 0.5708 1.6491

y 30
 60
 90


f 0
 15
 0
 30
 0
 45


LFH

wR
0.0003 0.0012 0.0074 0.0330 0.0451 0.1963

LFV

wR
0.0054 0.0169 0.0737 0.2246 0.2854 0.8245

LFM

wR
0.0059 0.0198 0.0461 0.1488 0.1488 0.4536
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5l. Partial second-order

increase in distributed

radial loading

LFH ¼
wR

ðyþ fÞ2

(
k1½ðyþ fÞð2c þ mÞ � 2s � 2n � c2n � scm	

þ
k2

3
½3ðyþ fÞðys þ fs þ 2cÞ � 6s � 6n � cðyþ fÞ3 	

)

LFV ¼
wR

ðyþ fÞ2

(
k1½ðyþ fÞð2s � nÞ þ mc2 � 3m � scn þ 2c	

�
k2

3
½3ðyþ fÞðyc þ fc þ 2sÞ � 6c � 6m þ 12cðmc � snÞ � sðyþ fÞ3 	

)

LFM ¼
wR

ðyþ fÞ2
k2

3
½6ðsm þ cn � y� fÞ þ ðyþ fÞ3	


 �

If f ¼ y (the full span is loaded)

LFH ¼
wR

2y2
k1ð3yc � 3s þ s3Þ þ 2k2 yc � s þ sy2

�
2cy3

3

 !" #

LFV ¼
wR

2y2
k1sðy� scÞ þ 2k2 2s2c � ys � cy2

þ
2sy3

3

 !" #

LFM ¼
wR

y2
k2 sc � yþ

2y3

3

 !" #

For a ¼ b ¼ 0

5m. Partial uniformly

distributed tangential

loading

LFH ¼
wR

2
½ðyþ fÞ2c þ k1ðyn þ fn � scn � s2m þ 2m � 2cÞ þ 2k2ðm � c � ys � fsÞ	

LFV ¼
wR

2
½�ðyþ fÞ2s þ k1ðym þ fm þ c2n þ scm � 2s � 2nÞ

þ 2k2ðyc þ fc þ 2s2n � n � 2scm þ sÞ	

LFM ¼
wR

2
½�ðyþ fÞ2 þ 2k2ð1 þ sn � cmÞ	

If f ¼ y (the full span is loaded)

LFH ¼ wR½2y2c þ k1sðy� scÞ � k22ys	

LFV ¼ wR½�2y2s þ k1ðyc � s � s3Þ þ 2k2ðyc þ s � 2sc2Þ	

LFM ¼ wRð�2y2
þ k22s2Þ

For a ¼ b ¼ 0

y 30
 60
 90


f 0
 15
 0
 30
 0
 45


LFH

wR
0.0001 0.0004 0.0025 0.0116 0.0155 0.0701

LFV

wR
0.0022 0.0070 0.0303 0.0947 0.1183 0.3579

LFM

wR
0.0024 0.0080 0.0186 0.0609 0.0609 0.1913

y 30
 60
 90


f 0
 15
 0
 30
 0
 45


LFH

wR
�0.0001 �0.0009 �0.0077 �0.0518 �0.0708 �0.4624

LFV

wR
�0.0028 �0.0133 �0.0772 �0.3528 �0.4483 �1.9428

LFM

wR
�0.0031 �0.0155 �0.0483 �0.2337 �0.2337 �1.0687
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TABLE 9.3 Reaction and deformation formulas for circular arches (Continued )

Reference no., loading Loading terms and some selected numerical values

5n. Concentrated couple LFH ¼
Mo

R
½ðyþ fÞc � k2ðs þ nÞ	

LFV ¼
Mo

R
½�ðyþ fÞs þ k2ðc � mÞ	

LFM ¼
Mo

R
ð�y� fÞ

For a ¼ b ¼ 0

5p. Concentrated angular

displacement
LFH ¼

yoEI

R2
ðm � cÞ

LFV ¼
yoEI

R2
ðs � nÞ

LFM ¼
yoEI

R2
ð1Þ

5q. Concentrated radial

displacement
LFH ¼

DoEI

R3
ðnÞ

LFV ¼
DoEI

R3
ðmÞ

LFM ¼ 0

5r. Uniform temperature rise

over that span to the right of

point Q

LFH ¼ �ðT � ToÞ
gEI

R2
ðn þ sÞ

LFV ¼ ðT � ToÞ
gEI

R2
ðc � mÞ

LFM ¼ 0

T ¼uniform temperature

To ¼unloaded temperature

y 30
 60
 90


f 0
 15
 0
 30
 0
 45


LFH R

Mo

�0.0466 �0.0786 �0.3424 �0.5806 �1.0000 �1.7071

LFV R

Mo

�0.3958 �0.4926 �1.4069 �1.7264 �2.5708 �3.0633

LFM R

Mo

�0.5236 �0.7854 �1.0472 �1.5708 �1.5708 �2.3562
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5s. Linear temperature

differential through the

thickness t for that span

to the right of point Q

LFH ¼ ðT1 � T2Þ
gEI

Rt
ðn þ s � yc � fcÞ

LFV ¼ ðT1 � T2Þ
gEI

Rt
ðm � c þ ys þ fsÞ

LFM ¼ ðT1 � T2Þ
gEI

Rt
ðyþ fÞ

Note: The temperature at the centroidal axis is the initial unloaded temperature

6. Left end pinned, right

end fixed

Since dHA ¼ 0; dVA ¼ 0; and MA ¼ 0,

HA ¼
BVV LFH � BHV LFV

BHH BVV � B2
HV

VA ¼
BHH LFV � BHV LFH

BHH BVV � B2
HV

cA ¼
R2

EI
ðBMH HA þ BMV VA � LFM Þ

Use load terms given above for cases 5a–5s

7. Left end guided in horizontal

direction, right end fixed

Since dVA ¼ 0;cA ¼ 0; and HA ¼ 0,

VA ¼
BMM LFV � BMV LFM

BVV BMM � B2
MV

MA

R
¼

BVV LFM � BMV LFV

BVV BMM � B2
MV

dHA ¼
R3

EI
BHV VA þ BHM

MA

R
� LFH

� �

Use load terms given above for cases 5a–5s

8. Left end guided in vertical

direction, right end fixed

Since dHA ¼ 0;cA ¼ 0; and VA ¼ 0,

HA ¼
BMM LFH � BHM LFM

BHH BMM � B2
HM

MA

R
¼

BHH LFM � BHM LFH

BHH BMM � B2
HM

dVA ¼
R3

EI
BVH HA þ BVM

MA

R
� LFV

� �

Use load terms given above for cases 5a–5s
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TABLE 9.3 Reaction and deformation formulas for circular arches (Continued )

9. Left end roller supported

in vertical direction only,

right end fixed

Since dVA ¼ 0;HA ¼ 0; and MA ¼ 0,

VA ¼
LFV

BVV

; dHA ¼
R3

EI
ðBHV VA � LFH Þ

cA ¼
R2

EI
ðBMV VA � LFM Þ

Use load terms given above for cases 5a–5s

10. Left end roller supported in

horizontal direction only,

right end fixed

Since dHA ¼ 0;VA ¼ 0; and MA ¼ 0,

HA ¼
LFH

BHH

; dVA ¼
R3

EI
ðBVH HA � LFV Þ

cA ¼
R2

EI
ðBMH HA � LFM Þ

Use load terms given above for cases 5a–5s

11. Left end restrained against

rotation only, right end fixed

Since cA ¼ 0;HA ¼ 0; and VA ¼ 0,

MA

R
¼

LFM

BMM

; dHA ¼
R3

EI
BHM

MA

R
� LFH

� �

dVA ¼
R3

EI
BVM

MA

R
� LFV

� �

Use load terms given above for cases 5a–5s

12. Left end free, right end fixed Since HA ¼ 0;VA ¼ 0; and MA ¼ 0, this is a statically determinate problem. The deflections at the free end are given by

dHA ¼
�R3

EI
LFH ; dVA ¼

�R3

EI
LFV

cA ¼
�R2

EI
LFM

Use load terms given above for cases 5a–5s
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13. Left end guided along an

inclined surface at angle z,
right end fixed

Since there is no deflection perpendicular to the incline, the following three equations must be solved for MA;PA; and dI :

dI

EI cos z
R3

¼ PAðBHV cos z� BHH sin zÞ þ BHM

MA

R
� LFH

dI

EI sin z
R3

¼ PAðBVV cos z� BVH sin zÞ þ BVM

MA

R
� LFV

0 ¼ PAðBMV cos z� BMH sin zÞ þ BMM

MA

R
� LFM

Use load terms given above for cases 5a–5s

14. Left end roller supported

along an inclined surface

at angle z, right end fixed

Since there is no deflection perpendicular to the incline and MA ¼ 0, the following equations give PA; dI ; and cA:

PA ¼
LFV cos z� LFH sin z

BHH sin
2 z� 2BHV sin z cos zþ BVV cos2 z

dI ¼
R3

EI
fPA ½BHV ðcos2 z� sin

2 zÞ þ ðBVV � BHH Þ sin z cos z	 � LFH cos z� LFV sin zg

cA ¼
R2

EI
½PAðBMV cos z� BMH sin zÞ � LFM 	

Use load terms given above for cases 5a–5s
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TABLE 9.4 Formulas for curved beams of compact cross section loaded normal to the plane of curvature
NOTATION: W ¼ applied load normal to the plane of curvature (force); Mo ¼applied bending moment in a plane tangent to the curved axis of the beam (force-length);

To ¼ applied twisting moment in a plane normal to the curved axis of the beam (force-length); w ¼ distributed load (force per unit length); to ¼ distributed twisting moment

(force-length per unit length); VA ¼ reaction force, MA ¼ reaction bending moment, TA ¼ reaction twisting moment, yA ¼deflection normal to the plane of curvature,

YA ¼ slope of the beam axis in the plane of the moment MA, and cA ¼ roll of the beam cross section in the plane of the twisting moment TA, all at the left end of the beam.

Similarly, VB;MB;TB; yB;YB, and cB are the reactions and displacements at the right end: V ;M ;T ; y;Y, and c are internal shear forces, moments, and displacements at an

angular position x rad from the left end. All loads and reactions are positive as shown in the diagram; y is positive upward; Y is positive when y increases as x increases; and

c is positive in the direction of T.

R ¼ radius of curvature of the beam axis (length); E ¼modulus of elasticity (force per unit area); I ¼area moment of inertia about the bending axis (length to the fourth

power) (note that this must be a principal axis of the beam cross section); G ¼modulus of rigidity (force per unit area); n ¼Poisson’s ratio; K ¼ torsional stiffness constant of

the cross section (length to the fourth power) (see page 383); y ¼ angle in radians from the left end to the position of the loading; f ¼ angle (radians) subtended by the entire

span of the curved beam. See page 131 For a definition of the term hx � yin:

The following constants and functions are hereby defined to permit condensing the tabulated formulas which follow. b ¼ EI=GK :

F1 ¼
1 þ b

2
x sin x � bð1 � cos xÞ C1 ¼

1 þ b
2

f sinf� bð1 � cosfÞ

F2 ¼
1 þ b

2
ðx cos x � sin xÞ C2 ¼

1 þ b
2

ðf cosf� sinfÞ

F3 ¼ �bðx � sin xÞ �
1 þ b

2
ðx cos x � sin xÞ C3 ¼ �bðf� sinfÞ �

1 þ b
2

ðf cosf� sinfÞ

F4 ¼
1 þ b

2
x cos x þ

1 � b
2

sin x C4 ¼
1 þ b

2
f cosfþ

1 � b
2

sinf

F5 ¼ �
1 þ b

2
x sin x C5 ¼ �

1 þ b
2

f sinf

F6 ¼ F1 C6 ¼ C1

F7 ¼ F5
C7 ¼ C5

F8 ¼
1 � b

2
sin x �

1 þ b
2

x cos x
C8 ¼

1 � b
2

sinf�
1 þ b

2
f cosf

F9 ¼ F2 C9 ¼ C2

Fa1 ¼
1 þ b

2
ðx � yÞ sinðx � yÞ � b½1 � cosðx � yÞ	


 �
hx � yi0 Ca1 ¼

1 þ b
2

ðf� yÞ sinðf� yÞ � b½1 � cosðf� yÞ	

Fa2 ¼
1 þ b

2
½ðx � yÞ cosðx � yÞ � sinðx � yÞ	hx � yi0 Ca2 ¼

1 þ b
2

½ðf� yÞ cosðf� yÞ � sinðf� yÞ	

Fa3 ¼ f�b½x � y� sinðx � yÞ	 � Fa2ghx � yi0 Ca3 ¼ �b½f� y� sinðf� yÞ	 � Ca2

Fa4 ¼
1 þ b

2
ðx � yÞ cosðx � yÞ þ

1 � b
2

sinðx � yÞ
� �

hx � yi0 Ca4 ¼
1 þ b

2
ðf� yÞ cosðf� yÞ þ

1 � b
2

sinðf� yÞ
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Fa5 ¼ �
1 þ b

2
ðx � yÞ sinðx � yÞhx � yi0

Ca5 ¼ �
1 þ b

2
ðf� yÞ sinðf� yÞ

Fa6 ¼ Fa1 Ca6 ¼ Ca1

Fa7 ¼ Fa5 Ca7 ¼ Ca5

Fa8 ¼
1 � b

2
sinðx � yÞ �

1 þ b
2

ðx � yÞ cosðx � yÞ
� �

hx � yi0 Ca8 ¼
1 � b

2
sinðf� yÞ �

1 þ b
2

ðf� yÞ cosðf� yÞ

Fa9 ¼ Fa2 Ca9 ¼ Ca2

Fa12 ¼
1 þ b

2
½ðx � yÞ sinðx � yÞ � 2 þ 2 cosðx � yÞ	hx � yi0 Ca12 ¼

1 þ b
2

½ðf� yÞ sinðf� yÞ � 2 þ 2 cosðf� yÞ	

Fa13 ¼ b 1 � cosðx � yÞ �
ðx � yÞ2

2

( )
� Fa12

" #
hx � yi0 Ca13 ¼ b 1 � cosðf� yÞ �

ðf� yÞ2

2

" #
� Ca12

Fa15 ¼ Fa2 Ca15 ¼ Ca2

Fa16 ¼ Fa3 Ca16 ¼ Ca3

Fa18 ¼ 1 � cosðx � yÞ �
1 þ b

2
ðx � yÞ sinðx � yÞ

� �
hx � yi0 Ca18 ¼ 1 � cosðf� yÞ �

1 þ b
2

ðf� yÞ sinðf� yÞ

Fa19 ¼ Fa12 Ca19 ¼ Ca12

1. Concentrated intermediate lateral load Transverse shear ¼ V ¼ VA � Whx � yi0

Bending moment ¼ M ¼ VAR sin x þ MA cos x � TA sin x � WR sinðx � yÞhx � yi0

Twisting moment ¼ T ¼ VARð1 � cos xÞ þ MA sin x þ TA cos x � WR½1 � cosðx � yÞ	hx � yi0

Deflection ¼ y ¼ yA þYAR sin x þ cARð1 � cos xÞ þ
MAR2

EI
F1 þ

TAR2

EI
F2 þ

VAR3

EI
F3 �

WR3

EI
Fa3

Bending slope ¼ Y ¼ YA cos x þ cA sin x þ
MAR

EI
F4 þ

TAR

EI
F5 þ

VAR2

EI
F6 �

WR2

EI
Fa6

Roll slope ¼ c ¼ cA cos x �YA sin x þ
MAR

EI
F7 þ

TAR

EI
F8 þ

VAR2

EI
F9 �

WR2

EI
Fa9

For tabulated values: V ¼ KV W ; M ¼ KM WR; T ¼ KT WR; y ¼ Ky

WR3

EI
; Y ¼ KY

WR2

EI
; c ¼ Kc

WR2

EI
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TABLE 9.4 Formulas for curved beams of compact cross section loaded normal to the plane of curvature (Continued )

End restraints, reference no. Formulas for boundary values and selected numerical values

1a. Right end fixed, left end free

VA ¼ 0 MA ¼ 0 TA ¼ 0

yB ¼ 0 YB ¼ 0 cB ¼ 0

yA ¼
�WR3

EI
½Ca6 sinf� Ca9ð1 � cosfÞ � Ca3 	; YA ¼

WR2

EI
ðCa6 cosf� Ca9 sinfÞ

cA ¼
WR2

EI
ðCa9 cosfþ Ca6 sinfÞ

VB ¼ �W

MB ¼ �WR sinðf� yÞ

TB ¼ �WR½1 � cosðf� yÞ	

1b. Right end fixed, left end simply

supported

MA ¼ 0 TA ¼ 0 yA ¼ 0

yB ¼ 0 YB ¼ 0 cB ¼ 0

VA ¼ W
Ca9ð1 � cosfÞ � Ca6 sinfþ Ca3

C9ð1 � cosfÞ � C6 sinfþ C3

YA ¼
WR2

EI

ðCa3C9 � Ca9C3Þ sinfþ ðCa9C6 � Ca6C9Þð1 � cosfÞ þ ðCa6C3 � Ca3C6Þ cosf
C9ð1 � cosfÞ � C6 sinfþ C3

cA ¼
WR2

EI

½Ca6ðC3 þ C9Þ � C6ðCa3 þ Ca9Þ	 sinfþ ðCa9C3 � Ca3C9Þ cosf
C9ð1 � cosfÞ � C6 sinfþ C3

VB ¼ VA � W

MB ¼ VAR sinf� WR sinðf� yÞ

TB ¼ VARð1 � cosfÞ � WR½1 � cosðf� yÞ	

If b ¼ 1:3 (solid or hollow round cross section, n ¼ 0:3)

f 45
 90
 180


y 0
 0
 30
 60
 0
 60
 120


KyA �0.1607 �1.2485 �0.6285 �0.1576 �7.6969 �3.7971 �0.6293

KYA 0.3058 1.1500 0.3938 0.0535 2.6000 �0.1359 �0.3929

KcA 0.0590 0.5064 0.3929 0.1269 3.6128 2.2002 0.3938

KVB �1.0000 �1.0000 �1.0000 �1.0000 �1.0000 �1.0000 �1.0000

KMB �0.7071 �1.0000 �0.8660 �0.5000 �0.0000 �0.8660 �0.8660

KTB �0.2929 �1.0000 �0.5000 �0.1340 �2.0000 �1.5000 �0.5000

If b ¼ 1:3 (solid or hollow round cross section, n ¼ 0:3)

f 45
 90
 180


y 15
 30
 30
 60
 60
 120


KVA 0.5136 0.1420 0.5034 0.1262 0.4933 0.0818

KYA �0.0294 �0.0148 �0.1851 �0.0916 �1.4185 �0.6055

KcA 0.0216 0.0106 0.1380 0.0630 0.4179 0.0984

KMB �0.1368 �0.1584 �0.3626 �0.3738 �0.8660 �0.8660

KTB 0.0165 0.0075 0.0034 �0.0078 �0.5133 �0.3365

KMy 0.1329 0.0710 0.2517 0.1093 0.4272 0.0708
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1c. Right end fixed, left end supported

and slope guided

TA ¼ 0 yA ¼ 0 YA ¼ 0

yB ¼ 0 YB ¼ 0 cB ¼ 0

VA ¼ W
ðCa9C4 � Ca6C7Þð1 � cosfÞ þ ðCa6C1 � Ca3C4Þ cosfþ ðCa3C7 � Ca9C1Þ sinf

ðC4C9 � C6C7Þð1 � cosfÞ þ ðC1C6 � C3C4Þ cosfþ ðC3C7 � C1C9Þ sinf

MA ¼ WR
ðCa6C9 � Ca9C6Þð1 � cosfÞ þ ðCa3C6 � Ca6C3Þ cosfþ ðCa9C3Þ � Ca3C9Þ sinf

ðC4C9 � C6C7Þð1 � cosfÞ þ ðC1C6 � C3C4Þ cosfþ ðC3C7 � C1C9Þ sinf

cA ¼
WR2

EI

Ca3ðC4C9 � C6C7Þ þ Ca6ðC3C7 � C1C9Þ þ Ca9ðC1C6 � C3C4Þ

ðC4C9 � C6C7Þð1 � cosfÞ þ ðC1C6 � C3C4Þ cosfþ ðC3C7 � C1C9Þ sinf

VB ¼ VA � W

MB ¼ VAR sinfþ MA cosf� WR sinðf� yÞ

TB ¼ VARð1 � cosfÞ þ MA sinf� WR½1 � cosðf� yÞ	

1d. Right end fixed, left end supported

and roll guided

MA ¼ 0 yA ¼ 0 cA ¼ 0

yB ¼ 0 YB ¼ 0 cB ¼ 0

VA ¼ W
½ðCa3 þ Ca9ÞC5 � Ca6ðC2 þ C8Þ	 sinfþ ðCa3C8 � Ca9C2Þ cosf
½C5ðC3 þ C9Þ � C6ðC2 þ C8Þ	 sinfþ ðC3C8 � C2C9Þ cosf

TA ¼ WR
½Ca6ðC3 þ C9Þ � C6ðCa3 þ Ca9Þ	 sinfþ ðCa9C3 � Ca3C9Þ cosf

½C5ðC3 þ C9Þ � C6ðC2 þ C8Þ	 sinfþ ðC3C8 � C2C9Þ cosf

YA ¼
WR2

EI

Ca3ðC5C9 � C6C8Þ þ Ca6ðC3C8 � C2C9Þ þ Ca9ðC2C6 � C3C5Þ

½C5ðC3 þ C9Þ � C6ðC2 þ C8Þ	 sinfþ ðC3C8 � C2C9Þ cosf

VB ¼ VA � W

MB ¼ VAR sinf� TA sinf� WR sinðf� yÞ

TB ¼ VARð1 � cosfÞ þ TA cosf� WR½1 � cosðf� yÞ	

If b ¼ 1:3 (solid or hollow round cross section, n ¼ 0:3)

f 45
 90
 180


y 15
 30
 30
 60
 60
 120


KVA 0.7407 0.2561 0.7316 0.2392 0.6686 0.1566

KMA �0.1194 �0.0600 �0.2478 �0.1226 �0.5187 �0.2214

KcA �0.0008 �0.0007 �0.0147 �0.0126 �0.2152 �0.1718

KMB �0.0607 �0.1201 �0.1344 �0.2608 �0.3473 �0.6446

KTB �0.0015 �0.0015 �0.0161 �0.0174 �0.1629 �0.1869

KMy 0.0764 0.0761 0.1512 0.1458 0.3196 0.2463

If b ¼ 1:3 (solid or hollow round cross section, n ¼ 0:3)

f 45
 90
 180


y 15
 30
 30
 60
 60
 120


KVA 0.5053 0.1379 0.4684 0.1103 0.3910 0.0577

KTA �0.0226 �0.0111 �0.0862 �0.0393 �0.2180 �0.0513

KYA �0.0252 �0.0127 �0.1320 �0.0674 �1.1525 �0.5429

KMB �0.1267 �0.1535 �0.3114 �0.3504 �0.8660 �0.8660

KTB �0.0019 �0.0015 �0.0316 �0.0237 �0.5000 �0.3333

KMy 0.1366 0.0745 0.2773 0.1296 0.5274 0.0944
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TABLE 9.4 Formulas for curved beams of compact cross section loaded normal to the plane of curvature (Continued)

End restraints, reference no. Formulas for boundary values and selected numerical values

1e. Right end fixed, left end fixed

yA ¼ 0 YA ¼ 0 cA ¼ 0

yB ¼ 0 YB ¼ 0 cB ¼ 0

VA ¼ W
Ca3ðC4C8 � C5C7Þ þ Ca6ðC2C7 � C1C8Þ þ Ca9ðC1C5 � C2C4Þ

C1ðC5C9 � C6C8Þ þ C4ðC3C8 � C2C9Þ þ C7ðC2C6 � C3C5Þ

MA ¼ WR
Ca3ðC5C9 � C6C8Þ þ Ca6ðC3C8 � C2C9Þ þ Ca9ðC2C6 � C3C5Þ

C1ðC5C9 � C6C8Þ þ C4ðC3C8 � C2C9Þ þ C7ðC2C6 � C3C5Þ

TA ¼ WR
Ca3ðC6C7 � C4C9Þ þ Ca6ðC1C9 � C3C7Þ þ Ca9ðC3C4 � C1C6Þ

C1ðC5C9 � C6C8Þ þ C4ðC3C8 � C2C9Þ þ C7ðC2C6 � C3C5Þ

VB ¼ VA � W

MB ¼ VAR sinfþ MA cosf

� TA sinf� WR sinðf� yÞ

TB ¼ VARð1 � cosfÞ þ MA sinf

þ TA cosf� WR½1 � cosðf� yÞ	

1f. Right end supported and

slope-guided, left end supported

and slope-guided

TA ¼ 0 yA ¼ 0 YA ¼ 0

TB ¼ 0 yB ¼ 0 YB ¼ 0

VA ¼ W
½�C1 sinfþ C4ð1 � cosfÞ	½1 � cosðf� yÞ	 þ Ca3 sin

2 f� Ca6 sinfð1 � cosfÞ

C4ð1 � cosfÞ2 þ C3 sin
2 f� ðC1 þ C6Þð1 � cosfÞ sinf

MA ¼ þWR
Ca6ð1 � cosfÞ2 � Ca3ð1 � cosfÞ sinfþ ½C3 sinf� C6ð1 � cosfÞ	½1 � cosðf� yÞ	

C4ð1 � cosfÞ2 þ C3 sin
2 f� ðC1 þ C6Þð1 � cosfÞ sinf

cA ¼
WR2

EI

ðCa3C4 � Ca6C1Þð1 � cosfÞ � ðCa3C6 � Ca6C3Þ sinf� ðC3C4 � C1C6Þ½1 � cosðf� yÞ	

C4ð1 � cosfÞ2 þ C3 sin
2 f� ðC1 þ C6Þð1 � cosfÞ sinf

VB ¼ VA � W

MB ¼ VAR sinfþ MA cosf� WR sinðf� yÞ

cB ¼ cA cosfþ
MAR

EI
C7 þ

VAR2

EI
C9 �

WR2

EI
Ca9

If b ¼ 1:3 (solid or hollow round cross section, n ¼ 0:3)

f 45
 90
 180
 270
 360


y 15
 30
 60
 90
 90
 180


KVA 0.7424 0.7473 0.7658 0.7902 0.9092 0.5000

KMA �0.1201 �0.2589 �0.5887 �0.8488 �0.9299 �0.3598

KTA 0.0009 0.0135 0.1568 0.5235 0.7500 1.0000

KMB �0.0606 �0.1322 �0.2773 �0.2667 0.0701 �0.3598

KTB �0.0008 �0.0116 �0.1252 �0.3610 �0.2500 �1.0000

KMy 0.0759 0.1427 0.2331 0.2667 0.1592 0.3598

If b ¼ 1:3 (solid or hollow round cross section, n ¼ 0:3)

f 45
 90
 180
 270


y 15
 30
 60
 90


KVA 0.7423 0.7457 0.7500 0.7414

KMA �0.1180 �0.2457 �0.5774 �1.2586

KcA �0.0024 �0.0215 �0.2722 �2.5702

KMB �0.0586 �0.1204 �0.2887 �0.7414

KcB �0.0023 �0.0200 �0.2372 �2.3554

KMy 0.0781 0.1601 0.3608 0.7414
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1g. Right end supported and slope-

guided, left end supported and roll-

guided

MA ¼ 0 yA ¼ 0 cA ¼ 0

TB ¼ 0 yB ¼ 0 YB ¼ 0

VA ¼ W
ðC5 sinf� C2 cosfÞ½1 � cosðf� yÞ	 þ Ca3 cos2 f� Ca6 sinf cosf

ðC5 sinf� C2 cosfÞð1 � cosfÞ þ C3 cos2 f� C6 sinf cosf

TA ¼ WR
ðC3 cosf� C6 sinfÞ½1 � cosðf� yÞ	 � ðCa3 cosf� Ca6 sinfÞð1 � cosfÞ

ðC5 sinf� C2 cosfÞð1 � cosfÞ þ C3 cos2 f� C6 sinf cosf

YA ¼
WR2

EI

ðC2C6 � C3C5Þ½1 � cosðf� yÞ	 þ ðCa3C5 � Ca6C2Þð1 � cosfÞ þ ðCa6C3 � Ca3C6Þ cosf
ðC5 sinf� C2 cosfÞð1 � cosfÞ þ C3 cos2 f� C6 sinf cosf

VB ¼ VA � W

MB ¼ VAR sinf� TA sinf� WR sinðf� yÞ

cB ¼ �YA sinfþ
TAR

EI
C8 þ

VAR2

EI
C9 �

WR2

EI
Ca9

1h. Right end supported and slope-

guided, left end simply supported

MA ¼ 0 TA ¼ 0 yA ¼ 0

TB ¼ 0 yB ¼ 0 YB ¼ 0

VA ¼ W
1 � cosðf� yÞ

1 � cosf

YA ¼
WR2

EI

Ca3 sinfþ C6½1 � cosðf� yÞ	
1 � cosf

�
C3 sinf½1 � cosðf� yÞ	

ð1 � cosfÞ2
� Ca6


 �

cA ¼
WR2

EI

Ca6 sinf� Ca3 cosf
1 � cosf

� ðC6 sinf� C3 cosfÞ
1 � cosðf� yÞ

ð1 � cosfÞ2


 �

VB ¼ VA � W

MB ¼ VAR sinf� WR sinðf� yÞ

cB ¼ cA cosf�YA sinfþ
VAR2

EI
C9 �

WR2

EI
Ca9

If b ¼ 1:3 (solid or hollow round cross section, n ¼ 0:3)

f 45
 90
 180


y 15
 30
 30
 60
 60
 120


KVA 0.5087 0.1405 0.5000 0.1340 0.6257 0.2141

KTA �0.0212 �0.0100 �0.0774 �0.0327 �0.2486 �0.0717

KYA �0.0252 �0.0127 �0.1347 �0.0694 �1.7627 �0.9497

KMB �0.1253 �0.1524 �0.2887 �0.3333 �0.8660 �0.8660

KcB �0.0016 �0.0012 �0.0349 �0.0262 �0.9585 �0.6390

KMy 0.1372 0.0753 0.2887 0.1443 0.7572 0.2476

If b ¼ 1:3 (solid or hollow round cross section, n ¼ 0:3)

f 45
 90
 180


y 15
 30
 30
 60
 60
 120


KVA 0.4574 0.1163 0.5000 0.1340 0.7500 0.2500

KYA �0.0341 �0.0169 �0.1854 �0.0909 �2.0859 �1.0429

KcA 0.0467 0.0220 0.1397 0.0591 0.4784 0.1380

KMB �0.1766 �0.1766 �0.3660 �0.3660 �0.8660 �0.8660

KcB 0.0308 0.0141 0.0042 �0.0097 �0.9878 �0.6475

KMy 0.1184 0.0582 0.2500 0.1160 0.6495 0.2165
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TABLE 9.4 Formulas for curved beams of compact cross section loaded normal to the plane of curvature (Continued )

End restraints, reference no. Formulas for boundary values and selected numerical values

1i. Right end supported and roll-guided,

left end supported and roll-guided

MA ¼ 0 yA ¼ 0 cA ¼ 0

MB ¼ 0 yB ¼ 0 cB ¼ 0

VA ¼ W
ðCa3 þ Ca9Þ sinfþ ðC2 þ C8Þ sinðf� yÞ

ðC2 þ C3 þ C8 þ C9Þ sinf

TA ¼ WR
ðCa3 þ Ca9Þ sinf� ðC3 þ C9Þ sinðf� yÞ

ðC2 þ C3 þ C8 þ C9Þ sinf

YA ¼
WR2

EI

Ca3ðC8 þ C9Þ � Ca9ðC2 þ C3Þ þ ðC2C9 � C3C8Þ sinðf� yÞ= sinf
ðC2 þ C3 þ C8 þ C9Þ sinf

VB ¼ VA � W

TB ¼ VARð1 � cosfÞ þ TA cosf� WR½1 � cosðf� yÞ	

YB ¼ YA cosfþ
VAR2

EI
C6 þ

TAR

EI
C5 �

WR2

EI
Ca6

1j. Right end supported and roll-guided,

left end simply supported

MA ¼ 0 TA ¼ 0 yA ¼ 0

MB ¼ 0 yB ¼ 0 cB ¼ 0

VA ¼ W
sinðf� yÞ

sinf

YA ¼
WR2

EI

Ca3 cosf� Ca9ð1 � cosfÞ
sinf

� ½C3 cosf� C9ð1 � cosfÞ	
sinðf� yÞ

sin
2 f

( )

cA ¼
WR2

EI
Ca3 þ Ca9 � ðC3 þ C9Þ

sinðf� yÞ
sinf

� �

VB ¼ VA � W

TB ¼ VARð1 � cosfÞ � WR½1 � cosðf� yÞ	

YB ¼ YA cosfþ cA sinfþ
VAR2

EI
C6 �

WR2

EI
Ca6

If b ¼ 1:3 (solid or hollow round cross section, n ¼ 0:3)

f 45
 90
 270


y 15
 30
 90


KVA 0.6667 0.6667 0.6667

KTA �0.0404 �0.1994 0.0667

KYA �0.0462 �0.3430 �4.4795

KTB 0.0327 0.1667 �1.3333

KYB 0.0382 0.3048 1.7333

KMy 0.1830 0.4330 0.0000

If b ¼ 1:3 (solid or hollow round cross section, n ¼ 0:3)

f 45
 90
 270


y 15
 30
 30
 60
 90
 180


KVA 0.7071 0.3660 0.8660 0.5000 0.0000 �1.0000

KYA �0.0575 �0.0473 �0.6021 �0.5215 �3.6128 0.0000

KcA 0.0413 0.0334 0.4071 0.3403 �4.0841 �8.1681

KTB 0.0731 0.0731 0.3660 0.3660 �2.0000 �2.0000

KYB 0.0440 0.0509 0.4527 0.4666 6.6841 14.3810

KMy 0.1830 0.1830 0.4330 0.4330 0.0000 0.0000
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2. Concentated intermediate bending

moment

Transverse shear ¼ V ¼ VA

Bending moment ¼ M ¼ VAR sin x þ MA cos x � TA sin x þ Mo cosðx � yÞhx � yi0

Twisting moment ¼ T ¼ VARð1 � cos xÞ þ MA sin x þ TA cos x þ Mo sinðx � yÞhx � yi0

Vertical deflection ¼ y ¼ yA þYAR sin x þ cARð1 � cos xÞ þ
MAR2

EI
F1 þ

TAR2

EI
F2 þ

VAR3

EI
F3 þ

MoR2

EI
Fa1

Bending slope ¼ Y ¼ YA cos x þ cA sin x þ
MAR

EI
F4 þ

TAR

EI
F5 þ

VAR2

EI
F6 þ

MoR

EI
Fa4

Roll slope ¼ c ¼ cA cos x �YA sin x þ
MAR

EI
F7 þ

TAR

EI
F8 þ

VAR2

EI
F9 þ

MoR

EI
Fa7

For tabulated values V ¼ KV

Mo

R
; M ¼ KM Mo; T ¼ KT Mo y ¼ Ky

MoR2

EI
; Y ¼ KY

MoR

EI
; c ¼ Kc

MoR

EI

End restraints,reference no. Formulas for boundary values and selected numerical values

2a. Right end fixed, left end free

VA ¼ 0 MA ¼ 0 TA ¼ 0

yB ¼ 0 YB ¼ 0 cB ¼ 0

yA ¼
MoR2

EI
½Ca4 sinf� Ca7ð1 � cosfÞ � Ca1 	

YA ¼
MoR

EI
ðCa7 sinf� Ca4 cosfÞ

cA ¼ �
MoR

EI
ðCa4 sinfþ Ca7 cosfÞ

VB ¼ 0; MB ¼ Mo cosðf� yÞ

TB ¼ Mo sinðf� yÞ

If b ¼ 1:3 (solid or hollow round cross section, n ¼ 0:3)

f 45
 90
 180


y 0
 0
 30
 60
 0
 60
 120


KyA 0.3058 1.1500 1.1222 0.6206 2.6000 4.0359 1.6929

KYA �0.8282 �1.8064 �1.0429 �0.3011 �3.6128 �1.3342 0.4722

KcA 0.0750 0.1500 �0.4722 �0.4465 0.0000 �2.0859 �1.0429

KMB 0.7071 0.0000 0.5000 0.8660 �1.0000 �0.5000 0.5000

KTB 0.7071 1.0000 0.8660 0.5000 0.0000 0.8660 0.8660
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TABLE 9.4 Formulas for curved beams of compact cross section loaded normal to the plane of curvature (Continued )



TABLE 9.4 Formulas for curved beams of compact cross section loaded normal to the plane of curvature (Continued )

End restraints, reference no. Formulas for boundary values and selected numerical values

2b. Right end fixed, left end simply

supported

MA ¼ 0 TA ¼ 0 yA ¼ 0

yB ¼ 0 YB ¼ 0 cB ¼ 0

VA ¼
�Mo

R

Ca7ð1 � cosfÞ � Ca4 sinfþ Ca1

C9ð1 � cosfÞ � C6 sinfþ C3

YA ¼ �
MoR

EI

ðCa1C9 � Ca7C3Þ sinfþ ðCa7C6 � Ca4C9Þð1 � cosfÞ þ ðCa4C3 � Ca1C6Þ cosf
C9ð1 � cosfÞ � C6 sinfþ C3

cA ¼ �
MoR

EI

½ðCa4ðC9 þ C3Þ � C6ðCa1 þ Ca7Þ	 sinfþ ðCa7C3 � Ca1C9Þ cosf
C9ð1 � cosfÞ � C6 sinfþ C3

VB ¼ VA

MB ¼ VAR sinfþ Mo cosðf� yÞ

TB ¼ VARð1 � cosfÞ þ Mo sinðf� yÞ

2c. Right end fixed, left end supported

and slope-guided

TA ¼ 0 yA ¼ 0 YA ¼ 0

yB ¼ 0 YB ¼ 0 cB ¼ 0

VA ¼ �
Mo

R

ðCa7C4 � Ca4C7Þð1 � cosfÞ þ ðCa4C1 � Ca1C4Þ cosfþ ðCa1C7 � Ca7C1Þ sinf
ðC4C9 � C6C7Þð1 � cosfÞ þ ðC1C6 � C3C4Þ cosfþ ðC3C7 � C1C9Þ sinf

MA ¼ �Mo

ðCa4C9 � Ca7C6Þð1 � cosfÞ þ ðCa1C6 � Ca4C3Þ cosfþ ðCa7C3 � Ca1C9Þ sinf
ðC4C9 � C6C7Þð1 � cosfÞ þ ðC1C6 � C3C4Þ cosfþ ðC3C7 � C1C9Þ sinf

cA ¼ �
MoR

EI

Ca1ðC4C9 � C6C7Þ þ Ca4ðC3C7 � C1C9Þ þ Ca7ðC1C6 � C3C4Þ

ðC4C9 � C6C7Þð1 � cosfÞ þ ðC1C6 � C3C4Þ cosfþ ðC3C7 � C1C9Þ sinf

VB ¼ VA

MB ¼ VAR sinfþ MA cosfþ Mo cosðf� yÞ

TB ¼ VARð1 � cosfÞ þ MA sinfþ Mo sinðf� yÞ

If b ¼ 1:3 (solid or hollow round cross section, n ¼ 0:3)

f 45
 90
 180


y 0
 0
 30
 60
 0
 60
 120


KVA �1.9021 �0.9211 �0.8989 �0.4971 �0.3378 �0.5244 �0.2200

KYA �0.2466 �0.7471 �0.0092 0.2706 �2.7346 0.0291 1.0441

KcA 0.1872 0.6165 �0.0170 �0.1947 1.2204 �0.1915 �0.2483

KMB �0.6379 �0.9211 �0.3989 0.3689 �1.0000 �0.5000 0.5000

KTB 0.1500 0.0789 �0.0329 0.0029 �0.6756 �0.1827 0.4261

If b ¼ 1:3 (solid or hollow round cross section, n ¼ 0:3)

f 45
 90
 180


y 15
 30
 30
 60
 60
 120


KVA �1.7096 �1.6976 �0.8876 �0.8308 �0.5279 �0.3489

KMA �0.0071 0.3450 �0.0123 0.3622 0.0107 0.3818

KcA �0.0025 0.0029 �0.0246 0.0286 �0.1785 0.2177

KMB �0.3478 0.0095 �0.3876 0.0352 �0.5107 0.1182

KTB �0.0057 0.0056 �0.0338 0.0314 �0.1899 0.1682
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2d. Right end fixed, left end supported

and roll-guided

MA ¼ 0 yA ¼ 0 cA ¼ 0

yB ¼ 0 YB ¼ 0 cB ¼ 0

VA ¼ �
Mo

R

½ðCa1 þ Ca7ÞC5 � Ca4ðC2 þ C8Þ	 sinfþ ðCa1C8 � Ca7C2Þ cosf
½C5ðC3 þ C9Þ � C6ðC2 þ C8Þ	 sinfþ ðC3C8 � C2C9Þ cosf

TA ¼ �Mo

½Ca4ðC3 þ C9Þ � ðCa1 þ Ca7ÞC6 	 sinfþ ðCa7C3 � Ca1C9Þ cosf
½C5ðC3 þ C9Þ � C6ðC2 þ C8Þ	 sinfþ ðC3C8 � C2C9Þ cosf

YA ¼ �
MoR

EI

Ca1ðC5C9 � C6C8Þ þ Ca4ðC3C8 � C2C9Þ þ Ca7ðC2C6 � C3C5Þ

½C5ðC3 þ C9Þ � C6ðC2 þ C8Þ	 sinfþ ðC3C8 � C2C9Þ cosf

VB ¼ VA

MB ¼ VAR sinf� TA sinf

þ Mo cosðf� yÞ

TB ¼ VARð1 � cosfÞ þ TA cosf

þ Mo sinðf� yÞ

2e. Right end fixed, left end fixed

yA ¼ 0 YA ¼ 0 cA ¼ 0

yB ¼ 0 YB ¼ 0 cB ¼ 0

VA ¼ �
Mo

R

Ca1ðC4C8 � C5C7Þ þ Ca4ðC2C7 � C1C8Þ þ Ca7ðC1C5 � C2C4Þ

C1ðC5C9 � C6C8Þ þ C4ðC3C8 � C2C9Þ þ C7ðC2C6 � C3C5Þ

MA ¼ �Mo

Ca1ðC5C9 � C6C8Þ þ Ca4ðC3C8 � C2C9 þ Ca7ðC2C6 � C3C5Þ

C1ðC5C9 � C6C8Þ þ C4ðC3C8 � C2C9Þ þ C7ðC2C6 � C3C5Þ

TA ¼ �Mo

Ca1ðC6C7 � C4C9Þ þ Ca4ðC1C9 � C3C7Þ þ Ca7ðC3C4 � C1C6Þ

C1ðC5C9 � C6C8Þ þ C4ðC3C8 � C2C9Þ þ C7ðC2C6 � C3C5Þ

VB ¼ VA

MB ¼ VAR sinfþ MA cosf� TA sinf

þ Mo cosðf� yÞ

TB ¼ VARð1 � cosfÞ þ MA sinfþ TA cosf

þ Mo sinðf� yÞ

If b ¼ 1:3 (solid or hollow round cross section, n ¼ 0:3)

f 45
 90
 180


y 0
 0
 30
 60
 0
 30
 60


KVA �1.9739 �1.0773 �0.8946 �0.4478 �0.6366 �0.4775 �0.1592

KTA �0.1957 �0.3851 0.0106 0.1216 �0.6366 0.0999 0.1295

KYA �0.2100 �0.5097 �0.0158 0.1956 �1.9576 �0.0928 0.8860

KMB �0.5503 �0.6923 �0.4052 0.2966 �1.0000 �0.5000 0.5000

KTB �0.0094 �0.0773 �0.0286 0.0522 �0.6366 �0.1888 0.4182

If b ¼ 1:3 (solid or hollow round cross section, n ¼ 0:3)

f 45
 90
 180
 270
 360


y 15
 30
 60
 90
 90
 180


KVA �1.7040 �0.8613 �0.4473 �0.3115 �0.1592 �0.3183

KMA �0.0094 �0.0309 �0.0474 0.0584 �0.0208 0.5000

KTA 0.0031 0.0225 0.1301 0.2788 0.5908 �0.3183

KMB �0.3477 �0.3838 �0.4526 �0.4097 �0.0208 �0.5000

KTB �0.0036 �0.0262 �0.1586 �0.3699 �0.4092 �0.3183
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TABLE 9.4 Formulas for curved beams of compact cross section loaded normal to the plane of curvature (Continued )



TABLE 9.4 Formulas for curved beams of compact cross section loaded normal to the plane of curvature (Continued )

End restraints, reference no. Formulas for boundary values and selected numerical values

2f. Right end supported and slope-

guided, left end supported and

slope-guided

TA ¼ 0 yA ¼ 0 YA ¼ 0

TB ¼ 0 yB ¼ 0 YB ¼ 0

VA ¼ þ
Mo

R

½C1 sinf� C4ð1 � cosfÞ	 sinðf� yÞ � Ca1 sin
2 fþ Ca4 sinfð1 � cosfÞ

C4ð1 � cosfÞ2 þ C3 sin
2 f� ðC1 þ C6Þð1 � cosfÞ sinf

MA ¼ �Mo

½C3 sinf� C6ð1 � cosfÞ	 sinðf� yÞ � Ca1ð1 � cosfÞ sinfþ Ca4ð1 � cosfÞ2

C4ð1 � cosfÞ2 þ C3 sin
2 f� ðC1 þ C6Þð1 � cosfÞ sinf

cA ¼
MoR

EI

ðC3C4 � C1C6Þ sinðf� yÞ þ ðCa1C6 � Ca4C3Þ sinf� ðCa1C4 � Ca4C1Þð1 � cosfÞ

C4ð1 � cosfÞ2 þ C3 sin
2 f� ðC1 þ C6Þð1 � cosfÞ sinf

VB ¼ VA

MB ¼ VAR sinfþ MA cosfþ Mo cosðf� yÞ

cB ¼ cA cosfþ
MAR

EI
C7 þ

VAR2

EI
C9 þ

MoR

EI
Ca7

2g. Right end supported and slope-

guided, left end supported and

roll-guided

MA ¼ 0 yA ¼ 0 cA ¼ 0

TB ¼ 0 yB ¼ 0 YB ¼ 0

VA ¼ �
Mo

R

Ca1 cos2 f� Ca4 sinf cosfþ ðC5 sinf� C2 cosfÞ sinðf� yÞ
ðC5 sinf� C2 cosfÞð1 � cosfÞ þ C3 cos2 f� C6 sinf cosf

TA ¼ �Mo

ðCa4 sinf� Ca1 cosfÞð1 � cosfÞ þ ðC3 cosf� C6 sinfÞ sinðf� yÞ
ðC5 sinf� C2 cosfÞð1 � cosfÞ þ C3 cos2 f� C6 sinf cosf

YA ¼
�MoR

EI

ðCa1C5 � Ca4C2Þð1 � cosfÞ þ ðCa4C3 � Ca1C6Þ cosfþ ðC2C6 � C3C5Þ sinðf� yÞ
ðC5 sinf� C2 cosfÞð1 � cosfÞ þ C3 cos2 f� C6 sin cosf

VB ¼ VA

MB ¼ VAR sinf� TA sinf

þ Mo cosðf� yÞ

cB ¼ �YA sinfþ
TAR

EI
C8

þ
VAR2

EI
C9 þ

MoR

EI
Ca7

If b ¼ 1:3 (solid or hollow round cross section, n ¼ 0:3)

f 45
 90
 180
 270


y 15
 30
 60
 90


KVA �1.7035 �0.8582 �0.4330 �0.2842

KMA �0.0015 �0.0079 �0.0577 �0.2842

KcA �0.0090 �0.0388 �0.2449 �1.7462

KMB �0.3396 �0.3581 �0.4423 �0.7159

KcB �0.0092 �0.0418 �0.2765 �1.8667

If b ¼ 1:3 (solid or hollow round cross section, n ¼ 0:3)

f 45
 90
 180


y 0
 0
 30
 60
 0
 60
 120


KVA �1.9576 �1.0000 �0.8660 �0.5000 �0.3378 �0.3888 �0.3555

KTA �0.1891 �0.3634 0.0186 0.1070 �0.6756 0.0883 0.1551

KYA �0.2101 �0.5163 �0.0182 0.2001 �2.7346 �0.3232 1.3964

KMB �0.5434 �0.6366 �0.3847 0.2590 �1.0000 �0.5000 0.5000

KcB �0.0076 �0.0856 �0.0316 0.0578 �1.2204 �0.3619 0.8017
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2h. Right end supported and slope-

guided, left end simply supported

MA ¼ 0 TA ¼ 0 yA ¼ 0

TB ¼ 0 yB ¼ 0 YB ¼ 0

VA ¼ �
Mo

R

sinðf� yÞ
1 � cosf

YA ¼ �
MoR

EI

Ca1 sinfþ C6 sinðf� yÞ
1 � cosf

�
C3 sinf sinðf� yÞ

ð1 � cosfÞ2
� Ca4

� �

cA ¼ �
MoR

EI

Ca4 sinf� Ca1 cosf
1 � cosf

þ
ðC3 cosf� C6 sinfÞ sinðf� yÞ

ð1 � cosfÞ2

� �

VB ¼ VA

MB ¼ VAR sinfþ Mo cosðf� yÞ

cB ¼ cA cosf�YA sinfþ
VAR2

EI
C9

þ
MoR

EI
Ca7

2i. Right end supported and roll-guided,

left end supported and roll-guided

MA ¼ 0 yA ¼ 0 cA ¼ 0

MB ¼ 0 yB ¼ 0 cB ¼ 0

VA ¼ �
Mo

R

ðCa1 þ Ca7Þ sin
2 fþ ðC2 þ C8Þ cosðf� yÞ sinf

ðC2 þ C3 þ C8 þ C9Þ sin
2 f

TA ¼ �Mo

ðCa1 þ Ca7Þ sin
2 f� ðC3 þ C9Þ cosðf� yÞ sinf

ðC2 þ C3 þ C8 þ C9Þ sin
2 f

YA ¼ �
MoR

EI

½Ca1ðC8 þ C9Þ � Ca7ðC2 þ C3Þ	 sinfþ ðC2C9 � C3C8Þ cosðf� yÞ

ðC2 þ C3 þ C8 þ C9Þ sin
2 f

VB ¼ VA

TB ¼ VARð1 � cosfÞ þ TA cosfþ Mo sinðf� yÞ

YB ¼ YA cosfþ
TAR

EI
C5 þ

VAR2

EI
C6 þ

MoR

EI
Ca4

If b ¼ 1:3 (solid or hollow round cross section, n ¼ 0:3)

f 45
 90
 180


y 0
 0
 30
 60
 0
 60
 120


KVA �2.4142 �1.0000 �0.8660 �0.5000 0.0000 �0.4330 �0.4330

KYA �0.2888 �0.7549 �0.0060 0.2703 �3.6128 �0.2083 1.5981

KcA 0.4161 0.6564 �0.0337 �0.1933 1.3000 �0.1700 �0.2985

KMB �1.0000 �1.0000 �0.3660 0.3660 �1.0000 �0.5000 0.5000

KcB 0.2811 0.0985 �0.0410 0.0036 �1.3000 �0.3515 0.8200

If b ¼ 1:3 (solid or hollow round cross section, n ¼ 0:3)

f 45
 90
 270


y 0
 15
 0
 30
 0
 90


KVA �1.2732 �1.2732 �0.6366 �0.6366 �0.2122 �0.2122

KTA �0.2732 �0.0485 �0.6366 �0.1366 �0.2122 0.7878

KYA �0.3012 �0.0605 �0.9788 �0.2903 �5.1434 0.1259

KTB 0.1410 0.0928 0.3634 0.2294 �1.2122 �0.2122

KYB 0.1658 0.1063 0.6776 0.3966 0.4259 2.0823
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TABLE 9.4 Formulas for curved beams of compact cross section loaded normal to the plane of curvature (Continued )



TABLE 9.4 Formulas for curved beams of compact cross section loaded normal to the plane of curvature (Continued )

End restraints, reference no. Formulas for boundary values and selected numerical values

2j. Right end supported and roll-guided,

left end simply supported

MA ¼ 0 TA ¼ 0 yA ¼ 0

MB ¼ 0 yB ¼ 0 cB ¼ 0

VA ¼ �
Mo cosðf� yÞ

R sinf

YA ¼ �
MoR

EI

Ca1 cosf� Ca7ð1 � cosfÞ
sinf

�
½C3 cosf� C9ð1 � cosfÞ	 cosðf� yÞ

sin
2 f

( )

cA ¼ �
MoR

EI
Ca1 þ Ca7 �

ðC3 þ C9Þ cosðf� yÞ
sinf

� �

VB ¼ VA

TB ¼ VARð1 � cosfÞ þ Mo sinðf� yÞ

YB ¼ YA cosfþ cA sinfþ
VAR2

EI
C6 þ

MoR

EI
Ca4

3. Concentrated intermediate twisting

moment (torque) Transverse shear ¼ V ¼ VA

Bending moment ¼ M ¼ VAR sin x þ MA cos x � TA sin x � T0 sinðx � yÞhx � yi0

Twisting moment ¼ T ¼ VARð1 � cos xÞ þ MA sin x þ TA cos x þ T0 cosðx � yÞhx � yi0

Vertical deflection ¼ y ¼ yA þYAR sin x þ cARð1 � cos xÞ þ
MAR2

EI
F1 þ

TAR2

EI
F2 þ

VAR3

EI
F3 þ

ToR2

EI
Fa2

Bending slope ¼ Y ¼ YA cos x þ cA sin x þ
MAR

EI
F4 þ

TAR

EI
F5 þ

VAR2

EI
F6 þ

ToR

EI
Fa5

Roll slope ¼ c ¼ cA cos x �YA sin x þ
MAR

EI
F7 þ

TAR

EI
F8 þ

VAR2

EI
F9 þ

ToR

EI
Fa8

For tabulated values: V ¼ KV

To

R
; M ¼ KM To; T ¼ KT To; y ¼ Ky

ToR2

EI
; Y ¼ KY

ToR

EI
; c ¼ Kc

ToR

EI

If b ¼ 1:3 (solid or hollow round cross section, n ¼ 0:3)

f 45
 90


y 0
 15
 30
 0
 30
 60


KVA �1.0000 �1.2247 �1.3660 0.0000 �0.5000 �0.8660

KYA �0.3774 �0.0740 0.1322 �1.8064 �0.4679 0.6949

KcA 0.2790 0.0495 �0.0947 1.3000 0.2790 �0.4684

KTB 0.4142 0.1413 �0.1413 1.0000 0.3660 �0.3660

KYB 0.2051 0.1133 �0.0738 1.1500 0.4980 �0.4606
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3a. Right end fixed, left end free

VA ¼ 0 MA ¼ 0 TA ¼ 0

yB ¼ 0 YB ¼ 0 cB ¼ 0

yA ¼
ToR2

EI
½Ca5 sinf� Ca8ð1 � cosfÞ � Ca2	

YA ¼ �
ToR

EI
ðCa5 cosf� Ca8 sinfÞ

cA ¼ �
ToR

EI
ðCa8 cosfþ Ca5 sinfÞ

VB ¼ 0

MB ¼ �To sinðf� yÞ

TB ¼ To cosðf� yÞ

3b. Right end fixed, left end simply

supported

MA ¼ 0 TA ¼ 0 yA ¼ 0

yB ¼ 0 YB ¼ 0 cB ¼ 0

VA ¼ �
To

R

Ca8ð1 � cosfÞ � Ca5 sinfþ Ca2

C9ð1 � cosfÞ � C6 sinfþ C3

YA ¼ �
ToR

EI

ðCa2C9 � Ca8C3Þ sinfþ ðCa8C6 � Ca5C9Þð1 � cosfÞ þ ðCa5C3 � Ca2C6Þ cosf
C9ð1 � cosfÞ � C6 sinfþ C3

cA ¼ �
ToR

EI

½Ca5ðC9 þ C3Þ � C6ðCa2 þ Ca8	 sinfþ ðCa8C3 � Ca2C9Þ cosf
C9ð1 � cosfÞ � C6 sinfþ C3

VB ¼ VA

MB ¼ VAR sinf� To sinðf� yÞ

TB ¼ VARð1 � cosfÞ þ To cosðf� yÞ

If b ¼ 1:3 (solid or hollow round cross section, n ¼ 0:3)

f 45
 90
 180


y 0
 0
 30
 60
 0
 60
 120


KyA �0.0590 �0.5064 0.0829 0.3489 �3.6128 0.0515 1.8579

KYA �0.0750 �0.1500 �0.7320 �0.5965 0.0000 �2.0859 �1.0429

KcA 0.9782 1.8064 1.0429 0.3011 3.6128 1.0744 �0.7320

KMB �0.7071 �1.0000 �0.8660 �0.5000 0.0000 �0.8660 �0.8660

KTB 0.7071 0.0000 0.5000 0.8660 �1.0000 �0.5000 0.5000

If b ¼ 1:3 (solid or hollow round cross section, n ¼ 0:3)

f 45
 90
 180


y 0
 0
 30
 60
 0
 60
 120


KVA 0.3668 0.4056 �0.0664 �0.2795 0.4694 �0.0067 �0.2414

KYA �0.1872 �0.6165 �0.6557 �0.2751 �1.2204 �2.0685 �0.4153

KcA 0.9566 1.6010 1.0766 0.4426 1.9170 1.0985 0.1400

KMB �0.4477 �0.5944 �0.9324 �0.7795 0.0000 �0.8660 �0.8660

KTB 0.8146 0.4056 0.4336 0.5865 �0.0612 �0.5134 0.0172
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TABLE 9.4 Formulas for curved beams of compact cross section loaded normal to the plane of curvature (Continued )



TABLE 9.4 Formulas for curved beams of compact cross section loaded normal to the plane of curvature (Continued )

End restraints, reference no. Formulas for boundary values and selected numerical values

3c. Right end fixed, left end supported

and slope-guided

TA ¼ 0 yA ¼ 0 YA ¼ 0

yB ¼ 0 YB ¼ 0 cB ¼ 0

VA ¼ �
To

R

ðCa8C4 � Ca5C7Þð1 � cosfÞ þ ðCa5C1 � Ca2C4Þ cosfþ ðCa2C7 � Ca8C1Þ sinf
ðC4C9 � C6C7Þð1 � cosfÞ þ ðC1C6 � C3C4Þ cosfþ ðC3C7 � C1C9Þ sinf

MA ¼ �To

ðCa5C9 � Ca8C6Þð1 � cosfÞ þ ðCa2C6 � Ca5C3Þ cosfþ ðCa8C3 � Ca2C9Þ sinf
ðC4C9 � C6C7Þð1 � cosfÞ þ ðC1C6 � C3C4Þ cosfþ ðC3C7 � C1C9Þ sinf

cA ¼ �
ToR

EI

Ca2ðC4C9 � C6C7Þ þ Ca5ðC3C7 � C1C9Þ þ Ca8ðC1C6 � C3C4Þ

ðC4C9 � C6C7Þð1 � cosfÞ þ ðC1C6 � C3C4Þ cosfþ ðC3C7 � C1C9Þ sinf

VB ¼ VA

MB ¼ VAR sinfþ MA cosf

� To sinðf� yÞ

TB ¼ VARð1 � cosfÞ þ MA sinf

þ To cosðf� yÞ

3d. Right end fixed, left end supported

and roll-guided

MA ¼ 0 yA ¼ 0 cA ¼ 0

yB ¼ 0 YB ¼ 0 cB ¼ 0

VA ¼ �
To

R

½ðCa2 þ Ca8ÞC5 � Ca5ðC2 þ C8Þ	 sinfþ ðCa2C8 � Ca8C2Þ cosf
½C5ðC3 þ C9Þ � C6ðC2 þ C8Þ	 sinfþ ðC3C8 � C2C9Þ cosf

TA ¼ �To

½Ca5ðC3 þ C9Þ � C6ðCa2 þ Ca8Þ	 sinfþ ðCa8C3 � Ca2C9Þ cosf
½C5ðC3 þ C9Þ � C6ðC2 þ C8Þ	 sinfþ ðC3C8 � C2C9Þ cosf

YA ¼ �
ToR

EI

Ca2ðC5C9 � C6C8Þ þ Ca5ðC3C8 � C2C9Þ þ Ca8ðC2C6 � C3C5Þ

½C5ðC3 þ C9Þ � C6ðC2 þ C8Þ	 sinfþ ðC3C8 � C2C9Þ cosf

VB ¼ VA

MB ¼ VAR sinf� TA sinf� To sinðf� yÞ

TB ¼ VARð1 � cosfÞ þ TA cosfþ To cosðf� yÞ

If b ¼ 1:3 (solid or hollow round cross section, n ¼ 0:3)

f 45
 90
 180


y 0
 0
 30
 60
 0
 60
 120


KVA 1.8104 1.1657 0.7420 0.0596 0.6201 0.2488 �0.1901

KMA �0.7589 �0.8252 �0.8776 �0.3682 �0.4463 �0.7564 �0.1519

KcA 0.8145 1.0923 0.5355 0.2156 1.3724 0.1754 �0.0453

KMB 0.0364 0.1657 �0.1240 �0.4404 0.4463 �0.1096 �0.7141

KTB 0.7007 0.3406 0.3644 0.5575 0.2403 �0.0023 0.1199

If b ¼ 1:3 (solid or hollow round cross section, n ¼ 0:3)

f 45
 90
 180


y 15
 30
 30
 60
 60
 120


KVA �0.3410 �0.4177 �0.3392 �0.3916 �0.2757 �0.2757

KTA �0.6694 �0.3198 �0.6724 �0.2765 �0.5730 �0.0730

KYA �0.0544 �0.0263 �0.2411 �0.1046 �1.3691 �0.3262

KMB �0.2678 �0.3280 �0.5328 �0.6152 �0.8660 �0.8660

KTB 0.2928 0.6175 0.1608 0.4744 �0.4783 0.0217
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3e. Right end fixed, left end fixed

yA ¼ 0 YA ¼ 0 cA ¼ 0

yB ¼ 0 YB ¼ 0 cB ¼ 0

VA ¼ �
To

R

Ca2ðC4C8 � C5C7Þ þ Ca5ðC2C7 � C1C8Þ þ Ca8ðC1C5 � C2C4Þ

C1ðC5C9 � C6C8Þ þ C4ðC3C8 � C2C9Þ þ C7ðC2C6 � C3C5Þ

MA ¼ �To

Ca2ðC5C9 � C6C8Þ þ Ca5ðC3C8 � C2C9Þ þ Ca8ðC2C6 � C3C5Þ

C1ðC5C9 � C6C8Þ þ C4ðC3C8 � C2C9Þ þ C7ðC2C6 � C3C5Þ

TA ¼ �To

Ca2ðC6C7 � C4C9Þ þ Ca5ðC1C9 � C3C7Þ þ Ca8ðC3C4 � C1C6Þ

C1ðC5C9 � C6C8Þ þ C4ðC3C8 � C2C9Þ þ C7ðC2C6 � C3C5Þ

VB ¼ VA

MB ¼ VAR sinfþ MA cosf� TA sinf

� To sinðf� yÞ

TB ¼ VARð1 � cosfÞ þ MA sinfþ TA cosf

þ To cosðf� yÞ

3f. Right end supported and slope-

guided, left end supported and

slope-guided

TA ¼ 0 yA ¼ 0 YA ¼ 0

TB ¼ 0 yB ¼ 0 YB ¼ 0

VA ¼
To

R

½C1 sinf� C4ð1 � cosfÞ	 cosðf� yÞ � Ca2 sin
2 fþ Ca5ð1 � cosfÞ sinf

C4ð1 � cosfÞ2 þ C3 sin
2 f� ðC1 þ C6Þð1 � cosfÞ sinf

MA ¼ �To

½C3 sinf� C6ð1 � cosfÞ	 cosðf� yÞ � Ca2ð1 � cosfÞ sinfþ Ca5ð1 � cosfÞ2

C4ð1 � cosfÞ2 þ C3 sin
2 f� ðC1 þ C6Þð1 � cosfÞ sinf

cA ¼
ToR

EI

ðC3C4 � C1C6Þ cosðf� yÞ þ ðCa2C6 � Ca5C3Þ sinf� ðCa2C4 � Ca5C1Þð1 � cosfÞ

C4ð1 � cosfÞ2 þ C3 sin
2 f� ðC1 þ C6Þð1 � cosfÞ sinf

VB ¼ VA

MB ¼ VAR sinfþ MA cosf� To sinðf� yÞ

cB ¼ cA cosfþ
MAR

EI
C7 þ

VAR2

EI
C9 þ

ToR

EI
Ca8

If b ¼ 1:3 (solid or hollow round cross section, n ¼ 0:3)

f 45
 90
 180
 270
 360


y 15
 30
 60
 90
 90
 180


KVA 0.1704 0.1705 0.1696 0.1625 0.1592 0.0000

KMA �0.2591 �0.4731 �0.6994 �0.7073 �0.7500 0.0000

KTA �0.6187 �0.4903 �0.1278 0.2211 0.1799 0.5000

KMB �0.1252 �0.2053 �0.1666 0.0586 0.2500 0.0000

KTB 0.2953 0.1974 �0.0330 �0.1302 0.1799 �0.5000

If b ¼ 1:3 (solid or hollow round cross section, n ¼ 0:3)

f 45
 90
 180


y 0
 15
 0
 30
 0
 60


KVA 1.0645 0.5147 0.8696 0.4252 0.5000 0.2500

KMA �1.4409 �1.4379 �0.8696 �0.9252 �0.3598 �0.7573

KcA 1.6003 1.3211 1.2356 0.6889 1.4564 0.1746

KMB �0.9733 �1.1528 �0.1304 �0.4409 0.3598 �0.1088

KcB 1.1213 1.1662 0.4208 0.4502 0.3500 �0.0034
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TABLE 9.4 Formulas for curved beams of compact cross section loaded normal to the plane of curvature (Continued )

End restraints, reference no. Formulas for boundary values and selected numerical values

3g. Right end supported and slope-

guided, left end supported and

roll-guided.

MA ¼ 0 yA ¼ 0 cA ¼ 0

TB ¼ 0 yB ¼ 0 YB ¼ 0

VA ¼ �
To

R

Ca2 cos2 f� Ca5 sinf cosfþ ðC5 sinf� C2 cosfÞ cosðf� yÞ
ðC5 sinf� C2 cosfÞð1 � cosfÞ þ C3 cos2 f� C6 sinf cosf

TA ¼ �To

ðCa5 sinf� Ca2 cosfÞð1 � cosfÞ þ ðC3 cosf� C6 sinfÞ cosðf� yÞ
ðC5 sinf� C2 cosfÞð1 � cosfÞ þ C3 cos2 f� C6 sinf cosf

YA ¼ �
ToR

EI

ðCa2C5 � Ca5C2Þð1 � cosfÞ þ ðCa5C3 � Ca2C6Þ cosfþ ðC2C6 � C3C5Þ cosðf� yÞ
ðC5 sinf� C2 cosfÞð1 � cosfÞ þ C3 cos2 f� C6 sinf cosf

VB ¼ VA

MB ¼ VAR sinf� TA sinf� To sinðf� yÞ

cB ¼ �YA sinfþ
TAR

EI
C8 þ

VAR2

EI
C9 þ

ToR

EI
Ca8

3h. Right end supported and slope-

guided, left end simply supported

MA ¼ 0 TA ¼ 0 yA ¼ 0

TB ¼ 0 yB ¼ 0 YB ¼ 0

VA ¼ �
To cosðf� yÞ
Rð1 � cosfÞ

YA ¼ �
ToR

EI

Ca2 sinfþ C6 cosðf� yÞ
1 � cosf

�
C3 sinf cosðf� yÞ

ð1 � cosfÞ2
� Ca5

� �

cA ¼ �
ToR

EI

Ca5 sinf� Ca2 cosf
1 � cosf

þ ðC3 cosf� C6 sinfÞ
cosðf� yÞ

ð1 � cosfÞ2

� �

VB ¼ VA

MB ¼ VAR sinf� To sinðf� yÞ

cB ¼ cA cosf�YA sinfþ
VAR2

EI
C9 þ

ToR

EI
Ca8

If b ¼ 1:3 (solid or hollow round cross section, n ¼ 0:3)

f 45
 90
 180


y 15
 30
 30
 60
 60
 120


KVA �0.8503 �1.4915 �0.5000 �0.8660 �0.0512 �0.2859

KTA �0.8725 �0.7482 �0.7175 �0.4095 �0.6023 �0.0717

KYA �0.0522 �0.0216 �0.2274 �0.0640 �1.9528 �0.2997

KMB �0.4843 �0.7844 �0.6485 �0.9566 �0.8660 �0.8660

KcB 0.2386 0.5031 0.1780 0.5249 �0.9169 0.0416

If b ¼ 1:3 (solid or hollow round cross section, n ¼ 0:3)

f 45
 90
 180


y 0
 0
 30
 60
 0
 60
 120


KVA �2.4142 0.0000 �0.5000 �0.8660 0.5000 0.2500 �0.2500

KYA �0.4161 �0.6564 �0.6984 �0.3328 �1.3000 �2.7359 �0.3929

KcA 2.1998 1.8064 1.2961 0.7396 1.9242 1.1590 0.1380

KMB �2.4142 �1.0000 �1.3660 �1.3660 0.0000 �0.8660 �0.8660

KcB 1.5263 0.5064 0.5413 0.7323 �0.1178 �0.9878 0.0332
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3i. Right end supported and roll-guided,

left end supported and roll-

guided.

MA ¼ 0 yA ¼ 0 cA ¼ 0

MB ¼ 0 yB ¼ 0 cB ¼ 0

VA ¼ 0

TA ¼ �To

ðCa2 þ Ca8Þ sin
2 fþ ðC3 þ C9Þ sinðf� yÞ sinf

ðC2 þ C3 þ C8 þ C9Þ sin
2 f

YA ¼ �
ToR

EI

½Ca2ðC8 þ C9Þ � Ca8ðC2 þ C3Þ	 sinf� ðC2C9 � C3C8Þ sinðf� yÞ

ðC2 þ C3 þ C8 þ C9Þ sin
2 f

VB ¼ 0

TB ¼ VARð1 � cosfÞ þ TA cosfþ To cosðf� yÞ

YB ¼ YA cosfþ
TAR

EI
C5 þ

VAR2

EI
C6 þ

ToR

EI
Ca5

3j. Right end supported and roll-

guided, left end simply supported

MA ¼ 0 TA ¼ 0 yA ¼ 0

MB ¼ 0 yB ¼ 0 cB ¼ 0

VA ¼
To sinðf� yÞ

R sinf

YA ¼ �
ToR

EI

Ca2 cosf� Ca8ð1 � cosfÞ
sinf

þ ½C3 cosf� C9ð1 � cosfÞ	
sinðf� yÞ

sin
2 f

( )

cA ¼ �
ToR

EI
Ca2 þ Ca8 þ ðC3 þ C9Þ

sinðf� yÞ
sinf

� �

VB ¼ VA

TB ¼ VARð1 � cosfÞ þ To cosðf� yÞ

YB ¼ YA cosfþ cA sinfþ
VAR2

EI
C6 þ

ToR

EI
Ca5

If b ¼ 1:3 (solid or hollow round cross section, n ¼ 0:3)

f 45
 90
 270


y 15
 30
 90


KVA 0.0000 0.0000 0.0000

KTA �0.7071 �0.8660 0.0000

KYA �0.0988 �0.6021 �3.6128

KTB 0.3660 0.5000 �1.0000

KYB 0.0807 0.5215 0.0000

If b ¼ 1:3 (solid or hollow round cross section, n ¼ 0:3)

f 45
 90


y 0
 15
 30
 0
 30
 60


KVA 1.0000 0.7071 0.3660 1.0000 0.8660 0.5000

KYA �0.2790 �0.2961 �0.1828 �1.3000 �1.7280 �1.1715

KcA 1.0210 0.7220 0.3737 2.0420 1.7685 1.0210

KTB 1.0000 1.0731 1.0731 1.0000 1.3660 1.3660

KYB 0.1439 0.1825 0.1515 0.7420 1.1641 0.9732

S
E

C
.
9
.6

]
C

u
rv

e
d

B
e
a
m

s
3
6
7

TABLE 9.4 Formulas for curved beams of compact cross section loaded normal to the plane of curvature (Continued )



TABLE 9.4 Formulas for curved beams of compact cross section loaded normal to the plane of curvature (Continued )

4. Uniformly distributed lateral load Transverse shear ¼ V ¼ VA � wRhx � yi1

Bending moment ¼ M ¼ VAR sin x þ MA cos x � TA sin x � wR2½1 � cosðx � yÞ	hx � yi0

Twisting moment ¼ T ¼ VARð1 � cos xÞ þ MA sin x þ TA cos x � wR2 ½x � y� sinðx � yÞ	hx � yi0

Vertical deflection ¼ y ¼ yA þYAR sin x þ cARð1 � cos xÞ þ
MAR2

EI
F1 þ

TAR2

EI
F2 þ

VAR3

EI
F3 �

wR4

EI
Fa13

Bending slope ¼ Y ¼ YA cos x þ cA sin x þ
MAR

EI
F4 þ

TAR

EI
F5 þ

VAR2

EI
F6 �

wR3

EI
Fa16

Roll slope ¼ c ¼ cA cos x �YA sin x þ
MAR

EI
F7 þ

TAR

EI
F8 þ

VAR2

EI
F9 �

wR3

EI
Fa19

For tabulated values: V ¼ KV wR; M ¼ KM wR2; T ¼ KT wR2; y ¼ Ky

wR4

EI
; Y ¼ KY

wR3

EI
; c ¼ Kc

wR3

EI

End restraints, reference no. Formulas for boundary values and selected numerical values

4a. Right end fixed, left end free

VA ¼ 0 MA ¼ 0 TA ¼ 0

yB ¼ 0 YB ¼ 0 cB ¼ 0

yA ¼ �
wR4

EI
½Ca16 sinf� Ca19ð1 � cosfÞ � Ca13	

YA ¼
wR3

EI
ðCa16 cosf� Ca19 sinfÞ

cA ¼
wR3

EI
ðCa19 cosfþ Ca16 sinfÞ

VB ¼ �wRðf� yÞ

MB ¼ �wR2½1 � cosðf� yÞ	

TB ¼ �wR2 ½f� y� sinðf� yÞ	

If b ¼ 1:3 (solid or hollow round cross section, n ¼ 0:3)

f 45
 90
 180


y 0
 0
 30
 60
 0
 60
 120


KyA �0.0469 �0.7118 �0.2211 �0.0269 �8.4152 �2.2654 �0.1699

KYA 0.0762 0.4936 0.1071 0.0071 0.4712 �0.6033 �0.1583

KcA 0.0267 0.4080 0.1583 0.0229 4.6000 1.3641 0.1071

KMB �0.2929 �1.0000 �0.5000 �0.1340 �2.0000 �1.5000 �0.5000

KTB �0.0783 �0.5708 �0.1812 �0.0236 �3.1416 �1.2284 �0.1812
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4b. Right end fixed, left end simply

supported

MA ¼ 0 TA ¼ 0 yA ¼ 0

yB ¼ 0 YB ¼ 0 cB ¼ 0

VA ¼ wR
Ca19ð1 � cosfÞ � Ca16 sinfþ Ca13

C9ð1 � cosfÞ � C6 sinfþ C3

YA ¼
wR3

EI

ðCa13C9 � Ca19C3Þ sinfþ ðCa19C6 � Ca16C9Þð1 � cosfÞ þ ðCa16C3 � Ca13C6Þ cosf
C9ð1 � cosfÞ � C6 sinfþ C3

cA ¼
wR3

EI

½Ca16ðC3 þ C9Þ � C6ðCa13 þ Ca19Þ	 sinfþ ðCa19C3 � Ca13C9Þ cosf
C9ð1 � cosfÞ � C6 sinfþ C3

VB ¼ VA � wRðf� yÞ

MB ¼ VAR sinf

� wR2½1 � cosðf� yÞ	

TB ¼ VARð1 � cosfÞ

� wR2 ½f� y� sinðf� yÞ	

4c. Right end fixed, left end supported

and slope-guided

TA ¼ 0 yA ¼ 0 YA ¼ 0

yB ¼ 0 YB ¼ 0 cB ¼ 0

VA ¼ wR
ðCa19C4 � Ca16C7Þð1 � cosfÞ þ ðCa16C1 � Ca13C4Þ cosfþ ðCa13C7 � Ca19C1Þ sinf

ðC4C9 � C6C7Þð1 � cosfÞ þ ðC1C6 � C3C4Þ cosfþ ðC3C7 � C1C9Þ sinf

MA ¼ wR2 ðCa16C9 � Ca19C6Þð1 � cosfÞ þ ðCa13C6 � Ca16C3Þ cosfþ ðCa19C3 � Ca13C9Þ sinf
ðC4C9 � C6C7Þð1 � cosfÞ þ ðC1C6 � C3C4Þ cosfþ ðC3C7 � C1C9Þ sinf

cA ¼
wR3

EI

Ca13ðC4C9 � C6C7Þ þ Ca16ðC3C7 � C1C9Þ þ Ca19ðC1C6 � C3C4Þ

ðC4C9 � C6C7Þð1 � cosfÞ þ ðC1C6 � C3C4Þ cosfþ ðC3C7 � C1C9Þ sinf

VB ¼ VA � wRðf� yÞ

MB ¼ VAR sinfþ MA cosf

� wR2½1 � cosðf� yÞ	

TB ¼ VARð1 � cosfÞ þ MA sinf

� wR2 ½f� y� sinðf� yÞ	

If b ¼ 1:3 (solid or hollow round cross section, n ¼ 0:3)

f 45
 90
 180


y 0
 0
 30
 60
 0
 60
 120


KVA 0.2916 0.5701 0.1771 0.0215 1.0933 0.2943 0.0221

KYA �0.1300 �0.1621 �0.0966 �0.0177 �2.3714 �1.3686 �0.2156

KcA 0.0095 0.1192 0.0686 0.0119 0.6500 0.3008 0.0273

KMB �0.0867 �0.4299 �0.3229 �0.1124 �2.0000 �1.5000 �0.5000

KTB 0.0071 �0.0007 �0.0041 �0.0021 �0.9549 �0.6397 �0.1370

If b ¼ 1:3 (solid or hollow round cross section, n ¼ 0:3)

f 45
 90
 180


y 0
 0
 30
 60
 0
 60
 120


KVA 0.3919 0.7700 0.2961 0.0434 1.3863 0.4634 0.0487

KMA �0.0527 �0.2169 �0.1293 �0.0237 �0.8672 �0.5005 �0.0789

KcA �0.0004 �0.0145 �0.0111 �0.0027 �0.4084 �0.3100 �0.0689

KMB �0.0531 �0.2301 �0.2039 �0.0906 �1.1328 �0.9995 �0.4211

KTB �0.0008 �0.0178 �0.0143 �0.0039 �0.3691 �0.3016 �0.0838
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TABLE 9.4 Formulas for curved beams of compact cross section loaded normal to the plane of curvature (Continued )



TABLE 9.4 Formulas for curved beams of compact cross section loaded normal to the plane of curvature (Continued )

End restraints, reference no. Formulas for boundary values and selected numerical values

4d. Right end fixed, left end supported

and roll-guided

MA ¼ 0 yA ¼ 0 cA ¼ 0

yB ¼ 0 YB ¼ 0 cB ¼ 0

VA ¼ wR
½ðCa13 þ Ca19ÞC5 � Ca16ðC2 þ C8Þ	 sinfþ ðCa13C8 � Ca19C2Þ cosf

½C5ðC3 þ C9Þ � C6ðC2 þ C8Þ	 sinfþ ðC3C8 � C2C9Þ cosf

TA ¼ wR2 ½Ca16ðC3 þ C9Þ � C6ðCa13 þ Ca19Þ	 sinfþ ðCa19C3 � Ca13C9Þ cosf
½C5ðC3 þ C9Þ � C6ðC2 þ C8Þ	 sinfþ ðC3C8 � C2C9Þ cosf

YA ¼
wR3

EI

Ca13ðC5C9 � C6C8Þ þ Ca16ðC3C8 � C2C9Þ þ Ca19ðC2C6 � C3C5Þ

½C5ðC3 þ C9Þ � C6ðC2 þ C8Þ	 sinfþ ðC3C8 � C2C9Þ cosf

VB ¼ VA � wRðf� yÞ

MB ¼ VAR sinf� TA sinf

� wR2½1 � cosðf� yÞ	

TB ¼ VARð1 � cosfÞ þ TA cosf

� wR2 ½f� y� sinðf� yÞ	

4e. Right end fixed, left end fixed

yA ¼ 0 YA ¼ 0 cA ¼ 0

yB ¼ 0 YB ¼ 0 cB ¼ 0

VA ¼ wR
Ca13ðC4C8 � C5C7Þ þ Ca16ðC2C7 � C1C8Þ þ Ca19ðC1C5 � C2C4Þ

C1ðC5C9 � C6C8Þ þ C4ðC3C8 � C2C9Þ þ C7ðC2C6 � C3C5Þ

MA ¼ wR2 Ca13ðC5C9 � C6C8Þ þ Ca16ðC3C8 � C2C9Þ þ Ca19ðC2C6 � C3C5Þ

C1ðC5C9 � C6C8Þ þ C4ðC3C8 � C2C9Þ þ C7ðC2C6 � C3C5Þ

TA ¼ wR2 Ca13ðC6C7 � C4C9Þ þ Ca16ðC1C9 � C3C7Þ þ Ca19ðC3C4 � C1C6Þ

C1ðC5C9 � C6C8Þ þ C4ðC3C8 � C2C9Þ þ C7ðC2C6 � C3C5Þ

VB ¼ VA � wRðf� yÞ

MB ¼ VAR sinfþ MA cosf

� TA sinf

� wR2½1 � cosðf� yÞ	

TB ¼ VARð1 � cosfÞ þ MA sinf

þ TA cosf

� wR2½f� y� sinðf� yÞ	

If b ¼ 1:3 (solid or hollow round cross section, n ¼ 0:3)

f 45
 90
 180


y 0
 0
 30
 60
 0
 60
 120


KVA 0.2880 0.5399 0.1597 0.0185 0.9342 0.2207 0.0154

KTA �0.0099 �0.0745 �0.0428 �0.0075 �0.3391 �0.1569 �0.0143

KYA �0.0111 �0.1161 �0.0702 �0.0131 �1.9576 �1.1171 �0.1983

KMB �0.0822 �0.3856 �0.2975 �0.1080 �2.0000 �1.5000 �0.5000

KTB �0.0010 �0.0309 �0.0215 �0.0051 �0.9342 �0.6301 �0.1362

If b ¼ 1:3 (solid or hollow round cross section, n ¼ 0:3)

f 45
 90
 180
 360


y 0
 15
 0
 30
 0
 60
 0


KVA 0.3927 0.1548 0.7854 0.3080 1.5708 0.6034 3.1416

KMA �0.0531 �0.0316 �0.2279 �0.1376 �1.0000 �0.6013 �2.1304

KTA 0.0005 0.0004 0.0133 0.0102 0.2976 0.2259 3.1416

KMB �0.0531 �0.0471 �0.2279 �0.2022 �1.0000 �0.8987 �2.1304

KTB �0.0005 �0.0004 �0.0133 �0.0108 �0.2976 �0.2473 �3.1416
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4f. Right end supported and slope-

guided, left end supported and

slope-guided

TA ¼ 0 yA ¼ 0 YA ¼ 0

TB ¼ 0 yB ¼ 0 YB ¼ 0

VA ¼ wR
½C4ð1 � cosfÞ � C1 sinf	½f� y� sinðf� yÞ	 þ Ca13 sin

2 f� Ca16 sinfð1 � cosfÞ

C4ð1 � cosfÞ2 þ C3 sin
2 f� ðC1 þ C6Þð1 � cosfÞ sinf

MA ¼ wR2 ½C3 sinf� C6ð1 � cosfÞ	½f� y� sinðf� yÞ	 þ Ca16ð1 � cosfÞ2 � Ca13 sinfð1 � cosfÞ

C4ð1 � cosfÞ2 þ C3 sin
2 f� ðC1 þ C6Þð1 � cosfÞ sinf

cA ¼
wR3

EI

ðCa13C4 � Ca16C1Þð1 � cosfÞ � ðCa13C6 � Ca16C3Þ sinf� ðC3C4 � C1C6Þ½f� y� sinðf� yÞ	

C4ð1 � cosfÞ2 þ C3 sin
2 f� ðC1 þ C6Þð1 � cosfÞ sinf

VB ¼ VA � wRðf� yÞ

MB ¼ VAR sinfþ MA cosf

� wR2½1 � cosðf� yÞ	

cB ¼ cA cosfþ
MAR

EI
C7 þ

VAR2

EI
C9 �

wR3

EI
Ca19

4g. Right end supported and slope-

guided, left end supported and roll-

guided

MA ¼ 0 yA ¼ 0 cA ¼ 0

TB ¼ 0 yB ¼ 0 YB ¼ 0

VA ¼ wR
ðC5 sinf� C2 cosfÞ½f� y� sinðf� yÞ	 þ Ca13 cos2 f� Ca16 sinf cosf

ðC5 sinf� C2 cosfÞð1 � cosfÞ þ C3 cos2 f� C6 sinf cosf

TA ¼ wR2 ðC3 cosf� C6 sinfÞ½f� y� sinðf� yÞ	 � ðCa13 cosf� Ca16 sinfÞð1 � cosfÞ
ðC5 sinf� C2 cosfÞð1 � cosfÞ þ C3 cos2 f� C6 sinf cosf

YA ¼
wR3

EI

ðC2C6 � C3C5Þ½f� y� sinðf� yÞ	 þ ðCa13C5 � Ca16C2Þð1 � cosfÞ þ ðCa16C3 � Ca13C6Þ cosf
ðC5 sinf� C2 cosfÞð1 � cosfÞ þ C3 cos2 f� C6 sinf cosf

VB ¼ VA � wRðf� yÞ

MB ¼ VAR sinf� TA sinf

� wR2½1 � cosðf� yÞ	

c ¼ �YA sinfþ
TAR

EI
C8

þ
VAR2

EI
C9 �

wR3

EI
Ca19

If b ¼ 1:3 (solid or hollow round cross section, n ¼ 0:3)

f 45
 90
 180


y 0
 15
 0
 30
 0
 60


KVA 0.3927 0.1549 0.7854 0.3086 1.5708 0.6142

KMA �0.0519 �0.0308 �0.2146 �0.1274 �1.0000 �0.6090

KcA �0.0013 �0.0010 �0.0220 �0.0171 �0.5375 �0.4155

KMB �0.0519 �0.0462 �0.2146 �0.1914 �1.0000 �0.8910

KcB �0.0013 �0.0010 �0.0220 �0.0177 �0.5375 �0.4393

If b ¼ 1:3 (solid or hollow round cross section, n ¼ 0:3)

f 45
 90
 180


y 0
 0
 30
 60
 0
 60
 120


KVA 0.2896 0.5708 0.1812 0.0236 1.3727 0.5164 0.0793

KTA �0.0093 �0.0658 �0.0368 �0.0060 �0.3963 �0.1955 �0.0226

KYA �0.0111 �0.1188 �0.0720 �0.0135 �3.0977 �1.9461 �0.3644

KMB �0.0815 �0.3634 �0.2820 �0.1043 �2.0000 �1.5000 �0.5000

KcB �0.0008 �0.0342 �0.0238 �0.0056 �1.7908 �1.2080 �0.2610
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TABLE 9.4 Formulas for curved beams of compact cross section loaded normal to the plane of curvature (Continued )

End restraints, reference no. Formulas for boundary values and selected numerical values

4h. Right end supported and slope-

guided, left end simply supported

MA ¼ 0 TA ¼ 0 yA ¼ 0

TB ¼ 0 yB ¼ 0 YB ¼ 0

VA ¼ wR
f� y� sinðf� yÞ

1 � cosf

YA ¼
wR3

EI

Ca13 sinfþ C6 ½f� y� sinðf� yÞ	
1 � cosf

�
C3 sinf½f� y� sinðf� yÞ	

ð1 � cosfÞ2
� Ca16


 �

cA ¼
wR3

EI

Ca16 sinf� Ca13 cosf
1 � cosf

� ðC6 sinf� C3 cosfÞ
f� y� sinðf� yÞ

ð1 � cosfÞ2


 �

VB ¼ VA � wRðf� yÞ

MB ¼ VAR sinf

� wR2½1 � cosðf� yÞ	

cB ¼ cA cosf�YA sin fþ
VAR2

EI
C9

�
wR3

EI
Ca19

4i. Right end supported and roll-guided,

left end supported and roll-guided

MA ¼ 0 yA ¼ 0 cA ¼ 0

MB ¼ 0 yB ¼ 0 cB ¼ 0

VA ¼ wR
ðCa13 þ Ca19Þ sinfþ ðC2 þ C8Þ½1 � cosðf� yÞ	

ðC2 þ C3 þ C8 þ C9Þ sinf

TA ¼ wR2 ðCa13 þ Ca19Þ sinf� ðC3 þ C9Þ½1 � cosðf� yÞ	
ðC2 þ C3 þ C8 þ C9Þ sinf

YA ¼
wR3

EI

Ca13ðC8 þ C9Þ � Ca19ðC2 þ C3Þ þ ðC2C9 � C3C8Þ½1 � cosðf� yÞ	= sinf
ðC2 þ C3 þ C8 þ C9Þ sinf

VB ¼ VA � wRðf� yÞ

TB ¼ VARð1 � cosfÞ þ TA cosf

� wR2 ½f� y� sinðf� yÞ	

YB ¼ YA cosfþ
TAR

EI
C5 þ

VAR2

EI
C6 �

wR3

EI
Ca16

If b ¼ 1:3 (solid or hollow round cross section, n ¼ 0:3)

f 45
 90
 180


y 0
 0
 30
 60
 0
 60
 120


KVA 0.2673 0.5708 0.1812 0.0236 1.5708 0.6142 0.0906

KYA �0.0150 �0.1620 �0.0962 �0.0175 �3.6128 �2.2002 �0.3938

KcA 0.0204 0.1189 0.0665 0.0109 0.7625 0.3762 0.0435

KMB �0.1039 �0.4292 �0.3188 �0.1104 �2.0000 �1.5000 �0.5000

KcB �0.0133 �0.0008 �0.0051 �0.0026 �1.8375 �1.2310 �0.2637

If b ¼ 1:3 (solid or hollow round cross section, n ¼ 0:3),

f 45
 90
 270


y 0
 15
 0
 30
 0
 90


KVA 0.3927 0.1745 0.7854 0.3491 2.3562 1.0472

KTA �0.0215 �0.0149 �0.2146 �0.1509 3.3562 3.0472

KYA �0.0248 �0.0173 �0.3774 �0.2717 �10.9323 �6.2614

KTB 0.0215 0.0170 0.2146 0.1679 �3.3562 �2.0944

KYB 0.0248 0.0194 0.3774 0.2912 10.9323 9.9484
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4j. Right end supported and roll-guided,

left end simply supported

MA ¼ 0 TA ¼ 0 yA ¼ 0

MB ¼ 0 yB ¼ 0 cB ¼ 0

VA ¼ wR
1 � cosðf� yÞ

sinf

YA ¼
wR3

EI

Ca13 cosf� Ca19ð1 � cosfÞ
sinf

� ½C3 cosf� C9ð1 � cosfÞ	
1 � cosðf� yÞ

sin
2 f

" #

cA ¼
wR3

EI
Ca13 þ Ca19 � ðC3 þ C9Þ

1 � cosðf� yÞ
sinf

� �

VB ¼ VA � wRðf� yÞ

TB ¼ VARð1 � cosfÞ � wR2 ½f� y� sinðf� yÞ	

YB ¼ YA cosfþ cA sinfþ
VAR2

EI
C6 �

wR3

EI
Ca16

5. Uniformly distributed torque Transverse shear ¼ V ¼ VA

Bending moment ¼ M ¼ VAR sin x þ MA cos x � TA sin x � toR½1 � cosðx � yÞ	hx � yi0

Twisting moment ¼ T ¼ VARð1 � cos xÞ þ MA sin x þ TA cos x þ toR sinðx � yÞhx � yi0

Vertical deflection ¼ y ¼ yA þYAR sin x þ cARð1 � cos xÞ þ
MAR2

EI
F1 þ

TAR2

EI
F2 þ

VAR3

EI
F3 þ

toR3

EI
Fa12

Bending slope ¼ Y ¼ YA cos x þ cA sin x þ
MAR

EI
F4 þ

TAR

EI
F5 þ

VAR2

EI
F6 þ

toR2

EI
Fa15

Roll slope ¼ c ¼ cA cos x �YA sin x þ
MAR

EI
F7 þ

TAR

EI
F8 þ

VAR2

EI
F9 þ

toR2

EI
Fa18

For tabulated values: V ¼ KV to; M ¼ KM toR; T ¼ KT toR; y ¼ Ky

toR3

EI
; Y ¼ KY

toR2

EI
; c ¼ Kc

toR2

EI

If b ¼ 1:3 (solid or hollow round cross section, n ¼ 0:3)

f 45
 90


y 0
 15
 30
 0
 30
 60


KVA 0.4142 0.1895 0.0482 1.0000 0.5000 0.1340

KYA �0.0308 �0.0215 �0.0066 �0.6564 �0.4679 �0.1479

KcA 0.0220 0.0153 0.0047 0.4382 0.3082 0.0954

KTB 0.0430 0.0319 0.0111 0.4292 0.3188 0.1104

KYB 0.0279 0.0216 0.0081 0.5367 0.4032 0.1404
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TABLE 9.4 Formulas for curved beams of compact cross section loaded normal to the plane of curvature (Continued )



TABLE 9.4 Formulas for curved beams of compact cross section loaded normal to the plane of curvature (Continued )

End restraints, reference no. Formulas for boundary values and selected numerical values

5a. Right end fixed, left end free

VA ¼ 0 MA ¼ 0 TA ¼ 0

yB ¼ 0 YB ¼ 0 cB ¼ 0

yA ¼
toR3

EI
½Ca15 sinf� Ca18ð1 � cosfÞ � Ca12	

YA ¼ �
toR2

EI
ðCa15 cosf� Ca18 sinfÞ

cA ¼ �
toR2

EI
ðCa18 cosfþ Ca15 sinfÞ

VB ¼ 0

MB ¼ �toR½1 � cosðf� yÞ	

TB ¼ toR sinðf� yÞ

5b. Right end fixed, left end simply

supported

MA ¼ 0 TA ¼ 0 yA ¼ 0

yB ¼ 0 YB ¼ 0 cB ¼ 0

VA ¼ �to

Ca18ð1 � cosfÞ � Ca15 sinfþ Ca12

C9ð1 � cosfÞ � C6 sinfþ C3

YA ¼ �
toR2

EI

ðCa12C9 � Ca18C3Þ sinfþ ðCa18C6 � Ca15C9Þð1 � cosfÞ þ ðCa15C3 � Ca12C6Þ cosf
C9ð1 � cosfÞ � C6 sinfþ C3

cA ¼ �
toR2

EI

½Ca15ðC9 þ C3Þ � C6ðCa12 þ Ca18Þ	 sinfþ ðCa18C3 � Ca12C9Þ cosf
C9ð1 � cosfÞ � C6 sinfþ C3

VB ¼ VA

MB ¼ VAR sinf� toR½1 � cosðf� yÞ	

TB ¼ VARð1 � cosfÞ þ toR sinðf� yÞ

If b ¼ 1:3 (solid or hollow round cross section, n ¼ 0:3)

f 45
 90
 180


y 0
 0
 30
 60
 0
 60
 120


KyA 0.0129 0.1500 0.2562 0.1206 0.6000 2.5359 1.1929

KYA �0.1211 �0.8064 �0.5429 �0.1671 �3.6128 �2.2002 �0.3938

KcA 0.3679 1.1500 0.3938 0.0535 2.0000 �0.5859 �0.5429

KMB �0.2929 �1.0000 �0.5000 �0.1340 �2.0000 �1.5000 �0.5000

KTB 0.7071 1.0000 0.8660 0.5000 0.0000 0.8660 0.8660

If b ¼ 1:3 (solid or hollow round cross section, n ¼ 0:3)

f 45
 90
 180


y 0
 0
 30
 60
 0
 60
 120


KVA �0.0801 �0.1201 �0.2052 �0.0966 �0.0780 �0.3295 �0.1550

KYA �0.0966 �0.6682 �0.3069 �0.0560 �3.4102 �1.3436 0.0092

KcA 0.3726 1.2108 0.4977 0.1025 2.2816 0.6044 0.0170

KMB �0.3495 �1.1201 �0.7052 �0.2306 �2.0000 �1.5000 �0.5000

KTB 0.6837 0.8799 0.6608 0.4034 �0.1559 0.2071 0.5560
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5c. Right end fixed, left end supported

and slope-guided

TA ¼ 0 yA ¼ 0 YA ¼ 0

yB ¼ 0 YB ¼ 0 cB ¼ 0

VA ¼ �to

ðCa18C4 � Ca15C7Þð1 � cosfÞ þ ðCa15C1 � Ca12C4Þ cosfþ ðCa12C7 � Ca18C1Þ sinf
ðC4C9 � C6C7Þð1 � cosfÞ þ ðC1C6 � C3C4Þ cosfþ ðC3C7 � C1C9Þ sinf

MA ¼ �t0R
ðCa15C9 � Ca18C6Þð1 � cosfÞ þ ðCa12C6 � Ca15C3Þ cosfþ ðCa18C3 � Ca12C9Þ sinf

ðC4C9 � C6C7Þð1 � cosfÞ þ ðC1C6 � C3C4Þ cosfþ ðC3C7 � C1C9Þ sinf

cA ¼ �
toR2

EI

Ca12ðC4C9 � C6C7Þ þ Ca15ðC3C7 � C1C9Þ þ Ca18ðC1C6 � C3C4Þ

ðC4C9 � C6C7Þð1 � cosfÞ þ ðC1C6 � C3C4Þ cosfþ ðC3C7 � C1C9Þ sinf

VB ¼ VA

MB ¼ VAR sin fþ MA cosf

� toR½1 � cosðf� yÞ	

TB ¼ VARð1 � cos fÞ þ MA sinf

þ toR sinðf� yÞ

5d. Right end fixed, left end supported

and roll-guided

MA ¼ 0 yA ¼ 0 cA ¼ 0

yB ¼ 0 YB¼ 0 cB ¼ 0

VA ¼ �to

½ðCa12 þ Ca18ÞC5 � Ca15ðC2 þ C8Þ	 sinfþ ðCa12C8 � Ca18C2Þ cosf
½C5ðC3 þ C9Þ � C6ðC2 þ C8Þ	 sinfþ ðC3C8 � C2C9Þ cosf

TA ¼ �toR
½Ca15ðC3 þ C9Þ � C6ðCa12 þ Ca18Þ	 sinfþ ðCa18C3 � Ca12C9Þ cosf

½C5ðC3 þ C9Þ � C6ðC2 þ C8Þ	 sinfþ ðC3C8 � C2C9Þ cosf

YA ¼ �
toR2

EI

Ca12ðC5C9 � C6C8Þ þ Ca15ðC3C8 � C2C9Þ þ Ca18ðC2C6 � C3C5Þ

½C5ðC3 þ C9Þ � C6ðC2 þ C8Þ	 sinfþ ðC3C8 � C2C9Þ cosf

VB ¼ VA

MB ¼ VAR sin f� TA sinf

� toR½1 � cosðf� yÞ	

TB ¼ VARð1 � cos fÞ þ TA cosf

þ toR sinðf� yÞ

If b ¼ 1:3 (solid or hollow round cross section, n ¼ 0:3)

f 45
 90
 180


y 0
 0
 30
 60
 0
 60
 120


KVA 0.6652 0.7038 0.1732 �0.0276 0.3433 �0.1635 �0.1561

KMA �0.3918 �0.8944 �0.4108 �0.0749 �1.2471 �0.4913 0.0034

KcA 0.2993 0.6594 0.2445 0.0563 0.7597 0.0048 0.0211

KMB �0.0996 �0.2962 �0.3268 �0.1616 �0.7529 �1.0087 �0.5034

KTB 0.6249 0.8093 0.6284 0.3975 0.6866 0.5390 0.5538

If b ¼ 1:3 (solid or hollow round cross section, n ¼ 0:3)

f 45
 90
 180


y 0
 0
 30
 60
 0
 60
 120


KVA �0.2229 �0.4269 �0.3313 �0.1226 �0.6366 �0.4775 �0.1592

KTA �0.3895 �0.7563 �0.3109 �0.0640 �1.1902 �0.3153 �0.0089

KYA �0.0237 �0.2020 �0.1153 �0.0165 �1.9576 �0.9588 0.0200

KMB �0.1751 �0.6706 �0.5204 �0.1926 �2.0000 �1.5000 �0.5000

KTB 0.3664 0.5731 0.5347 0.3774 �0.0830 0.2264 0.5566
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TABLE 9.4 Formulas for curved beams of compact cross section loaded normal to the plane of curvature (Continued )

End restraints, reference no. Formulas for boundary values and selected numerical values

5e. Right end fixed, left end fixed

yA ¼ 0 YA ¼ 0 cA ¼ 0

yB ¼ 0 YB ¼ 0 cB ¼ 0

VA ¼ �to

Ca12ðC4C8 � C5C7Þ þ Ca15ðC2C7 � C1C8Þ þ Ca18ðC1C5 � C2C4Þ

C1ðC5C9 � C6C8Þ þ C4ðC3C8 � C2C9Þ þ C7ðC2C6 � C3C5Þ

MA ¼ �toR
Ca12ðC5C9 � C6C8Þ þ Ca15ðC3C8Þ � C2C9Þ þ Ca18ðC2C6 � C3C5Þ

C1ðC5C9 � C6C8Þ þ C4ðC3C8 � C2C9Þ þ C7ðC2C6 � C3C5Þ

TA ¼ �toR
Ca12ðC6C7 � C4C9Þ þ Ca15ðC1C9 � C3C7Þ þ Ca18ðC3C4 � C1C6Þ

C1ðC5C9 � C6C8Þ þ C4ðC3C8 � C2C9Þ þ C7ðC2C6 � C3C5Þ

VB ¼ VA

MB ¼ VAR sinfþ MA cosf� TA sinf

� toR½1 � cosðf� yÞ	

TB ¼ VARð1 � cosfÞ þ MA sinfþ TA cosf

þ toR sinðf� yÞ

5f. Right end supported and slope-

guided, left end supported and

slope-guided

TA ¼ 0 yA ¼ 0 YA ¼ 0

TB ¼ 0 yB ¼ 0 YB ¼ 0

VA ¼ to

½C1 sinf� C4ð1 � cosfÞ	 sinðf� yÞ � Ca12 sin
2 fþ Ca15ð1 � cosfÞ sinf

C4ð1 � cosfÞ2 þ C3 sin
2 f� ðC1 þ C6Þð1 � cosfÞ sinf

MA ¼ �toR
½C3 sinf� C6ð1 � cosfÞ	 sinðf� yÞ � Ca12ð1 � cosfÞ sinfþ Ca15ð1 � cosfÞ2

C4ð1 � cosfÞ2 þ C3 sin
2 f� ðC1 þ C6Þð1 � cosfÞ sinf

cA ¼
toR2

EI

ðC3C4 � C1C6Þ sinðf� yÞ þ ðCa12C6 � Ca15C3Þ sinf� ðCa12C4 � Ca15C1Þð1 � cosfÞ

C4ð1 � cosfÞ2 þ C3 sin
2 f� ðC1 þ C6Þð1 � cosfÞ sinf

VB ¼ VA

MB ¼ VAR sinfþ MA cosf� toR½1 � cosðf� yÞ	

cB ¼ cA cosfþ
MAR

EI
C7 þ

VAR2

EI
C9 þ

toR2

EI
Ca18

If b ¼ 1:3 (solid or hollow round cross section, n ¼ 0:3)

f 45
 90
 180


y 0
 15
 0
 30
 0
 60


KVA 0.0000 �0.0444 0.0000 �0.0877 0.0000 �0.1657

KMA �0.1129 �0.0663 �0.3963 �0.2262 �1.0000 �0.4898

KTA �0.3674 �0.1571 �0.6037 �0.2238 �0.5536 �0.0035

KMB �0.1129 �0.1012 �0.3963 �0.3639 �1.0000 �1.0102

KTB 0.3674 0.3290 0.6037 0.5522 0.5536 0.5382

If b ¼ 1:3 (solid or hollow round cross section, n ¼ 0:3)

f 45
 90
 180


y 0
 15
 0
 30
 0
 60


KVA 0.0000 �0.2275 0.0000 �0.3732 0.0000 �0.4330

KMA �1.0000 �0.6129 �1.0000 �0.4928 �1.0000 �0.2974

KcA 1.0000 0.6203 1.0000 0.5089 1.0000 0.1934

KMB �1.0000 �0.7282 �1.0000 �0.8732 �1.0000 �1.2026

KcB 1.0000 0.7027 1.0000 0.7765 1.0000 0.7851
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5g. Right end supported and slope-

guided, left end supported and roll-

guided

MA ¼ 0 yA ¼ 0 cA ¼ 0

TB ¼ 0 yB ¼ 0 YB ¼ 0

VA ¼ �to

Ca12 cos2 f� Ca15 sinf cosfþ ðC5 sinf� C2 cosfÞ sinðf� yÞ
ðC5 sinf� C2 cosfÞð1 � cosfÞ þ C3 cos2 f� C6 sinf cosf

TA ¼ �toR
ðCa15 sinf� Ca12 cosfÞð1 � cosfÞ þ ðC3 cosf� C6 sinfÞ sinðf� yÞ

ðC5 sinf� C2 cosfÞð1 � cosfÞ þ C3 cos2 f� C6 sinf cosf

YA ¼ �
toR2

EI

ðCa12C5 � Ca15C2Þð1 � cosfÞ þ ðCa15C3 � Ca12C6Þ cosfþ ðC2C6 � C3C5Þ sinðf� yÞ
ðC5 sinf� C2 cosfÞð1 � cosfÞ þ C3 cos2 f� C6 sinf cosf

VB ¼ VA

MB ¼ VAR sin f� TA sinf

� toR½1 � cosðf� yÞ	

cB ¼ �YA sinfþ
TAR

EI
C8

þ
VAR2

EI
C9 þ

toR2

EI
Ca18

5h. Right end supported and slope-

guided, left end simply supported

MA ¼ 0 TA ¼ 0 yA ¼ 0

TB ¼ 0 yB ¼ 0 YB ¼ 0

VA ¼ �
to sinðf� yÞ

1 � cosf

YA ¼ �
toR2

EI

Ca12 sinfþ C6 sinðf� yÞ
1 � cosf

�
C3 sinf sinðf� yÞ

ð1 � cosfÞ2
� Ca15

� �

cA ¼ �
toR2

EI

Ca15 sinf� Ca12 cosf
1 � cosf

þ ðC3 cosf� C6 sinfÞ
sinðf� yÞ

ð1 � cosfÞ2

� �

VB ¼ VA

MB ¼ VAR sin f

� toR½1 � cosðf� yÞ	

cB ¼ cA cosf�YA sin fþ
VAR2

EI
C9

þ
toR2

EI
Ca18

If b ¼ 1:3 (solid or hollow round cross section, n ¼ 0:3)

f 45
 90
 180


y 0
 0
 30
 60
 0
 60
 120


KVA �0.8601 �1.0000 �0.8660 �0.5000 �0.5976 �0.5837 �0.4204

KTA �0.6437 �0.9170 �0.4608 �0.1698 �1.1953 �0.3014 0.0252

KYA �0.0209 �0.1530 �0.0695 0.0158 �2.0590 �0.6825 0.6993

KMB �0.4459 �1.0830 �0.9052 �0.4642 �2.0000 �1.5000 �0.5000

KcB 0.2985 0.6341 0.5916 0.4716 �0.1592 0.4340 1.0670

If b ¼ 1:3 (solid or hollow round cross section, n ¼ 0:3)

f 45
 90
 180


y 0
 0
 30
 60
 0
 60
 120


KVA �2.4142 �1.0000 �0.8660 �0.5000 0.0000 �0.4330 �0.4330

KYA �0.2888 �0.7549 �0.3720 �0.0957 �3.6128 �1.0744 0.7320

KcA 1.4161 1.6564 0.8324 0.3067 2.3000 0.5800 �0.0485

KMB �2.0000 �2.0000 �1.3660 �0.6340 �2.0000 �1.5000 �0.5000

KcB 1.2811 1.0985 0.8250 0.5036 �0.3000 0.3985 1.0700
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TABLE 9.4 Formulas for curved beams of compact cross section loaded normal to the plane of curvature (Continued )

End restraints, reference no. Formulas for boundary values and selected numerical values

5i. Right end supported and roll-guided,

left end supported and roll-guided

MA ¼ 0 yA ¼ 0 cA ¼ 0

MB ¼ 0 yB ¼ 0 cB ¼ 0

VA ¼ 0

TA ¼ �toR
ðCa12 þ Ca18Þ sin

2 fþ ðC3 þ C9Þ sinf½1 � cosðf� yÞ	

ðC2 þ C3 þ C8 þ C9Þ sin
2 f

YA ¼ �
toR2

EI

½Ca12ðC8 þ C9Þ � Ca18ðC2 þ C3Þ	 sinf� ðC2C9 � C3C8Þ½1 � cosðf� yÞ	

ðC2 þ C3 þ C8 þ C9Þ sin
2 f

VB ¼ 0

TB ¼ TA cosfþ toR sinðf� yÞ

YB ¼ YA cosfþ
TAR

EI
C5 þ

toR2

EI
Ca15

5j. Right end supported and roll-guided,

left end simply supported

MA ¼ 0 TA ¼ 0 yA ¼ 0

MB ¼ 0 yB ¼ 0 cB ¼ 0

VA ¼
to½1 � cosðf� yÞ	

sinf

YA ¼ �
toR2

EI

Ca12 cosf� Ca18ð1 � cosfÞ
sinf

þ
½C3 cosf� C9ð1 � cosfÞ	½1 � cosðf� yÞ	

sin
2 f

( )

cA ¼ �
toR2

EI
Ca12 þ Ca18 þ

ðC3 þ C9Þ½1 � cosðf� yÞ	
sinf


 �

VB ¼ VA

TB ¼ VARð1 � cosfÞ þ toR sinðf� yÞ

YB ¼ YA cosfþ fA sinfþ
VAR2

EI
C6 þ

toR2

EI
Ca15

If b ¼ 1:3 (solid or hollow round cross section, v ¼ 0:3)

f 45
 90
 270


y 0
 15
 0
 30
 0
 90


KVA 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

KTA �0.4142 �0.1895 �1.0000 �0.5000 1.0000 2.0000

KYA �0.0527 �0.0368 �0.6564 �0.4679 �6.5692 �2.3000

KTB 0.4142 0.3660 1.0000 0.8660 �1.0000 0.0000

KYB 0.0527 0.0415 0.6564 0.5094 6.5692 7.2257

If b ¼ 1:3 (solid or hollow round cross section, v ¼ 0:3)

f 45
 90


y 0
 15
 30
 0
 30
 60


KVA 0.4142 0.1895 0.0482 1.0000 0.5000 0.1340

KYA �0.1683 �0.0896 �0.0247 �1.9564 �1.1179 �0.3212

KcA 0.4229 0.1935 0.0492 2.0420 1.0210 0.2736

KTB 0.8284 0.5555 0.2729 2.0000 1.3660 0.6340

KYB 0.1124 0.0688 0.0229 1.3985 0.8804 0.2878
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Chapter

10
Torsion

10.1 Straight Bars of Uniform Circular
Section under Pure Torsion

The formulas in this section are based on the following assumptions:

(1) The bar is straight, of uniform circular section (solid or concen-

trically hollow), and of homogeneous isotropic material; (2) the bar is

loaded only by equal and opposite twisting couples, which are applied

at its ends in planes normal to its axis; and (3) the bar is not stressed

beyond the elastic limit.

Behavior. The bar twists, each section rotating about the longitudinal

axis. Plane sections remain plane, and radii remain straight. There is

at any point a shear stress t on the plane of the section; the magnitude

of this stress is proportional to the distance from the center of the

section, and its direction is perpendicular to the radius drawn through

the point. Accompanying this shear stress there is an equal longi-

tudinal shear stress on a radial plane and equal tensile and compres-

sive stresses st and sc at 45� (see Sec. 7.5). The deformation and

stresses described are represented in Fig. 10.1.

In addition to these deformations and stresses, there is some longi-

tudinal strain and stress. A solid circular cylinder wants to lengthen

under twist, as shown experimentally by Poynting (Ref. 26). In any

event, for elastic loading of metallic circular bars, neither longitudinal

deformation nor stress is likely to be large enough to have engineering

significance.

Formulas. Let T ¼ twisting moment, l ¼ length of the member,

r ¼ outer radius of the section, J ¼ polar moment of inertia of the

section, r ¼ radial distance from the center of the section to any point

q; t ¼ the shear stress, y ¼ angle of twist (radians), G ¼modulus of



rigidity of the material, and U ¼ strain energy. Then

y ¼
Tl

JG
ð10:1-1Þ

t ¼
Tr
J

ðat point qÞ ð10:1-2Þ

tmax ¼
Tr

J
ðat outer surfaceÞ ð10:1-3Þ

U ¼
1

2

T2l

JG
ð10:1-4Þ

By substituting for J in Eqs. (10.1-1) and (10.1-3) its value 2I from

Table A.1, the formulas for cases 1 and 10 in Table 10.1 are readily

obtained. If a solid or hollow circular shaft has a slight taper, the

formulas above for shear stress are sufficiently accurate and the

expressions for y and U can be modified to apply to a differential

length by replacing l by dl. If the change in section is abrupt, as at a

shoulder with a small fillet, the maximum stress should be found by

the use of a suitable factor of stress concentration Kt. Values of Kt are

given in Table 17.1.

10.2 Bars of Noncircular Uniform Section under
Pure Torsion

The formulas of this section are based on the same assumptions as

those of Sec. 10.1 except that the cross section of the bar is not circular.

It is important to note that the condition of loading implies that the

end sections of the bar are free to warp, there being no constraining

forces to hold them in their respective planes.

Behavior. The bar twists, each section rotating about its torsional

center. Sections do not remain plane, but warp, and some radial lines

through the torsional center do not remain straight. The distribution

of shear stress on the section is not necessarily linear, and the

direction of the shear stress is not necessarily normal to a radius.

Figure 10.1
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Formulas. The torsional stiffness of the bar can be expressed by the

general equations

T ¼
y
l

KG or y ¼
Tl

KG
ð10:2-1Þ

where K is a factor dependent on the form and dimensions of the cross

section. For a circular section K is the polar moment of inertia J [Eq.

(10.1-1)] for other sections K is less than J and may be only a very

small fraction of J. The maximum stress is a function of the twisting

moment and of the form and dimensions of the cross section. In Table

10.1, formulas are given for K and for max t for a variety of sections.

The formulas for cases 1 to 3, 5, 10, and 12 are based on rigorous

mathematical analysis. The equations for case 4 are given in a

simplified form involving an approximation, with a resulting error

not greater than 4%. The K formulas for cases 13–21 and the stress

formulas for cases 13–18 are based on mathematical analysis but are

approximate (Ref. 2); their accuracy depends upon how nearly the

actual section conforms to the assumptions indicated as to form. The K

formulas for cases 22–26 and the stress formulas for cases 19–26 are

based on the membrane analogy and are to be regarded as reasonably

close approximations giving results that are rarely as much as 10% in

error (Refs. 2–4 and 11).

It will be noted that formulas for K in cases 23–26 are based on the

assumption of uniform flange thickness. For slightly tapering flanges,

D should be taken as the diameter of the largest circle that can be

inscribed in the actual section, and b as the average flange thickness.

For sharply tapering flanges the method described by Griffith (Ref. 3)

may be used. Charts relating especially to structural H- and I-sections

are in Ref. 11.

Cases 7, 9, and 27–35 present the results of curve fitting to data

from Isakower, Refs. 12 and 13. These data were obtained from

running a computer code CLYDE (Ref. 14) based on a finite-difference

solution using central differences with a constant-size square mesh.

Reference 12 also suggests an extension of this work to include

sections containing hollows. For some simple concentric hollows the

results of solutions in Table 10.1 can be superposed to obtain closely

approximate solutions if certain limitations are observed. See the

examples at the end of this section.

The formulas of Table 10.1 make possible the calculation of the

strength and stiffness of a bar of almost any form, but an under-

standing of the membrane analogy (Sec. 6.4) makes it possible to draw

certain conclusions as to the comparative torsional properties of

different sections by simply visualizing the bubbles that would be
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formed over holes of corresponding size and shape. From the volume

relationship, it can be seen that of two sections having the same area,

the one more nearly circular is the stiffer, and that although any

extension whatever of the section increases its torsional stiffness,

narrow outstanding flanges and similar protrusions have little

effect. It is also apparent that any member having a narrow section,

such as a thin plate, has practically the same torsional stiffness when

flat as when bent into the form of an open tube or into channel or angle

section.

From the slope relationship it can be seen that the greatest stresses

(slopes) in a given section occur at the boundary adjacent to the

thicker portions, and that the stresses are very low at the ends of

outstanding flanges or protruding corners and very high at points

where the boundary is sharply concave. Therefore a longitudinal slot

or groove that is sharp at the bottom or narrow will cause high local

stresses, and if it is deep will greatly reduce the torsional stiffness of

the member. The direction of the shear stresses at any point is along

the contour of the bubble surface at the corresponding point, and at

points corresponding to local maximum and minimum elevations of

the bubble having zero slopes in all directions the shear stress is zero.

Therefore there may be several points of zero shear stress in a section.

Thus for an I-section, there are high points of zero slope at the center

of the largest inscribed circles (at the junction of web and flanges) and

a low point of zero slope at the center of the web, and eight points of

zero slope at the external corners. At these points in the section the

shear stress is zero.

The preceding generalizations apply to solid sections, but it is

possible to make somewhat similar generalizations concerning

hollow or tubular sections from the formulas given for cases 10–16.

These formulas show that the strength and stiffness of a hollow

section depend largely upon the area inclosed by the median boundary.

For this reason a circular tube is stiffer and stronger than one of any

other form, and the more nearly the form of any hollow section

approaches the circular, the greater will be its strength and stiffness.

It is also apparent from the formulas for strength that even a local

reduction in the thickness of the wall of a tube, such as would be

caused by a longitudinal groove, may greatly increase the maximum

shear stress, though if the groove is narrow the effect on stiffness will

be small.

The torsional strengths and stiffnesses of thin-walled multicelled

structures such as airplane wings and boat hulls can be calculated by

the same procedures as for single-celled sections. The added relation-

ships needed are developed from the fact that all cells twist at the

same angular rate at a given section (Ref. 1).
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EXAMPLES

1. It is required to compare the strength and stiffness of a circular steel tube,
4 in outside diameter and 5

32
in thick, with the strength and stiffness of the

same tube after it has been split by cutting full length along an element. No
warping restraint is provided.

Solution. The strengths will be compared by comparing the twisting
moments required to produce the same stress; the stiffnesses will be compared
by comparing the values of K.

(a) For the tube (Table 10.1, case 10), K ¼ 1
2
pðr4

o � r4
i Þ ¼

1
2
p½24 � ð1 27

32
Þ
4
� ¼

6:98 in4,

T ¼ t
pðr4

o � r4
i Þ

2ro

¼ 3:49t lb-in

(b) For the split tube (Table 10.1, case 17), K ¼ 2
3
prt3 ¼ 2

3
pð1 59

64
Þð 5

32
Þ
3
¼

0:0154 in
4
,

T ¼ t
4p2r2t2

6pr þ 1:8t
¼ 0:097t lb-in

The closed section is therefore more than 400 times as stiff as the open section
and more than 30 times as strong.

2. It is required to determine the angle through which an airplane-wing spar
of spruce, 8 ft long and having the section shown in Fig. 10.2, would be twisted
by end torques of 500 lb-in, and to find the maximum resulting stress. For the
material in question, G ¼ 100;000 lb=in2

and E ¼ 1;500;000 lb=in2
.

Solution. All relevant dimensions are shown in Fig. 10.2, with notation
corresponding to that used in the formulas. The first step is to compute K by
the formulas given for case 26 (Table 10.1), and we have

K ¼ 2K1 þ K2 þ 2aD4

K1 ¼ 2:75ð1:0453Þ
1

3
�

0:21ð1:045Þ

2:75
1 �

1:0454

12ð2:754Þ

� �� �
¼ 0:796 in

4

K2 ¼ 1
3
ð2:40Þð0:5073Þ ¼ 0:104 in

4

a ¼
0:507

1:045
0:150 þ

0:1ð0:875Þ

1:045

� �
¼ 0:1133

Thus

K ¼ 2ð0:796Þ þ 0:104 þ 2ð0:1133Þð1:5024Þ ¼ 2:85 in
4

Therefore

y ¼
Tl

KG
¼

500ð96Þ

2:85ð100;000Þ
¼ 0:168 rad ¼ 9:64�

The maximum stress will probably be at P, the point where the largest
inscribed circle touches the section boundary at a fillet. The formula is

tmax ¼
T

K
C
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where

C ¼
1:502

1 þ
p2ð1:5024Þ

16ð7:632Þ

1 þ 0:118 ln 1 �
1:502

2ð�0:875Þ

� �
� 0:238

1:502

2ð�0:875Þ

� ��

	 tanh
2ðp=2Þ

p

�
¼ 1:73 in

Substituting the values of T ;C, and K , it is found that

tmax ¼
500

2:85
ð1:73Þ ¼ 303 lb=in2

It will be of interest to compare this stress with the stress at Q, the other
point where the maximum inscribed circle touches the boundary. Here the
formula that applies is

t ¼
T

K
C

where

C ¼
1:502

1 þ p2
1:5024

16ð7:632Þ

1 þ 0:15
p2ð1:5024Þ

16ð7:632Þ
�

1:502

1

� �� �
¼ 1:437 in

(Here r ¼ infinity because the boundary is straight.)
Substituting the values of T ;C, and K as before, it is found that

t ¼ 252 lb=in2
.

3. For each of the three cross sections shown in Fig. 10.3, determine the
numerical relationships between torque and maximum shear stress and
between torque and rate of twist.

Solution. To illustrate the method of solution, superposition will be used for
section A despite the availability of a solution from case 10 of Table 10.1. For a
shaft, torque and angle of twist are related in the same way that a soap-film
volume under the film is related to the pressure which inflates the film,
provided the same cross section is used for each. See the discussion of the
membrane analogy in Sec. 6.4. One can imagine then a soap film blown over a
circular hole of radius Ro and then imagine the removal of that portion of the

Figure 10.2
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volume extending above the level of the soap film for which the radius is Ri.
Doing the equivalent operation with the shaft assumes that the rate of twist is
y=L and that it applies to both the outer round shaft of radius Ro and the
material removed with radius Ri. The resulting torque TR is then the
difference of the two torques or

TR ¼ To � Ti ¼
KoGy

L
�

KiGy
L

where from case 1

Ko ¼
pR4

o

2
and Ki ¼

pR4
i

2
or

TR ¼
p=2ðR4

o � R4
i ÞGy

L

Case 10 for the hollow round section gives this same relationship. Slicing off
the top of the soap film would not change the maximum slope of the bubble
which is present along the outer radius. Thus the maximum shear stress on
the hollow shaft with torque TR is the same as the shear stress produced on a
solid round section by the torque To. From case 1

t ¼
2To

pR3
o

¼
2TR

pR3
o

To

TR

¼
2TR

pR3
o

R4
o

R4
o � R4

i

¼
2TRRo

pðR4
o � R4

i Þ

which again checks the expression for shear stress in case 10. Inserting the
numerical values for Ro and Ri gives

TR ¼
1:3672Gy

L
and t ¼ 0:7314TR

It is important to note that the exact answer was obtained because there was
a concentric circular contour line on the soap film blown over the large hole.
Had the hole in the shaft been slightly off center, none of the equivalent
contour lines on the soap film would have been absolutely circular and the
answers just obtained would be slightly in error.

Now apply this same technique to the hollow shaft with section B having a
12-spline internal hole. To solve this case exactly, one would need to find a
contour line on the equivalent soap film blown over the circular hole of radius
Ro. Such a contour does not exist, but it can be created as discussed in Sec. 6.4.
Imagine a massless fine wire bent into the shape of the internal spline in a
single plane and allow this wire to float at a constant elevation in the soap film

Figure 10.3
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in equilibrium with the surface tension. The volume which is to be removed
from the soap film is now well-defined and will be worked out using cases 1 and
33, but the unanswered question is what the addition of the wire did to the
total volume of the original soap film. It is changed by a small amount. This
information comes from Ref. 12, where Isakower shows numerical solutions to
some problems with internal noncircular holes. The amount of the error
depends upon the number and shape of the splines and upon how close they
come to the outer boundary of the shaft. Ignoring these errors, the solution can
be carried out as before.

The torque carried by the solid round shaft is the same as for section A. For
the 12-point internal spline, one needs to use case 33 three times since case 33
carries only four splines and then remove the extra material added by using
case 1 twice for the material internal to the splines. For case 33 let r ¼ 0:6,
b ¼ 0:1, and a ¼ 0:157=2, which gives b=r ¼ 0:167 and a=b ¼ 0:785. Using the
equations in case 33 one finds C ¼ 0:8098 and for each of the three four-splined
sections, K ¼ 2ð0:8098Þð0:6Þ4 ¼ 0:2099. For each of the two central circular
sections removed, use case 1 with r ¼ 0:6, getting K ¼ pð0:64Þ=2 ¼ 0:2036.
Therefore, for the splined hole the value of Ki ¼ 3ð0:2099Þ � 2ð0:2036Þ ¼
0:2225. For the solid shaft with the splined hole removed, KR ¼ pð1Þ4=2 �

0:2225 ¼ 1:3483 so that TR ¼ 1:3483Gy=L.
Finding the maximum shear stress is a more difficult task for this cross

section. If, as stated before, the total volume of the original soap film is
changed a small amount when the spline-shaped wire is inserted, one might
expect the meridional slope of the soap film at the outer edge and the
corresponding stress at the outer surface of the shaft A to change slightly.
However, if one ignores this effect, this shear stress can be found as (case 1)

to ¼
2To

pR3
o

¼
2TR

pR3
o

To

TR

¼
2TR

pR3
o

Ko

KR

¼
2TR

pð1Þ3
p=2

1:3378
¼ 0:7475TR

For this section, however, there is a possibility that the maximum shear stress
and maximum slope of soap film will be bound at the outer edge of an internal
spline. No value for this is known, but it would be close to the maximum shear
stress on the inner edge of the spline for the material removed. This is given in
case 33 as ti ¼ TB=r3, where B can be found from the equations to be
B ¼ 0:6264, so that ti ¼ T ð0:6264Þ=0:63 ¼ 2:8998T . Since the torque here is
the torque necessary to give a four-splined shaft a rate of twist y=L, which is
common to all the elements used, both positive and negative,

ti ¼ 2:8998
KGy

L
¼ 2:8998ð0:2099Þ

Gy
L

¼ 0:6087
Gy
L

¼ 0:6087
TR

1:3483
¼ 0:454TR

Any errors in this calculation would not be of consequence unless the stress
concentrations in the corners of the splines raise the peak shear stresses above
to ¼ 0:7475TR. Since this is possible, one would want to carry out a more
complete analysis if considerations of fatigue or brittle fracture were neces-
sary.

Using the same arguments already presented for the first two sections, one
can find KR for section C by using three of the 4-splined sections from case 33
and removing twice the solid round material with radius 1.0 and once the solid
round material with radius 0.6. For case 33, r ¼ 1:0, b ¼ 0:17, a ¼ 0:262=2,
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b=r ¼ 0:17, and a=b ¼ 0:771. Using these data, one finds that C ¼ 0:8100,
B ¼ 0:6262, and K ¼ 1:6200. This gives then for the hollow section C,

KR ¼ 1:6200ð3Þ �
2pð14Þ

2
�
pð0:64Þ

2
¼ 1:5148 and TR ¼

1:5148Gy
L

Similarly,

tmax ¼
T ð0:6262Þ

13
¼

0:6262ð1:6200ÞGy
L

¼
1:0144Gy

L

¼ 1:0144
TR

1:5148
¼ 0:6697TR

Again one would expect the maximum shear stress to be somewhat larger with
twelve splines than with four and again the stress concentrations in the
corners of the splines must be considered.

10.3 Effect of End Constraint

It was pointed out in Sec. 10.2 that when noncircular bars are twisted,

the sections do not remain plane but warp, and that the formulas of

Table 10.1 are based on the assumption that this warping is not

prevented. If one or both ends of a bar are so fixed that warping is

prevented, or if the torque is applied to a section other than at the ends

of a bar, the stresses and the angle of twist produced by the given

torque are affected. In compact sections the effect is slight, but in the

case of open thin-walled sections the effect may be considerable.

Behavior. To visualize the additional support created by warping

restraint, consider a very thin rectangular cross section and an I-

beam having the same thickness and the same total cross-sectional

area as the rectangle. With no warping restraint the two sections will

have essentially the same stiffness factor K (see Table 10.1, cases 4

and 26). With warping restraint provided at one end of the bar, the

rectangle will be stiffened very little but the built-in flanges of the I-

beam act as cantilever beams. The shear forces developed in the

flanges as a result of the bending of these cantilevers will assist the

torsional shear stresses in carrying the applied torque and greatly

increase the stiffness of the bar unless the length is very great.

Formulas. Table 10.2 gives formulas for the warping stiffness factor

Cw, the torsional stiffness factor K, the location of the shear center, the

magnitudes and locations within the cross section of the maximum

shear stresses due to simple torsion, the maximum shear stresses due

to warping, and the maximum bending stresses due to warping. All

the cross sections listed are assumed to have thin walls and the same

thickness throughout the section unless otherwise indicated.
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Table 10.3 provides the expressions necessary to evaluate the angle

of rotation y and the first three derivatives of y along the span for a

variety of loadings and boundary restraints. The formulas in this table

are based on deformations from bending stresses in the thin-walled

open cross sections due to warping restraint and consequently, since

the transverse shear deformations of the beam action are neglected,

are not applicable to cases where the torsion member is short or where

the torsional loading is applied close to a support which provides

warping restraint.

In a study of the effect on seven cross sections, all of which were

approximately 4 in deep and had walls approximately 0.1 in thick,

Schwabenlender (Ref. 28) tested them with one end fixed and the other

end free to twist but not warp with the torsional loading applied to the

latter end. He found that the effect of the transverse shear stress

noticeably reduced the torsional stiffness of cross sections such as

those shown in Table 10.2, cases 1 and 6–8, when the length was less

than six times the depth; for sections such as those in cases 2–5 (Table

10.2), the effect became appreciable at even greater lengths. To

establish an absolute maximum torsional stiffness constant we note

that for any cross section, when the length approaches zero, the

effective torsional stiffness constant K 0 cannot exceed J, the polar

moment of inertia, where J ¼ Ix þ Iy for axes through the centroid of

the cross section. (Example 1 illustrates this last condition.)

Reference 19 gives formulas and graphs for the angle of rotation and

the first three derivatives for 12 cases of torsional loading of open cross

sections. Payne (Ref. 15) gives the solution for a box girder that is fixed

at one end and has a torque applied to the other. (This solution was

also presented in detail in the fourth edition of this book.) Chu (Ref.

29) and Vlasov (Ref. 30) discuss solutions for cross sections with both

open and closed parts. Kollbrunner and Basler (Ref. 31) discuss the

warping of continuous beams and consider the multicellular box

section, among other cross sections.

EXAMPLES

1. A steel torsion member has a cross section in the form of a twin channel
with flanges inward as dimensioned in Fig. 10.4. Both ends of this channel are
rigidly welded to massive steel blocks to provide full warping restraint. A
torsional load is to be applied to one end block while the other is fixed.
Determine the angle of twist at the loaded end for an applied torque of
1000 lb-in for lengths of 100, 50, 25, and 10 in. Assume E ¼ 30ð106Þ lb=in2

and n ¼ 0:285.

Solution. First determine cross-sectional constants, noting that b ¼ 4 �

0:1 ¼ 3:9 in, b1 ¼ 1:95 � 0:05 ¼ 1:9 in, h ¼ 4 � 0:1 ¼ 3:9 in, and t ¼ 0:1 in.
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From Table 10.2, case 4,

K ¼
t3

3
ð2b þ 4b1Þ ¼

0:13

3
½2ð3:9Þ þ 4ð1:9Þ� ¼ 0:005133 in

4

Cw ¼
tb2

24
ð8b3

1 þ 6h2b1 þ h2b þ 12b2
1hÞ ¼ 28:93 in

6

G ¼
E

2ð1 þ nÞ
¼

30ð106Þ

2ð1 þ 0:285Þ
¼ 11:67ð106Þ lb=in2

b ¼
KG

CwE

� �1=2

¼
0:005133ð11:67Þð106Þ

28:93ð30Þð106Þ

� �1=2

¼ 0:00831 in
�1

From Table 10.3, case 1d, when a ¼ 0, the angular rotation at the loaded end is
given as

y ¼
To

CwEb3
bl � 2 tanh

bl

2

� �

If we were to describe the total angle of twist at the loaded end in terms of an
equivalent torsional stiffness constant K 0 in the expression

y ¼
Tol

K 0G

then

K 0 ¼
Tol

Gy
or K 0 ¼ K

bl

bl � 2ðbl=2Þ

The following table gives both K 0 and y for the several lengths:

l bl
bl

2
K 0 y

200 1.662 0.6810 0.0284 34.58�

100 0.831 0.3931 0.0954 5.15�

50 0.416 0.2048 0.3630 0.68�

25 0.208 0.1035 1.4333 0.09�

10 0.083 0.0415 8.926 0.006�

Figure 10.4
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The stiffening effect of the fixed ends of the flanges is obvious even at a
length of 200 in where K 0 ¼ 0:0284 as compared with K ¼ 0:00513. The
warping restraint increases the stiffness more than five times. The large
increases in K 0 at the shorter lengths of 25 and 10 in must be examined
carefully. For this cross section Ix ¼ 3:88 and Iy ¼ 3:96, and so J ¼ 7:84 in

4
.

The calculated stiffness K 0 ¼ 8:926 at l ¼ 10 in is beyond the limiting value of
7.84, and so it is known to be in error because shear deformation was not
included; therefore we would suspect the value of K 0 ¼ 1:433 at l ¼ 25 in as
well. Indeed, Schwabenlender (Ref. 28) found that for a similar cross section
the effect of shear deformation in the flanges reduced the stiffness by
approximately 25% at a length of 25 in and by more than 60% at a length of
10 in.

2. A small cantilever crane rolls along a track welded from three pieces of 0.3-
in-thick steel, as shown in Fig. 10.5. The 20-ft-long track is solidly welded to a
rigid foundation at the right end and simply supported 4 ft from the left end,
which is free. The simple support also provides resistance to rotation about the
beam axis but provides no restraint against warping or rotation in horizontal
and vertical planes containing the axis.

The crane weighs 300 lb and has a center of gravity which is 20 in out from
the web of the track. A load of 200 lb is carried at the end of the crane 60 in
from the web. It is desired to determine the maximum flexure stress and the
maximum shear stress in the track and also the angle of inclination of the
crane when it is located 8 ft from the welded end of the track.

Solution. The loading will be considered in two stages. First consider a
vertical load of 500 lb acting 8 ft from the fixed end of a 16-ft beam fixed at one
end and simply supported at the other. The following constants are needed:

�yy ¼
4ð0:3Þð10Þ þ 9:7ð0:3Þð5Þ

ð4 þ 9:7 þ 8Þð0:3Þ
¼ 4:08 in

E ¼ 30ð106Þ lb=in2

Ix ¼
4ð0:33Þ

12
þ 4ð0:3Þð10 � 4:08Þ2 þ

0:3ð9:73Þ

12
þ 9:7ð0:3Þð5 � 4:08Þ2

þ
8ð0:33Þ

12
þ 8ð0:3Þð4:082Þ

¼ 107:3 in
4

Figure 10.5
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From Table 8.1, case 1c, a ¼ 8 ft, l ¼ 16 ft, W ¼ 500 lb, MA ¼ 0, and
RA ¼ ½500=2ð163Þ�ð16 � 8Þ2½2ð16Þ þ 8� ¼ 156:2 lb. Now construct the shear and
moment diagrams.

The second portion of the solution considers a beam fixed at the right end
against both rotation and warping and free at the left end. It is loaded at a
point 4 ft from the left end with an unknown torque Tc, which makes the angle
of rotation zero at that point, and a known torque of 300ð20Þþ
200ð60Þ ¼ 18;000 lb-in at a point 12 ft from the left end. Again evaluate the
following constants; assume G ¼ 12ð106Þ lb=in2:

K ¼ 1
3
ð4 þ 8 þ 10Þð0:33Þ ¼ 0:198 in

4
(Table 10.2, case 7)

Cw ¼
ð102Þð0:3Þð43Þð83Þ

ð12Þð43 þ 83Þ
¼ 142:2 in

6
(Table 10.2, case 7)

b ¼
KG

CwE

� �1=2

¼
ð0:198Þð12Þð106Þ

ð142:2Þð30Þð106Þ

� �1=2

¼ 0:0236 in
�1

Therefore bl ¼ 0:0236ð20Þð12Þ ¼ 5:664, bðl � aÞ ¼ 0:0236ð20 � 12Þð12Þ ¼ 2:2656
for a ¼ 12 ft, and bðl � aÞ ¼ 0:0236ð20 � 4Þð12Þ ¼ 4:5312 for a ¼ 4 ft.

From Table 10.3, case 1b, consider two torsional loads: an unknown torque
Tc at a ¼ 4 ft and a torque of 18,000 lb-in at a ¼ 12 ft. The following constants
are needed:

C1 ¼ cosh bl ¼ cosh 5:664 ¼ 144:1515

C2 ¼ sinh bl ¼ sinh 5:664 ¼ 144:1480

For a ¼ 4 ft,

Ca3 ¼ cosh bðl � aÞ � 1 ¼ cosh 4:5312 � 1 ¼ 45:4404

Ca4 ¼ sinh bðl � aÞ � bðl � aÞ ¼ sinh 4:5312 � 4:5312 ¼ 41:8984

For a ¼ 12 ft,

Ca3 ¼ cosh 2:2656 � 1 ¼ 3:8703

Ca4 ¼ sinh 2:2656 � 2:2656 ¼ 2:5010
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At the left end TA ¼ 0 and y00A ¼ 0:

yA ¼
18;000

ð142:2Þð30Þð106Þð0:02363Þ

ð144:1480Þð3:8703Þ

144:1515
� 2:5010

� �

þ
Tc

ð142:2Þð30Þð106Þð0:02363Þ

ð144:1480Þð45:4404Þ

144:1515
� 41:8984

� �

¼ 0:43953 þ 6:3148ð10�5ÞTc

Similarly, y0A ¼ �0:0002034 � 1:327ð10�7ÞTc.
To evaluate Tc the angle of rotation at x ¼ 4 ft is set equal to zero:

yc ¼ 0 ¼ yA þ
y0A
b

F2ðcÞ

where

F2ðcÞ ¼ sinh½0:0236ð48Þ� ¼ sinh 1:1328 ¼ 1:3911

or

0 ¼ 0:43953 þ 6:3148ð10�5ÞTc �
ð0:0002034Þð1:3911Þ

0:0236
�
ð1:327Þð10�7Þð1:3911Þ

0:0236
Tc

This gives Tc ¼ �7728 lb-in, yA ¼ �0:04847 rad, and y0A ¼ 0:0008221 rad=in.
To locate positions of maximum stress it is desirable to sketch curves of y0,

y00, and y000 versus the position x:

y0 ¼ y0AF1 þ
Tc

CwEb2
Fa3ðcÞ þ

To

CwEb2
Fa3

¼ 0:0008221 cosh bx �
7728

ð142:2Þð30Þð106Þð0:02362Þ
½cosh bðx � 48Þ � 1�hx � 48i0

þ
18;000

ð142:2Þð30Þð106Þð0:02362Þ
½cosh bðx � 144Þ � 1�hx � 144i0

This gives

y0 ¼ 0:0008221 cosh bx � 0:003253½cosh bðx � 48Þ � 1�hx � 48i0

þ 0:0007575½cosh bðx � 144Þ � 1�hx � 144i0

Similarly,

y00 ¼ 0:00001940 sinhbx � 0:00007676 sinhbhx � 48i

þ 0:00001788 sinh bhx � 144i

y000 ¼ 10�6½0:458 cosh bx � 1:812 coshbðx � 48Þhx � 48i0

þ 422 coshbðx � 144Þhx � 144i0�

Maximum bending stresses are produced by the beam bending moments of
þ1250 lb-ft at x ¼ 12 ft and �1500 lb-ft at x ¼ 20 ft and by maximum values of
y00 of �0:000076 at x ¼ 12 ft and þ0:000085 at x ¼ 20 ft. Since the largest
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magnitudes of both Mx and y00 occur at x ¼ 20 ft, the maximum bending stress
will be at the wall. Therefore, at the wall,

sA ¼
1500ð12Þð10 � 4:08 þ 0:15Þ

107:26
�

10ð4Þ

2

0:3ð83Þ

0:3ð43Þ þ 0:3ð83Þ
ð30Þð106Þð0:000085Þ

¼ 970 � 45;300 ¼ �44;300 lb=in2

sB ¼ 970 þ 45;300 ¼ 46;300 lb=in2

sC ¼
�1500ð12Þð4:08 þ 0:15Þ

107:26
þ

10ð8Þ

2

0:3ð43Þ

0:3ð43Þ þ 0:3ð83Þ
ð30Þð106Þð0:000085Þ

¼ �700 þ 11;300 ¼ 10;600 lb=in2

sD ¼ �700 � 11;300 ¼ �12;000 lb=in2

Maximum shear stresses are produced by y0, y000, and beam shear V. The
shear stress due to y000 is maximum at the top of the web, that due to y0 is
maximum on the surface anywhere, and that due to V is maximum at the
neutral axis but is not much smaller at the top of the web. The largest shear
stress in a given cross section is therefore found at the top of the web and is the
sum of the absolute values of the three components at one of four possible
locations at the top of the web. This gives

jtmaxj ¼
1

8

10ð0:3Þð83Þð42Þ

0:3ð43 þ 83Þ
30ð106Þy000

����
����þ j0:3ð12Þð106Þy0j

þ
ð2 � 0:15Þð0:3Þð10 � 4:08Þ

107:26ð0:3Þ
V

����
����

¼ j533:3ð106Þy000j þ j3:6ð106Þy0j þ j0:1021V j

The following maximum values of y000, y0, V , and tmax are found at the given
values of the position x:

x y000 y0 V jtmaxj, lb=in2

48þ �1.03(10�6) 1.41(10�3) 156.3 5633

79.2 �0.80(10�6) 1.83(10�3) 156.3 7014

144� �1.97(10�6) �0.28(10�3Þ 156.3 2073

144þ 2.26(10�6) �0.28(10�3) �343.7 2247

191.8 1.37(10�6) �1.88(10�3) �343.7 7522

240 2.44(10�6) 0 �343.7 1335
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To obtain the rotation of the crane at the load, substitute x ¼ 144 into

y ¼ yA þ
y0A
b

F2 þ
Tc

CwEb3
Fa4ðcÞ

¼ �0:04847 þ
0:0008221

0:0236
14:9414 �

7728ð4:7666 � 2:2656Þ

142:2ð30Þð106Þð0:02363Þ
¼ 0:1273

¼ 7:295�

10.4 Effect of Longitudinal Stresses

It was pointed out in Sec. 10.1 that the elongation of the outer fibers

consequent upon twist caused longitudinal stresses, but that in a bar

of circular section these stresses were negligible. In a flexible bar, the

section of which comprises one or more narrow rectangles, the stresses

in the longitudinal fibers may become large; and since after twisting

these fibers are inclined, the stresses in them have components,

normal to the axis of twist, which contribute to the torsional resistance

of the member.

The stress in the longitudinal fibers of a thin twisted strip and the

effect of these stresses on torsional stiffness have been considered by

Timoshenko (Ref. 5), Green (Ref. 6), Cook and Young (Ref. 1), and

others. The following formulas apply to this case: Let 2a ¼width of

strip; 2b ¼ thickness of strip; t; st, and sc ¼maximum shear, maxi-

mum tensile, and maximum compressive stress due to twisting,

respectively; T ¼ applied twisting moment; and y=l ¼ angle of twist

per unit length. Then

st ¼
Et2

12G2

a

b

� 	2

ð10:4-1Þ

sc ¼
1
2
st ð10:4-2Þ

T ¼ KG
y
l
þ

8

45
E

y
l

� �3

ba5 ð10:4-3Þ

The first term on the right side of Eq. (10.4-3), KGy=l, represents the

part of the total applied torque T that is resisted by torsional shear;

the second term represents the part that is resisted by the tensile

stresses in the (helical) longitudinal fibers. It can be seen that this

second part is small for small angles of twist but increases rapidly as

y=l increases.

To find the stresses produced by a given torque T , first the value of

y=l is found by Eq. (10.4-3), taking K as given for Table 10.1, case 4.

Then t is found by the stress formula for case 4, taking KGy=l for the
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twisting moment. Finally st and sc can be found by Eqs. (10.4-1) and

(10.4-2).

This stiffening and strengthening effect of induced longitudinal

stress will manifest itself in any bar having a section composed of

narrow rectangles, such as a I-, T-, or channel, provided that the parts

are so thin as to permit a large unit twist without overstressing. At the

same time the accompanying longitudinal compression [Eq. (10.4-2)]

may cause failure through elastic instability (see Table 15.1).

If a thin strip of width a and maximum thickness b is initially

twisted (as by cold working) to a helical angle b, then there is an initial

stiffening effect in torsion that can be expressed by the ratio of

effective K to nominal K (as given in Table 10.3):

Effective K

Nominal K
¼ 1 þ Cð1 þ nÞb2 a

b

� 	2

where C is a numerical coefficient that depends on the shape of the

cross section and is 2
15

for a rectangle, 1
8

for an ellipse, 1
10

for a lenticular

form, and 7
60

for a double wedge (Ref. 22).

If a bar of any cross section is independently loaded in tension, then

the corresponding longitudinal tensile stress st similarly will provide

a resisting torque that again depends on the angle of twist, and the

total applied torque corresponding to any angle of twist y is T ¼

ðKG þ stJÞy=l, where J is the centroidal polar moment of inertia of

the cross section. If the longitudinal loading causes a compressive

stress sc, the equation becomes

T ¼ ðKG � scJÞ
y
l

Bending also influences the torsional stiffness of a rod unless the

cross section has (1) two axes of symmetry, (2) point symmetry, or (3)

one axis of symmetry that is normal to the plane of bending. (The

influences of longitudinal loading and bending are discussed in Ref.

23.)

10.5 Ultimate Strength of Bars in Torsion

When twisted to failure, bars of ductile material usually break in

shear, the surface of fracture being normal to the axis and practically

flat. Bars of brittle material usually break in tension, the surface of

fracture being helicoidal.

Circular sections. The formulas of Sec. 10.1 apply only when the

maximum stress does not exceed the elastic limit. If Eq. (10.1-3) is

used with T equal to the twisting moment at failure, a fictitious value
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of t is obtained, which is called the modulus of rupture in torsion and

which for convenience will be denoted here by t0. For solid bars of steel,

t0 slightly exceeds the ultimate tensile strength when the length is

only about twice the diameter but drops to about 80% of the tensile

strength when the length becomes 25 times the diameter. For solid

bars of aluminum, t0 is about 90% of the tensile strength.

For tubes, the modulus of rupture decreases with the ratio of

diameter D to wall thickness t. Younger (Ref. 7) gives the following

approximate formula, applicable to tubes of steel and aluminum:

t0 ¼
1600t00

ðD=t � 2Þ2 þ 1600

where t0 is the modulus of rupture in torsion of the tube and t00 is the

modulus of rupture in torsion of a solid circular bar of the same

material. (Curves giving t0 as a function of D=t for various steels and

light alloys may be found in Ref. 18.)

10.6 Torsion of Curved Bars; Helical Springs

The formulas of Secs. 10.1 and 10.2 can be applied to slightly curved

bars without significant error, but for sharply curved bars, such as

helical springs, account must be taken of the influence of curvature

and slope. Among others, Wahl (Ref. 8) and Ancker and Goodier (Ref.

24) have discussed this problem, and the former presents charts which

greatly facilitate the calculation of stress and deflection for springs of

non-circular section. Of the following formulas cited, those for round

wire were taken from Ref. 24, and those for square and rectangular

wire from Ref. 8 (with some changes of notation).

Let R ¼ radius of coil measured from spring axis to center of section

(Fig. 10.6), d ¼diameter of circular section, 2b ¼ thickness of square

section, P ¼ load (either tensile or compressive), n ¼number of active

turns in spring, a ¼pitch angle of spring, f ¼ total stretch or short-

ening of spring, and t ¼maximum shear stress produced. Then for a

spring of circular wire,

f ¼
64PR3n

Gd4
1 �

3

64

d

R

� �2

þ
3 þ n

2ð1 þ nÞ
ðtan aÞ2

" #
ð10:6-1Þ

t ¼
16PR

pd3
1 þ

5

8

d

R
þ

7

32

d

R

� �2
" #

ð10:6-2Þ

398 Formulas for Stress and Strain [CHAP. 10



For a spring of square wire,

f ¼
2:789PR3n

Gb4
for c > 3 ð10:6-3Þ

t ¼
4:8PR

8b3
1 þ

1:2

c
þ

0:56

c2
þ

0:5

c3

� �
ð10:6-4Þ

where c ¼ R=b.

For a spring of rectangular wire, section 2a 	 2b where a > b,

f ¼
3pPR3n

8Gb4

1

a=b � 0:627½tanhðpb=2aÞ þ 0:004�
ð10:6-5Þ

for c > 3 if the long dimension 2a is parallel to the spring axis or for

c > 5 if the long dimension 2a is perpendicular to the spring axis,

t ¼
PRð3b þ 1:8aÞ

8b2a2
1 þ

1:2

c
þ

0:56

c2
þ

0:5

c3

� �
ð10:6-6Þ

It should be noted that in each of these cases the maximum stress is

given by the ordinary formula for the section in question (from Table

10.1) multiplied by a corrective factor that takes account of curvature,

and these corrective factors can be used for any curved bar of the

corresponding cross section. Also, for compression springs with the

end turns ground down for even bearing, n, should be taken as the

actual number of turns (including the tapered end turns) less 2. For

tension springs n should be taken as the actual number of turns or

slightly more.

Unless laterally supported, compression springs that are relatively

long will buckle when compressed beyond a certain critical deflection.

This critical deflection depends on the ratio of L, the free length, to D,

the mean diameter, and is indicated approximately by the following

tabulation, based on Ref. 27. Consideration of coil closing before

reaching the critical deflection is necessary.

L=D 1 2 3 4 5 6 7 8

Critical deflection=L 0.72 0.71 0.68 0.63 0.53 0.39 0.27 0.17

Figure 10.6
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Precise formula. For very accurate calculation of the extension of a

spring, as is necessary in designing precision spring scales, account

must be taken of the change in slope and radius of the coils caused by

stretching. Sayre (Ref. 9) gives a formula which takes into account not

only the effect of this change in form but also the deformation due to

direct transverse shear and flexure. This formula can be written as

f ¼ P
R2

0L

GK
�

R2
0H2

0

GKL
1 �

GK

EI

� �
þ

FL

AG

� ��

�
R2

0

3GKL
3 �

2GK

EI

� �
ðH2 þ HH0 � 2H2

0

� ��
ð10:6-7Þ

where f ¼ stretch of the spring; P ¼ load; R0 ¼ initial radius of the coil;

H ¼ variable length of the effective portion of the stretched spring;

H0 ¼ initial value of H; L ¼ actual developed length of the wire of

which the spring is made; A ¼ cross-sectional area of this wire; K ¼ the

torsional-stiffness factor for the wire section, as given in Table 10.1

ðK ¼ 1
2
pr4 for a circle; K ¼ 2:25a4 for a square; etc.); F ¼ the section

factor for shear deformation [Eq. (8.10-1); F ¼ 10
9

for a circle or ellipse,

F ¼ 6
5

for a square or rectangle]; and I ¼moment of inertia of the wire

section about a central axis parallel to the spring axis. The first term

in brackets represents the initial rate of stretch, and the second term

in brackets represents the change in this rate due to change in form

consequent upon stretch. The final expression shows that f is not a

linear function of P.
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TABLE 10.1 Formulas for torsional deformation and stress
GENERAL FORMULAS: y ¼ TL=KG and t ¼ T=Q, where y ¼ angle of twist (radians); T ¼ twisting moment (force-length); L ¼ length, t ¼unit shear stress (force per unit area); G ¼ modulus of

rigidity (force per unit area); K (length to the fourth) and Q (length cubed) are functions of the cross section

Form and dimensions of cross sections,

other quantities involved, and case no. Formula for K in y ¼
TL

KG
Formula for shear stress

1. Solid circular section K ¼ 1
2
pr4

tmax ¼
2T

pr3
at boundary

2. Solid elliptical section K ¼
pa3b3

a2 þ b2
tmax ¼

2T

pab2
at ends of minor axis

3. Solid square section K ¼ 2:25a4

tmax ¼
0:601T

a3
at midpoint of each side

4. Solid rectangular section K ¼ ab3 16

3
� 3:36

b

a
1 �

b4

12a4

� �� �
for a5 b tmax ¼

3T

8ab2
1 þ 0:6095

b

a
þ 0:8865

b

a

� �2

� 1:8023
b

a

� �3

þ 0:9100
b

a

� �4
" #

at the midpoint of each longer side for a5 b

10.7 Tables
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TABLE 10.1 Formulas for torsional deformation and stress (Continued)

Form and dimensions of cross sections,

other quantities involved, and case no. Formula for K in y ¼
TL

KG
Formula for shear stress

5. Solid triangular section (equilaterial)
K ¼

a4
ffiffiffi
3

p

80
tmax ¼

20T

a3
at midpoint of each side

6. Isosceles triangle

(Note: See also Ref. 21 for graphs of stress

magnitudes and locations and stiffness

factors)

For 2
3
< a=b <

ffiffiffi
3

p
ð39� < a < 82�Þ

K ¼
a3b3

15a2 þ 20b2

approximate formula which is exact at a ¼ 60�

where K ¼ 0:02165c4.

For
ffiffiffi
3

p
< a=b < 2

ffiffiffi
3

p
ð82� < a < 120�Þ

K ¼ 0:0915b4 a

b
� 0:8592

� 	

approximate formula which is exact at

a ¼ 90� where K ¼ 0:0261c4 (errors < 4%) (Ref. 20)

For 39� < a < 120�

Q ¼
K

b½0:200 þ 0:309a=b � 0:0418ða=bÞ2 �

approximate formula which is exact at a ¼ 60� and a ¼ 90�

For a ¼ 60� Q ¼ 0:0768b3 ¼ 0:0500c3

For a ¼ 90� Q ¼ 0:1604b3 ¼ 0:0567c3

tmax at center of longest side

7. Circular segmental section

[Note: h ¼ rð1 � cos aÞ�

K ¼ 2Cr4 where C varies with
h

r
as follows.

For 04
h

r
4 1:0:

C ¼ 0:7854 � 0:0333
h

r
� 2:6183

h

r

� �2

þ 4:1595
h

r

� �3

�3:0769
h

r

� �4

þ0:9299
h

r

� �5

tmax ¼
TB

r3
where B varies with

h

r

as follows. For 04
h

r
4 1:0 :

B ¼ 0:6366 þ 1:7598
h

r
� 5:4897

h

r

� �2

þ14:062
h

r

� �3

�14:510
h

r

� �4

þ 6:434
h

r

� �5

(Data from Refs. 12 and 13)
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8. Circular sector

(Note: See also Ref. 21)

K ¼ Cr4 where C varies with
a
p

as follows:

For 0:14
a
p
4 2:0:

C ¼ 0:0034 � 0:0697
a
p
þ 0:5825

a
p

� 	2

�0:2950
a
p

� 	3

þ 0:0874
a
p

� 	4

� 0:0111
a
p

� 	5

tmax ¼
T

Br3
on a radial boundary. B varies

with
a
p

as follows. For 0:14
a
p
4 1:0:

B ¼ 0:0117 � 0:2137
a
p
þ 2:2475

a
p

� 	2

�4:6709
a
p

� 	3

þ 5:1764
a
p

� 	4

� 2:2000
a
p

� 	5

ðData from Ref. 17)

9. Circular shaft with opposite sides

flattened

(Note: h ¼ r � wÞ

K ¼ 2Cr4 where C varies with
h

r
as follows:

For two flat sides where 04
h

r
40:8:

C ¼ 0:7854 � 0:4053
h

r
� 3:5810

h

r

� �2

þ 5:2708
h

r

� �3

� 2:0772
h

r

� �4

For four flat sides where

04
h

r
4 0:293 :

C ¼ 0:7854 � 0:7000
h

r
� 7:7982

h

r

� �2

þ 14:578
h

r

� �3

tmax ¼
TB

r3
where B varies with

h

r
as follows. For two flat sides where

04
h

r
4 0:6:

B ¼ 0:6366 þ 2:5303
h

r
� 11:157

h

r

� �2

þ 49:568
h

r

� �3

� 85:886
h

r

� �4

þ 69:849
h

r

� �5

For four flat sides where 04
h

r
4 0:293:

B ¼ 0:6366 þ 2:6298
h

r
� 5:6147

h

r

� �2

þ 30:853
h

r

� �3

(Data from Refs. 12 and 13)
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TABLE 10.1 Formulas for torsional deformation and stress (Continued)

Form and dimensions of cross sections,

other quantities involved, and case no. Formula for K in y ¼
TL

KG
Formula for shear stress

10. Hollow concentric circular section K ¼ 1
2
pðr4

0 � r4
i Þ tmax ¼

2Tro

pðr4
o � r4

i Þ
at outer boundary

11. Eccentric hollow circular section
K ¼

pðD4 � d4Þ

32C

where

C ¼ 1 þ
16n2

ð1 � n2Þð1 � n4Þ
l2

þ
384n4

ð1 � n2Þ
2
ð1 � n4Þ

4
l4

tmax ¼
16TDF

pðD4 � d4Þ

F ¼ 1 þ
4n2

1 � n2
lþ

32n2

ð1 � n2Þð1 � n4Þ
l2

þ
48n2ð1 þ 2n2 þ 3n4 þ 2n6Þ

ð1 � n2Þð1 � n4Þð1 � n6Þ
l3

þ
64n2ð2 þ 12n2 þ 19n4 þ 28n6 þ 18n8 þ 14n10 þ 3n12Þ

ð1 � n2Þð1 � n4Þð1 � n6Þð1 � n8Þ
l4 (Ref. 10)

12. Hollow elliptical section, outer and

inner boundaries similar ellipses
K ¼

pa3b3

a2 þ b2
ð1 � q4Þ

where

q ¼
ao

a
¼

bo

b

(Note: The wall thickness is not constant)

tmax ¼
2T

pab2ð1 � q4Þ
at ends of minor axis on outer surface

13. Hollow, thin-walled section of uniform

thickness; U ¼ length of elliptical

median boundary, shown dashed:

U ¼ pða þ b � tÞ 1 þ 0:258
ða � bÞ2

ða þ b � tÞ2

" #

ðapproximatelyÞ

K ¼
4p2t½ða � 1

2
tÞ2ðb � 1

2
tÞ2 �

U
taverage ¼

T

2ptða � 1
2
tÞðb � 1

2
tÞ

(stress is nearly uniform if t is small)
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14. Any thin tube of uniform thickness;

U ¼ length of median boundary;

A ¼mean of areas enclosed by outer

and inner boundaries, or (approximate)

area within median boundary

K ¼
4A2t

U
taverage ¼

T

2tA
(stress is nearly uniform if t is small)

15. Any thin tube. U and A as for

case 14; t ¼ thickness at any point
K ¼

4A2Ð
dU=t

taverage on any thickness AB ¼
T

2tA
ðtmaxwhere t is a minimum)

16. Hollow rectangle, thin-walled

(Note: For thick-walled hollow rectangles

see Refs. 16 and 25. Reference 25

illustrates how to extend the work

presented to cases with more than

one enclosed region.)

K ¼
2tt1ða � tÞ2ðb � t1Þ

2

at þ bt1 � t2 � t2
1 taverage ¼

T

2tða � tÞðb � t1Þ
near midlength of short sides

T

2t1ða � tÞðb � t1Þ
near midlength of long sides

8>>><
>>>:

(There will be higher stresses at inner corners unless fillets of fairly large radius

are provided)
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TABLE 10.1 Formulas for torsional deformation and stress (Continued )

Form and dimensions of cross sections,

other quantities involved, and case no. Formula for K in y ¼
TL

KG
Formula for shear stress

17. Thin circular open tube of uniform

thickness; r ¼ mean radius

K ¼ 2
3
prt3

tmax ¼
T ð6pr þ 1:8tÞ

4p2r2t2

along both edges remote from ends (this assumes t is small comopared with mean

radius)

18. Any thin open tube of uniform

thickness; U ¼ length of median line,

shown dashed

K ¼
1

3
Ut3 tmax ¼

T ð3U þ 1:8tÞ

U2t2

along both edges remote from ends (this assumes t small compared wtih least

radius of curvature of median line; otherwise use the formulas given for cases

19–26)

19. Any elongated section with axis of

symmetry OX; U ¼ length, A ¼ area of

section, Ix ¼moment of inertia about

axis of symmetry

K ¼
4Ix

1 þ 16Ix=AU2

20. Any elongated section or thin open tube;

dU ¼ elementary length along median

line, t ¼ thickness normal to median line,

A ¼area of section

K ¼
F

3 þ 4F=AU2
where F ¼

ðU

0

t3dU

21. Any solid, fairly compact section

without reentrant angles, J ¼polar

moment of inertia about centroid axis,

A ¼area of section

K ¼
A4

40J

For all solid sections of irregular form (cases 19–26 inclusive) the maximum shear

stress occurs at or very near one of the points where the largest inscribed circle

touches the boundary,* and of these, at the one where the curvature of the

boundary is algebraically least. (Convexity represents positive and concavity

negative curvature of the boundary.) At a point where the curvature is positive

(boundary of section straight or convex) this maximum stress is given approxi-

mately by

tmax ¼ G
y
L

C or tmax ¼
T

K
C

where

C ¼
D

1 þ
p2D4

16A2

1 þ 0:15
p2D4

16A2
�

D

2r

� �� �

D¼diameter of largest inscribed circle

r¼ radius of curvature of boundary at the point (positive for this case)

A¼ area of the section

*Unless at some point on the boundary there is a sharp reentant angle, causing

high local stress.
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22. Trapezoid K ¼ 1
12

bðm þ nÞðm2 þ n2Þ � VLm4 � Vsn
4

where VL ¼ 0:10504 � 0:10s þ 0:0848s2

� 0:06746s3 þ 0:0515s4

Vs ¼ 0:10504 þ 0:10s þ 0:0848s2

þ 0:06746s3 þ 0:0515s4

s ¼
m � n

b

(Ref. 11)

23. T-section, flange thickness uniform.

For definitions of r;D; t; and t1, see

case 26.

K ¼ K1 þ K2 þ aD4

where K1 ¼ ab3 1

3
� 0:21

b

a
1 �

b4

12a4

� �� �

K2 ¼ cd3 1

3
� 0:105

d

c
1 �

d4

192c4

� �� �

a ¼
t

t1

0:15 þ 0:10
r

b

� 	

D ¼
ðb þ rÞ2 þ rd þ d2=4

ð2r þ bÞ

for d < 2ðb þ rÞ

24. L-section; b5d. For definitions of r and

D, see case 26.

K ¼ K1 þ K2 þ aD4

where K1 ¼ ab3 1

3
� 0:21

b

a
1 �

b4

12a4

� �� �

K2 ¼ cd3 1

3
� 0:105

d

c
1 �

d4

192c4

� �� �

a ¼
d

b
0:07 þ 0:076

r

b

� 	
D ¼ 2½d þ b þ 3r �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð2r þ bÞð2r þ d

p
�

for b < 2ðd þ rÞ

At a point where the curvature is negative (boundary of section concave or

reentrant), this maximum stress is given approximately by

tmax ¼ G
y
L

C or tmax ¼
T

K
C

where C ¼
D

1 þ
p2D4

16A2

1 þ 0:118 ln 1 �
D

2r

� �
� 0:238

D

2r

� �
tanh

2f
p

� �

and D;A, and r have the same meaning as before and f ¼ a positive angle through

which a tangent to the boundary rotates in turning or traveling around the

reentrant portion, measured in radians (here r is negative).

The preceding formulas should also be used for cases 17 and 18 when t is

relatively large compared with radius of median line.
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TABLE 10.1 Formulas for torsional deformation and stress (Continued )

Form and dimensions of cross sections,

other quantities involved, and case no. Formula for K in y ¼
TL

KG
Formula for shear stress

25. U- or Z-section K ¼ sum of K’s of constituent L-sections computed

as for case 24

26. I-section, flange thickness uniform;

r ¼fillet radius, D ¼diameter largest

inscribed circle, t ¼ b if b < d; t ¼ d

if d < b; t1 ¼ b if b > d; t1 ¼ d if d > b

K ¼ 2K1 þ K2 þ 2aD4

where K1 ¼ ab3 1

3
� 0:21

b

a
1 �

b4

12a4

� �� �
K2 ¼ 1

3
cd3

a ¼
t

t1

0:15 þ 0:1
r

b

� 	

Use expression for D from case 23

27. Split hollow shaft K ¼ 2Cr4
o where C varies with

ri

ro

as follows:

For 0:24
ri

ro

4 0:6:

C ¼ K1 þ K2

ri

ro

þ K3

ri

ro

� �2

þ K4

ri

ro

� �3

where for 0:14h=ri 4 1:0,

K1 ¼ 0:4427 þ 0:0064
h

ri

� 0:0201
h

ri

� �2

K2 ¼ �0:8071 � 0:4047
h

ri

þ 0:1051
h

ri

� �2

K3 ¼ �0:0469 þ 1:2063
h

ri

� 0:3538
h

ri

� �2

K4 ¼ 0:5023 � 0:9618
h

ri

þ 0:3639
h

ri

� �2

At M ; t ¼
TB

r3
o

where B varies with
ri

ro

as follows.

For 0:24
ri

ro

40:6:

B ¼ K1 þ K2

ri

ro

þ K3

ri

ro

� �2

þ K4

ri

ro

� �3

where fore 0:14h=ri 4 1:0,

K1 ¼ 2:0014 � 0:1400
h

ri

� 0:3231
h

ri

� �3

K2 ¼ 2:9047 þ 3:0069
h

ri

þ 4:0500
h

ri

� �2

K3 ¼ �15:721 � 6:5077
h

ri

� 12:496
h

ri

� �2

K4 ¼ 29:553 þ 4:1115
h

ri

þ 18:845
h

ri

� �2

(Data from Refs. 12 and 13)
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28. Shaft with one keyway K ¼ 2Cr4 where C varies with
b

r
as follows.

For 04
b

r
4 0:5:

C ¼ K1 þ K2

b

r
þ K3

b

r

� �2

þ K4

b

r

� �3

where for 0:34a=b4 1:5;

K1 ¼ 0:7854

K2 ¼ �0:0848 þ 0:1234
a

b
� 0:0847

a

b

� 	2

K3 ¼ �0:4318 � 2:2000
a

b
þ 0:7633

a

b

� 	2

K4 ¼ �0:0780 þ 2:0618
a

b
� 0:5234

a

b

� 	2

At M ; t ¼
TB

r3
where B varies with

b

r
as follows. For 0:24

b

r
4 0:5 :

B ¼ K1 þ K2

b

r
þ K3

b

r

� �2

þ K4

b

r

� �3

where for 0:54a=b41:5;

K1 ¼ 1:1690 � 0:3168
a

b
þ 0:0490

a

b

� 	2

K2 ¼ 0:43490 � 1:5096
a

b
þ 0:8677

a

b

� 	2

K3 ¼ �1:1830 þ 4:2764
a

b
� 1:7024

a

b

� 	2

K4 ¼ 0:8812 � 0:2627
a

b
� 0:1897

a

b

� 	2

(Data from Refs. 12 and 13)

29. Shaft with two keyways K ¼ 2Cr4 where C varies with
b

r
as follows.

For 04
b

r
4 0:5:

C ¼ K1 þ K2

b

r
þ K3

b

r

� �2

þ K4

b

r

� �3

where for 0:34a=b4 1:5;

K1 ¼ 0:7854

K2 ¼ �0:0795 þ 0:1286
a

b
� 0:1169

a

b

� 	2

K3 ¼ �1:4126 � 3:8589
a

b
þ 1:3292

a

b

� 	2

K4 ¼ 0:7098 þ 4:1936
a

b
� 1:1053

a

b

� 	2

At M ; t ¼
TB

r3
where B varies with

b

r
as follows. For 0:24

b

r
4 0:5 :

B ¼ K1 þ K2

b

r
þ K3

b

r

� �2

þ K4

b

r

� �3

where for 0:54a=b41:5;

K1 ¼ 1:2512 � 0:5406
a

b
þ 0:0387

a

b

� 	2

K2 ¼ �0:9385 þ 2:3450
a

b
þ 0:3256

a

b

� 	2

K3 ¼ 7:2650 � 15:338
a

b
þ 3:1138

a

b

� 	2

K4 ¼ �11:152 þ 33:710
a

b
� 10:007

a

b

� 	2

(Data from Refs. 12 and 13)
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TABLE 10.1 Formulas for torsional deformation and stress (Continued)

Form and dimensions of cross sections,

other quantities involved, and case no. Formula for K in y ¼
TL

KG
Formula for shear stress

30. Shaft with four keyways K ¼ 2Cr4 where C varies with
b

r
as follows.

For 04
b

r
4 0:4:

C ¼ K1 þ K2

b

r
þ K3

b

r

� �2

þ K4

b

r

� �3

where for 0:34a=b4 1:2;

K1 ¼ 0:7854

K2 ¼ �0:1496 þ 0:2773
a

b
� 0:2110

a

b

� 	2

K3 ¼ �2:9138 � 8:2354
a

b
þ 2:5782

a

b

� 	2

K4 ¼ 2:2991 þ 12:097
a

b
� 2:2838

a

b

� 	2

At M ; t ¼
TB

r3
where B varies with

b

r
as follows. For 0:24

b

r
4 0:4;

B ¼ K1 þ K2

b

r
þ K3

b

r

� �2

þ K4

b

r

� �3

where for 0:54a=b4 1:2;

K1 ¼ 1:0434 þ 1:0449
a

b
� 0:2977

a

b

� 	2

K2 ¼ 0:0958 � 9:8401
a

b
þ 1:6847

a

b

� 	2

K3 ¼ 15:749 � 6:9650
a

b
þ 14:222

a

b

� 	2

K4 ¼ �35:878 þ 88:696
a

b
� 47:545

a

b

� 	2

(Data from Refs. 12 and 13)

31. Shaft with one spline K ¼ 2Cr4 where C varies with
b

r
as follows.

For 04
b

r
4 0:5:

C ¼ K1 þ K2

b

r
þ K3

b

r

� �2

þ K4

b

r

� �3

where for 0:24a=b4 1:4;

K1 ¼ 0:7854

K2 ¼ 0:0264 � 0:1187
a

b
þ 0:0868

a

b

� 	2

K3 ¼ �0:2017 þ 0:9019
a

b
� 0:4947

a

b

� 	2

K4 ¼ 0:2911 � 1:4875
a

b
þ 2:0651

a

b

� 	2

At M ; t ¼
TB

r3
where B varies with

b

r
as follows. For 04

b

r
4 0:5;

B ¼ K1 þ K2

b

r
þ K3

b

r

� �2

þ K4

b

r

� �3

where for 0:24a=b4 1:4;

K1 ¼ 0:6366

K2 ¼ �0:0023 þ 0:0168
a

b
þ 0:0093

a

b

� 	2

K3 ¼ 0:0052 þ 0:0225
a

b
� 0:3300

a

b

� 	2

K4 ¼ 0:0984 � 0:4936
a

b
þ 0:2179

a

b

� 	2

(Data from Refs. 12 and 13)
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32. Shaft with two splines K ¼ 2Cr4 where C varies with
b

r
as follows.

For 04
b

r
4 0:5:

C ¼ K1 þ K2

b

r
þ K3

b

r

� �2

þ K4

b

r

� �3

where for 0:24a=b4 1:4;

K1 ¼ 0:7854

K2 ¼ 0:0204 � 0:1307
a

b
þ 0:1157

a

b

� 	2

K3 ¼ �0:2075 þ 1:1544
a

b
� 0:5937

a

b

� 	2

K4 ¼ 0:3608 � 2:2582
a

b
þ 3:7336

a

b

� 	2

At M ; t ¼
TB

r3
where B varies with

b

r
as follows. For 04

b

r
4 0:5;

B ¼ K1 þ K2

b

r
þ K3

b

r

� �2

þ K4

b

r

� �3

where for 0:24a=b4 1:4;

K1 ¼ 0:6366

K2 ¼ 0:0069 � 0:0229
a

b
þ 0:0637

a

b

� 	2

K3 ¼ �0:0675 þ 0:3996
a

b
� 1:0514

a

b

� 	2

K4 ¼ 0:3582 � 1:8324
a

b
þ 1:5393

a

b

� 	2

(Data from Refs. 12 and 13)

33. Shaft with four splines K ¼ 2Cr4 where C varies with
b

r
as follows.

For 04
b

r
4 0:5:

C ¼ K1 þ K2

b

r
þ K3

b

r

� �2

þ K4

b

r

� �3

where for 0:24a=b4 1:0;

K1 ¼ 0:7854

K2 ¼ 0:0595 � 0:3397
a

b
þ 0:3239

a

b

� 	2

K3 ¼ �0:6008 þ 3:1396
a

b
� 2:0693

a

b

� 	2

K4 ¼ 1:0869 � 6:2451
a

b
þ 9:4190

a

b

� 	2

At M ; t ¼
TB

r3
where B varies with

b

r
as follows. For 04

b

r
4 0:5;

B ¼ K1 þ K2

b

r
þ K3

b

r

� �2

þ K4

b

r

� �3

where for 0:24a=b4 1:0;

K1 ¼ 0:6366

K2 ¼ 0:0114 � 0:0789
a

b
þ 0:1767

a

b

� 	2

K3 ¼ �0:1207 þ 1:0291
a

b
� 2:3589

a

b

� 	2

K4 ¼ 0:5132 � 3:4300
a

b
þ 4:0226

a

b

� 	2

(Data from Refs. 12 and 13)
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TABLE 10.1 Formulas for torsional deformation and stress (Continued)

Form and dimensions of cross sections,

other quantities involved, and case no. Formula for K in y ¼
TL

KG
Formula for shear stress

34. Pinned shaft with one, two, or four

grooves

K ¼ 2Cr4 where C varies with
a

r
over the range

04
a

r
4 0:5 as follows. For one groove:

C ¼ 0:7854 � 0:0225
a

r
� 1:4154

a

r

� 	2

þ 0:9167
a

r

� 	3

For two grooves:

C ¼ 0:7854 � 0:0147
a

r
� 3:0649

a

r

� 	2

þ 2:5453
a

r

� 	3

For four grooves:

C ¼ 0:7854 � 0:0409
a

r
� 6:2371

a

r

� 	2

þ 7:2538
a

r

� 	3

At M ; t ¼
TB

r3
where B varies with

a

r
over the

range 0:14
a

r
4 0:5 as follows. For one groove:

B ¼ 1:0259 þ 1:1802
a

r
� 2:7897

a

r

� 	2

þ 3:7092
a

r

� 	3

For two grooves:

B ¼ 1:0055 þ 1:5427
a

r
� 2:9501

a

r

� 	2

þ 7:0534
a

r

� 	3

For four grooves:

B ¼ 1:2135 � 2:9697
a

r
þ 33:713

a

r

� 	2

� 99:506
a

r

� 	3

þ 130:49
a

r

� 	4

(Data from Refs. 12 and 13)

35. Cross shaft K ¼ 2Cs4 where C varies with
r

s
over the

range 04
r

s
4 0:9 as follows:

C ¼ 1:1266 � 0:3210
r

s
þ 3:1519

r

s

� 	2

� 14:347
r

s

� 	3

þ 15:223
r

s

� 	4

� 4:7767
r

s

� 	5

At M ; t ¼
BM T

s3
where BM varies with

r

s
over the range 04

r

s
4 0:5 as follows:

BM ¼ 0:6010 þ 0:1059
r

s
� 0:9180

r

s

� 	2

þ 3:7335
r

s

� 	3

� 2:8686
r

s

� 	4

At N ; t ¼
BN T

s3
where BN varies with

r

s
over the range 0:34

r

s
4 0:9 as follows:

BN ¼ �0:3281 þ 9:1405
r

s
� 42:520

r

s

� 	2

þ 109:04
r

s

� 	3

� 133:95
r

s

� 	4

þ 66:054
r

s

� 	5

(Note: BN > BM for r=s > 0:32Þ

(Data from Refs. 12 and 13)

4
1
2

F
o
rm
u
la
s
fo
r
S
tre
s
s
a
n
d
S
tra
in

[C
H
A
P
.
1
0



TABLE 10.2 Formulas for torsional properties and stresses in thin-walled open cross sections
NOTATION: Point 0 indicates the shear center. e ¼ distance from a reference to the shear center; K ¼ torsional stiffness constant (length to the fourth power); Cw ¼warping constant (length to the

sixth power); t1 ¼ shear stress due to torsional rigidity of the cross section (force per unit area); t2 ¼ shear stress due to warping rigidity of the cross section (force per unit area); sx ¼ bending stress

due to warping rigidity of the cross section (force per unit area); E ¼modulus of elasticity of the material (force per unit area); and G ¼modulus of rigidity (shear modulus) of the material (force per

unit area)

The appropriate values of y0; y00, and y000 are found in Table 10.3 for the loading and boundary restraints desired

Cross section, reference no. Constants Selected maximum values

1. Channel
e ¼

3b2

h þ 6b

K ¼
t3

3
ðh þ 2bÞ

Cw ¼
h2b3t

12

2h þ 3b

h þ 6b

ðsxÞmax ¼
hb

2

h þ 3b

h þ 6b
Ey00 throughout the thickness at corners A and D

ðt2Þmax ¼
hb2

4

h þ 3b

h þ 6b

� �2

Ey000 throughout the thickness at a distance b
h þ 3b

h þ 6b
from corners A and D

ðt1Þmax ¼ tGy0 at the surface everywhere

2. C-section
e ¼ b

3h2b þ 6h2b1 � 8b3
1

h3 þ 6h2b þ 6h2b1 þ 8b3
1 � 12hb2

1

K ¼
t3

3
ðh þ 2b þ 2b1Þ

Cw ¼ t
h2b2

2
b1 þ

b

3
� e �

2eb1

b
þ

2b2
1

h

� ��

þ
h2e2

2
b þ b1 þ

h

6
�

2b2
1

h

� �
þ

2b3
1

3
ðb þ eÞ2

�

ðsxÞmax ¼
h

2
ðb � eÞ þ b1ðb þ eÞ

� �
Ey00 throughout the thickness at corners A and F

ðt2Þmax ¼
h

4
ðb � eÞð2b1 þ b � eÞ þ

b2
1

2
ðb þ eÞ

� �
Ey000 throughout the thickness on the top and bottom flanges at a

distance e from corners C and D

ðt1Þmax ¼ tGy0 at the surface everywhere

3. Hat section
e ¼ b

3h2b þ 6h2b1 � 8b3
1

h3 þ 6h2b þ 6h2b1 þ 8b3
1 þ 12hb2

1

K ¼
t3

3
ðh þ 2b þ 2b1Þ

Cw ¼ t
h2b2

2
b1 þ

b

3
� e �

2eb1

b
�

2b2
1

h

� ��

þ
h2e2

2
b þ b1 þ

h

6
þ

2b2
1

h

� �
þ

2b3
1

3
ðb þ eÞ2 �

sx ¼
h

2
ðb � eÞ � b1ðb þ eÞ

� �
Ey00 throughout the thickness at corners A and F

sx ¼
h

2
ðb � eÞEy00 throughout the thickness at corners B and E

t2 ¼
h2ðb � eÞ2

8ðb þ eÞ
þ

b2
1

2
ðb þ eÞ �

hb1

2
ðb � eÞ

" #
Ey000 throughout the thickness at a distance

hðb � eÞ

2ðb þ eÞ

from corner B toward corner A

t2 ¼
b2

1

2
ðb þ eÞ �

hb1

2
ðb � eÞ �

h

4
ðb � eÞ2

� �
Ey000 throughout the thickness at a distance e

from corner C toward corner B

t1 ¼ tGy0 at the surface everywhere
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TABLE 10.2 Formulas for torsional properties and stresses in thin-walled open cross sections (Continued )

Cross section, reference no. Constants Selected maximum values

4. Twin channel with

flanges inward
K ¼

t3

3
ð2b þ 4b1Þ

Cw ¼
tb2

24
ð8b3

1 þ 6h2b1 þ h2b þ 12b2
1hÞ

ðsxÞmax ¼
b

2
b1 þ

h

2

� �
Ey00 throughout the thickness at points A and D

ðt2Þmax ¼
�b

16
ð4b2

1 þ 4b1h þ hbÞEy000 throughout the thickness midway between corners B and C

ðt1Þmax ¼ tGy0 at the surface everywhere

5. Twin channel with

flanges outward
K ¼

t3

3
ð2b þ 4b1Þ

Cw ¼
tb2

24
ð8b3

1 þ 6h2b1 þ h2b � 12b2
1hÞ

ðsxÞmax ¼
hb

4
Ey00 throughout the thickness at points B and C if h > b1

ðsxÞmax ¼
hb

4
�

bb1

2

� �
Ey00 throughout the thickness at points A and D if h < b1

ðt2Þmax ¼
b

4

h

2
� b1

� �2

Ey000 throughout the thickness at a distance
h

2
from corner B toward point A if

b1 >
h

2
1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
þ

b

2h

r !

ðt2Þmax ¼
b

4
b2

1 �
hb

4
� hb1

� �
Ey000 throughout the thickness at a point midway between corners B and C if

b1 <
h

2
1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
þ

b

2h

r !

ðt1Þmax ¼ tGy0 at the surface everywhere

6. Wide flanged beam

with equal flanges

K ¼ 1
3
ð2t3b þ t3

whÞ

Cw ¼
h2tb3

24

ðsxÞmax ¼
hb

4
Ey00 throughout the thickness at points A and B

ðt2Þmax ¼ �
hb2

16
Ey000 throughout the thickness at a point midway between A and B

ðt1Þmax ¼ tGy0 at the surface everywhere
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7. Wide flanged beam

with unequal flanges
e ¼

t1b3
1h

t1b3
1 þ t2b3

2

K ¼ 1
3
ðt3

1b1 þ t3
2b2 þ t3

whÞ

Cw ¼
h2t1t2b3

1b3
2

12ðt1b3
1 þ t2b3

2Þ

ðsxÞmax ¼
hb1

2

t2b3
2

t1b3
1 þ t2b3

2

Ey00 throughout the thickness at points A and B if t2b2
2 > t1b2

1

ðsxÞmax ¼
hb2

2

t1b3
1

t1b3
1 þ t2b3

2

Ey00 throughout the thickness at points C and D if t2b2
2 < t1b2

1

ðt2Þmax ¼
�1

8

ht2b3
2b2

1

t1b3
1 þ t2b3

2

Ey000 throughout the thickness at a point midway between A and B if t2b2 > t1b1

ðt2Þmax ¼
�1

8

ht1b3
1b2

2

t1b3
1 þ t2b3

2

Ey000 throughout the thickness at a point midway between C and D if t2b2 < t1b1

ðt1Þmax ¼ tmaxGy0 at the surface on the thickest portion

8. Z-section
K ¼

t3

3
ð2b þ hÞ

Cw ¼
th2b3

12

b þ 2h

2b þ h

� �
ðsxÞmax ¼

hb

2

b þ h

2b þ h
Ey00 throughout the thickness at points A and D

ðt2Þmax ¼
�hb2

4

b þ h

2b þ h

� �2

Ey000 throughout the thickness at a distance
bðb þ hÞ

2b þ h
from point A

ðt1Þmax ¼ tGy0 at the surface everywhere

9. Segment of a circular

tube

(Note: If t=r is small, a can

be larger than p to

evaluate constants for

the case when the

walls overlap)

e ¼ 2r
sin a� a cos a
a� sin a cos a

K ¼ 2
3
t3ra

Cw ¼
2tr5

3
a3 � 6

ðsin a� a cos aÞ2

a� sin a cos a

" #

ðsxÞmax ¼ ðr2a� re sin aÞEy00 throughout the thickness at points A and B

ðt2Þmax ¼ r2 eð1 � cos aÞ �
ra2

2

� �
Ey000 throughout the thickness at midlength

ðt1Þmax ¼ tGy0 at the surface everywhere
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TABLE 10.2 Formulas for torsional properties and stresses in thin-walled open cross sections (Continued )

Cross section, reference no. Constants Selected maximum values

10. e ¼ 0:707ab2 3a � 2b

2a3 � ða � bÞ3

K ¼ 2
3
t3ða þ bÞ

Cw ¼
ta4b3

6

4a þ 3b

2a3 � ða � bÞ3

ðsxÞmax ¼
a2b

2

2a2 þ 3ab � b2

2a3 � ða � bÞ3
Ey00 throughout the thickness at points A and E

t2 ¼
a2b2

4

a2 � 2ab � b2

2a3 � ða � bÞ3
Ey000 throughout the thickness at point C

ðt1Þmax ¼ tGy0 at the surface everywhere

11. K ¼ 1
3
ð4t3b þ t3

waÞ

Cw ¼
a2b3t

3
cos2 a

(Note: Expressions are equally valid for þ and �a)

ðsxÞmax ¼
ab

2
cos aEy00 throughout the thickness at points A and C

ðt2Þmax ¼
�ab2

4
cos aEy000 throughout the thickness at point B

ðt1Þmax ¼ tGy0 at the surface everywhere
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TABLE 10.3 Formulas for the elastic deformations of uniform thin-walled open members under torsional loading
NOTATION: To ¼ applied torsional load (force-length); to ¼ applied distributed torsional load (force-length per unit length); TA and TB are the reaction end torques at the left and right ends,

respectively. y ¼ angle of rotation at a distance x from the left end (radians). y0; y00, and y000 are the successive derivatives of y with respect to the distance x. All rotations, applied torsional loads, and

reaction end torques are positive as shown (CCW when viewed from the right end of the member). E is the modulus of elasticity of the material; Cw is the warping constant for the cross section; K is

the torsional constant (see Table 10.2 for expressions for Cw and K); and G is the modulus of rigidity (shear modulus) of the material.

The following constants and functions are hereby defined in order to permit condensing the tabulated formulas which follow. See page 131 for a definition ofhx � ain. The function sinh bhx � ai is

also defined as zero if x is less than a. b ¼ ðKG=CwEÞ
1=2

F1 ¼ cosh bx Fa1 ¼hx � ai0 coshbðx � aÞ C1 ¼ coshbl Ca1 ¼ coshbðl � aÞ A1 ¼ coshba

F2 ¼ sinh bx Fa2 ¼ sinh bhx � ai C2 ¼ sinhbl Ca2 ¼ sinhbðl � aÞ A2 ¼ sinhba

F3 ¼ cosh bx � 1 Fa3 ¼hx � ai0½coshbðx � aÞ � 1� C3 ¼ coshbl � 1 Ca3 ¼ coshbðl � aÞ � 1

F4 ¼ sinh bx � bx Fa4 ¼ sinh bhx � ai� bhx � ai C4 ¼ sinhbl � bl Ca4 ¼ sinhbðl � aÞ � bðl � aÞ

Fa5 ¼ Fa3 �
b2
hx � ai2

2
Ca5 ¼ Ca3 �

b2
ðl � aÞ2

2

Fa6 ¼ Fa4 �
b3
hx � ai3

6
Ca6 ¼ Ca4 �

b3
ðl � aÞ3

6

1. Concentrated intermediate torque
y ¼ yA þ

y0A
b

F2 þ
y00A
b2

F3 þ
TA

CwEb3
F4 þ

To

CwEb3
Fa4

y0 ¼ y0AF1 þ
y00A
b

F2 þ
TA

CwEb2
F3 þ

To

CwEb2
Fa3

y00 ¼ y00AF1 þ y0AbF2 þ
TA

CwEb
F2 þ

To

CwEb
Fa2

y000 ¼ y0Ab
2F1 þ y00AbF2 þ

TA

CwE
F1 þ

To

CwE
Fa1

T ¼ TA þ Tohx � ai0
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TABLE 10.3 Formulas for the elastic deformations of uniform thin-walled open members under torsional loading (Continued)

End restraints, reference no. Boundary values Selected special cases and maximum values

1a. Left end free to twist and

warp, right end free to warp

but not twist

TA ¼ 0 y00A ¼ 0

yA ¼
To

CwEb2
ðl � aÞ

y0A ¼
�To

CwEb2

Ca2

C2

yB ¼ 0; y00B ¼ 0; TB ¼ �To

y0B ¼
�To

CwEb2
1 �

A2

C2

� �

y000B ¼
To

CwE

A2

C2

ymax ¼ yA; max possible value ¼
Tol

CwEb2
when a ¼ 0

y0max ¼ y0B; max possible value ¼
�To

CwEb2
when a ¼ 0

y00max ¼
�To

CwEb
Ca2

C2

A2 at x ¼ a; max possible value ¼
�To

2CwEb
tanh

bl

2
when a ¼ l=2

ð�y000 Þmax ¼
�To

CwE

Ca2

C2

A1 just left of x ¼ a

ðþy000 Þmax ¼
To

CwE
1 �

Ca2

C2

A1

� �
just right of x ¼ a;max possible value ¼

To

CwE
when a approaches l

If a ¼ 0 (torque applied at the left end),

y ¼
To

KG
ðl � xÞ; y0 ¼

�To

KG
; y00 ¼ 0; y000 ¼ 0

1b. Left end free to twist and

warp right end fixed (no

twist or warp)

TA ¼ 0 y00A ¼ 0

yA ¼
To

CwEb3

C2Ca3

C1

� Ca4

� �

y0A ¼
�To

CwEb2

Ca3

C1

yB ¼ 0; y0B ¼ 0; TB ¼ �To

y00B ¼
�To

CwEb
A2 � C2

C1

y000B ¼
To

CwE

If a ¼ 0 (torque applied at the left end),

y ¼
To

CwEb3
bðl � xÞ � tanh bl þ

sinhbx

coshbl

� �

y0 ¼
�To

CwEb2
1 �

coshbx

cosh bl

� �
; y00 ¼

To

CwEb
sinhbx

coshb

y000 ¼
To

CwE

coshbx

cosh bl

ymax ¼
To

CwEb3
ðbl � tanhblÞ at x ¼ 0

y0max ¼
�To

CwEb2
1 �

1

coshbl

� �
at x ¼ 0

y00max ¼
To

CwEb
tanhbl at x ¼ l

y000max ¼
To

CwE
at x ¼ l

4
1
8

F
o
rm
u
la
s
fo
r
S
tre
s
s
a
n
d
S
tra
in

[C
H
A
P
.
1
0



1c. Left end free to twist but not

warp, right end free to warp

but not twist

TA ¼ 0; y0A ¼ 0

yA ¼
To

CwEb3

C3Ca2

C1

� Ca4

� �

y00A ¼
�To

CwEb
Ca2

C1

yB ¼ 0; y00B ¼ 0; TB ¼ �To

y0B ¼
�To

CwEb2

C2Ca2

C1

� Ca3

� �

y000B ¼
�To

CwE

C2Ca2

C1

� Ca1

� �

If a ¼ 0 (torque applied at the left end),

y ¼
To

CwEb3
½sinhbx � tanhbl coshbx þ bðl � xÞ�

y0 ¼
To

CwEb2
ðcosh bx � tanh bl sinhbx � 1Þ

y00 ¼
To

CwEb
ðsinhbx � tanh bl cosh bxÞ; y000 ¼

To

CwE
ðcosh bx � tanh bl sinhbxÞ

ymax ¼
To

CwEb3
ðbl � tanhblÞ at x ¼ 0

y0max ¼
�To

CwEb2

�1

coshbl
þ 1

� �
at x ¼ l

y00max ¼
�To

CwEb
tanh bl at x ¼ 0

y000max ¼
To

CwE
at x ¼ 0

1d. Left end free to twist but not

warp, right end fixed (no

twist or warp)

TA ¼ 0; y0A ¼ 0

yA ¼
To

CwEb3

C3Ca3

C2

� Ca4

� �

y00A ¼
�To

CwEb
Ca3

C2

yB ¼ 0; y0B ¼ 0; TB ¼ �To

y00B ¼
�To

CwEb
C1Ca3

C2

� Ca2

� �

y000B ¼
To

CwE

If a ¼ 0 (torque applied at the left end),

y ¼
To

CwEb3
sinhbx þ bðl � xÞ � tanh

bl

2
ð1 þ coshbxÞ

� �

y0 ¼
To

CwEb2
cosh bx � 1 � tanh

bl

2
sinhbx

� �

y00 ¼
To

CwEb
sinhbx � tanh

bl

2
cosh bx

� �
; y000 ¼

To

CwE
cosh bx � tanh

bl

2
sinhbx

� �

ymax ¼
To

CwEb3
bl � 2 tanh

bl

2

� �
at x ¼ 0

y0max ¼
To

CwEb2

1

coshðbl=2Þ
� 1

� �
at x ¼

l

2

y00max ¼
�To

CwEb
tanh

bl

2
at x ¼ 0 and x ¼ l; respectively

y000max ¼
To

CwE
at x ¼ 0 and x ¼ l
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TABLE 10.3 Formulas for the elastic deformations of uniform thin-walled open members under torsional loading (Continued)

End restraints, reference no. Boundary values Selected special cases and maximum values

1e. Both ends free to warp but

not twist

yA ¼ 0; y00A ¼ 0

TA ¼ �To 1 �
a

l

� 	

y0A ¼
To

CwEb2
1 �

a

l
�

Ca2

C2

� �

yB ¼ 0; y00B ¼ 0

y0B ¼
�To

CwEb2

a

l
�

A2

C2

� �

y000B ¼
To

CwE

A2

C2

TB ¼ �To

a

l

If a ¼ l=2 (torque applied at midlength),

y ¼
To

CwEb3

bx

2
�

sinhbx

2 coshðbl=2Þ
þ sinhbhx �

1

2
i� bhx �

l

2
i

� �

y0 ¼
To

CwEb2

1

2
�

coshbx

2 coshðbl=2Þ
þhx �

l

2
i0 coshb x �

l

2

� �
� 1

� �� �

y00 ¼
�To

CwEb
sinhbx

2 coshðbl=2Þ
� sinhbhx �

l

2
i

� �

y000 ¼
�To

CwE

coshbx

2 coshðbl=2Þ
�hx �

l

2
i0 coshb x �

l

2

� �� �

ymax ¼
To

2CwEb3

bl

2
� tanh

bl

2

� �
at x ¼

l

2

y0max ¼
�To

2CwEb2
1 �

1

coshðbl=2

� �
at x ¼ 0 and x ¼ l; respectively

y00max ¼
�To

2CwEb
tanh

bl

2
at x ¼

l

2

y000max ¼
�To

2CwE
just left and just right of x ¼

l

2
; respectively

1f. Left end free to warp

but not twist, right

end fixed (no twist or

warp)

yA ¼ 0; y00A ¼ 0

TA ¼ �To

C1Ca4 � C2Ca3

C1C4 � C2C3

y0A ¼
To

CwEb2

C3Ca4 � C4Ca3

C1C4 � C2C3

yB ¼ 0; y0B ¼ 0

y00B ¼
To

CwEb
blA2 � baC2

C1C4 � C2C3

y000B ¼
To

CwE

A2 � baC1

C1C4 � C2C3

TB ¼ �To � TA

If a ¼ l=2 (torque applied at midlength),

TA ¼ �To

sinhbl � ðbl=2Þ coshbl � sinhðbl=2Þ

sinhbl � bl cosh bl

y0A ¼
To

CwEb2

2 sinhðbl=2Þ � bl coshðbl=2Þ

sinhbl � bl cosh bl
cosh

bl

2
� 1

� �
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1g. Both ends fixed (no twist or

warp)

yA ¼ 0; y0A ¼ 0

y00A ¼
To

CwEb
C3Ca4 � C4Ca3

C2C4 � C2
3

TA ¼ �To

C2Ca4 � C3Ca3

C2C4 � C2
3

yB ¼ 0; y0B ¼ 0

y00B ¼ y00AC1 þ
TA

CwEb
C2 þ

To

CwEb
Ca2

y000B ¼ y00AbC2 þ
TA

CwE
C1 þ

To

CwE
Ca1

TB ¼ �To � TA

If a ¼ l=2 (torque applied at midlength),

TA ¼ TB ¼
�To

2

ymax ¼
To

CwEb3

bl

4
� tanh

bl

4

� �
at x ¼

l

2

y0max ¼
To

2CwEb2
1 �

1

coshðbl=4

� �
at x ¼

l

4

y00max ¼
þ
�
þ

To

2CwEb
tanh

bl

4
at x ¼ 0; x ¼

l

2
; and x ¼ l; respectively

ð�y000 Þmax ¼
�To

2CwE
at x ¼ 0 and just left of x ¼

l

2

ðþy000 Þmax ¼
To

2CwE
at x ¼ l and just right of x ¼

l

2

2. Uniformly distributed torque

from a to l
y ¼ yA þ

y0A
b

F2 þ
y00A
b2

F3 þ
TA

CwEb3
F4 þ

to

CwEb4
Fa5

y0 ¼ y0AF1 þ
y00A
b

F2 þ
TA

CwEb2
F3 þ

to

CwEb3
Fa4

y00 ¼ y00AF1 þ y0AbF2 þ
TA

CwEb
F2 þ

to

CwEb2
Fa3

y000 ¼ y0Ab
2F1 þ y00AbF2 þ

TA

CwE
F1 þ

to

CwEb
Fa2

T ¼ TA þ tohx � ai
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TABLE 10.3 Formulas for the elastic deformations of uniform thin-walled open members under torsional loading (Continued )

End restraints, reference no. Boundary values Selected special cases and maximum values

2a. Left end free to twist and

warp, right end free to warp

but not twist

TA ¼ 0; y00A ¼ 0

yA ¼
to

2CwEb2
ðl � aÞ2

y0A ¼
�to

CwEb3

Ca3

C2

yB ¼ 0; y00B ¼ 0

y0B ¼
�to

CwEb3

A1 � C1

C2

þ bðl � aÞ

� �

y000B ¼
�to

CwEb
A1 � C1

C2

TB ¼ �toðl � aÞ

If a ¼ 0 (uniformly distributed torque over entire span),

y ¼
to

CwEb4

b2
ðl2 � x2Þ

2
þ

sinh bðl � xÞ þ sinh bx

sinhbl
� 1

" #

y0 ¼
�to

CwEb3
bx þ

coshbðl � xÞ � coshbx

sinhbl

� �

y00 ¼
�to

CwEb2
1 �

sinhbðl � xÞ þ sinhbx

sinh bl

� �

y000 ¼
�to

CwEb
coshbðl � xÞ � coshbx

sinhbl

ymax ¼
tol2

2CwEb2
at x ¼ 0

y0max ¼
to

CwEb3
bl � tanh

bl

2

� �
at x ¼ l

y00max ¼
�to

CwEb2
1 �

1

coshðbl=2Þ

� �
at x ¼

l

2

y000max ¼
�to

CwEb
tanh

bl

2
at x ¼ 0 and x ¼ l; respectively

2b. Left end free to twist and

warp, right end fixed (no

twist or warp)

TA ¼ 0; y00A ¼ 0

yA ¼
to

CwEb4

C2Ca4

C1

� Ca5

� �

y0A ¼
�to

CwEb3

Ca4

C1

yB ¼ 0; y0B ¼ 0

y00B ¼
�to

CwEb2

C2Ca4

C1

� Ca3

� �

y000B ¼
to

CwE
ðl � aÞ

TB ¼ �toðl � aÞ

If a ¼ 0 (uniformly distributed torque over entire span)

y ¼
�to

CwEb4

1 � coshbðl � xÞ þ blðsinhbl � sinhbxÞ

cosh bl
�
b2

ðl2 � x2Þ

2

" #

y0 ¼
�to

CwEb3

sinhbðl � xÞ � bl coshbx

cosh bl
þ bx

� �

y00 ¼
�to

CwEb2
1 �

cosh bðl � xÞ þ bl sinhbx

coshbl

� �

y000 ¼
�to

CwEb
sinhbðl � xÞ � bl coshbx

coshbl

ymax ¼
to

CwEb4
1 þ

b2l2

2
�

1 þ bl sinhbl

coshbl

 !
at x ¼ 0

The location of max y0 depends upon bl

y00max ¼
to

CwEb2

1 þ bl sinhbl

cosh bl
� 1

� �
at x ¼ l

y000max ¼
tol

CwE
at x ¼ l
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2c. Left end free to twist but not

warp, right end free to warp

but not twist

TA ¼ 0; y0A ¼ 0

yA ¼
to

CwEb4

C3Ca3

C1

� Ca5

� �

y00A ¼
�to

CwEb2

Ca3

C1

yB ¼ 0; y00B ¼ 0

y0B ¼
�to

CwEb3

C2Ca3

C1

� Ca4

� �

y000B ¼
�to

CwEb
C2Ca3

C1

� Ca2

� �

TB ¼ �toðl � aÞ

If a ¼ 0 (uniformly distributed torque over entire span),

y ¼
to

CwEb4

b2
ðl2 � x2Þ

2
þ

cosh bx

cosh bl
� 1

" #

y0 ¼
�to

CwEb3
bx �

sinhbx

coshbl

� �

y00 ¼
�to

CwEb2
1 �

coshbx

coshbl

� �
; y000 ¼

to

CwEb
sinhbx

coshbl

ymax ¼
to

CwEb4

b2l2

2
þ

1

coshbl
� 1

 !
at x ¼ 0

y0max ¼
�to

CwEb3
ðbl � tanh blÞ at x ¼ l

y00max ¼
�to

CwEb2
1 �

1

coshbl

� �
at x ¼ 0

y000max ¼
to

CwEb
tanh bl at x ¼ l

2d. Left end free to twist

but not warp, right

end fixed (no twist or

warp)

TA ¼ 0; y0A ¼ 0

yA ¼
to

CwEb4

C3Ca4

C2

� Ca5

� �

y00A ¼
�to

CwEb2

Ca4

C2

yB ¼ 0; y0B ¼ 0

y00B ¼
�to

CwEb2

C1Ca4

C2

� Ca3

� �

y000B ¼
to

CwE
ðl � aÞ

TB ¼ �toðl � aÞ

If a ¼ 0 (uniformly distributed torque over entire span),

y ¼
to

CwEb4

b2

2
ðl2 � x2Þ þ bl

coshbx � coshbl

sinh bl

" #

y0 ¼
�to

CwEb3
bx �

bl sinhbx

sinhbl

� �

y00 ¼
�to

CwEb2
1 �

bl coshbx

sinhbl

� �
; y000 ¼

tol

CwE

sinhbx

sinhbl

ymax ¼
tol

CwEb3

bl

2
� tanh

bl

2

� �
at x ¼ 0

ðþy00 Þmax ¼
to

CwEb2

bl

tanh bl
� 1

� �
at x ¼ l

ð�y00 Þmax ¼
�to

CwEb2
1 �

bl

sinh bl

� �
at x ¼ 0

y000max ¼
tol

CwE
at x ¼ l
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TABLE 10.3 Formulas for the elastic deformations of uniform thin-walled open members under torsional loading (Continued)

End restraints, reference no. Boundary values Selected special cases and maximum values

2e. Both ends free to warp but

not twist

yA ¼ 0; y00A ¼ 0

TA ¼
�to

2l
ðl � aÞ2

y0A ¼
to

CwEb3

b
2l

ðl � aÞ2 �
Ca3

C2

� �

yB ¼ 0; y00B ¼ 0

y0B ¼
to

CwEb3

b
2l

ðl � aÞ2 �
C1Ca3

C2

þ Ca4

� �

y000B ¼
�to

CwEb
cosh ba � coshbl

sinhbl

TB ¼
�to

2l
ðl2 � a2Þ

If a ¼ 0 (uniformly distributed torque over entire span),

y ¼
to

CwEb4

b2xðl � xÞ

2
þ

coshbðx � l=2Þ

coshðbl=2Þ
� 1

" #

y0 ¼
to

CwEb3

sinhbðx � l=2Þ

coshðbl=2Þ
� bðx � l=2Þ

� �

y00 ¼
to

CwEb2

coshðx � l=2Þ

coshðbl=2Þ
� 1

� �

y000 ¼
to

CwEb
sinhbðx � l=2Þ

coshðbl=2Þ

ymax ¼
to

CwEb4

b2l2

8
þ

1

coshðbl=2Þ
� 1

" #
at x ¼

l

2

y0max ¼
�to

CwEb3

bl

2
� tanh

bl

2

� �
at x ¼ 0 and x ¼ l; respectively

y00max ¼
to

CwEb2

1

coshðbl=2Þ
� 1

� �
at x ¼

l

2

y000max ¼
�to

CwEb
tanh

bl

2
at x ¼ 0 and x ¼ l; respectively

2f. Left end free to warp but not

twist, right end fixed (no twist

or warp)

yA ¼ 0; y00A ¼ 0

TA ¼
�to

b
C1Ca5 � C2Ca4

C1C4 � C2C3

y0A ¼
to

CwEb3

C3Ca5 � C4Ca4

C1C4 � C2C3

If a ¼ 0 (uniformly distributed torque over entire span),

ymax occurs very close to x ¼ 0:425l

y0max ¼
to

CwEb3

2 � b2l2=2 þ 2bl sinhbl � ð2 þ b2l2=2Þ coshbl

sinhbl � bl cosh bl
at x ¼ 0

y00max ¼
�t0

CwEb2

ðb2l2=2Þ sinhbl þ blð1 � coshblÞ

sinhbl � bl coshbl
at x ¼ l

ð�y000 Þmax ¼
to

CwEb
1 � b2l2=2 � coshbl þ bl sinhbl

sinhbl � bl coshbl
at x ¼ 0

ðþy000 Þmax ¼
to

CwEb
ð1 � b2l2=2Þ cosh bl � 1

sinh bl � bl coshbl
at x ¼ l

4
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2g. Both ends fixed (no twist or

warp)

yA ¼ 0; y0A ¼ 0

y00A ¼
to

CwEb2

C3Ca5 � C4Ca4

C2C4 � C2
3

TA ¼
�to

b
C2Ca5 � C3Ca4

C2C4 � C2
3

y000A ¼
TA

CwE

If a ¼ 0 (uniformly distributed torque over entire span),

TA ¼
�tol

2

y ¼
tol

2CwEb3

bx

l
ðl � xÞ þ

coshbðx � l=2Þ � coshðbl=2Þ

sinhðbl=2Þ

� �

y0 ¼
tol

2CwEb2
1 �

2x

l
þ

sinhbðx � l=2Þ

sinhðbl=2Þ

� �

y00 ¼
to

CwEb2

bl coshbðx � l=2Þ

2 sinhðbl=2Þ
� 1

� �

y000 ¼
to

CwEb
bl sinhbðx � l=2Þ

2 sinhðbl=2Þ

ymax ¼
tol

2CwEb3

bl

4
� tanh

bl

4

� �
at x ¼

l

2

ð�y00 Þmax ¼
�to

CwEb2
1 �

bl

2 sinhðbl=2Þ

� �
at x ¼

l

2

ðþy00 Þmax ¼
to

CwEb2

bl

2 tanhðbl=2Þ
� 1

� �
at x ¼ 0 and x ¼ l

y000max ¼
�tol

2CwE
at x ¼ 0 and x ¼ l; respectively
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Chapter

11
Flat Plates

11.1 Common Case

The formulas of this section are based on the following assumptions:

(1) The plate is flat, of uniform thickness, and of homogeneous

isotropic material; (2) the thickness is not more than about one-

quarter of the least transverse dimension, and the maximum deflec-

tion is not more than about one-half the thickness; (3) all forces—loads

and reactions—are normal to the plane of the plate; and (4) the plate is

nowhere stressed beyond the elastic limit. For convenience in discus-

sion, it will be assumed further that the plane of the plate is

horizontal.

Behavior. The plate deflects. The middle surface (halfway between top

and bottom surfaces) remains unstressed; at other points there are

biaxial stresses in the plane of the plate. Straight lines in the plate

that were originally vertical remain straight but become inclined;

therefore the intensity of either principal stress at points on any

such line is proportional to the distance from the middle surface,

and the maximum stresses occur at the outer surfaces of the plate.

Formulas. Unless otherwise indicated the formulas given in Tables

11.2{–11.4 are based on very closely approximate mathematical analy-

sis and may be accepted as sufficiently accurate so long as the

assumptions stated hold true. Certain additional facts of importance

in relation to these formulas are as follows.

yNote: Table 11.1 contains numerical values for functions used in Table 11.2



Concentrated loading. It will be noted that all formulas for maximum

stress due to a load applied over a small area give very high values

when the radius of the loaded area approaches zero. Analysis by a

more precise method (Ref. 12) shows that the actual maximum stress

produced by a load concentrated on a very small area of radius ro can

be found by replacing the actual ro by a so-called equivalent radius r0o,

which depends largely upon the thickness of the plate t and to a lesser

degree on its least transverse dimension. Holl (Ref. 13) shows how r0o
varies with the width of a flat plate. Westergaard (Ref. 14) gives an

approximate expression for this equivalent radius:

r0o ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:6r2

o þ t2
p

� 0:675t ð11:1-1Þ

This formula, which applies to a plate of any form, may be used for all

values of ro less than 0.5t; for larger values the actual ro may be used.

Use of the equivalent radius makes possible the calculation of the

finite maximum stresses produced by a (nominal) point loading

whereas the ordinary formula would indicate that these stresses

were infinite.

Edge conditions. The formulas of Tables 11.2–11.4 are given for

various combinations of edge support: free, guided (zero slope but

free to move vertically), and simply supported or fixed. No exact edge

condition is likely to be realized in ordinary construction, and a

condition of true edge fixity is especially difficult to obtain. Even a

small horizontal force at the line of contact may appreciably reduce the

stress and deflection in a simply supported plate; however, a very

slight yielding at nominally fixed edges will greatly relieve the stresses

there while increasing the deflection and center stresses. For this

reason it is usually advisable to design a fixed-edged plate that is to

carry uniform load for somewhat higher center stresses than are

indicated by theory.

11.2 Bending of Uniform-Thickness Plates with
Circular Boundaries

In Table 11.2, cases 1–5 consider annular and solid circular plates of

constant thickness under axisymmetric loading for several combina-

tions of boundary conditions. In addition to the formulas, tabulated

values of deformation and moment coefficients are given for many

common loading cases. The remaining cases include concentrated

loading and plates with some circular and straight boundaries. Only

the deflections due to bending strains are included; in Sec. 11.3, the

additional deflections due to shear strains are considered.
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Formulas. For cases 1–15 (Table 11.2), expressions are given for

deformations and reactions at the edges of the plates as well as general

equations which allow the evaluation of deflections, slopes, moments

and shears at any point in the plate. The several axisymmetric

loadings include uniform, uniformly increasing, and parabolically

increasing normal pressure over a portion of the plate. This permits

the approximation of any reasonable axisymmetric distributed loading

by fitting an approximate second-order curve to the variation in

loading and solving the problem by superposition. (See the Examples

at the end of this section.)

In addition to the usual loadings, Table 11.2 also includes loading

cases that may be described best as externally applied conditions

which force a lack of flatness into the plate. For example, in cases 6

and 14, expressions are given for a manufactured concentrated change

in slope in a plate, which could also be used if a plastic hinge were to

develop in a plate and the change in slope at the plastic hinge is known

or assumed. Similarly, case 7 treats a plate with a small step manu-

factured into the otherwise flat surface and gives the reactions which

develop when this plate is forced to conform to the specified boundary

conditions. These cases are also useful when considering known

boundary rotations or lateral displacements. (References 46, 47, 57,

and 58 present tables and graphs for many of the loadings given in

these cases.)

The use of the constants C1 to C9 and the functions F1 to F9, L1 to

L19, and G1 to G19 in Table 11.2 appears to be a formidable task at first.

However, when we consider the large number of cases it is possible to

present in a limited space, the reason for this method of presentation

becomes clear. With careful inspection, we find that the constants and

functions with like subscripts are the same except for the change in

variable. We also note the use of the singularity function hr � roi
0,

which is given a value of 0 for r < ro and a value of 1 for r > ro: In Table

11.1, values are listed for all the preceding functions for several values

of the variables b=r; b=a; ro=a, and ro=r; also listed are five of the most

used denominators for the several values of b=a. (Note that these

values are for n ¼ 0:30:)

EXAMPLES

1. A solid circular steel plate, 0.2 in thick and 20 in in diameter, is simply
supported along the edge and loaded with a uniformly distributed load of
3 lb=in2. It is required to determine the center deflection, the maximum stress,
and the deflection equation. Given: E ¼ 30ð106Þ lb=in2 and n ¼ 0:285.

Solution. This plate and loading are covered in Table 11.2, case 10a. The
following constants are obtained:

D ¼
30ð106Þð0:23Þ

12ð1 � 0:2852Þ
¼ 21;800; q ¼ 3; a ¼ 10; ro ¼ 0
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Since ro ¼ 0,

yc ¼
�qa4

64D

5 þ n
1 þ n

¼
�3ð104Þð5:285Þ

64ð21;800Þð1:285Þ
¼ �0:0833 in

and Mmax ¼ Mc ¼
qa3

16
ð3 þ nÞ ¼

3ð102Þð3:285Þ

16
¼ 61:5 lb-in=in

Therefore smax ¼
6Mc

t2
¼

6ð61:5Þ

0:22
¼ 9240 lb=in2

The general deflection equation for these several cases is

y ¼ yc þ
Mcr

2

2Dð1 þ nÞ
þ LTy

where for this case LTy ¼ ð�qr4=DÞG11. For ro ¼ 0, G11 ¼ 1
64

(note that r > ro

everywhere in the plate, so that hr � roi
0 ¼ 1Þ; therefore,

y ¼ �0:0833 þ
61:5r2

2ð21;800Þð1:285Þ
�

3r4

21;800ð64Þ

¼ �0:0883 þ 0:001098r2 � 0:00000215r4

As a check, the deflection at the outer edge can be evaluated as

ya ¼ �0:0883 þ 0:001098ð102Þ � 0:00000215ð104Þ

¼ �0:0883 þ 0:1098 � 0:0215 ¼ 0

2. An annular aluminum plate with an outer radius of 20 in and an inner
radius of 5 in is to be loaded with an annular line load of 40 lb=in at a radius of
10 in. Both the inner and outer edges are simply supported, and it is required
to determine the maximum deflection and maximum stress as a function of the
plate thickness. Given: E ¼ 10ð106Þ lb=in2

and n ¼ 0:30.

Solution. The solution to this loading and support condition is found in
Table 11.2, case 1c, where b=a ¼ 0:25, ro=a ¼ 0:50, a ¼ 20 in, and w ¼ 40 lb=in.
No numerical solutions are presented for this combination of b=a and ro=a, and
so either the equations for C1, C3, C7, C9, L3, and L9 must be evaluated or
values for these coefficients must be found in Table 11.1. Since the values of C
are found for the variable b=a, from Table 11.1, under the column headed
0.250, the following coefficients are determined.

C1 ¼ 0:881523; C3 ¼ 0:033465; C7 ¼ 1:70625

C9 ¼ 0:266288; C1C9 � C3C7 ¼ 0:177640

The values of L are found for the variable ro=a, and so from Table 11.1, under
the column headed 0.500, the following coefficients are determined:

L3 ¼ 0:014554 and L9 ¼ 0:290898

Whether the numbers in Table 11.1 can be interpolated and used successfully
depends upon the individual problem. In some instances, where lesser degrees
of accuracy are required, interpolation can be used; in other instances,
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requiring greater degrees of accuracy, it would be better to solve the problem
for values of b and ro that do fit Table 11.1 and then interpolate between the
values of the final deflections or stresses.

Using the preceding coefficients, the reaction force and slope can be
determined at the inside edge and the deflection equation developed (note
that yb ¼ 0 and Mrb ¼ 0):

yb ¼
�wa2

D

C3L9 � C9L3

C1C9 � C3C7

¼
�40ð20Þ2

D

0:033465ð0:290898Þ � 0:266288ð0:014554Þ

0:177640

¼
�527:8

D
rad

Qb ¼ w
C1L9 � C7L3

C1C9 � C3C7

¼ 40
0:881523ð0:290898Þ � 1:70625ð0:014554Þ

0:177640

¼ 52:15 lb=in

Therefore y ¼ 0 �
527:8r

D
F1 þ 0 þ

52:15r3

D
F3 �

40r3

D
G3

Substituting the appropriate expressions for F1, F3, and G3 would produce an
equation for y as a function of r, but a reduction of this equation to simple form
and an evaluation to determine the location and magnitude of maximum
deflection would be extremely time-consuming. Table 11.1 can be used again to
good advantage to evalute y at specific values of r, and an excellent approx-
imation to the maximum deflection can be obtained.

b=r r F1 �527:8rF1 F3 52:15r3F3 ro=r G3 �40r3G3 yðDÞ

1.00 5.000 0.000 0.0 0.000 0.0 0.000 0.0 0.0

0.90 5.555 0.09858 �289.0 0.000158 1.4 0.000 0.0 �287.6

0.80 6.250 0.194785 �642.5 0.001191 15.2 0.000 0.0 �627.3

0.70 7.143 0.289787 �1092.0 0.003753 71.3 0.000 0.0 �1020.7

0.60 8.333 0.385889 �1697.1 0.008208 247.7 0.000 0.0 �1449.4

0.50 10.000 0.487773 �2574.2 0.014554 759.0 1.00 0.000 0.0 �1815.2

0.40 12.500 0.605736 �3996.0 0.022290 2270.4 0.80 0.001191 �93.0 �1818.6

0.33 15.000 0.704699 �5578.6 0.027649 4866.4 0.67 0.005019 �677.6 �1389.8

0.30 16.667 0.765608 �6734.2 0.030175 7285.4 0.60 0.008208 �1520.0 �968.8

0.25 20.000 0.881523 �9304.5 0.033465 13961.7 0.50 0.014554 �4657.3 �0.1

An examination of the last column on the right shows the deflection at the
outer edge to be approximately zero and indicates that the maximum deflec-
tion is located at a radius near 11.25 in and has a value of approximately

�1900

D
¼

�1900ð12Þð1 � 0:32Þ

10ð106Þt3
¼

�0:00207

t3
in
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The maximum bending moment will be either a tangential moment at the
inside edge or a radial moment at the load line:

Mtb ¼
ybDð1 � n2Þ

b
¼

�527:8ð1 � 0:32Þ

5
¼ �96:2 lb-in=in

MrðroÞ
¼ yb

D

r
F7ðroÞ

þ QbrF9ðroÞ

where at r ¼ ro, b=r ¼ 0:5. Therefore

F7ðroÞ
¼ 0:6825

F9ðroÞ
¼ 0:290898

MrðroÞ
¼

�527:8

10
ð0:6825Þ þ 52:15ð10Þð0:290898Þ

¼ �36:05 þ 151:5 ¼ 115:45 lb-in=in

The maximum bending stress in the plate is

s ¼
6ð115:45Þ

t2
¼

693

t2
lb=in2

3. A flat phosphor bronze disk with thickness of 0.020 in and a diameter of 4 in
is upset locally in a die to produce an abrupt change in slope in the radial
direction of 0.05 rad at a radius of 3

4
in. It is then clamped between two flat dies

as shown in Fig. 11.1. It is required to determine the maximum bending stress
due to the clamping. Given: E ¼ 16ð106Þ lb=in2

and n ¼ 0:30.

Solution. This example of forcing a known change in slope into a plate
clamped at both inner and outer edges is covered in Table 11.2, case 6h, where
yo ¼ 0:05, b=a ¼ 0:10, and ro=a ¼ 0:50. These dimensions were chosen to fit
the tabulated data for a case where n ¼ 0:30. For this case Mrb ¼

�2:054ð0:05Þð11:72Þ=1:5 ¼ �0:803 lb-in=in, Qb ¼ �0:0915ð0:05Þð11:72Þ=1:52 ¼

�0:0238 lb=in, yb ¼ 0, and yb ¼ 0. The expression for Mr then becomes

Mr ¼ �0:803F8 � 0:0238rF9 þ
0:05ð11:72Þ

r
G7

An examination of the numerical values of F8 and F9 shows that F8

decreases slightly less than F9 increases as r increases, but the larger
coefficient of the first term indicates that Mrb is indeed the maximum
moment. The maximum stress is therefore s ¼ 0:803ð6Þ=0:022 ¼ 12;050 lb=in2

in tension on the top surface at the inner edge. The maximum deflection is at
ro ¼ 0:75 in and equals �0:1071ð0:05Þð1:5Þ ¼ �0:00803 in.

Figure 11.1
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4. A circular steel plate 2 in thick and 20 ft in diameter is simply supported
at the outer edge and supported on a center support which can be considered to
provide uniform pressure over a diameter of 1.8 in. The plate is loaded in an
axisymmetric manner with a distributed load which increases linearly with
radius from a value of 0 at r ¼ 4 ft to a value of 2000 lb=ft2 at the outer edge.
Determine the maximum bending stress. Given: E ¼ 30ð106Þ lb=in2

and
n ¼ 0:30.

Solution. Table 11.2, case 11a, deals with this loading and a simply
supported outer edge. For this problem q ¼ 2000

144
¼ 13:9 lb=in2

, a ¼ 120 in, and
ro ¼ 48 in, and so ro=a ¼ 0:4. From the tabulated data for these quantities,
Kyc

¼ �0:01646, Kya
¼ 0:02788, and KMc

¼ 0:04494. Therefore

yc ¼
�0:01646ð13:9Þð1204Þ

D
¼

�0:475ð108Þ

D
in

Mc ¼ 0:04494ð13:9Þð1202Þ ¼ 9000 lb-in=in

Case 16 (Table 11.2) considers the center load over a small circular area. It is
desired to determine W such that the max y ¼ 0:475ð108Þ=D. Therefore

�
W1202

16pD

3 þ 0:3

1 þ 0:3
¼

0:475ð108Þ

D

which gives W ¼ �65;000 lb. The maximum moment is at the center of the
plate where

Mr ¼
W

4p
ð1 þ nÞ ln

a

b
þ 1

h i

The equivalent radius r0o is given by [Eq. (11.1-1)]

r0o ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:6r2

o þ t2
p

� 0:675t ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:6ð0:92Þ þ 22

p
� 0:675ð2Þ ¼ 0:95 in

Therefore Mmax ¼
�65;000

4p
1:3 ln

120

0:95
þ 1

� �
¼ �37;500 lb-in=in

The maximum stress is at the center of the plate where

s ¼
6M

t2
¼

6ð�37;500 þ 9000Þ

22
¼ �43;200 lb=in2

(tension on the top surface)

11.3 Circular-Plate Deflection due to Shear

The formulas for deflection given in Table 11.2 take into account

bending stresses only; there is, in every case, some additional deflec-

tion due to shear. Usually this is so slight as to be negligible, but in

circular pierced plates with large openings the deflection due to shear

may constitute a considerable portion of the total deflection. Wahl (Ref.

19) suggests that this is the case when the thickness is greater than

one-third the difference in inner and outer diameters for plates with
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simply supported edges, or greater than one-sixth this difference for

plates with one or both edges fixed.

Table 11.3 gives formulas for the additional deflection due to shear

in which the form factor F has been taken equal to 1.2, as in Sec. 8.10.

All the cases listed have shear forces which are statically determinate.

For the indeterminate cases, the shear deflection, along with the

bending deflection, must be considered in the determination of the

reactions if shear deflection is significant.

Essenburg and Gulati (Ref. 61) discuss the problem in which two

plates when loaded touch over a portion of the surface. They indicate

that the consideration of shear deformation is essential in developing

the necessary expressions. Two examples are worked out.

EXAMPLE

An annular plate with an inner radius of 1.4 in, an outer radius of 2 in, and a
thickness of 0.50 in is simply supported at the inner edge and loaded with an
annular line load of 800 lb=in at a radius of 1.8 in. The deflection of the free
outer edge is desired. Given: E ¼ 18ð106Þ lb=in2

and n ¼ 0:30.

Solution. To evaluate the deflection due to bending one can refer to Table
11.2, case 1k. Since b=a ¼ 0:7, in Table 11.1, under the column headed 0.700,
we obtain the following constants

C1 ¼ 0:2898; C3 ¼ 0:003753; C7 ¼ 0:3315; C9 ¼ 0:2248

Similarly, ro=a ¼ 0:9, and again in Table 11.1, under the column headed 0.900,
we obtain the additional constants L3 ¼ 0:0001581 and L9 ¼ 0:09156.

The plate constant D ¼ Et3=12ð1 � n2Þ ¼ 18ð106Þð0:5Þ3=12ð1 � 0:32Þ ¼

206;000 lb-in, and the shear modulus G ¼ E=2ð1 þ nÞ ¼ 18ð106Þ=2ð1 þ 0:3Þ ¼
6:92ð106Þ lb=in2

. The bending deflection of the outer edge is given by

ya ¼
�wa3

D

C1

C7

roC9

b
� L9

� �
�

roC3

b
þ L3

� �

¼
�800ð2Þ3

206;000

0:2898

0:3315

1:8ð0:2248Þ

1:4
� 0:09156

� �
�

1:8ð0:003753Þ

1:4
þ 0:0001581

	 


¼
�800ð2Þ3

206;000
ð0:16774Þ ¼ �0:00521 in

For the deflection due to shear we refer to Table 11.3, case 1k, and obtain

ysa ¼
�wa

tG
1:2

ro

a
ln

ro

b

� �
¼

800ð2Þ

0:5ð6:92Þð106Þ
1:2ð0:9Þ ln

1:8

1:4

� �
¼ �0:000125 in

Thus, the total deflection of the outer edge is �0:00521 � 0:000125 ¼

�0:00534 in. Note that the thickness 0.50 is somewhat more than one-third
the difference in inner and outer diameters 1.2, and the shear deflection is only
2.4% of the bending deflection.
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11.4 Bimetallic Plates

A very wide beam of rectangular cross section can be treated as a beam

if E is replaced by E=ð1 � n2Þ and I by t3=12 (see Sec. 8.11). It can also

be treated as a plate with two opposite edges free as shown in Figs.

8.16 and 11.2. For details see Ref. 88.

To use the beam equations in Tables 8.1, 8.5, 8.6, 8.8, and 8.9 for

plates like that shown in Fig. 11.2 with two opposite edges free, the

loadings must be uniformly distributed across the plate parallel to side

b as shown. At every position in such a plate, except close to the free

edges a, there will be bending moments Mz ¼ nMx. If the plate is

isotropic and homogeneous, and in the absence of any in-plane load-

ing, there will be no change in length of any line parallel to side b. The

response of a bimetallic plate differs from that of the homogeneous

plate in one important respect. If the values of Poisson’s ratio differ for

the two materials, there will be a change in length of those lines

parallel to side b due to an in-plane strain ez developed from the

loadings shown in Fig. 11.2. Using the notations from Figs. 11.2 and

11.3 and from the expression for K2p in the next paragraph,

ez ¼
6Mxð1 � n2

aÞ

Ebt2
bK2p

ðtb=taÞð1 þ tb=taÞðna � nbÞ

ð1 þ Eata=EbtbÞ
2
� ðna þ nbEata=EbtbÞ

2

For the moment loading Mo in Fig. 11.2(a), the value of ez will be

everywhere the same and the plate will merely expand or contract in

the z direction. For the line loading shown in Fig. 11.2(c), however, the

unit strains ez will differ from place to place depending upon the value

of Mx, and consequently in-plane stresses will be developed. For more

general analyses of this type of problem see Refs. 89 and 90.

Figure 11.2

Figure 11.3
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Bimetallic circular plates. Applying this same reasoning to a bimetallic

circular plate leads to the following conclusions.

1. If the Poisson’s ratios for the two materials are equal, any of the

cases in Table 11.2 can be used if the following equivalent value of

the plate stiffness constant De is substituted for D.

2. If the Poisson’s ratios differ by a significant amount the equivalent

values of De and ne may be used for any combination of loading and

edge restraints which deform the plate into a spherical surface

providing the edge restraints do not prevent motion parallel to the

surface of the plate. This restriction assures that bending moments

are constant in magnitude at all locations in the plate and in all

directions. Thus one can use cases 8a, 8f, 8h, and 15 with either a

uniform temperature rise or a temperature variation through the

thickness which is the same everywhere in the plate. Obviously one

needs also an equivalent temperature coefficient of expansion or an

equivalent loading expression for each such temperature loading as

well as the equivalent material constants De and ne.

Equivalent De ¼
Eat3

a

12ð1 � n2
aÞ

K2p ð11:3-1Þ

where

K2p ¼ 1 þ
Ebt3

bð1 � n2
aÞ

Eat3
að1 � n2

bÞ
þ

3ð1 � n2
aÞð1 þ tb=taÞ

2
ð1 þ Eata=EbtbÞ

ð1 þ Eata=EbtbÞ
2
� ðna þ nbEata=EbtbÞ

2

ð11:3-2Þ

Equivalent ne ¼ na

K3p

K2p

ð11:3-3Þ

where

K3p ¼ 1 þ
nbEbt3

bð1 � n2
aÞ

naEat3
að1 � n2

bÞ
þ

3ð1 � n2
aÞð1 þ tb=taÞ

2
ð1 þ nbEata=naEbtbÞ

ð1 þ Eata=EbtbÞ
2
� ðna þ nbEata=EbtbÞ

2

ð11:3-4Þ

A bimetallic plate deforms laterally into a spherical surface when its

uniform temperature differs from To, the temperature at which the

plate is flat. Cases 8 and 15 (Table 11.2) can be used to solve for

reaction moments and forces as well as the deformations of a bi-

metallic plate subjected to a uniform temperature T provided that any

guided and=or fixed edges are not capable of developing in-plane

resisting forces but instead allow the plate to expand or contract in
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its plane as necessary. To use these cases we need only to replace the

term gð1 þ nÞDT=t by an equivalent expression

gð1 þ nÞDT

t

� �
e

¼
6ðgb � gaÞðT � ToÞðta þ tbÞð1 þ neÞ

t2
bK1p

ð11:3-5Þ

where

K1p ¼ 4 þ 6
ta

tb

þ 4
ta

tb

� �2

þ
Eat3

að1 � nbÞ

Ebt3
bð1 � naÞ

þ
Ebtbð1 � naÞ

Eatað1 � nbÞ
ð11:3-6Þ

and replace D by the equivalent stiffness De given previously.

After the moments and deformations have been determined, the

flexural stresses can be evaluated. The stresses due to the bending

moments caused by restraints and any applied loads are given by the

following expressions: In the top surface of material a, in the direction

of any moment M

s ¼
�6M

t2
aK2p

1 þ
ð1 � n2

aÞð1 þ tb=taÞð1 þ Eata=EbtbÞ

ð1 þ Eata=EbtbÞ
2
� ðna þ nbEata=EbtbÞ

2

" #
ð11:3-7Þ

In the bottom surface of material b,

s ¼
6M

t2
aK2p

Ebtbð1 � n2
aÞ

Eatað1 � n2
bÞ
þ

ta

tb

ð1 � n2
aÞð1 þ tb=taÞð1 þ Eata=EbtbÞ

ð1 þ Eata=EbtbÞ
2
� ðna þ nbEata=EbtbÞ

2

" #

ð11:3-8Þ

Even when no restraints are imposed, the distortion of a bimetallic

plate due to a temeprature change is accompanied by flexural stresses

in the two materials. This differs from the plate made of a single

material, which deforms free of stress when subjected to a linear

temperature variation through the thickness when there are no

restraints. Therefore, the following stresses must be added algebra-

ically to the preceding stresses due to bending moments, if any: In the

top surface of material a, in all directions

s ¼
�ðgb � gaÞðT � ToÞEa

ð1 � naÞK1p

3
ta

tb

þ 2
ta

tb

� �2

�
Ebtbð1 � naÞ

Eatað1 � nbÞ

" #
ð11:3-9Þ

In the bottom surface of material b,

s ¼
ðgb � gaÞðT � ToÞEb

ð1 � nbÞK1p

3
ta

tb

þ 2 �
Eat3

að1 � nbÞ

Ebt3
bð1 � naÞ

" #
ð11:3-10Þ
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EXAMPLE

An annular bimetallic plate has a 3-in outer diameter and a 2.1-in inner
diameter; the top portion is 0.020-in-thick stainless steel, and the bottom
is 0.030-in-thick titanium (see Fig. 11.4). For the stainless steel E ¼

28ð106Þ lb=in2
, n ¼ 0:3, and g ¼ 9:6ð10�6Þ in=in=
F; for the titanium E ¼

17ð106Þ lb=in2, n ¼ 0:3, and g ¼ 5:7ð10�6Þ in=in=
F. The outer edge is simply
supported, and the inner edge is elastically supported by a spring which
develops 500 lb of load for each inch of deflection. It is necessary to determine
the center deflection and the maximum stress for a temperature rise of 50
F.

Solution. First evaluate the constants K1p, K2p, and K3p, the equivalent
stiffness De, and the equivalent Poisson’s ratio ne. From Eq. (11.3-6),

K1p ¼ 4 þ 6
0:02

0:03
þ 4

2

3

� �2

þ
28

17

2

3

� �3
1 � 0:3

1 � 0:3

� �
þ

17

28

3

2

� �
1 � 0:3

1 � 0:3

� �

¼ 11:177

Since na ¼ nb for this example, K3p ¼ K2p ¼ 11:986 and the equivalent Pois-
son’s ratio ne ¼ 0:3. From Eq. (11.3-1),

De ¼
28ð106Þð0:023Þ

12ð1 � 0:32Þ
ð11:986Þ ¼ 246 lb-in

Table 11.2, case 8a, treats an annular plate with the inner edge free and the
outer edge simply supported. As in Eq. (11.3-5), the term gDT=t must be
replaced by

6ðgb � gaÞðT � ToÞðta þ tbÞ

t2
bK1p

¼
6ð5:7 � 9:6Þð10�6Þð50Þð0:02 þ 0:03Þ

ð0:032Þð11:177Þ
¼ �0:00582

Since b=a ¼ 1:05=1:5 ¼ 0:7 and ne ¼ 0:3, the tabulated data can be used and
Kyb ¼ �0:255 and Kyb ¼ 0:700. Therefore, yb ¼ �0:255ð�0:00582Þð1:52Þ ¼

0:00334 in and yb ¼ 0:7ð�0:00582Þð1:5Þ ¼ �0:0061 rad. There are no moments
or edge loads in the plate, and so Mrb ¼ 0, and Qb ¼ 0. Case 1a treats an
annular plate with an annular line load. For ro ¼ b and b=a ¼ 0:7,
Kyb ¼ �0:1927 and Kyb ¼ 0:6780. Therefore, yb ¼ �0:1927wð1:53Þ=246 ¼

�0:002645w, yb ¼ �0:678wð1:52Þ=246 ¼ 0:0062w rad, Mrb ¼ 0, and Qb ¼ 0.
Equating the deflection of the inner edge of the plate to the deflection of the

elastic support gives yb ¼ 0:00334 � 0:002645w ¼ 2pð1:05Þw=500 ¼ 0:0132w.
Solving for w, we obtain w ¼ 0:211 lb=in for a total center load of 1.39 lb. The
deflection of the inner edge is yb ¼ 0:0132ð0:211Þ ¼ 0:00279 in. The maximum
moment developed in the plate is the tangential moment at the inner edge:

Figure 11.4
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Mtb ¼ 0:8814ð0:211Þð1:5Þ ¼ 0:279 lb-in. The stresses can now be computed. On
the top surface of the stainless steel combining Eqs. (11.3-7) and (11.3-9) yields

s ¼
�6ð0:279Þ

0:022ð11:986Þ
1 þ

ð1 � 0:32Þð1 þ 3=2Þ½1 þ 28ð2Þ=17ð3Þ�

½1 þ 28ð2Þ=17ð3Þ�2 � ½0:3 þ 0:3ð28Þð2Þ=17ð3Þ�2

	 


�
ð5:7 � 9:6Þð10�6Þð50Þð28Þð106Þ

ð1 � 0:3Þð11:177Þ
3

2

3

� �
þ 2

2

3

� �2

�
17

28

3

2

� �" #

¼ �765 þ 1381 ¼ 616 lb=in2

Similarly, on the bottom surface of the titanium, Eqs. (11.3-8) and (11.3-10)
give

s ¼ 595 � 1488 ¼ �893 lb=in2

11.5 Nonuniform Loading of Circular Plates

The case of a circular plate under a nonuniformly distributed loading

symmetrical about the center can be solved by treating the load as a

series of elementary ring loadings and summing the stresses and

deflections produced by such loadings. The number of ring loadings

into which the actual load should be resolved depends upon the rate at

which the distributed load varies along the radius and the accuracy

desired. In general, a division of the load into rings each having a

width equal to one-fifth the loaded length of the radius should be

sufficient.

If the nonuniformly distributed loading can be reasonably approxi-

mated by a second-order curve, the loadings in Table 11.2, cases 2–4,

can be superimposed in the necessary proportions. (This technique is

illustrated in Sec. 11.6.) Heap (Ref. 48) gives tabular data for circular

plates loaded with a lateral pressure varying inversely with the square

of the radius.

Concentrated loads. In Refs. 60 and 75–79 similar numerical tech-

niques are discussed for concentrated loads on either of two concentric

annular plates in combination with edge beams in some cases. The

numerical data presented are limited but are enough to enable the

reader to approximate many other cases.

11.6 Circular Plates on Elastic Foundations

Discussions of the theory of bending of circular plates on elastic

foundations can be found in Refs. 21 and 46, and in Ref. 41 of Chap.

8. The complexity of these solutions prohibits their inclusion in this

handbook, but a simple iterative approach to this problem is possible.
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The procedure consists in evaluating the deflection of the loaded plate

without the elastic foundation and then superimposing a given frac-

tion of the foundation reaction resulting from this deflection until

finally the given fraction increases to 1 and the assumed and calcu-

lated foundation reactions are equal.

EXAMPLE

Given the same problem stated in Example 1 of Sec. 11.2, but in addition to the
simply supported edge an elastic foundation with a modulus of 20 lb=in2=in is
present under the entire plate.

Solution. An examination of the deflection equation resulting from the
uniform load shows that the term involving r4 is significant only near the
outer edge where the effect of foundation pressure would not be very large. We
must also account for the fact that the foundation reactions will reduce the
plate deflections or the procedure described may not converge. Therefore, for a
first trial let us assume that the foundation pressure is given by

qf ¼ 20ð�0:0883 þ 0:001098r2Þð0:50Þ ¼ �0:883 þ 0:01098r2

The total loading on the plate then consists of a uniform load of
3 � 0:883 ¼ 2:117 lb=in2 and a parabolically increasing load of 1.098 lb=in2

maximum value. From Table 11.2, case 10a,

yc ¼
�qa4ð5 þ nÞ
64Dð1 þ nÞ

¼
�2:117ð104Þð5:285Þ

64ð21;800Þð1:285Þ
¼ �0:063 in

Mc ¼
qa2

16
ð3 þ nÞ ¼

2:117ð102Þð3:285Þ

16
¼ 43:5 lb-in=in

LTy ¼
�qr4

D
G11 ¼

�2:117r4

21;800

1

64
¼ �1:517ð10�6Þr4

From Table 11.2, case 12a,

yc ¼
�qa4ð7 þ nÞ
288Dð1 þ nÞ

¼
�1:098ð104Þð7:285Þ

288ð21;800Þð1:285Þ
¼ �0:00992 in

Mc ¼
qa2ð5 þ nÞ

96
¼

1:098ð102Þð5:285Þ

96
¼ 6:05 lb-in=in

LTy ¼
�qr6

Da2
G13 ¼

�1:098r6

21;800ð102Þ

25

14;400
¼ �8:75ð10�10Þr6

Using these values, the deflection equation can be written

y ¼ �0:0623 � 0:00992 þ
ð43:5 þ 6:05Þr2

2ð21;800Þ1:285
� 1:517ð10�6Þr4 � 8:75ð10�10Þr6

¼ �0:0722 þ 0:000885r2 � 1:517ð10�6Þr4 � 8:75ð10�10Þr6

This deflection would create a foundation reaction

qf ¼ 20ð�0:0722 þ 0:000885r2Þ ¼ �1:445 þ 0:0177r2
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if the higher-order terms were neglected. Again applying a 50% factor to the
difference between the assumed and calculated foundation pressure gives an
improved loading from the foundation

qf ¼ �1:164 þ 0:01434r2

Repeating the previous steps again, we obtain

yc ¼ �0:0623
3 � 1:164

2:117
� 0:00992

0:01434

0:01098
¼ �0:0671 in

Mc ¼ 43:5
3 � 1:164

2:117
þ 6:05

0:01434

0:01098
¼ 45:61 lb-in=in

y ¼ �0:0671 þ 0:000813r2

qf ¼ �1:342 þ 0:01626r2

Successive repetitions of the previous steps give improved values for qf :

qf ¼ �1:306 þ 0:1584r2; qf ¼ �1:296 þ 0:1566r2; qf ¼ �1:290 þ 0:1566r2

Using values from the last iteration, the final answers are

yc ¼ �0:0645 in; Mc ¼ 43:8 lb-in=in; and smax ¼ 6580 psi

An exact analysis using expressions from Ref. 46 gives

yc ¼ �0:0637 in and Mc ¼ 43:3 lb-in=in

11.7 Circular Plates of Variable Thickness

For any circular plate of variable thickness, loaded symmetrically with

respect to the center, the stresses and deflections can be found as

follows: The plate is divided into an arbitrary number of concentric

rings, each of which is assumed to have a uniform thickness equal to

its mean thickness. Each such ring is loaded by radial moments Ma

and Mb at its outer and inner circumferences, respectively, by vertical

shears at its inner and outer circumferences, and by whatever load is

distributed over its surface. The shears are known, each being equal to

the total load on the plate within the corresponding circumference.

The problem is to determine the edge moments, and this is done by

making use of the fact that the slope of each ring at its inner

circumference is equal to the slope of the next inner ring at its outer

circumference. This condition, together with the known slope (or

moment) at the outer edge of the plate and the known slope (or

moment) at the inside edge or center of the plate, enables as many

equations to be written as there are unknown quantities M . Having

found all the edge moments, stresses and deflections can be calculated
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for each ring by the appropriate formulas of Table 11.2 and the

deflections added to find the deflection of the plate.

A more direct solution (Ref. 21) is available if the plate is of such

form that the variation in thickness can be expressed fairly closely by

the equation t ¼ toe
�nx2=6, where t is the thickness at any point a

distance r from the center, to is the thickness at the center, e is the base

for the napierian system of logarithms (2.178), x is the ratio r=a, and n

is a number chosen so as to make the equation agree with the actual

variation in thickness. The constant n is positive for a plate that

decreases in thickness toward the edge and negative for a plate that

increases in thickness toward the edge. For a plate of uniform thick-

ness, n ¼ 0; and for a plate twice as thick at the center as at the edge,

n ¼ þ4:16. The maximum stress and deflection for a uniformly loaded

circular plate are given by smax ¼ bqa2=t2
o and ymax ¼ aqa4=Et3

o , respec-

tively, where b and a depend on n, where n ¼ 0:3, and for values of n

from 4 to �4 can be found by interpolation from the following table:

n

Edge conditions þ4 þ3 þ2 þ1 0 �1 �2 �3 �4

Edges supported b 1.63 1.55 1.45 1.39 1.24 1.16 1.04 0.945 0.855

Case 10a, ro ¼ 0 a 1.220 1.060 0.924 0.804 0.695 0.600 0.511 0.432 0.361

Edges fixed b 2.14 1.63 1.31 0.985 0.75 0.55 0.43 0.32 0.26

Case 10b, ro ¼ 0 a 0.4375 0.3490 0.276 0.217 0.1707 0.1343 0.1048 0.0830 0.0653

For the loadings in the preceding table as well as for a simply

supported plate with an edge moment, Ref. 46 gives graphs and tables

which permit the evaluation of radial and tangential stresses through-

out the plate. This same reference gives extensive tables of moment

and shear coefficients for a variety of loadings and support conditions

for plates in which the thickness varies as t ¼ taðr=aÞ
�n=3, where ta is

the thickness at the outer edge: Values are tabulated for n ¼ 0; 1; 1:5,

and 2 and for n ¼ 1
6
:

Stresses and deflections for plates with thicknesses varying linearly

with radius are tabulated in Refs. 46 and 57. Annular plates with the

outer edges fixed and the inner edges guided and with thicknesses

increasing linearly with the radii from zero at the center are discussed

in Ref. 36 and tabulated in previous editions of this handbook. A

uniformly loaded circular plate with a fixed edge and a thickness

varying linearly along a diameter is discussed by Strock and Yu (Ref.

65). Conway (Ref. 66) considers the necessary proportions for a rib

along the diameter of a uniformly loaded, clamped circular plate to

affect a minimum weight design for a given maximum stress.
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Perforated plates. Slot and O’Donnell (Ref. 62) present the relation-

ship between the effective elastic constants for thick perforated plates

under bending and thin perforated plates under in-plane loading.

Numerical results are presented in the form of tables and graphs,

and many references are listed.

11.8 Disk Springs

The conical disk, or Belleville spring (Fig. 11.5), is not a flat plate, of

course, but it may appropriately be considered in this chapter because

it bears a superficial resemblance to a flat ring and is sometimes

erroneously analyzed by the formulas for case 1a. The stress and

deflection produced in a spring of this type are not proportional to the

applied load because the change in form consequent upon deflection

markedly changes the load-deflection and load-stress relationships.

This is indeed the peculiar advantage of this form of spring because it

makes it possible to secure almost any desired variation of ‘‘spring

rate’’ and also possible to obtain a considerable range of deflection

under almost constant load. The largest stresses occur at the inner

edge.

Formulas for deflection and stress at points A and B are (Ref. 27)

P ¼
Ed

ð1 � n2ÞMa2
ðh � dÞ h �

d
2

� �
t þ t3

� �

sA ¼
�Ed

ð1 � n2ÞMa2
C1 h �

d
2

� �
þ C2t

� �

sB ¼
�Ed

ð1 � n2ÞMa2
C1 h �

d
2

� �
� C2t

� �

where P ¼ total applied load; E ¼modulus of elasticity; d ¼deflection;

h ¼ cone height of either inner or outer surface; t ¼ thickness; a and b

are the outer and inner radii of the middle surface; and M, C1, and C2

are constants whose values are functions of a=b and are given in the

following table:

Figure 11.5
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a=b M C1 C2

1.0 0

1.2 0.31 1.02 1.05

1.4 0.46 1.07 1.14

1.6 0.57 1.14 1.23

1.8 0.64 1.18 1.30

2.0 0.70 1.23 1.39

2.2 0.73 1.27 1.46

2.6 0.76 1.35 1.60

3.0 0.78 1.43 1.74

3.4 0.80 1.50 1.88

3.8 0.80 1.57 2.00

4.2 0.80 1.64 2.14

4.6 0.80 1.71 2.26

5.0 0.79 1.77 2.38

The formulas for stress may give either positive or negative results,

depending upon d; a negative result indicates compressive stress, and

a positive result a tensile stress. It is to be noted that P also may

become negative.

Wempner (Refs. 67 and 68) derives more exacting expressions for

the conical spring. Unless the center hole is small or the cone angle is

outside the range normally used for disk springs, however, the differ-

ences are slight. Reference 69 presents useful design curves based on

Ref. 27.

Conical spring washers can be stacked to operate in either series or

parallel. One must be careful to consider the effect of friction, however,

when using them in the parallel configuration.

11.9 Narrow Ring under Distributed Torque about
Its Axis

When the inner radius b is almost as great as the outer radius a, the

loading for cases 1a, 1k, 2a, 2k, and so on, becomes almost equivalent

to that shown in Fig. 11.6, which represents a ring subjected to a

uniformly distributed torque of M (force-length=unit length) about

that circumference passing through the centroids at the radius R. An

Figure 11.6
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approximation to this type of loading also occurs in clamping, or

‘‘follower,’’ rings used for joining pipe; here the bolt forces and the

balancing gasket or flange pressure produce the distributed torque,

which obviously tends to ‘‘roll’’ the ring, or turn it inside out, so to

speak.

Under this loading the ring, whatever the shape of its cross section

(as long as it is reasonably compact) is subjected to a bending moment

at every section equal to MR, the neutral axis being the central axis of

the cross section in the plane of the ring. The maximum resulting

stress occurs at the extreme fiber and is given by Eq. (8.1-12); that is,

s ¼
MR

I=c
ð11:9-1Þ

The ring does not bend, and there is no twisting, but every section

rotates in its own plane about its centroid through an angle

y ¼
MR2

EI
¼

sR

Ec
ð11:9-2Þ

These formulas may be used to obtain approximate results for the

cases of flat-plate loading listed previously when the difference

between a and b is small, as well as for pipe flanges, etc. Paul (Ref.

70) discusses the collapse or inversion of rings due to plastic action.

EXAMPLE

The cross section shown in Fig. 11.7 is from a roll-forged ring of steel used to
support the bottom of a large shell. The modulus of elasticity is 207 GPa, or
20:7ð106ÞN=cm2, and Poisson’s ratio is 0.285. The loadings from the shell are
shown in Fig. 11.7(a) and are unit loads at a radius of 82 cm where they are
applied.

Solution. In the equations for stress and angular rotation the moment
distributed around the ring must be evaluated as that moment acting upon
a segment of the ring having a unit length along the circumference at the
radius of the centroid of the cross section. In Fig. 11.7(b) these appropriate
loadings are shown. Before they could be found, however, the centroid and the

Figure 11.7 (All dimensions in centimeters)
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moment of inertia about the x axis through this centroid must have been
evaluated. This was done as follows.

A ¼ 10ð10Þ �
9ð6Þ

2
¼ 73 cm2

�yy ¼
100ð5Þ � 27ð7Þ

73
¼ 4:26 cm; �xx ¼

100ð5Þ � 27ð8Þ

73
¼ 3:89 cm

Ix1 ¼
104

12
þ 100ð5 � 4:26Þ2 �

6ð93Þ

36
� 27ð7 � 4:26Þ2 ¼ 563:9 cm4

First calculate the value of w which will put into equilibrium at a radius of
88 cm the vertical load of 3000 N=cm at a radius of 82 cm. This is 2795 N=cm.
Next convert all these loads to the values they will have when applied to a free-
body diagram consisting of a segment that is 1 cm long at the centroidal radius
of 83.89 cm. For the loads on the top of the free-body diagram the length upon
which they act is 82=83:89 ¼ 0:9775 cm so that the desired couple is then
2500ð0:9775Þ ¼ 2444 N-cm=cm. All the remaining forces were computed in a
similar manner.

Using the loads shown in Fig. 11.7(b), the clockwise moment about the
centroid is found to be M ¼ 2932ð6Þ � 2444 � 244ð10 � 4:26Þ ¼ 13;747 N-cm.
This gives the section a clockwise rotation of y ¼ 13;747ð83:892Þ=
20:7ð106Þð563:9Þ ¼ 0:00829 rad. All material in the section lying above the x1

axis will then move toward the central axis and be in compression. The
stresses at positions A and B will then be s ¼ �13;747ð83:89Þð5:74Þ=
563:9 ¼ �11;739 N=cm2. Similarly, the stresses at positions F and G are
s ¼ 13;747ð83:89Þð4:26Þ=563:9 ¼ 8712 N=cm2.

In addition to the stresses caused by the rotation of the cross section, the
radially outward shear force of 244 N=cm produces everywhere in the cross
section a circumferential tensile stress of s ¼ 244ð83:89Þ=73 ¼ 280 N=cm2.
Note that a tacit assumption has been made that no radially directed friction
forces exist at the bottom of the ring.

11.10 Bending of Uniform-Thickness Plates with
Straight Boundaries

Formulas. No general expression for deflection as a function of posi-

tion in a plate is given since solutions for plates with straight

boundaries are generally obtained numerically for specific ratios of

plate dimensions, load location, and boundary conditions. In a few

instances Poisson’s ratio is included in the expressions given, but in

most cases a specific value of Poisson’s ratio has been used in obtaining

the tabulated numerical results and the value used is indicated.

Reference 47 includes results obtained using several values of Pois-

son’s ratio and shows the range of values that can be expected as this

ratio is changed. Errors in deflection should not exceed 7 or 8% and in

maximum stress 15% for values of Poisson’s ratio in the range from

0.15 to 0.30. Since much of the data are obtained using finite-differ-

ence approximations for the plate differential equations and a limited

number of elements have been used, it is not always possible to
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identify maximum values if they occur at points between the chosen

grid points.

Table 11.4 presents maximum values where possible and the signifi-

cant values otherwise for deflections normal to the plate surface,

bending stresses, and in many cases the boundary reaction forces R.

For rectangular plates with simply supported edges the maximum

stresses are shown to be near the center of the plate. There are,

however, stresses of similar magnitude near the corners if the corners

are held down as has been assumed for all cases presented. Reference

21 discusses the increase in stress at the center of the plate when the

corners are permitted to rise. For a uniformly loaded square plate this

increase in stress is approximately 35%.

It is impractical to include plates of all possible shapes and loadings,

but many more cases can be found in the literature. Bareś (Ref. 47)

presents tabulated values of bending moments and deflections for a

series of plates in the form of isoceles triangles and symmetric

trapezoids for linearly varying lateral pressures and for values of

Poisson’s ratio of 0.0 and 0.16. Tabulated values are given for skew

plates with uniform lateral loading and concentrated lateral loads for

the support conditions where two opposite edges are simply supported

and two edges are free; the value of Poisson’s ratio used was zero. In

addition to many cases also included in Table 11.4, Marguerre and

Woernle (Ref. 50) give results for line loading and uniform loading on a

narrow strip across a rectangular plate. They also discuss the case of a

rectangular plate supported within the span by elastic cross beams.

Morley (Ref. 51) discusses solutions of problems involving parallelo-

gram, or skew, plates and box structures. A few graphs and tables of

results are given.

For plates with boundary shapes or restraints not discussed in the

literature, we can only approximate an answer or resort to a direct

numerical solution of the problem at hand. All numerical methods are

approximate but can be carried to any degree of accuracy desired at

the expense of time and computer costs. There are many numerical

techniques used to solve plate problems, and the choice of a method for

a given problem can be difficult. Leissa et al. (Ref. 56) have done a very

complete and competent job of comparing and rating 9 approximate

numerical methods on the basis of 11 different criteria. Szilard (Ref.

84) discusses both classical and numerical methods and tabulates

many solutions.

Variable thickness. Petrina and Conway (Ref. 63) give numerical data

for two sets of boundary conditions, three aspect ratios and two nearly

linear tapers in plate thickness. The loading was uniform and they

found that the center deflection and center moment differed little from
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the same uniform-thickness case using the average thickness; the

location and magnitude of maximum stress, however, did vary.

11.11 Effect of Large Deflection; Diaphragm
Stresses

When the deflection becomes larger than about one-half the thickness,

as may occur in thin plates, the middle surface becomes appreciably

strained and the stress in it cannot be ignored. This stress, called

diaphragm stress, or direct stress, enables the plate to carry part of

the load as a diaphragm in direct tension. This tension may be

balanced by radial tension at the edges if the edges are held or by

circumferential compression if the edges are not horizontally

restrained. In thin plates this circumferential compression may

cause buckling.

When this condition of large deflection exists, the plate is stiffer

than indicated by the ordinary theory and the load-deflection and load-

stress relations are nonlinear. Stresses for a given load are less and

stresses for a given deflection are generally greater than the ordinary

theory indicates.

Circular plates. Formulas for stress and deflection when middle

surface stresses are taken into account are given below. These formu-

las should be used whenever the maximum deflection exceeds half the

thickness if accurate results are desired. The following table gives the

necessary constants for the several loadings and support conditions

listed.

Let t ¼ thickness of plate; a ¼ outer radius of plate; q ¼unit lateral

pressure; y ¼maximum deflection; sb ¼ bending stress; sd ¼

diaphragm stress; s ¼ sb þ sd ¼maximum stress due to flexure and

diaphragm tension combined. Then the following formulas apply:

qa4

Et4
¼ K1

y

t
þ K2

y

t

� �3

ð11:11-1Þ

sa2

Et2
¼ K3

y

t
þ K4

y

t

� �2

ð11:11-2Þ

First solve for y in Eq. (11.11-1) and then obtain the stresses from

Eq. (11.11-2).

EXAMPLE

For the plate of Example 1 of Sec. 11.2, it is desired to determine the maximum
deflection and maximum stress under a load of 10 lb=in2.

Solution. If the linear theory held, the stresses and deflections would be
directly proportional to the load, which would indicate a maximum stress of
9240ð10Þ=3 ¼ 30;800 lb=in2

and a maximum deflection of 0:0883ð10Þ=3 ¼
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0:294 in. Since this deflection is much more than half the thickness, Eqs.
(11.11-3) and (11.11-2) with the constants from case 1 in the table will be used
to solve for the deflection and stress. From Eq. (11.11-1), we obtain

10ð104Þ

30ð106Þð0:24Þ
¼

1:016

1 � 0:3

y

t
þ 0:376

y

t

� �3

2:0833 ¼ 1:4514
y

t
þ 0:376

y

t

� �3

Starting with a trial value for y somewhat less than 0.294 in, a solution is
found when y ¼ 0:219 in. From Eq. (11.11-2) the maximum stress is found to be
27,500 lb=in2.

Warshawsky (Ref. 3) fitted Eqs. (11.11-1) and (11.11-2) to the data

presented by Mah in Ref. 71, and cases 5–9 in the following table give

these results. Chia in Ref. 91 has a chapter on nonlinear bending of

isotropic nonrectangular plates in which he covers in great detail the

derivations, plotted results, and formulas similar to Eqs. (11.11-1) and

(11.11-2) for distributed loadings, concentrated center loads, applied

edge moments, and combined loadings for circular plates with various

boundary conditions. The uniformly loaded circular plate on an elastic

foundation is discussed and results presented for several boundary

conditions. He also treats annular plates, elliptical plates, and skew

plates under uniform loading. Reference 54 presents the results of a

study of the large deflections of clamped annular sector plates for

sector angles from 30 to 90
 in steps of 30
 and for ratios of inner to

outer radii from 0 to 0.6 in steps of 0.2.

Circular plates under distributed load producing large deflections

Case no., edge condition Constants

1. Simply supported

(neither fixed nor

held). Uniform

pressure q over entire

plate.

K1 ¼
1:016

1 � n
K2 ¼ 0:376

K3 ¼
1:238

1 � n
K4 ¼ 0:294

(Ref. 5)

2. Fixed but not held

(no edge tension).

Uniform pressure

q over entire plate.

K1 ¼
5:33

1 � n2
K2 ¼ 0:857

(At center) K3 ¼
2

1 � n
K4 ¼ 0:50

(At edge) K3 ¼
4

1 � n2
K4 ¼ 0:0

(Ref. 5)

3. Fixed and held.

Uniform pressure q

over entire plate.

K1 ¼
5:33

1 � n2
K2 ¼

2:6

1 � n2

(At center) K3 ¼
2

1 � n
K4 ¼ 0:976

(At edge) K3 ¼
4

1 � n2
K4 ¼ 1:73

(Refs. 15 and 16)
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Circular plates under distributed load producing large deflections (Continued )

Case no., edge condition Constants

4. Diaphragm without

flexural stiffness, edge

held. Uniform pressure q

over entire plate.

K1 ¼ 0:0 K2 ¼ 3:44

(At center) K3 ¼ 0:0 K4 ¼ 0:965

(At edge) K3 ¼ 0:0 K4 ¼ 0:748

(At r from the center) y ¼ ymax 1 � 0:9
r2

a2
� 0:1

r5

a5

� �

(Refs. 18 and 29)

5. Fixed and held.

Uniform pressure q over

a central area of radius

ro. n ¼ 0:3

(Ref. 3)

6. Simply supported and

held radially. Uniform

pressure q over a central

area of radius ro. n ¼ 0:3

(Ref. 3)

7. Fixed and held with a

central support. Uniform

pressure q over entire

plate. n ¼ 0:3

ymax at r ¼ 0:45a

K1 ¼ 36:4 K2 ¼ 20:0
(Ref. 3)

8. Annular plate fixed and

held at both inner and

outer edges. Uniform

pressure q over entire

annular plate. n ¼ 0:3

For inner edge radius¼ 0:2a, max deflection y

at r ¼ 0:576a

K1 ¼ 84:0 K2 ¼ 63:5
For stress at r ¼ 0:2a,

K3 ¼ 36:0 K4 ¼ 25:8
(Ref. 3)

9. Annular plate simply

supported and held

radially at both inner

and outer edges.

Uniform pressure q

over entire annular

plate. n ¼ 0:3

For inner edge radius¼ 0:2a, max deflection y
at r ¼ 0:576a

K1 ¼ 20:3 K2 ¼ 51:8
For stress at r ¼ 0:2a,

K3 ¼ 12:14 K4 ¼ 2:41

For inner edge radius¼ 0:4a, max deflection y

at r ¼ 0:688a

K1 ¼ 57:0 K2 ¼ 159

For stress at r ¼ 0:664a,

K3 ¼ 14:52 K4 ¼ 6:89

(Ref. 3)

At edge At center

ro=a K1 K2 K3 K4 K3 K4

1.00 5.86 3.32 4.40 1.73

0.75 6.26 3.45 3.80 1.32

0.50 9.17 5.50 3.38 0.76

0.25 27.1 13.9 4.62 1.18

At center

ro=a K1 K2 K3 K4

0.75 1.71 3.21 1.84 0.81

0.50 2.95 5.07 2.06 0.95

0.25 9.95 13.8 2.60 1.31
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Elliptical plates. Nash and Cooley (Ref. 72) present graphically the

results of a uniform pressure on a clamped elliptical plate for a=b ¼ 2.

Their method of solution is presented in detail, and the numerical

solution is compared with experimental results and with previous

solutions they have referenced. Ng (Ref. 73) has tabulated the values

of center deflection for clamped elliptical plates on elastic foundations

for ratios of a=b from 1 to 2 and for a wide range of foundation moduli.

Large deflections are also graphed for two ratios a=b (1.5 and 2) for the

same range of foundation moduli.

Rectangular plates. Analytical solutions for uniformly loaded rectan-

gular plates with large deflections are given in Refs. 30–34, where the

relations among load, deflection, and stress are expressed by numer-

ical values of the dimensionless coefficients y=t, qb4=Et4, and sb2=Et2.

The values of these coefficients given in the following table are taken

from these references and are for n ¼ 0:316. In this table, a; b; q;E; y,

and t have the same meaning as in Table 11.4, sd is the diaphragm

stress, and s is the total stress found by adding the diaphragm stress

and the bending stress. See also Ref. 17.

In Ref. 35 experimentally determined deflections are given and

compared with those predicted by theory. In Ref. 74 a numerical

solution for uniformly loaded rectangular plates with simply

supported edges is discussed, and the results for a square plate are

compared with previous approximate solutions. Graphs are presented

to show how stresses and deflections vary across a square plate.

Chia in Ref. 91 includes a chapter on moderately large deflections of

isotropic rectangular plates. Not only are the derivations presented

but the results of most cases are presented in the form of graphs

usable for engineering calculations. Cases of initially deflected plates

are included, and the comprehensive list of references is useful.

Aalami and Williams in Ref. 92 present 42 tables of large-deflection

reduction coefficients over a range of length ratios a=b and for a

variety—three bending and four membrane—of symmetric and

nonsymmetric boundary conditions. Loadings include overall uniform

and linearly varying pressures as well as pressures over limited areas

centered on the plates.

Parallelogram plates. Kennedy and Ng (Ref. 53) present several graphs

or large elastic deflections and the accompanying stresses for

uniformly loaded skew plates with clamped edges. Several apsect

ratios and skew angles are represented.

11.12 Plastic Analysis of Plates

The onset of yielding in plates may occur before the development of

appreciable diaphragm stress if the plate is relatively thick. For
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Rectangular plates under uniform load producing large deflection

qb4=Et4

a=b Edges and point Coef.

of max s 0 12.5 25 50 75 100 125 150 175 200 250

Held, not fixed y=t 0 0.430 0.650 0.930 1.13 1.26 1.37 1.47 1.56 1.63 1.77

1 sdb2=Et2 0 0.70 1.60 3.00 4.00 5.00 6.10 7.00 7.95 8.60 10.20
At center of plate sb2=Et2 0 3.80 5.80 8.70 10.90 12.80 14.30 15.60 17.00 18.20 20.50

Held and riveted y=t 0 0.406 0.600 0.840 1.00 1.13 1.23 1.31 1.40 1.46 1.58

1 sdb2=Et2 0 0.609 1.380 2.68 3.80 4.78 5.75 6.54 7.55 8.10 9.53
At center of plate sb2=Et2 0 3.19 5.18 7.77 9.72 11.34 12.80 14.10 15.40 16.40 18.40

Held and fixed y=t 0 0.165 0.32 0.59 0.80 0.95 1.08 1.19 1.28 1.38 1.54

At center of long sdb2=Et2 0 0.070 0.22 0.75 1.35 2.00 2.70 3.30 4.00 4.60 5.90

1 edges sb2=Et2 0 3.80 6.90 14.70 21.0 26.50 31.50 36.20 40.70 45.00 53.50

sdb2=Et2 0 0.075 0.30 0.95 1.65 2.40 3.10 3.80 4.50 5.20 6.50
At center of plate sb2=Et2 0 1.80 3.50 6.60 9.20 11.60 13.0 14.50 15.80 17.10 19.40

Held, not fixed y=t 0 0.625 0.879 1.18 1.37 1.53 1.68 1.77 1.88 1.96 2.12

1.5 sdb2=Et2 0 1.06 2.11 3.78 5.18 6.41 7.65 8.60 9.55 10.60 12.30
At center of plate sb2=Et2 0 4.48 6.81 9.92 12.25 14.22 16.0 17.50 18.90 20.30 22.80

2 Held, not fixed y=t 0 0.696 0.946 1.24 1.44 1.60 1.72 1.84 1.94 2.03 2.20

to sdb2=Et2 0 1.29 2.40 4.15 5.61 6.91 8.10 9.21 10.10 10.90 12.20

1
At center of plate sb2=Et2 0 4.87 7.16 10.30 12.60 14.60 16.40 18.00 19.40 20.90 23.60

1.5 Held and fixed y=t 0 0.28 0.51 0.825 1.07 1.24 1.40 1.50 1.63 1.72 1.86

to At center of long sdb2=Et2 0 0.20 0.66 1.90 3.20 4.35 5.40 6.50 7.50 8.50 10.30

1 edges sb2=Et2 0 5.75 11.12 20.30 27.8 35.0 41.0 47.0 52.50 57.60 67.00
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thinner plates, the nonlinear increase in stiffness due to diaphragm

stresses is counteracted by the decrease in stiffness which occurs when

the material starts to yield (Refs. 52 and 80). Save and Massonnet

(Ref. 81) discuss the effect of the several yield criteria on the response

of circular and rectangular plates under various loadings and give an

extensive list of references. They also compare the results of theory

with referenced experiments which have been performed. Orthotropy

in plates can be caused by cold-forming the material or by the

positioning of stiffeners. The effect of this orthotropic behavior on

the yielding of circular plates is discussed by Save and Massonnet

(Ref. 81) as well as by Markowitz and Hu (Ref. 82).

Crose and Ang (Ref. 83) describe an iterative solution scheme which

first solves the elastic case and then increments the loading upward to

allow a slow expansion of the yielded volume after it forms. The results

of a test on a clamped plate are compared favorably with a theoretical

solution.

11.13 Ultimate Strength

Plates of brittle material fracture when the actual maximum tensile

stress reaches the ultimate tensile strength of the material. A flat-

plate modulus of rupture, analogous to the modulus of rupture of a

beam, may be determined by calculating the (fictitious) maximum

stress corresponding to the breaking load, using for this purpose the

appropriate formula for elastic stress. This flat-plate modulus of

rupture is usually greater than the modulus of rupture determined

by testing a beam of rectangular section.

Plates of ductile material fail by excessive plastic deflection, as do

beams of similar material. For a number of cases the load required to

produce collapse has been determined analytically, and the results for

some of the simple loadings are summarized as follows.

1. Circular plate; uniform load, edges simply supported

Wu ¼ syð
3
2
pt2Þ (Ref. 43)

2. Circular plate; uniform load, fixed edges

Wu ¼ syð2:814pt2Þ (Ref. 43)

(For collapse loads on partially loaded orthotropic annular plates

see Refs. 81 and 82.)

3. Rectangular plate, length a, width b; uniform load, edges supported

Wu ¼ bsyt2
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where b depends on the ratio of b to a and has the following values

(Ref. 44):

b=a 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2

b 5.48 5.50 5.58 5.64 5.89 6.15 6.70 7.68 9.69

4. Plate of any shape and size, any type of edge support, concentrated

load at any point

Wu ¼ syð
1
2
pt2Þ (Ref. 45)

In each of the above cases Wu denotes the total load required to

collapse the plate, t the thickness of the plate, and sy the yield point of

the material. Accurate prediction of Wu is hardly to be expected; the

theoretical error in some of the formulas may range up to 30%, and few

experimental data seem to be available.
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11.14 Tables

TABLE 11.1 Numerical values for functions used in Table 11.2
Numerical values for the plate coefficients F;C;L, and G for values of b=r; b=a; ro=a, and ro=r, respectively, from 0.05 to 1.0. Poisson’s ratio is 0.30.

The table headings are given for G1 to G19 for the various values of ro=r.{ Also listed in the last five lines are values for the most used denominators

for the ratios b=a

ro=r 1.000 0.900 0.800 0.750 0.700 2
3

0.600 0.500

G1 0.000 0.098580346 0.19478465 0.2423283 0.2897871 0.3215349 0.3858887 0.487773

G2 0.000 0.004828991 0.01859406 0.0284644 0.0401146 0.0487855 0.0680514 0.100857

G3 0.000 0.000158070 0.00119108 0.0022506 0.0037530 0.0050194 0.0082084 0.014554

G4 1.000 0.973888889 0.95750000 0.9541667 0.9550000 0.9583333 0.9733333 1.025000

G5 0.000 0.095000000 0.18000000 0.2187500 0.2550000 0.2777778 0.3200000 0.375000

G6 0.000 0.004662232 0.01725742 0.0258495 0.0355862 0.0425624 0.0572477 0.079537

G7 0.000 0.096055556 0.20475000 0.2654167 0.3315000 0.3791667 0.4853333 0.682500

G8 1.000 0.933500000 0.87400000 0.8468750 0.8215000 0.8055556 0.7760000 0.737500

G9 0.000 0.091560902 0.16643465 0.1976669 0.2247621 0.2405164 0.2664220 0.290898

G11 0.000 0.000003996 0.00006104 0.0001453 0.0002935 0.0004391 0.0008752 0.001999

G12 0.000 0.000000805 0.00001240 0.0000297 0.0000603 0.0000905 0.0001820 0.000422

G13 0.000 0.000000270 0.00000418 0.0000100 0.0000205 0.0000308 0.0000623 0.000146

G14 0.000 0.000158246 0.00119703 0.0022693 0.0038011 0.0051026 0.0084257 0.015272

G15 0.000 0.000039985 0.00030618 0.0005844 0.0009861 0.0013307 0.0022227 0.004111

G16 0.000 0.000016107 0.00012431 0.0002383 0.0004039 0.0005468 0.0009196 0.001721

G17 0.000 0.004718219 0.01775614 0.0268759 0.0374539 0.0452137 0.0621534 0.090166

G18 0.000 0.001596148 0.00610470 0.0093209 0.0131094 0.0159275 0.0221962 0.032948

G19 0.000 0.000805106 0.00310827 0.0047694 0.0067426 0.0082212 0.0115422 0.017341

C1C6 � C3C4 0.000 0.000305662 0.00222102 0.0041166 0.0067283 0.0088751 0.0141017 0.023878

C1C9 � C3C7 0.000 0.009010922 0.03217504 0.0473029 0.0638890 0.0754312 0.0988254 0.131959

C2C6 � C3C5 0.000 0.000007497 0.00010649 0.0002435 0.0004705 0.0006822 0.0012691 0.002564

C2C9 � C3C8 0.000 0.000294588 0.00205369 0.0037205 0.0059332 0.0076903 0.0117606 0.018605

C4C9 � C6C7 0.000 0.088722311 0.15582772 0.1817463 0.2028510 0.2143566 0.2315332 0.243886
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TABLE 11.1 Numerical values for functions used in Table 11.2 (Continued )

ro=r 0.400 1
3

0.300 0.250 0.200 0.125 0.100 0.050

G1 0.605736 0.704699 0.765608 0.881523 1.049227 1.547080 1.882168 3.588611

G2 0.136697 0.161188 0.173321 0.191053 0.207811 0.229848 0.235987 0.245630

G3 0.022290 0.027649 0.030175 0.033465 0.035691 0.035236 0.033390 0.025072

G4 1.135000 1.266667 1.361667 1.562500 1.880000 2.881250 3.565000 7.032500

G5 0.420000 0.444444 0.455000 0.468750 0.480000 0.492187 0.495000 0.498750

G6 0.099258 0.109028 0.112346 0.114693 0.112944 0.099203 0.090379 0.062425

G7 0.955500 1.213333 1.380167 1.706250 2.184000 3.583125 4.504500 9.077250

G8 0.706000 0.688889 0.681500 0.671875 0.664000 0.655469 0.653500 0.650875

G9 0.297036 0.289885 0.282550 0.266288 0.242827 0.190488 0.166993 0.106089

G11 0.003833 0.005499 0.006463 0.008057 0.009792 0.012489 0.013350 0.014843

G12 0.000827 0.001208 0.001435 0.001822 0.002266 0.003027 0.003302 0.003872

G13 0.000289 0.000427 0.000510 0.000654 0.000822 0.001121 0.001233 0.001474

G14 0.024248 0.031211 0.034904 0.040595 0.046306 0.054362 0.056737 0.060627

G15 0.006691 0.008790 0.009945 0.011798 0.013777 0.016917 0.017991 0.020139

G16 0.002840 0.003770 0.004290 0.005138 0.006065 0.007589 0.008130 0.009252

G17 0.119723 0.139340 0.148888 0.162637 0.175397 0.191795 0.196271 0.203191

G18 0.044939 0.053402 0.057723 0.064263 0.070816 0.080511 0.083666 0.089788

G19 0.023971 0.028769 0.031261 0.035098 0.039031 0.045057 0.047086 0.051154

C1C6 � C3C4 0.034825 0.041810 0.044925 0.048816 0.051405 0.051951 0.051073 0.047702

C1C9 � C3C7 0.158627 0.170734 0.174676 0.177640 0.176832 0.168444 0.163902 0.153133

C2C6 � C3C5 0.004207 0.005285 0.005742 0.006226 0.006339 0.005459 0.004800 0.002829

C2C9 � C3C8 0.024867 0.027679 0.028408 0.028391 0.026763 0.020687 0.017588 0.009740

C4C9 � C6C7 0.242294 0.234900 0.229682 0.220381 0.209845 0.193385 0.188217 0.179431

{ To obtain a value of either Ci; Li; or Fi for a corresponding value of either b=a; ro=a, or b=r, respectively, use the tabulated value of Gi for the corresponding
value of ro=r.
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TABLE 11.2 Formulas for flat circular plates of constant thickness
NOTATION: W ¼ total applied load (force); w ¼unit line load (force per unit of circumferential length); q ¼ load per unit area; Mo ¼unit applied line moment loading (force-length per unit of

circumferential length); yo ¼ externally applied change in radial slope (radians); yo ¼ externally applied radial step in the vertical deflection (length); y ¼ vertical deflection of plate (length);

y ¼ radial slope of plate; Mr ¼unit radial bending moment; Mt ¼unit tangential bending moment; Q ¼unit shear force (force per unit of circumferential length); E ¼modulus of elasticity (force per

unit area); n ¼Poisson’s ratio; g ¼ temperature coefficient of expansion (unit strain per degree); a ¼ outer radius; b ¼ inner radius for annular plate; t ¼plate thickness; r ¼ radial location of quantity

being evaluated; ro ¼ radial location of unit line loading or start of a distributed load. F1 to F9 and G1 to G19 are the several functions of the radial location r. C1 to C9 are plate constants dependent

upon the ratio a=b. L1 to L19 are loading constants dependent upon the ratio a=ro . When used as subscripts, r and t refer to radial and tangential directions, respectively. When used as subscripts, a,

b, and o refer to an evaluation of the quantity subscripted at the outer edge, inner edge, and the position of the loading or start of distributed loading, respectively. When used as a subscript, c refers

to an evaluation of the quantity subscripted at the center of the plate.

Positive signs are associated with the several quantities in the following manner: Deflections y and yo are positive upward; slopes y and yo are positive when the deflection y increases positively as

r increases; moments Mr, Mt, and Mo are positive when creating compression on the top surface; and the shear force Q is positive when acting upward on the inner edge of a given annular section

Bending stresses can be found from the moments Mr and Mt by the expression s ¼ 6M=t2. The plate constant D ¼ Et3=12ð1 � n2Þ. The singularity function brackets h i indicate that the

expression contained within the brackets must be equated to zero unless r > ro, after which they are treated as any other brackets. Note that Qb , Qa, Mrb, and Mra are reactions, not loads. They exist

only when necessary edge restraints are provided.

General Plate Functions and Constants for Solid and Annular Circular Plates
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TABLE 11.2 Formulas for flat circular plates of constant thickness (Continued )
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Case 1. Annular plate with a uniform annular line load w at a radius ro

General expressions for deformations, moments, and shears:

y ¼ yb þ ybrF1 þ Mrb

r2

D
F2 þ Qb

r3

D
F3 � w

r3

D
G3

y ¼ ybF4 þ Mrb

r

D
F5 þ Qb

r2

D
F6 � w

r2

D
G6

Mr ¼ yb

D

r
F7 þ MrbF8 þ QbrF9 � wrG9

Mt ¼
yDð1 � n2Þ

r
þ nMr

Q ¼ Qb

b

r
� w

ro

r
hr � roi

0

For the numerical data given below, n ¼ 0:3

y ¼ Ky

wa3

D
; y ¼ Ky

wa2

D
; M ¼ KM wa; Q ¼ KQw

Case no., edge restraints Boundary values Special cases

1. Outer edge simply supported,

inner edge free

Mrb ¼ 0; Qb ¼ 0; ya ¼ 0; Mra ¼ 0

yb ¼
�wa3

D

C1L9

C7

� L3

� �

yb ¼
wa2

DC7

L9

ya ¼
wa2

D

C4L9

C7

� L6

� �

Qa ¼ �w
ro

a

ymax ¼ yb Mmax ¼ Mtb

If ro ¼ b (load at inner edge),

b=a 0.1 0.3 0.5 0.7 0.9

Kyb
�0.0364 � 0.1266 � 0.1934 � 0.1927 � 0.0938

Kyb
0.0371 0.2047 0.4262 0.6780 0.9532

Kya
0.0418 0.1664 0.3573 0.6119 0.9237

KMtb
0.3374 0.6210 0.7757 0.8814 0.9638
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TABLE 11.2 Formulas for flat circular plates of constant thickness (Continued )

Case no., edge restraints Boundary values Special cases

1b. Outer edge simply supported,

inner edge guided

yb ¼ 0; Qb ¼ 0; ya ¼ 0; Mra ¼ 0

yb ¼
�wa3

D

C2L9

C8

� L3

� �

Mrb ¼
wa

C8

L9

ya ¼
wa2

D

C5L9

C8

� L6

� �

Qa ¼ �w
ro

a

ymax ¼ yb Mmax ¼ Mrb

If ro ¼ b (load at inner edge),

1c. Outer edge simply supported,

inner edge simply supported

yb ¼ 0; Mrb ¼ 0; ya ¼ 0; Mra ¼ 0

yb ¼
�wa2

D

C3L9 � C9L3

C1C9 � C3C7

Qb ¼ w
C1L9 � C7L3

C1C9 � C3C7

ya ¼ ybC4 þ Qb

a2

D
C6 �

wa2

D
L6

Qa ¼ Qb

b

a
�

wro

a

1d. Outer edge simply supported,

inner edge fixed

yb ¼ 0; yb ¼ 0; ya ¼ 0; Mra ¼ 0

Mrb ¼ �wa
C3L9 � C9L3

C2C9 � C3C8

Qb ¼ w
C2L9 � C8L3

C2C9 � C3C8

ya ¼ Mrb

a

D
C5 þ Qb

a2

D
C6 �

wa2

D
L6

Qa ¼ Qb

b

a
�

wro

a

b=a 0.1 0.3 0.5 0.7 0.9

Kyb
� 0.0269 � 0.0417 � 0.0252 � 0.0072 �0.0003

Kya
0.0361 0.0763 0.0684 0.0342 0.0047

KMrb
0.2555 0.4146 0.3944 0.2736 0.0981

b=a 0.1 0.5 0.7

ro=a 0.5 0.7 0.7 0.9 0.9

Kymax
� 0.0102 � 0.0113 � 0.0023 � 0.0017 �0.0005

Kya
0.0278 0.0388 0.0120 0.0122 0.0055

Kyb
� 0.0444 � 0.0420 � 0.0165 � 0.0098 �0.0048

KMtb
� 0.4043 � 0.3819 � 0.0301 � 0.0178 �0.0063

KMro
0.1629 0.1689 0.1161 0.0788 0.0662

KQb
2.9405 2.4779 0.8114 0.3376 0.4145

b=a 0.1 0.5 0.7

ro=a 0.5 0.7 0.7 0.9 0.9

Kymax
� 0.0066 � 0.0082 � 0.0010 �0.0010 �0.0003

Kya
0.0194 0.0308 0.0056 0.0084 0.0034

KMrb
� 0.4141 � 0.3911 � 0.1172 �0.0692 �0.0519

KQb
3.3624 2.8764 1.0696 0.4901 0.5972
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1e. Outer edge fixed, inner edge

free

Mrb ¼ 0; Qb ¼ 0; ya ¼ 0; ya ¼ 0

yb ¼
�wa3

D

C1L6

C4

� L3

� �

yb ¼
wa2

DC4

L6

Mra ¼ �wa L9 �
C7L6

C4

� �

Qa ¼
�wro

a

If ro ¼ b (load at inner edge),

(Note: jMraj > jMtb j if b=a > 0:385Þ

1f. Outer edge fixed, inner edge

guided

yb ¼ 0; Qb ¼ 0; ya ¼ 0; ya ¼ 0

yb ¼
�wa3

D

C2L6

C5

� L3

� �

Mrb ¼
wa

C5

L6

Mra ¼ �wa L9 �
C8L6

C5

� �

Qa ¼
�wro

a

If ro ¼ b (load at inner edge),

1g. Outer edge fixed, inner edge

simply supported

yb ¼ 0; Mrb ¼ 0; ya ¼ 0; ya ¼ 0

yb ¼
�wa2

D

C3L6 � C6L3

C1C6 � C3C4

Qb ¼ w
C1L6 � C4L3

C1C6 � C3C4

Mra ¼ yb

D

a
C7 þ QbaC9 � waL9

Qa ¼ Qb

b

a
�

wro

a

b=a 0.1 0.3 0.5 0.7 0.9

Kyb
� 0.0143 �0.0330 � 0.0233 � 0.0071 �0.0003

Kyb
0.0254 0.0825 0.0776 0.0373 0.0048

KMra
� 0.0528 �0.1687 � 0.2379 � 0.2124 �0.0911

KMtb
0.2307 0.2503 0.1412 0.0484 0.0048

b=a 0.1 0.3 0.5 0.7 0.9

Kyb
� 0.0097 �0.0126 � 0.0068 � 0.0019 �0.0001

KMrb
0.1826 0.2469 0.2121 0.1396 0.0491

KMra
� 0.0477 �0.1143 � 0.1345 � 0.1101 �0.0458

b=a 0.1 0.5 0.7

ro=a 0.5 0.7 0.7 0.9 0.9

Kymax
� 0.0053 �0.0041 �0.0012 � 0.0004 � 0.0002

Kyb
� 0.0262 �0.0166 �0.0092 � 0.0023 � 0.0018

KMtb
� 0.2388 �0.1513 �0.0167 � 0.0042 � 0.0023

KMro
0.1179 0.0766 0.0820 0.0208 0.0286

KMra
� 0.0893 �0.1244 �0.0664 � 0.0674 � 0.0521

KQb
1.9152 1.0495 0.5658 0.0885 0.1784
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TABLE 11.2 Formulas for flat circular plates of constant thickness (Continued )

Case no., edge restraints Boundary values Special cases

1h. Outer edge fixed, inner edge

fixed

yb ¼ 0; yb ¼ 0; ya ¼ 0; ya ¼ 0

Mrb ¼ �wa
C3L6 � C6L3

C2C6 � C3C5

Qb ¼ w
C2L6 � C5L3

C2C6 � C3C5

Mra ¼ MrbC8 þ QbaC9 � waL9

Qa ¼ Qb

b

a
�

wro

a

1i. Outer edge guided, inner edge

simply supported

yb ¼ 0; Mrb ¼ 0; ya ¼ 0; Qa ¼ 0

yb ¼
�wa2

DC4

roC6

b
� L6

� �

Qb ¼
wro

b

ya ¼
�wa3

D

C1

C4

roC6

b
� L6

� �
�

roC3

b
þ L3

� �

Mra ¼ wa
C7

C4

L6 �
roC6

b

� �
þ

roC9

b
� L9

� �

If ro ¼ a (load at outer edge),

ymax ¼ ya ¼
�wa4

bD

C1C6

C4

� C3

� �

Mmax ¼ Mra ¼
wa2

b
C9 �

C6C7

C4

� �
if

b

a
> 0:385

Mmax ¼ Mtb ¼
�wa3

b2
ð1 � n2Þ

C6

C4

if
b

a
< 0:385

(For numerical values see case 1e after computing the loading at the inner

edge)

1j. Outer edge guided, inner edge

fixed

yb ¼ 0; yb ¼ 0; ya ¼ 0; Qa ¼ 0

Mrb ¼
�wa

C5

roC6

b
� L6

� �

Qb ¼
wro

b

ya ¼
�wa3

D

C2

C5

roC6

b
� L6

�
�

roC3

b
þ L3

� ��

Mra ¼ wa
C8

C5

L6 �
roC6

b

� �
þ

roC9

b
� L9

� �

If ro ¼ a (load at outer edge),

ymax ¼ ya ¼
�wa4

bD

C2C6

C5

� C3

� �

Mmax ¼ Mrb ¼
�wa2C6

bC5

(For numerical values see case 1f after computing the loading at the inner

edge)

b=a 0.1 0.5 0.7

ro=a 0.5 0.7 0.7 0.9 0.9

Kymax
� 0.0038 �0.0033 �0.0006 � 0.0003 � 0.0001

KMrb
� 0.2792 �0.1769 �0.0856 � 0.0216 � 0.0252

KMra
� 0.0710 �0.1128 �0.0404 � 0.0608 � 0.0422

KMro
0.1071 0.0795 0.0586 0.0240 0.0290

KQb
2.4094 1.3625 0.8509 0.1603 0.3118
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1k. Outer edge free, inner edge

simply supported

yb ¼ 0; Mrb ¼ 0; Mra ¼ 0; Qa ¼ 0

yb ¼
�wa2

DC7

roC9

b
� L9

� �

Qb ¼
wro

b

ya ¼
�wa3

D

C1

C7

roC9

b
� L9

� �
�

roC3

b
þ L3

� �

ya ¼
�wa2

D

C4

C7

roC9

b
� L9

� �
�

roC6

b
þ L6

� �

If ro ¼ a (load at outer edge),

ymax ¼ ya ¼
�wa4

bD

C1C9

C7

� C3

� �

Mmax ¼ Mtb ¼
�wa3

b2
ð1 � n2Þ

C9

C7

(For numerical values see case 1a after computing the loading at the inner

edge)

1l. Outer edge free, inner edge

fixed

yb ¼ 0; yb ¼ 0; Mra ¼ 0; Qa ¼ 0

Mrb ¼
�wa

C8

roC9

b
� L9

� �

Qb ¼
wro

b

ya ¼
�wa3

D

C2

C8

roC9

b
� L9

� �
�

roC3

b
þ L3

� �

ya ¼
�wa2

D

C5

C8

roC9

b
� L9

� �
�

roC6

b
þ L6

� �

If ro ¼ a (load at outer edge),

ymax ¼ ya ¼
�wa4

bD

C2C9

C8

� C3

� �

Mmax ¼ Mrb ¼
�wa2

b

C9

C8

(For numerical values see case 1b after computing the loading at the inner

edge)

Case 2. Annular plate with a uniformly distributed pressure q over the portion from ro to a

General expressions for deformations, moments, and shears:

y ¼ yb þ ybrF1 þ Mrb

r2

D
F2 þ Qb

r3

D
F3 � q

r4

D
G11

y ¼ ybF4 þ Mrb

r

D
F5 þ Qb

r2

D
F6 � q

r3

D
G14

Mr ¼ yb

D

r
F7 þ MrbF8 þ QbrF9 � qr2G17

Mt ¼
yDð1 � n2Þ

r
þ nMr

Q ¼ Qb

b

r
�

q

2r
ðr2 � r2

o Þhr � roi
0

For the numerical data given below, n ¼ 0:3

y ¼ Ky

qa4

D
; y ¼ Ky

qa3

D
; M ¼ KM qa2; Q ¼ KQqa
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TABLE 11.2 Formulas for flat circular plates of constant thickness (Continued )

Case no., edge restraints Boundary values Special cases

2a. Outer edge simply supported,

inner edge free

Mrb ¼ 0; Qb ¼ 0; ya ¼ 0; Mra ¼ 0

yb ¼
�qa4

D

C1L17

C7

� L11

� �

yb ¼
qa3

DC7

L17

ya ¼
qa3

D

C4L17

C7

� L14

� �

Qa ¼
�q

2a
ða2 � r2

o Þ

ymax ¼ yb; Mmax ¼ Mtb

If ro ¼ b (uniform load over entire plate),

2b. Outer edge simply supported,

inner edge guided

yb ¼ 0; Qb ¼ 0; ya ¼ 0; Mra ¼ 0

yb ¼
�qa4

D

C2L17

C8

� L11

� �

Mrb ¼
qa2

C8

L17

ya ¼
qa3

D

C5L17

C8

� L14

� �

Qa ¼
�q

2a
ða2 � r2

o Þ

ymax ¼ yb; Mmax ¼ Mrb

If ro ¼ b (uniform load over entire plate),

2c. Outer edge simply supported,

inner edge simply supported

yb ¼ 0; Mrb ¼ 0; ya ¼ 0; Mra ¼ 0

yb ¼
�qa3

D

C3L17 � C9L11

C1C9 � C3C7

Qb ¼ qa
C1L17 � C7L11

C1C9 � C3C7

ya ¼ ybC4 þ Qb

a2

D
C6 �

qa3

D
L14

Qa ¼ Qb

b

a
�

q

2a
ða2 � r2

o Þ

If ro ¼ b (uniform load over entire plate),

b=a 0.1 0.3 0.5 0.7 0.9

Kyb
� 0.0687 �0.0761 � 0.0624 � 0.0325 � 0.0048

Kya
0.0986 0.1120 0.1201 0.1041 0.0477

Kyb
0.0436 0.1079 0.1321 0.1130 0.0491

KMtb
0.3965 0.3272 0.2404 0.1469 0.0497

b=a 0.1 0.3 0.5 0.7 0.9

Kyb
�0.0575 �0.0314 �0.0103 �0.0015 �0.00002

Kya
0.0919 0.0645 0.0306 0.0078 0.00032

KMrb
0.3003 0.2185 0.1223 0.0456 0.00505

b=a 0.1 0.3 0.5 0.7

Kymax
� 0.0060 � 0.0029 � 0.0008 � 0.0001

Kyb
� 0.0264 � 0.0153 � 0.0055 � 0.0012

Kya
0.0198 0.0119 0.0047 0.0011

KMtb
� 0.2401 � 0.0463 � 0.0101 � 0.0015

KMr max
0.0708 0.0552 0.0300 0.0110

KQb
1.8870 0.6015 0.3230 0.1684
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2d. Outer edge simply supported,

inner edge fixed

yb ¼ 0; yb ¼ 0; ya ¼ 0; Mra ¼ 0

Mrb ¼ �qa2 C3L17 � C9L11

C2C9 � C3C8

Qb ¼ qa
C2L17 � C8L11

C2C9 � C3C8

ya ¼ Mrb

a

D
C5 þ Qb

a2

D
C6 �

qa3

D
L14

Qa ¼ Qb

b

a
�

q

2a
ða2 � r2

o Þ

If ro ¼ b (uniform load over entire plate),

2e. Outer edge fixed, inner edge

free

Mrb ¼ 0; Qb ¼ 0; ya ¼ 0; ya ¼ 0

yb ¼
�qa4

D

C1L14

C4

� L11

� �

yb ¼
qa3L14

DC4

Mra ¼ �qa2 L17 �
C7

C4

L14

� �

Qa ¼
�q

2a
ða2 � r2

o Þ

If ro ¼ b (uniform load over entire plate),

2f. Outer edge fixed, inner edge

guided

yb ¼ 0; Qb ¼ 0; ya ¼ 0; ya ¼ 0

yb ¼
�qa4

D

C2L14

C5

� L11

� �

Mrb ¼
qa2L14

C5

Mra ¼ �qa2 L17 �
C8

C5

L14

� �

Qa ¼
�q

2a
ða2 � r2

o Þ

If ro ¼ b (uniform load over entire plate),

b=a 0.1 0.3 0.5 0.7

Kymax
�0.0040 � 0.0014 � 0.0004 � 0.00004

Kya
0.0147 0.0070 0.0026 0.00056

KMtb
�0.2459 � 0.0939 � 0.0393 � 0.01257

KQb
2.1375 0.7533 0.4096 0.21259

b=a 0.1 0.3 0.5 0.7 0.9

Kyb
� 0.0166 �0.0132 � 0.0053 � 0.0009 � 0.00001

Kyb
0.0159 0.0256 0.0149 0.0040 0.00016

KMra
� 0.1246 �0.1135 � 0.0800 � 0.0361 � 0.00470

KMtb
0.1448 0.0778 0.0271 0.0052 0.00016

b=a 0.1 0.3 0.5 0.7 0.9

Kyb
�0.0137 � 0.0068 � 0.0021 �0.0003

KMrb
0.1146 0.0767 0.0407 0.0149 0.00167

KMra
�0.1214 � 0.0966 � 0.0601 �0.0252 � 0.00316

S
E
C
.
1
1
.1
4
]

F
la
t
P
la
te
s

4
6
5

TABLE 11.2 Formulas for flat circular plates of constant thickness (Continued )



TABLE 11.2 Formulas for flat circular plates of constant thickness (Continued )

Case no., edge restraints Boundary values Special cases

2g. Outer edge fixed, inner edge

simply supported

yb ¼ 0; Mrb ¼ 0; ya ¼ 0; ya ¼ 0

yB ¼
�qa3

D

C3L14 � C6L11

C1C6 � C3C4

Qb ¼ qa
C1L14 � C4L11

C1C6 � C3C4

Mra ¼ yb

D

a
C7 þ QbaC9 � qa2L17

Qa ¼ Qb

b

a
�

q

2a
ða2 � r2

o Þ

If ro ¼ b (uniform load over entire plate),

2h. Outer edge fixed, inner edge

fixed

yb ¼ 0; yb ¼ 0; ya ¼ 0; ya ¼ 0

Mrb ¼ �qa2 C3L14 � C6L11

C2C6 � C3C5

Qb ¼ qa
C2L14 � C5L11

C2C6 � C3C5

Mra ¼ MrbC8 þ QbaC9 � qa2L17

Qa ¼ Qb

b

a
�

q

2a
ða2 � r2

o Þ

If ro ¼ b (uniform load over entire plate),

2i. Outer edge guided, inner edge

simply supported

yb ¼ 0; Mrb ¼ 0; ya ¼ 0; Qa ¼ 0

yb ¼
�qa3

DC4

C6

2ab
ða2 � r2

o Þ � L14

� �

Qb ¼
q

2b
ða2 � r2

o Þ

ya ¼ ybaC1 þ Qb

a3

D
C3 �

qa4

D
L11

Mra ¼ yb

D

a
C7 þ QbaC9 � qa2L17

If ro ¼ b (uniform load over entire plate),

b=a 0.1 0.3 0.5 0.7 0.9

Kymax
� 0.0025 � 0.0012 � 0.0003

Kyb
� 0.0135 � 0.0073 � 0.0027 � 0.0006

KMtb
� 0.1226 � 0.0221 � 0.0048 � 0.0007

KMra
� 0.0634 � 0.0462 � 0.0262 � 0.0102 �0.0012

KQb
1.1591 0.3989 0.2262 0.1221 0.0383

b=a 0.1 0.3 0.5 0.7

Kymax
� 0.0018 � 0.0006 �0.0002

KMrb
� 0.1433 � 0.0570 �0.0247 � 0.0081

KMra
� 0.0540 � 0.0347 �0.0187 � 0.0070

KQb
1.4127 0.5414 0.3084 0.1650

b=a 0.1 0.3 0.5 0.7 0.9

Kya
� 0.0543 �0.0369 � 0.0122 � 0.0017 � 0.00002

Kyb
� 0.1096 �0.0995 � 0.0433 � 0.0096 � 0.00034

KMra
0.1368 0.1423 0.0985 0.0412 0.00491

KMtb
� 0.9971 �0.3018 � 0.0788 � 0.0125 � 0.00035
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2j. Outer edge guided, inner edge

fixed

yb ¼ 0; yb ¼ 0; ya ¼ 0; Qa ¼ 0

Mrb ¼
�qa2

C5

C6

2ab
ða2 � r2

o Þ � L14

� �

Qb ¼
q

2b
ða2 � r2

o Þ

ya ¼ Mrb

a2

D
C2 þ Qb

a3

D
C3 �

qa4

D
L11

Mra ¼ MrbC8 þ QbaC9 � qa2L17

If ro ¼ b (uniform load over entire plate),

2k. Outer edge free, inner edge

simply supported

yb ¼ 0; Mrb ¼ 0; Mra ¼ 0; Qa ¼ 0

yb ¼
�qa3

DC7

C9

2ab
ða2 � r2

o Þ � L17

� �

Qb ¼
q

2b
ða2 � r2

o Þ

ya ¼ ybaC1 þ Qb

a3

D
C3 �

qa4

D
L11

ya ¼ ybC4 þ Qb

a2

D
C6 �

qa3

D
L14

If ro ¼ b (uniform load over entire plate),

2l. Outer edge free, inner edge

fixed

yb ¼ 0; yb ¼ 0; Mra ¼ 0; Qa ¼ 0

Mrb ¼
�qa2

C8

C9

2ab
ða2 � r2

o Þ � L17

� �

Qb ¼
q

2b
ða2 � r2

o Þ

ya ¼ Mrb

a2

D
C2 þ Qb

a3

D
C3 �

qa4

D
L11

ya ¼ Mrb

a

D
C5 þ Qb

a2

D
C6 �

qa3

D
L14

If ro ¼ b (uniform load over entire plate),

b=a 0.1 0.3 0.5 0.7 0.9

Kya
� 0.0343 � 0.0123 �0.0030 � 0.0004

KMrb
� 0.7892 � 0.2978 �0.1184 � 0.0359 � 0.00351

KMra
0.1146 0.0767 0.0407 0.0149 0.00167

b=a 0.1 0.3 0.5 0.7 0.9

Kya
� 0.1115 � 0.1158 �0.0826 � 0.0378 �0.0051

Kyb
� 0.1400 � 0.2026 �0.1876 � 0.1340 �0.0515

Kya
� 0.1082 � 0.1404 �0.1479 � 0.1188 �0.0498

KMtb
� 1.2734 � 0.6146 �0.3414 � 0.1742 �0.0521

b=a 0.1 0.3 0.5 0.7 0.9

Kya
� 0.0757 � 0.0318 � 0.0086 � 0.0011

Kya
� 0.0868 � 0.0512 � 0.0207 � 0.0046 � 0.00017

KMrb
� 0.9646 � 0.4103 � 0.1736 � 0.0541 � 0.00530
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TABLE 11.2 Formulas for flat circular plates of constant thickness (Continued )

Case 3. Annular plate with a distributed pressure increasing linearly from zero at ro to q at a

General expressions for deformations, moments, and shears:

y ¼ yb þ ybrF1 þ Mrb

r2

D
F2 þ Qb

r3

D
F3 � q

r4

D

r � ro

a � ro

G12

y ¼ ybF4 þ Mrb

r

D
F5 þ Qb

r2

D
F6 � q

r3

D

r � ro

a � ro

G15

Mr ¼ yb

D

r
F7 þ MrbF8 þ QbrF9 � qr2 r � ro

a � ro

G18

Mt ¼
yDð1 � n2Þ

r
þ nMr

Q ¼ Qb

b

r
�

q

6rða � roÞ
ð2r3 � 3ror2 þ r3

o Þhr � roi
0

For the numerical data given below, n ¼ 0:3

y ¼ Ky

qa4

D
; y ¼ Ky

qa3

D
; M ¼ KM qa2; Q ¼ KQqa

Case no., edge restraints Boundary values Special cases

3a. Outer edge simply supported,

inner edge free

Mrb ¼ 0; Qb ¼ 0; ya ¼ 0; Mra ¼ 0

yb ¼
�qa4

D

C1L18

C7

� L12

� �

yb ¼
qa3

DC7

L18

ya ¼
qa3

D

C4L18

C7

� L15

� �

Qa ¼
�q

6a
ð2a2 � roa � r2

o Þ

ymax ¼ yb Mmax ¼ Mtb

If ro ¼ b (linearly increasing load from b to a),

3b. Outer edge simply supported,

inner edge guided

yb ¼ 0; Qb ¼ 0; ya ¼ 0; Mra ¼ 0

yb ¼
�qa4

D

C2L18

C8

� L12

� �

Mrb ¼
qa2L18

C8

ya ¼
qa3

D

C5L18

C8

� L15

� �

Qa ¼
�q

6a
ð2a2 � roa � r2

o Þ

ymax ¼ yb Mmax ¼ Mrb

If ro ¼ b (linearly increasing load from b to a),

b=a 0.1 0.3 0.5 0.7 0.9

Kyb
� 0.0317 � 0.0306 � 0.0231 � 0.0114 �0.0016

Kya
0.0482 0.0470 0.0454 0.0368 0.0161

Kyb
0.0186 0.0418 0.0483 0.0396 0.0166

KMtb
0.1690 0.1269 0.0879 0.0514 0.0168

b=a 0.1 0.3 0.5 0.7 0.9

Kyb
�0.0269 �0.0133 �0.0041 �0.0006 �0.00001

Kya
0.0454 0.0286 0.0126 0.0031 0.00012

KMrb
0.1280 0.0847 0.0447 0.0160 0.00171

4
6
8

F
o
rm

u
la
s
fo
r
S
tre

s
s
a
n
d
S
tra

in
[C

H
A
P
.
1
1



3c. Outer edge simply supported,

inner edge simply supported

yb ¼ 0; Mrb ¼ 0; ya ¼ 0; Mra ¼ 0

yb ¼
�qa3

D

C3L18 � C9L12

C1C9 � C3C7

Qb ¼ qa
C1L18 � C7L12

C1C9 � C3C7

ya ¼ ybC4 þ Qb

a2

D
C6 �

qa3

D
L15

Qa ¼ Qb

b

a
�

q

6a
ð2a2 � roa � r2

o Þ

If ro ¼ b (linearly increasing load from b to a),

3d. Outer edge simply supported,

inner edge fixed

yb ¼ 0; yb ¼ 0; ya ¼ 0; Mra ¼ 0

Mrb ¼ �qa2 C3L18 � C9L12

C2C9 � C3C8

Qb ¼ qa
C2L18 � C8L12

C2C9 � C3C8

ya ¼ Mrb

a

D
C5 þ Qb

a2

D
C6 �

qa3

D
L15

Qa ¼ Qb

b

a
�

q

6a
ð2a2 � roa � r2

o Þ

If ro ¼ b (linearly increasing load from b to a),

3e. Outer edge fixed, inner edge

free

Mrb ¼ 0; Qb ¼ 0; ya ¼ 0; ya ¼ 0

yb ¼
�qa4

D

C1L15

C4

� L12

� �

yb ¼
qa3L15

DC4

Mra ¼ �qa2 L18 �
C7

C4

L15

� �

Qa ¼
�q

6a
ð2a2 � roa � r2

o Þ

If ro ¼ b (linearly increasing load from b to a),

b=a 0.1 0.3 0.5 0.7

Kymax
� 0.0034 �0.0015 � 0.0004 �0.0001

Kyb
� 0.0137 �0.0077 � 0.0027 �0.0006

Kya
0.0119 0.0068 0.0026 0.0006

KMtb
� 0.1245 �0.0232 � 0.0049 �0.0007

KMr max
0.0407 0.0296 0.0159 0.0057

KQb
0.8700 0.2417 0.1196 0.0591

b=a 0.1 0.3 0.5 0.7

Kymax
�0.0024 � 0.0008 � 0.0002 �0.00002

Kya
0.0093 0.0044 0.0016 0.00034

KMrb
�0.1275 � 0.0470 � 0.0192 �0.00601

KQb
0.9999 0.3178 0.1619 0.08029

b=a 0.1 0.3 0.5 0.7 0.9

Kyb
�0.0062 �0.0042 � 0.0015 � 0.00024

Kyb
0.0051 0.0073 0.0040 0.00103 0.00004

KMra
�0.0609 �0.0476 � 0.0302 � 0.01277 � 0.00159

KMtb
0.0459 0.0222 0.0073 0.00134 0.00004
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TABLE 11.2 Formulas for flat circular plates of constant thickness (Continued )

Case no., edge restraints Boundary values Special cases

3f. Outer edge fixed, inner edge

guided

yb ¼ 0; Qb ¼ 0; ya ¼ 0; ya ¼ 0

yb ¼
�qa4

D

C2L15

C5

� L12

� �

Mrb ¼
qa2L15

C5

Mra ¼ �qa2 L18 �
C8

C5

L15

� �

Qa ¼
�q

6a
ð2a2 � roa � r2

o Þ

If ro ¼ b (linearly increasing load from b to a),

3g. Outer edge fixed, inner edge

simply supported

yb ¼ 0; Mrb ¼ 0; ya ¼ 0; ya ¼ 0

yb ¼
�qa3

D

C3L15 � C6L12

C1C6 � C3C4

Qb ¼ qa
C1L15 � C4L12

C1C6 � C3C4

Mra ¼ yb

D

a
C7 þ QbaC9 � qa2L18

Qa ¼ Qb

b

a
�

q

6a
ð2a2 � roa � r2

o Þ

If ro ¼ b (linearly increasing load from b to a),

3h. Outer edge fixed, inner edge

fixed

yb ¼ 0; yb ¼ 0; ya ¼ 0; ya ¼ 0

Mrb ¼ �qa2 C3L15 � C6L12

C2C6 � C3C5

Qb ¼ qa
C2L15 � C5L12

C2C6 � C3C5

Mra ¼ MrbC8 þ QbaC9 � qa2L18

Qa ¼ Qb

b

a
�

q

6a
ð2a2 � roa � r2

o Þ

If ro ¼ b (linearly increasing load from b to a),

3i. Outer edge guided, inner edge

simply supported

yb ¼ 0; Mrb ¼ 0; ya ¼ 0; Qa ¼ 0

yb ¼
�qa3

DC4

C6

6ab
ð2a2 � roa � r2

o Þ � L15

� �

Qb ¼
q

6b
ð2a2 � roa � r2

o Þ

ya ¼ ybaC1 þ Qb

a3

D
C3 �

qa4

D
L12

Mra ¼ yb

D

a
C7 þ QbaC9 � qa2L18

If ro ¼ b (linearly increasing load from b to a),

b=a 0.1 0.3 0.5 0.7 0.9

Kyb
�0.0053 � 0.0024 � 0.0007 � 0.0001

KMrb
0.0364 0.0219 0.0110 0.0039 0.00042

KMtb
�0.0599 � 0.0428 � 0.0249 � 0.0099 � 0.00120

b=a 0.1 0.3 0.5 0.7 0.9

Kymax
�0.0013 �0.0005 � 0.0002

Kyb
�0.0059 �0.0031 � 0.0011 � 0.0002

KMtb
�0.0539 �0.0094 � 0.0020 � 0.0003

KMra
�0.0381 �0.0264 � 0.0145 � 0.0056 � 0.0006

KQb
0.4326 0.1260 0.0658 0.0339 0.0104

b=a 0.1 0.3 0.5 0.7 0.9

Kymax
� 0.0009 � 0.0003 � 0.0001

KMrb
� 0.0630 � 0.0242 � 0.0102 �0.0033 �0.00035

KMrn
� 0.0340 � 0.0215 � 0.0114 �0.0043 �0.00048

KQb
0.5440 0.1865 0.0999 0.0514 0.01575

b=a 0.1 0.3 0.5 0.7 0.9

Kya
� 0.0389 � 0.0254 �0.0082 � 0.0011 � 0.00001

Kyb
� 0.0748 � 0.0665 �0.0283 � 0.0062 � 0.00022

KMra
0.1054 0.1032 0.0689 0.0282 0.00330

KMtb
� 0.6808 � 0.2017 �0.0516 � 0.0080 � 0.00022
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3j. Outer edge guided, inner edge

fixed

yb ¼ 0; yb ¼ 0; ya ¼ 0; Qa ¼ 0

Mrb ¼
�qa2

C5

C6

6ab
ð2a2 � roa � r2

o Þ � L15

� �

Qb ¼
q

6b
ð2a2 � roa � r2

o Þ

ya ¼ Mrb

a2

D
C2 þ Qb

a3

D
C3 �

qa4

D
L12

Mra ¼ MrbC8 þ QbaC9 � qa2L18

If ro ¼ b (linearly increasing load from b to a),

3k. Outer edge free, inner edge

simply supported

yb ¼ 0; Mrb ¼ 0; Mra ¼ 0; Qa ¼ 0

yb ¼
�qa3

DC7

C9

6ab
ð2a2 � roa � r2

o Þ � L18

� �

Qb ¼
q

6b
ð2a2 � roa � r2

o Þ

ya ¼ ybaC1 þ Qb

a3

D
C3 �

qa4

D
L12

ya ¼ ybC4 þ Qb

a2

D
C6 �

qa3

D
L15

If ro ¼ b (linearly increasing load from b to a),

3l. Outer edge free, inner edge

fixed

yb ¼ 0; yb ¼ 0; Mra ¼ 0; Qa ¼ 0

Mrb ¼
�qa2

C8

C9

6ab
ð2a2 � roa � r2

o Þ � L18

� �

Qb ¼
q

6b
ð2a2 � roa � r2

o Þ

ya ¼ Mrb

a2

D
C2 þ Qb

a3

D
C3 �

qa4

D
L12

ya ¼ Mrb

a

D
C5 þ Qb

a2

D
C6 �

qa3

D
L15

If ro ¼ b (linearly increasing load from b to a),

b=a 0.1 0.3 0.5 0.7 0.9

Kya
� 0.0830 �0.0826 � 0.0574 �0.0258 � 0.0034

Kyb
� 0.0982 �0.1413 � 0.1293 �0.0912 � 0.0346

Kya
� 0.0834 �0.1019 � 0.1035 �0.0812 � 0.0335

KMtb
� 0.8937 �0.4286 � 0.2354 �0.1186 � 0.0350

b=a 0.1 0.3 0.5 0.7 0.9

Kya
�0.0579 �0.0240 �0.0064 �0.0008

Kya
�0.0684 �0.0397 �0.0159 �0.0035 �0.00013

KMrb
�0.6769 �0.2861 �0.1197 �0.0368 �0.00356

b=a 0.1 0.3 0.5 0.7 0.9

Kya
� 0.0253 � 0.0089 � 0.0022 �0.0003

KMrb
� 0.5388 � 0.1990 � 0.0774 �0.0231 � 0.00221

KMra
0.0903 0.0594 0.0312 0.0113 0.00125
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TABLE 11.2 Formulas for flat circular plates of constant thickness (Continued )

Case 4. Annular plate with a distributed pressure increasing parabolically from zero at ro to q at a

General expressions for deformations, moments, and shears:

y ¼ yb þ ybrF1 þ Mrb

r2

D
F2 þ Qb

r3

D
F3 � a

r4

D

r � ro

a � ro

� �2

G13

y ¼ ybF4 þ Mrb

r

D
F5 þ Qb

r2

D
F6 � q

r3

D

r � ro

a � ro

� �2

G16

Mr ¼ yb

D

r
F7 þ MrbF8 þ QbrF9 � qr2 r � ro

a � ro

� �2

G19

Mt ¼
yDð1 � n2Þ

r
þ nMr

Q ¼ Qb

b

r
�

q

12rða � roÞ
2
ð3r4 � 8ror3 þ 6r2

0r2 � r4
o Þhr � roi

0

For the numerical data given below, n ¼ 0:3

y ¼ Ky

qa4

D
; y ¼ Ky

qa3

D
; M ¼ KM qa2; Q ¼ KQqa

Case no., edge restraints Boundary values Special cases

4a. Outer edge simply supported,

inner edge free

Mrb ¼ 0; Qb ¼ 0; ya ¼ 0; Mra ¼ 0

yb ¼
�qa4

D

C1L19

C7

� L13

� �

yb ¼
qa3

DC7

L19

ya ¼
qa3

D

C4L19

C7

� L16

� �

Qa ¼
�q

12a
ð3a2 � 2aro � r2

o Þ

ymax ¼ yb Mmax ¼ Mtb

If ro ¼ b (parabolically increasing load from b to a),

4b. Outer edge simply supported,

inner edge guided

yb ¼ 0; Qb ¼ 0; ya ¼ 0; Mra ¼ 0

yb ¼
�qa4

D

C2L19

C8

� L13

� �

Mrb ¼
qa2L19

C8

ya ¼
qa3

D

C5L19

C8

� L16

� �

Qa ¼
�q

12a
ð3a2 � 2aro � r2

o Þ

ymax ¼ yb Mmax ¼ Mrb

If ro ¼ b (parabolically increasing load from b to a),

b=a 0.1 0.3 0.5 0.7 0.9

Kyb
� 0.0184 �0.0168 � 0.0122 �0.0059 � 0.0008

Kya
0.0291 0.0266 0.0243 0.0190 0.0082

Kyb
0.0105 0.0227 0.0254 0.0203 0.0084

KMtb
0.0951 0.0687 0.0462 0.0264 0.0085

b=a 0.1 0.3 0.5 0.7 0.9

Kyb
� 0.0158 �0.0074 � 0.0022 � 0.0003

Kya
0.0275 0.0166 0.0071 0.0017 0.00007

KMrb
0.0721 0.0459 0.0235 0.0082 0.00086
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4c. Outer edge simply supported,

inner edge simply supported

yb ¼ 0; Mrb ¼ 0; ya ¼ 0; Mra ¼ 0

yb ¼
�qa3

D

C3L19 � C9L13

C1C9 � C3C7

Qb ¼ qa
C1L19 � C7L13

C1C9 � C3C7

ya ¼ ybC4 þ Qb

a2

D
C6 �

qa3

D
L16

Qa ¼ Qb

b

a
�

q

12a
ð3a2 � 2aro � r2

o Þ

If ro ¼ b (parabolically increasing load from b to a),

4d. Outer edge simply supported,

inner edge fixed

yb ¼ 0; yb ¼ 0; ya ¼ 0; Mra ¼ 0

Mrb ¼ �qa2 C3L19 � C9L13

C2C9 � C3C8

Qb ¼ qa
C2L19 � C8L13

C2C9 � C3C8

ya ¼ Mrb

a

D
C5 þ Qb

a2

D
C6 �

qa3

D
L16

Qa ¼ Qb

b

a
�

q

12a
ð3a2 � 2aro � r2

o Þ

If ro ¼ b (parabolically increasing load from b to a),

4e. Outer edge fixed, inner edge

free

Mrb ¼ 0; Qb ¼ 0; ya ¼ 0; ya ¼ 0

yb ¼
�qa4

D

C1L16

C4

� L13

� �

yb ¼
qa3L16

DC4

Mra ¼ �qa2 L19 �
C7

C4

L16

� �

Qa ¼
�q

12a
ð3a2 � 2aro � r2

o Þ

If ro ¼ b (parabolically increasing load from b to a),

b=a 0.1 0.3 0.5 0.7

Kymax
� 0.0022 � 0.0009 � 0.0003

Kyb
� 0.0083 � 0.0046 � 0.0016 �0.0003

Kya
0.0080 0.0044 0.0017 0.0004

KMtb
� 0.0759 � 0.0139 � 0.0029 �0.0004

KMr max
0.0267 0.0185 0.0098 0.0035

KQb
0.5068 0.1330 0.0633 0.0305

b=a 0.1 0.3 0.5 0.7

Kymax
� 0.0016 �0.0005 � 0.0001 � 0.00002

Kya
0.0064 0.0030 0.0011 0.00023

KMrb
� 0.0777 �0.0281 � 0.0113 � 0.00349

KQb
0.5860 0.1785 0.0882 0.04276

b=a 0.1 0.3 0.5 0.7 0.9

Kyb
� 0.0031 � 0.0019 �0.0007 � 0.0001

Kyb
0.0023 0.0032 0.0017 0.0004 0.00002

KMra
� 0.0368 � 0.0269 �0.0162 � 0.0066 � 0.00081

KMtb
0.0208 0.0096 0.0031 0.0006 0.00002
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TABLE 11.2 Formulas for flat circular plates of constant thickness (Continued )

Case no., edge restraints Boundary values Special cases

4f. Outer edge fixed, inner edge

guided

yb ¼ 0; Qb ¼ 0; ya ¼ 0; ya ¼ 0

yb ¼
�qa4

D

C2L16

C5

� L13

� �

Mrb ¼
qa2L16

C5

; Mra ¼ �qa2 L19 �
C8

C5

L16

� �

Qa ¼
�q

12a
ð3a2 � 2aro � r2

o Þ

If ro ¼ b (parabolically increasing load from b to a),

4g. Outer edge fixed, inner edge

simply supported

yb ¼ 0; Mrb ¼ 0; ya ¼ 0; ya ¼ 0

yb ¼
�qa3

D

C3L16 � C6L13

C1C6 � C3C4

Qb ¼ qa
C1L16 � C4L13

C1C6 � C3C4

Mra ¼ yb

D

a
C7 þ QbaC9 � qa2L19

Qa ¼ Qb

b

a
�

q

12a
ð3a2 � 2aro � r2

o Þ

If ro ¼ b (parabolically increasing load from b to a),

4h. Outer edge fixed, inner edge

fixed

yb ¼ 0; yb ¼ 0; ya ¼ 0; ya ¼ 0

Mrb ¼ �qa2 C3L16 � C6L13

C2C6 � C3C5

Qb ¼ qa
C2L16 � C5L13

C2C6 � C3C5

Mra ¼ MrbC8 þ QbaC9 � qa2L19

Qa ¼ Qb

b

a
�

q

12a
ð3a2 � 2aro � r2

o Þ

If ro ¼ b (parabolically increasing load from b to a),

4i. Outer edge guided, inner edge

simply supported

yb ¼ 0; Mrb ¼ 0; ya ¼ 0; Qa ¼ 0

yb ¼
�qa3

DC4

C6

12ab
ð3a2 � 2aro � r2

o Þ � L16

� �

Qb ¼
q

12b
ð3a2 � 2aro � r2

o Þ

ya ¼ ybaC1 þ Qb

a3

D
C3 �

qa4

D
L13

Mra ¼ yb

D

a
C7 þ QbaC9 � qa2L19

If ro ¼ b (parabolically increasing load from b to a),

b=a 0.1 0.3 0.5 0.7 0.9

Kyb
� 0.0026 �0.0011 � 0.0003

KMrb
0.0164 0.0094 0.0046 0.0016 0.00016

KMra
� 0.0364 �0.0248 � 0.0140 � 0.0054 � 0.00066

b=a 0.1 0.3 0.5 0.7

Kymax
� 0.0007 � 0.0003 �0.0001

Kyb
� 0.0031 � 0.0016 �0.0006 � 0.00012

KMtb
� 0.0285 � 0.0049 �0.0010 � 0.00015

KMra
� 0.0255 � 0.0172 �0.0093 � 0.00352

KQb
0.2136 0.0577 0.0289 0.01450

b=a 0.1 0.3 0.5 0.7

Kymax
� 0.0005 � 0.0002 �0.00005

KMrb
� 0.0333 � 0.0126 �0.00524 �0.00168

KMra
� 0.0234 � 0.0147 �0.00773 �0.00287

KQb
0.2726 0.0891 0.04633 0.02335

b=a 0.1 0.3 0.5 0.7 0.9

Kya
�0.0302 � 0.0193 � 0.0061 � 0.0008 �0.00001

Kyb
�0.0567 � 0.0498 � 0.0210 � 0.0045 �0.00016

KMra
0.0859 0.0813 0.0532 0.0215 0.00249

KMtb
�0.5156 � 0.1510 � 0.0381 � 0.0059 �0.00016
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4j. Outer edge guided, inner edge

fixed

yb ¼ 0; yb ¼ 0; ya ¼ 0; Qa ¼ 0

Mrb ¼
�qa2

C5

C6

12ab
ð3a2 � 2aro � r2

o Þ � L16

� �

Qb ¼
q

12b
ð3a2 � 2aro � r2

o Þ

ya ¼ Mrb

a2

D
C2 þ Qb

a3

D
C3 �

qa4

D
L13

Mra ¼ MrbC8 þ QbaC9 � qa2L19

If ro ¼ b (parabolically increasing load from b to a),

4k. Outer edge free, inner edge

simply supported

yb ¼ 0; Mrb ¼ 0; Mra ¼ 0; Qa ¼ 0

ya ¼
�qa3

DC7

C9

12ab
ð3a2 � 2aro � r2

o Þ � L19

� �

Qb ¼
q

12b
ð3a2 � 2aro � r2

o Þ

ya ¼ ybaC1 þ Qb

a3

D
C3 �

qa4

D
L13

ya ¼ ybC4 þ Qb

a2

D
C6 �

qa3

D
L16

If ro ¼ b (parabolically increasing load from b to a),

4l. Outer edge free, inner edge

fixed

yb ¼ 0; yb ¼ 0; Mra ¼ 0; Qa ¼ 0

Mrb ¼
�qa2

C8

C9

12ab
ð3a2 � 2aro � r2

o Þ � L19

� �

Qb ¼
q

12b
ð3a2 � 2aro � r2

o Þ

ya ¼ Mrb

a2

D
C2 þ Qb

a3

D
C3 �

qa4

D
L13

ya ¼ Mrb

a

D
C5 þ Qb

a2

D
C6 �

qa3

D
L16

If ro ¼ b (parabolically increasing load from b to a),

b=a 0.1 0.3 0.5 0.7 0.9

Kya
�0.0199 � 0.0070 � 0.0017 � 0.0002

KMrb
�0.4081 � 0.1490 � 0.0573 � 0.0169 �0.00161

KMrn
0.0745 0.0485 0.0253 0.0091 0.00100

b=a 0.1 0.3 0.5 0.7 0.9

Kyb
�0.0662 � 0.0644 � 0.0441 � 0.0196 � 0.0026

Kyb
�0.0757 � 0.1087 � 0.0989 � 0.0693 � 0.0260

Kya
�0.0680 � 0.0802 � 0.0799 � 0.0618 � 0.0252

KMtb
�0.6892 � 0.3298 � 0.1800 � 0.0900 � 0.0263

b=a 0.1 0.3 0.5 0.7 0.9

Kya
� 0.0468 � 0.0193 � 0.0051 � 0.0006 � 0.00001

Kya
� 0.0564 � 0.0324 � 0.0128 � 0.0028 � 0.00010

KMrb
� 0.5221 � 0.2202 � 0.0915 � 0.0279 � 0.00268
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TABLE 11.2 Formulas for flat circular plates of constant thickness (Continued )

Case 5. Annular plate with a uniform line moment Mo at a radius ro

General expressions for deformations, moments, and shears:

y ¼ yb þ ybrF1 þ Mrb

r2

D
F2 þ Qb

r3

D
F3 þ Mo

r2

D
G2

y ¼ ybF4 þ Mrb

r

D
F5 þ Qb

r2

D
F6 þ Mo

r

D
G5

Mr ¼ yb

D

r
F7 þ MrbF8 þ QbrF9 þ MoG8

Mt ¼
yDð1 � n2Þ

r
þ nMr

Q ¼ Qb

b

r

For the numerical data given below, n ¼ 0:3

y ¼ Ky

Moa2

D
; y ¼ Ky

Moa

D
; M ¼ KM Mo; Q ¼ KQ

Mo

a

Case no., edge restraints Boundary values Special cases

5a. Outer edge simply supported,

inner edge free

Mrb ¼ 0; Qb ¼ 0; ya ¼ 0; Mra ¼ 0

yb ¼
Moa2

D

C1L8

C7

� L2

� �

yb ¼
�Moa

DC7

L8

ya ¼
�Moa

D

�
C4L8

C7

� L5

�

Qa ¼ 0

ymax ¼ yb; Mmax ¼ Mtb

If ro ¼ b (moment Mo at the inner edge),

If ro ¼ a (moment Mo at the outer edge),

Note: If the loading Mo is on the inside

edge, r > ro everywhere, so hr � roi
0 ¼ 1

everywhere

b=a 0.1 0.3 0.5 0.7 0.9

Kyb
0.0371 0.2047 0.4262 0.6780 0.9532

Kya
� 0.0222 � 0.2174 �0.7326 � 2.1116 �9.3696

Kyb
� 0.1451 � 0.4938 �1.0806 � 2.4781 �9.7183

KMtb
� 1.0202 � 1.1978 �1.6667 � 2.9216 �9.5263

b=a 0.1 0.3 0.5 0.7 0.9

Kyb
0.4178 0.5547 0.7147 0.8742 1.0263

Kya
�0.7914 �0.9866 �1.5018 � 2.8808 � 10.1388

Kyb
�0.2220 �0.7246 �1.4652 � 3.0166 � 10.4107

KMtb
�2.0202 �2.1978 �2.6667 � 3.9216 � 10.5263
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5b. Outer edge simply supported,

inner edge guided

yb ¼ 0; Qb ¼ 0; ya ¼ 0; Mra ¼ 0

yb ¼
Moa2

D

C2L8

C8

� L2

� �

Mrb ¼
�MoL8

C8

ya ¼
�Moa

D

C5L8

C8

� L5

� �

Qa ¼ 0

ymax ¼ yb Mmax ¼ Mrb

If ro ¼ a (moment Mo at the outer edge),

5c. Outer edge simply supported,

inner edge simply supported

yb ¼ 0; Mrb ¼ 0; ya ¼ 0; Mra ¼ 0

yb ¼
Moa

D

C3L8 � C9L2

C1C9 � C3C7

Qb ¼
�Mo

a

C1L8 � C7L2

C1C9 � C3C7

ya ¼ ybC4 þ Qb

a2

D
C6 þ

Moa

D
L5

Qa ¼ Qb

b

a

If ro ¼ b (moment Mo at the inner edge),

If ro ¼ a (moment Mo at the outer edge),

5d. Outer edge simply supported,

inner edge fixed

yb ¼ 0; yb ¼ 0; ya ¼ 0; Mra ¼ 0

Mrb ¼ Mo

C3L8 � C9L2

C2C9 � C3C8

Qb ¼
�Mo

a

C2L8 � C8L2

C2C9 � C3C8

ya ¼ Mrb

a

D
C5 þ Qb

a2

D
C6 þ

Moa

D
L5

Qa ¼ Qb

b

a

If ro ¼ a (moment Mo at the outer edge),

b=a 0.1 0.3 0.5 0.7 0.9

Kyb
0.3611 0.2543 0.1368 0.0488 0.0052

Kya
� 0.7575 � 0.6676 � 0.5085 � 0.3104 �0.1018

KMrb
� 1.5302 � 1.4674 � 1.3559 � 1.2173 �1.0712

b=a 0.1 0.3 0.5 0.7 0.9

Kymax
� 0.0095 � 0.0167 �0.0118 � 0.0050 � 0.0005

Kya
0.0204 0.0518 0.0552 0.0411 0.0158

Kyb
� 0.1073 � 0.1626 �0.1410 � 0.0929 � 0.0327

KMtb
� 0.6765 � 0.1933 0.0434 0.1793 0.2669

KQb
� 1.0189 � 1.6176 �2.2045 � 3.5180 � 10.1611

b=a 0.1 0.3 0.5 0.7 0.9

Kymax
0.0587 0.0390 0.0190 0.0063 0.0004

Kya
� 0.3116 �0.2572 � 0.1810 � 0.1053 � 0.0339

Kyb
0.2037 0.1728 0.1103 0.0587 0.0175

KMtb
1.8539 0.5240 0.2007 0.0764 0.0177

KQb
� 11.4835 �4.3830 � 3.6964 � 4.5358 � 10.9401

b=a 0.1 0.3 0.5 0.7 0.9

Kymax
0.0449 0.0245 0.0112 0.0038 0.0002

Kya
� 0.2729 � 0.2021 � 0.1378 �0.0793 � 0.0255

KMrb
1.8985 1.0622 0.7823 0.6325 0.5366

KQb
�13.4178 � 6.1012 � 5.4209 �6.7611 � 16.3923
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TABLE 11.2 Formulas for flat circular plates of constant thickness (Continued )

Case no., edge restraints Boundary values Special cases

5e. Outer edge fixed, inner edge

free

Mrb ¼ 0; Qb ¼ 0; ya ¼ 0; ya ¼ 0

yb ¼
Moa2

D

C1L5

C4

� L2

� �

yb ¼
�Moa

DC4

L5

Mra ¼ Mo L8 �
C7

C4

L5

� �
Qa ¼ 0

If ro ¼ b (moment Mo at the inner edge),

5f. Outer edge fixed, inner edge

guided

yb ¼ 0; Qb ¼ 0; ya ¼ 0; ya ¼ 0

yb ¼
Moa2

D

C2L5

C5

� L2

� �

Mrb ¼
�Mo

C5

L5

Mra ¼ Mo L8 �
C8

C5

L5

� �

Qa ¼ 0

5g. Outer edge fixed, inner edge

simply supported

yb ¼ 0; Mrb ¼ 0; ya ¼ 0; ya ¼ 0

yb ¼
Moa

D

C3L5 � C6L2

C1C6 � C3C4

Qb ¼
�Mo

a

C1L5 � C4L2

C1C6 � C3C4

Mra ¼ yb

D

a
C7 þ QbaC9 þ MoL8

Qa ¼ Qb

b

a

If ro ¼ b (moment Mo at the inner edge),

5h. Outer edge fixed, inner edge

fixed

yb ¼ 0; yb ¼ 0; ya ¼ 0; ya ¼ 0

Mrb ¼ Mo

C3L5 � C6L2

C2C6 � C3C5

Qb ¼
�Mo

a

C2L5 � C5L2

C2C6 � C3C5

Mra ¼ MrbC8 þ QbaC9 þ MoL8

Qa ¼ Qb

b

a

(Note: the two values of KMro
are for positions just before and after the applied

moment Mo)

b=a 0.1 0.3 0.5 0.7 0.9

Kyb
0.0254 0.0825 0.0776 0.0373 0.0048

Kyb
� 0.1389 �0.3342 � 0.3659 � 0.2670 � 0.0976

KMtb
� 0.9635 �0.7136 � 0.3659 � 0.0471 0.2014

b=a 0.1 0.5 0.7

ro=a 0.5 0.7 0.7 0.9 0.9

Kyb
0.0779 0.0815 0.0285 0.0207 0.0101

KMrb
� 0.7576 � 0.5151 �0.6800 � 0.2533 � 0.3726

KMra
0.2424 0.4849 0.3200 0.7467 0.6274

b=a 0.1 0.3 0.5 0.7 0.9

Kymax
� 0.0067 � 0.0102 � 0.0066 �0.0029 � 0.0002

Kyb
� 0.0940 � 0.1278 � 0.1074 �0.0699 � 0.0245

KQb
� 1.7696 � 2.5007 � 3.3310 �5.2890 � 15.2529

b=a 0.1 0.5 0.7

ro=a 0.5 0.7 0.7 0.9 0.9

KMrb
0.7096 1.0185 0.2031 0.3895 0.3925

KMra
� 0.1407 0.0844 �0.2399 0.3391 0.0238

KMro
� 0.5045 � 0.5371 �0.4655 � 0.4671 � 0.5540

KMro
0.4955 0.4629 0.5345 0.5329 0.4460

KQb
� 8.0354 � 8.3997 �4.1636 � 3.0307 � 5.4823
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Case 6. Annular plate with an externally applied change in slope yo on an annulus with a radius ro

General expressions for deformations, moments, and shears:

y ¼ yb þ ybrF1 þ Mrb

r2

D
F2 þ Qb

r3

D
F3 þ yorG1

y ¼ ybF4 þ Mrb

r

D
F5 þ Qb

r2

D
F6 þ yoG4

Mr ¼ yb

D

r
F7 þ MrbF8 þ QbrF9 þ

yoD

r
G7

Mt ¼
yDð1 � n2Þ

r
þ nMr

Q ¼ Qb

b

r

For the numerical data given below, n ¼ 0:3, and all values given for KMto
are found just outside ro

y ¼ Kyyoa; y ¼ Kyyo; M ¼ KM yo

D

a
; Q ¼ KQyo

D

a2

Case no., edge restraints Boundary values Special cases

6a. Outer edge simply supported,

inner edge free

Mrb ¼ 0; Qb ¼ 0; ya ¼ 0; Mra ¼ 0

yb ¼ yoa
C1L7

C7

� L1

� �

yb ¼
�yo

C7

L7

ya ¼ �yo

C4L7

C7

� L4

� �

Qa ¼ 0

6b. Outer edge simply supported,

inner edge guided

yb ¼ 0; Qb ¼ 0; ya ¼ 0; Mra ¼ 0

yb ¼ yoa
C2L7

C8

� L1

� �

Mrb ¼
�yoDL7

aC8

ya ¼ �yo

C5L7

C8

� L4

� �

Qa ¼ 0

b=a 0.1 0.5 0.7

ro=a 0.5 0.7 0.7 0.9 0.9

Kyb
� 0.2026 � 0.1513 � 0.0529 � 0.0299 �0.0146

Kyo
� 0.2821 � 0.2224 � 0.1468 � 0.0844 �0.0709

Kyb
� 0.1515 � 0.0736 � 0.4857 � 0.1407 �0.2898

KMtb
� 1.3788 � 0.6697 � 0.8840 � 0.2562 �0.3767

KMto
1.1030 0.9583 0.6325 0.8435 0.7088

b=a 0.1 0.5 0.7

ro=a 0.5 0.7 0.7 0.9 0.9

Kyb
� 0.2413 �0.1701 � 0.2445 �0.0854 � 0.0939

Kya
0.5080 0.7039 0.7864 0.9251 0.9441

KMrb
� 1.0444 �0.5073 � 0.4495 �0.1302 � 0.1169

KMtb
� 0.3133 �0.1522 � 0.1349 �0.0391 � 0.0351
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TABLE 11.2 Formulas for flat circular plates of constant thickness (Continued )

Case no., edge restraints Boundary values Special cases

6c. Outer edge simply supported,

inner edge simply supported

yb ¼ 0; Mrb ¼ 0; ya ¼ 0; Mra ¼ 0

yb ¼ yo

C3L7 � C9L1

C1C9 � C3C7

Qb ¼
�yoD

a2

C1L7 � C7L1

C1C9 � C3C7

ya ¼ ybC4 þ Qb

a2

D
C6 þ yoL4

Qa ¼ Qb

b

a

6d. Outer edge simply supported,

inner edge fixed

yb ¼ 0; yb ¼ 0; ya ¼ 0; Mra ¼ 0

Mrb ¼
yoD

a

C3L7 � C9L1

C2C9 � C3C8

Qb ¼
�yoD

a2

C2L7 � C8L1

C2C9 � C3C8

ya ¼ Mrb

a

D
C5 þ Qb

a2

D
C6 þ yoL4

Qa ¼ Qb

b

a

6e. Outer edge fixed, inner edge

free

Mrb ¼ 0; Qb ¼ 0; ya ¼ 0; ya ¼ 0

yb ¼ yoa
C1L4

C4

� L1

� �

yb ¼
�yoL4

C4

Mra ¼
yoD

a
L7 �

C7

C4

L4

� �

Qa ¼ 0

b=a 0.1 0.5 0.7

ro=a 0.5 0.7 0.7 0.9 0.9

Kyo
� 0.1629 � 0.1689 �0.1161 � 0.0788 �0.0662

Kyb
� 0.3579 � 0.2277 �0.6023 � 0.2067 �0.3412

Kya
0.2522 0.5189 0.3594 0.7743 0.6508

KMtb
� 3.2572 � 2.0722 �1.0961 � 0.3762 �0.4435

KMto
0.6152 0.6973 0.4905 0.7851 0.6602

KQb
5.5679 4.1574 0.2734 0.1548 0.0758

b=a 0.1 0.5 0.7

ro=a 0.5 0.7 0.7 0.9 0.9

Kyo
� 0.1333 � 0.1561 � 0.0658 �0.0709 � 0.0524

Kya
0.1843 0.4757 0.1239 0.6935 0.4997

KMrb
� 3.3356 � 2.1221 � 4.2716 �1.4662 � 3.6737

KQb
8.9664 6.3196 9.6900 3.3870 12.9999

b=a 0.1 0.5 0.7

ro=a 0.5 0.7 0.7 0.9 0.9

Kyb
0.0534 0.2144 0.1647 0.3649 0.1969

Kyo
� 0.0975 �0.0445 � 0.0155 � 0.0029 � 0.0013

Kyb
� 0.2875 �0.2679 � 0.9317 � 0.9501 � 1.0198

KMtb
� 2.6164 �2.4377 � 1.6957 � 1.7293 � 1.3257
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6f. Outer edge fixed, inner edge

guided

yb ¼ 0; Qb ¼ 0; ya ¼ 0; ya ¼ 0

yb ¼ yoa
C2L4

C5

� L1

� �

Mrb ¼
�yoDL4

aC5

Mra ¼
yoD

a
L7 �

C8

C5

L4

� �

Qa ¼ 0

6g. Outer edge fixed, inner edge

simply supported

yb ¼ 0; Mrb ¼ 0; ya ¼ 0; ya ¼ 0

yb ¼ yo

C3L4 � C6L1

C1C6 � C3C4

Qb ¼
�yoD

a2

C1L4 � C4L1

C1C6 � C3C4

Mra ¼ yb

D

a
C7 þ QbaC9 þ

yoD

a
L7

Qa ¼ Qb

b

a

6h. Outer edge fixed, inner edge

fixed

yb ¼ 0; yb ¼ 0; ya ¼ 0; ya ¼ 0

Mrb ¼
yoD

a

C3L4 � C6L1

C2C6 � C3C5

Qb ¼
�yoD

a2

C2L4 � C5L1

C2C6 � C3C5

Mra ¼ MrbC8 þ QbaC9 þ yo

D

a
L7

Qa ¼ Qb

b

a

b=a 0.1 0.5 0.7

ro=a 0.5 0.7 0.7 0.9 0.9

Kyb
0.0009 0.1655 �0.0329 0.1634 0.0546

Kyo
� 0.1067 � 0.0472 �0.0786 � 0.0094 � 0.0158

KMrb
� 2.0707 � 1.9293 �2.5467 � 2.5970 � 3.8192

KMra
� 0.6707 � 0.9293 �1.5467 � 1.8193 � 3.0414

b=a 0.1 0.5 0.7

ro=a 0.5 0.7 0.7 0.9 0.9

Kyo
� 0.1179 � 0.0766 � 0.0820 � 0.0208 �0.0286

Kyb
� 0.1931 0.1116 � 0.3832 0.2653 0.0218

KMra
� 0.8094 � 1.6653 � 1.9864 � 4.2792 �6.1794

KMtb
� 1.7567 1.0151 � 0.6974 0.4828 0.0284

KQb
� 3.7263 � 14.9665 � 7.0690 � 15.6627 �27.9529

b=a 0.1 0.5 0.7

ro=a 0.5 0.7 0.7 0.9 0.9

Kyo
� 0.1071 � 0.0795 � 0.0586 � 0.0240 �0.0290

KMrb
� 2.0540 1.1868 � 3.5685 2.4702 0.3122

KMra
� 0.6751 � 1.7429 � 0.8988 � 5.0320 �6.3013

KQb
� 0.0915 �17.067 4.8176 � 23.8910 � 29.6041
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TABLE 11.2 Formulas for flat circular plates of constant thickness (Continued )

Case 7. Annular plate with an externally applied vertical deformation yo at a radius ro

General expressions for deformations, moments, and shears:

y ¼ yb þ ybrF1 þ Mrb

r2

D
F2 þ Qb

r3

D
F3 þ yohr � roi

0

y ¼ ybF4 þ Mrb

r

D
F5 þ Qb

r2

D
F6

Mr ¼ yb

D

r
F7 þ MrbF8 þ QbrF9

Mt ¼
yDð1 � n2Þ

r
þ nMr

Q ¼ Qb

b

r

For the numerical data given below, n ¼ 0:3

y ¼ Kyyo; y ¼ Ky
yo

a
; M ¼ KM yo

D

a2
; Q ¼ KQyo

D

a3

Case no., edge restraints Boundary values Special cases

7c. Outer edge simply supported,

inner edge simply supported

yb ¼ 0; Mrb ¼ 0; ya ¼ 0; Mra ¼ 0

yb ¼
�yoC9

aðC1C9 � C3C7Þ

Qb ¼
yoDC7

a3ðC1C9 � C3C7Þ

ya ¼
yo

a

C7C6 � C9C4

C1C9 � C3C7

Qa ¼ Qb

b

a

(Note: Constants given are valid for all values of ro > b)

b=a 0.1 0.3 0.5 0.7 0.9

Kyb
� 1.0189 � 1.6176 � 2.2045 � 3.5180 � 10.1611

Kya
� 1.1484 � 1.3149 � 1.8482 � 3.1751 � 9.8461

KMtb
� 9.2716 � 4.9066 � 4.0121 � 4.5734 � 10.2740

KQb
27.4828 7.9013 5.1721 5.1887 10.6599
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7d. Outer edge simply supported,

inner edge fixed

yb ¼ 0; yb ¼ 0; ya ¼ 0; Mra ¼ 0

Mrb ¼
�yoDC9

a2ðC2C9 � C3C8Þ

Qb ¼
yoDC8

a3ðC2C9 � C3C8Þ

ya ¼
yo

a

C6C8 � C5C9

C2C9 � C3C8

Qa ¼ Qb

b

a

(Note: Constants given are valid for all values of ro > b)

7g. Outer edge fixed, inner edge

simply supported

yb ¼ 0; Mrb ¼ 0; ya ¼ 0; ya ¼ 0

yb ¼
�yoC6

aðC1C6 � C3C4Þ

Qb ¼
yoDC4

a3ðC1C6 � C3C4Þ

Mra ¼
yoD

a2

C4C9 � C6C7

C1C6 � C3C4

Qa ¼ Qb

b

a

(Note: Constants given are valid for all values of ro > b)

7h. Outer edge fixed, inner edge

fixed

yb ¼ 0; yb ¼ 0; ya ¼ 0; ya ¼ 0

Mrb ¼
�yoDC6

a2ðC2C6 � C3C5Þ

Qb ¼
yoDC5

a3ðC2C6 � C3C5Þ

Mra ¼
yoD

a2

C5C9 � C6C8

C2C6 � C3C5

Qa ¼ Qb

b

a

(Note: Constants given are valid for all values of ro > b)

b=a 0.1 0.3 0.5 0.7 0.9

Kya
� 1.3418 �1.8304 �2.7104 � 4.7327 � 14.7530

KMrb
� 9.4949 �9.9462 �15.6353 � 37.8822 � 310.808

KQb
37.1567 23.9899 39.6394 138.459 3186.83

b=a 0.1 0.3 0.5 0.7 0.9

Kyb
� 1.7696 � 2.5008 � 3.3310 �5.2890 � 15.2528

KMra
3.6853 5.1126 10.2140 30.1487 290.2615

KMtb
� 16.1036 � 7.5856 � 6.0624 �6.8757 � 15.4223

KQb
69.8026 30.3098 42.9269 141.937 3186.165

b=a 0.1 0.3 0.5 0.7 0.9

KMrb
�18.8284 � 19.5643 � 31.0210 � 75.6312 � 621.8586

KMra
4.9162 9.0548 19.6681 59.6789 579.6755

KQb
103.1218 79.2350 146.258 541.958 12671.35
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TABLE 11.2 Formulas for flat circular plates of constant thickness (Continued )

Case 8. Annular plate with, from ro to a, a uniform temperature differential DT between the bottom and the top surface (the midplane temperature is assumed to be unchanged, and so no in-plane

forces develop)

General expressions for deformations, moments, and shears:

y ¼ yb þ ybrF1 þ Mrb

r2

D
F2 þ Qb

r3

D
F3 þ

gð1 þ nÞDT

t
r2G2

y ¼ ybF4 þ Mrb

r

D
F5 þ Qb

r2

D
F6 þ

gð1 þ nÞDT

t
rG5

Mr ¼ yb

D

r
F7 þ MrbF8 þ QbrF9 þ

gð1 þ nÞDT

t
DðG8 �hr � roi

0Þ

Mt ¼
yDð1 � n2Þ

r
þ nMr �

gð1 � n2ÞDTD

t
hr � roi

0

Q ¼ Qb

b

r

For the numerical data given below, n ¼ 0:3

y ¼ Ky

gDTa2

t
; y ¼ Ky

gDTa

t
; M ¼ KM

gDTD

t
; Q ¼ KQ

gDTD

at

Case no., edge restraints Boundary values Special cases

8a. Outer edge simply supported,

inner edge free

Mrb ¼ 0; Qb ¼ 0; ya ¼ 0; Mra ¼ 0

yb ¼
�gð1 þ nÞDTa2

t
L2 þ

C1

C7

ð1 � L8Þ

� �

yb ¼
gð1 þ nÞDTa

tC7

ð1 � L8Þ

Qa ¼ 0

ya ¼
gð1 þ nÞDTa

t
L5 þ

C4

C7

ð1 � L8Þ

� �

If ro ¼ b (DT over entire plate),

(Note: There are no moments in the plate)

b=a 0.1 0.3 0.5 0.7 0.9

Kyb
� 0.4950 �0.4550 � 0.3750 �0.2550 � 0.0950

Kya
1.0000 1.0000 1.0000 1.0000 1.0000

Kyb
0.1000 0.3000 0.5000 0.7000 0.9000

Note: If the temperature difference DT occurs over the entire

plate, r > ro everywhere, so hr � roi
0 ¼ 1 everywhere, therefore,

all numerical data for KMtb are given at a radius just greater

than b.
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8b. Outer edge simply supported,

inner edge guided

yb ¼ 0; Qb ¼ 0; ya ¼ 0; Mra ¼ 0

yb ¼
�gð1 þ nÞDTa2

t
L2 þ

C2

C8

ð1 � L8Þ

� �

Mrb ¼
gð1 þ nÞDTD

tC8

ð1 � L8Þ

ya ¼
gð1 þ nÞDTa

t
L5 þ

C5

C8

ð1 � L8Þ

� �

Qa ¼ 0

If ro ¼ b (DT over entire plate),

8c. Outer edge simply supported,

inner edge simply supported

yb ¼ 0; Mrb ¼ 0; ya ¼ 0; Mra ¼ 0

yb ¼
�gð1 þ nÞDTa

t

C9L2 þ C3ð1 � L8Þ

C1C9 � C3C7

Qb ¼
gð1 þ nÞDTD

at

C7L2 þ C1ð1 � L8Þ

C1C9 � C3C7

ya ¼ ybC4 þ Qb

a2

D
C6 þ

gð1 þ nÞDTa

t
L5

Qa ¼ Qb

b

a

If ro ¼ b (DT over entire plate),

8d. Outer edge simply supported,

inner edge fixed

yb ¼ 0; yb ¼ 0; ya ¼ 0; Mra ¼ 0

Mrb ¼
�gð1 þ nÞDTD

t

C9L2 þ C3ð1 � L8Þ

C2C9 � C3C8

Qb ¼
gð1 þ nÞDTD

at

C8L2 þ C2ð1 � L8Þ

C2C9 � C3C8

ya ¼ Mrb

a

D
C5 þ Qb

a2

D
C6 þ

gð1 þ nÞDTa

t
L5

Qa ¼ Qb

b

a

If ro ¼ b (DT over entire plate),

b=a 0.1 0.3 0.5 0.7 0.9

Kyb
� 0.4695 � 0.3306 � 0.1778 �0.0635 � 0.0067

Kya
0.9847 0.8679 0.6610 0.4035 0.1323

KMrb
0.6893 0.6076 0.4627 0.2825 0.0926

KMtb
� 0.7032 � 0.7277 � 0.7712 �0.8253 � 0.8822

b=a 0.1 0.3 0.5 0.7 0.9

Kymax
� 0.0865 �0.0701 �0.0388 � 0.0142

Kyb
� 0.4043 �0.4360 �0.3267 � 0.1971 � 0.0653

Kya
0.4316 0.4017 0.3069 0.1904 0.0646

KMtb
� 4.5894 �2.2325 �1.5045 � 1.1662 � 0.9760

KQb
13.6040 3.5951 1.9395 1.3231 1.0127

b=a 0.1 0.3 0.5 0.7 0.9

Kymax
�0.0583 � 0.0318 � 0.0147 � 0.0049

Kya
0.3548 0.2628 0.1792 0.1031 0.0331

KMrb
�3.7681 � 2.6809 � 2.3170 � 2.1223 �1.9975

KQb
17.4431 7.9316 7.0471 8.7894 21.3100
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TABLE 11.2 Formulas for flat circular plates of constant thickness (Continued )

Case no., edge restraints Boundary values Special cases

8e. Outer edge fixed, inner edge

free

Mrb ¼ 0; Qb ¼ 0; ya ¼ 0; ya ¼ 0

yb ¼
�gð1 þ nÞDTa2

t
L2 �

C1

C4

L5

� �

yb ¼
�gð1 þ nÞDTa

tC4

L5

Mra ¼
�gð1 þ nÞDTD

t

�
C7

C4

L5 þ 1 � L8

�

Qa ¼ 0

If ro ¼ b (DT over entire plate),

8f. Outer edge fixed, inner edge

guided

yb ¼ 0; Qb ¼ 0; ya ¼ 0; ya ¼ 0

yb ¼
�gð1 þ nÞDTa2

t
L2 �

C2

C5

L5

� �

Mrb ¼
�gð1 þ nÞDTD

tC5

L5

Mra ¼
�gð1 þ nÞDTD

t

C8

C5

L5 þ 1 � L8

� �

Qa ¼ 0

If ro ¼ b (DT over entire plate), all deflections are zero and KMr
¼ KMt

¼ �1:30

everywhere in the plate. If ro > b, the following tabulated values apply.

8g. Outer edge fixed, inner edge

simply supported

yb ¼ 0; Mrb ¼ 0; ya ¼ 0; ya ¼ 0

yb ¼
�gð1 þ nÞDTa

t

C6L2 � C3L5

C1C6 � C3C4

Qb ¼
gð1 þ nÞDTD

at

C4L2 � C1L5

C1C6 � C3C4

Mra ¼ yB

D

a
C7 þ QbaC9 �

gð1 þ nÞDTD

t
ð1 � L8Þ

Qa ¼ Qb

b

a

If ro ¼ b (DT over entire plate),

b=a 0.1 0.3 0.5 0.7 0.9

Kyb
0.0330 0.1073 0.1009 0.0484 0.0062

Kyb
�0.1805 � 0.4344 � 0.4756 �0.3471 � 0.1268

KMra
�1.2635 � 1.0136 � 0.6659 �0.3471 � 0.0986

KMtb
�2.5526 � 2.2277 � 1.7756 �1.3613 � 1.0382

b=a 0.1 0.5 0.7

ro=a 0.5 0.7 0.7 0.9 0.9

Kyb
0.1013 0.1059 0.0370 0.0269 0.0132

KMrb
�0.9849 � 0.6697 � 0.8840 � 0.3293 � 0.4843

KMra
�0.9849 � 0.6697 � 0.8840 � 0.3293 � 0.4843

KMto
�1.5364 � 1.3405 � 1.3267 � 1.0885 � 1.1223

b=a 0.1 0.3 0.5 0.7 0.9

Kymax
� 0.0088 � 0.0133 � 0.0091 � 0.0039

Kyb
� 0.1222 � 0.1662 � 0.1396 � 0.0909 � 0.0319

KMtb
� 2.0219 � 1.4141 � 1.1641 � 1.0282 � 0.9422

KMra
� 1.3850 � 1.5620 � 1.6962 � 1.8076 � 1.9050

KQb
� 2.3005 � 3.2510 � 4.3303 � 6.8757 � 19.8288
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8h. Outer edge fixed, inner edge

fixed

yb ¼ 0; yb ¼ 0; ya ¼ 0; ya ¼ 0

Mrb ¼
�gð1 þ nÞDTD

t

C6L2 � C3L5

C2C6 � C3C5

Qb ¼
gð1 þ nÞDTD

at

C5L2 � C2L5

C2C6 � C3C5

Mra ¼ MrbC8 þ QbaC9 �
gð1 þ nÞDTD

t
ð1 � L8Þ

Qa ¼ Qb

b

a

If ro ¼ b (DT over entire plate), all deflections are zero and KMr
¼ MMt

¼ �1:30

everywhere in the plate. If ro > b, the following tabulated values apply.

Cases 9 to 15. Solid circular plate under the several indicated loadings

General expressions for deformations, moments, and shears:

y ¼ yc þ
Mcr

2

2Dð1 þ nÞ
þ LTy ðNote: yc is the center deflection)

y ¼
Mcr

Dð1 þ nÞ
þ LTy ðNote: Mc is the moment at the center)

Mr ¼ Mc þ LTM

Mt ¼
yDð1 � n2Þ

r
þ nMr ðNote: For r < ro;Mt ¼ Mr ¼ McÞ

Qr ¼ LTQ

For the numerical data given below, n ¼ 0:3 (Note: ln ¼natural logarithm)

Case no., loading,

load terms Edge restraint Boundary values Special cases

9. Uniform annular line load

LTy ¼
�wr3

D
G3

9a. Simply supported ya ¼ 0; Mra ¼ 0

yc ¼
�wa3

2D

L9

1 þ n
� 2L3

� �

Mc ¼ waL9

Qa ¼ �w
ro

a

ya ¼
wroða

2 � r2
o Þ

2Dð1 þ nÞa

y ¼ Ky

wa3

D
; y ¼ Ky

wa2

D
; M ¼ KM wa

(Note: If roapproaches 0, see case 16)

ro=a 0.2 0.4 0.6 0.8

Kyc
� 0.05770 � 0.09195 � 0.09426 �0.06282

Kya
0.07385 0.12923 0.14769 0.11077

KMc
0.24283 0.29704 0.26642 0.16643

b=a 0.1 0.5 0.7

ro=a 0.5 0.7 0.7 0.9 0.9

KMrb
0.9224 1.3241 0.2640 0.5063 0.5103

KMra
� 1.4829 �1.1903 � 1.6119 � 0.8592 � 1.2691

KMta
� 1.3549 �1.2671 � 1.3936 � 1.1677 � 1.2907

KQb
�10.4460 � 10.9196 � 5.4127 � 3.9399 � 7.1270
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TABLE 11.2 Formulas for flat circular plates of constant thickness (Continued )

Case no., loading,

load terms Edge restraint Boundary values Special cases

LTy ¼
�wr2

D
G6

LTM ¼ �wrG9

LTQ ¼
�wro

r
hr � roi

0

9b. Fixed
yc ¼

�wa3

2D
ðL6 � 2L3Þ

Mc ¼ wað1 þ nÞL6

Mra ¼
�wro

2a2
ða2 � r2

o Þ

ya ¼ 0; ya ¼ 0 (Note: If ro approaches 0, see case 17)

10a. Simply

supported

ya ¼ 0; Mra ¼ 0

yc ¼
�qa4

2D

L17

1 þ n
� 2L11

� �

Mc ¼ qa2L17

ya ¼
q

8Dað1 þ nÞ
ða2 � r2

o Þ
2

Qa ¼
�q

2a
ða2 � r2

o Þ

y ¼ Ky

qa4

D
; y ¼ Ky

qa3

D
; M ¼ KM qa2

Note: If ro ¼ 0; G11 ¼
1

64
; G14 ¼

1

16
; G17 ¼

ð3 þ nÞ
16

yc ¼
�qa4ð5 þ nÞ
64Dð1 þ nÞ

; Mc ¼
qa2ð3 þ nÞ

16
; ya ¼

qa3

8Dð1 þ nÞ

10b. Fixed ya ¼ 0; ya ¼ 0

yc ¼
�qa4

2D
ðL14 � 2L11Þ

Mc ¼ qa2ð1 þ nÞL14

Mra ¼
�q

8a2
ða2 � r2

o Þ
2

Note: If ro ¼ 0; G11 ¼
1

64
; G14 ¼

1

16
; G17 ¼

ð3 þ nÞ
16

yc ¼
�qa4

64D
; Mc ¼

qa2ð1 þ nÞ
16

; Mra ¼
�qa2

8

11. Linearly increasing pressure

from ro to a

LTy ¼
�qr4

D

r � ro

a � ro

G12

LTy ¼
�qr3

D

r � ro

a � ro

G15

11a. Simply

supported

Mra ¼ 0; ya ¼ 0

yc ¼
�qa4

2D

L18

1 þ n
� 2L12

� �

Mc ¼ qa2L18

ya ¼
qa3

D

L18

1 þ n
� L15

� �

Qa ¼
�q

6a
ð2a2 � roa � r2

o Þ

y ¼ Ky

qa4

D
; y ¼ Ky

qa3

D
; M ¼ KM qa2

Note: If ro ¼ 0; G12 ¼
1

225
; G15 ¼

1

45
; G18 ¼

ð4 þ nÞ
45

yc ¼
�qa4ð6 þ nÞ
150Dð1 þ nÞ

; Mc ¼
qa2ð4 þ nÞ

45
; ya ¼

qa3

15Dð1 þ nÞ

10. Uniformly distributed

pressure from ro to a

LTy ¼
�qr4

D
G11

LTy ¼
�qr3

D
G14

LTM ¼ �qr2G17

LTQ ¼
�q

24
ðr2 � r2

o Þhr � roi
0

ro=a 0.2 0.4 0.6 0.8

Kyc
� 0.02078 �0.02734 � 0.02042 � 0.00744

KMc
0.14683 0.12904 0.07442 0.02243

KMra
� 0.09600 �0.16800 � 0.19200 � 0.14400

ro=a 0.0 0.2 0.4 0.6 0.8

Kyc
� 0.06370 � 0.05767 � 0.04221 � 0.02303 � 0.00677

Kya
0.09615 0.08862 0.06785 0.03939 0.01246

KMc
0.20625 0.17540 0.11972 0.06215 0.01776

ro=a 0.0 0.2 0.4 0.6 0.8

Kyc
�0.01563 � 0.01336 � 0.00829 � 0.00344 �0.00054

KMc
0.08125 0.06020 0.03152 0.01095 0.00156

KMra
�0.12500 � 0.11520 � 0.08820 � 0.05120 �0.01620

ro=a 0.0 0.2 0.4 0.6 0.8

Kyc
�0.03231 � 0.02497 �0.01646 � 0.00836 �0.00234

Kya
0.05128 0.04070 0.02788 0.01485 0.00439

KMc
0.09555 0.07082 0.04494 0.02220 0.00610

4
8
8

F
o
rm

u
la
s
fo
r
S
tre

s
s
a
n
d
S
tra

in
[C

H
A
P
.
1
1



LTM ¼ �qr2 r � ro

a � ro

G18

LTQ ¼
�qð2r3 � 3ror2 þ r3

o Þ

6rða � roÞ

�hr � roi
0

11b. Fixed ya ¼ 0; ya ¼ 0

yc ¼
�qa4

2D
ðL15 � 2L12Þ

Mc ¼ qa2ð1 þ nÞL15

Mra ¼ �qa2 ½L18 � ð1 þ nÞL15�

Note: If ro ¼ 0; G12

1

225
; G15 ¼

1

45
; G18 ¼

ð4 þ nÞ
45

yc ¼
�qa4

150D
; Mc ¼

qa2ð1 þ nÞ
45

; Mra ¼
�qa2

15

12. Parabolically increasing

pressure from ro to a

LTy ¼
�qr4

D

r � ro

a � ro

� �2

G13

LTy ¼
�qr3

D

r � ro

a � ro

� �2

G16

12a. Simply

supported

ya ¼ 0; Mra ¼ 0

yc ¼
�qa4

2D

L19

1 þ n
� 2L13

� �

Mc ¼ qa2L19

ya ¼
qa3

D

L19

1 þ n
� L16

� �

Qa ¼
�q

12a
ð3a2 � 2aro � r2

o Þ

y ¼ Ky

qa4

D
; y ¼ Ky

qa3

D
; M ¼ KM qa2

Note: If ro ¼ 0; G13 ¼
1

576
; G16 ¼

1

96
; G19 ¼

ð5 þ nÞ
96

yc ¼
�qa4ð7 þ nÞ
288Dð1 þ nÞ

; Mc ¼
qa2ð5 þ nÞ

96
; ya ¼

qa3

24Dð1 þ nÞ

LTM ¼ �qr2 r � ro

a � ro

� �2

G19

LTQ ¼
�qð3r4 � 8ror3 þ 6r2

or2 � r4
o Þ

12rða � roÞ
2

�hr � roi
0

12b. Fixed ya ¼ 0; ya ¼ 0

yc ¼
�qa4

2D
ðL16 � 2L13Þ

Mc ¼ qa2ð1 þ nÞL16

Mra ¼ �qa2 ½L19 � ð1 þ nÞL16�

Note: If ro ¼ 0; G13 ¼
1

576
; G16 ¼

1

96
; G19 ¼

ð5 þ nÞ
96

yc ¼
�qa4

288D
; Mc ¼

qa2ð1 þ nÞ
96

; Mra ¼
�qa2

24

ro=a 0.0 0.2 0.4 0.6 0.8

Kyc
� 0.00667 � 0.00462 � 0.00252 �0.00093 �0.00014

KMc
0.02889 0.01791 0.00870 0.00289 0.00040

KMra
� 0.06667 � 0.05291 � 0.03624 �0.01931 �0.00571

ro=a 0.0 0.2 0.4 0.6 0.8

Kyc
� 0.01949 �0.01419 � 0.00893 �0.00438 � 0.00119

Kya
0.03205 0.02396 0.01560 0.00796 0.00227

KMc
0.05521 0.03903 0.02397 0.01154 0.00311

ro=a 0.0 0.2 0.4 0.6 0.8

Kyc
� 0.00347 �0.00221 � 0.00113 � 0.00040 � 0.000058

KMc
0.01354 0.00788 0.00369 0.00120 0.000162

KMra
� 0.04167 �0.03115 � 0.02028 � 0.01035 � 0.002947
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TABLE 11.2 Formulas for flat circular plates of constant thickness (Continued )

Case no., loading,

load terms Edge restraint Boundary values Special cases

13. Uniform line moment at ro

LTy ¼
Mor2

D
G2

13a. Simply

supported

ya ¼ 0; Mra ¼ 0; Qa ¼ 0

yc ¼
Mor2

o

2D

1

1 þ n
þ ln

a

ro

� �

Mc ¼ �MoL8

ya ¼
�Mor2

o

Dað1 þ nÞ

y ¼ Ky

Moa2

D
; y ¼ Ky

Moa

D
; M ¼ KM Mo

LTy ¼
Mor

D
G5

LTM ¼ MoG8

LTQ ¼ 0

13b. Fixed ya ¼ 0; ya ¼ 0; Qa ¼ 0

yc ¼
Mor2

o

2D
ln

a

ro

Mc ¼
�Moð1 þ nÞ

2a2
ða2 � r2

o Þ

Mra ¼
Mor2

o

a2

14. Externally applied change in

slope at a radius ro

LTy ¼ yorG1

LTy ¼ yoG4

14a. Simply

supported

ya ¼ 0; Mra ¼ 0; Qa ¼ 0

yc ¼
�yoroð1 þ nÞ

2
ln

a

ro

Mc ¼
�yoDð1 � n2Þ

2roa2
ða2 � r2

o Þ

ya ¼
yoro

a

y ¼ Kyyoa; y ¼ Kyyo; M ¼ KM yo

D

a

LTM ¼
yoD

r
G7

LTQ ¼ 0

14b. Fixed ya ¼ 0; ya ¼ 0; Qa ¼ 0

yc ¼
yoro

2
1 � ð1 þ nÞ ln

a

ro

� �

Mc ¼
�yoDð1 þ nÞ

a
L4

Mra ¼
�yoDro

a2
ð1 þ nÞ

ro=a 0.2 0.4 0.6 0.8 1.0

Kyc
0.04757 0.13484 0.23041 0.31756 0.38462

Kya
� 0.03077 �0.12308 � 0.27692 �0.49231 � 0.76923

KMc
� 0.66400 �0.70600 � 0.77600 �0.87400 � 1.00000

ro=a 0.2 0.4 0.6 0.8

Kyc
0.03219 0.07330 0.09195 0.07141

KMc
� 0.62400 � 0.54600 � 0.41600 � 0.23400

KMra
0.04000 0.16000 0.36000 0.64000

ro=a 0.2 0.4 0.6 0.8

Kyc
� 0.20923 �0.23824 � 0.19922 � 0.11603

Kya
0.20000 0.40000 0.60000 0.80000

KMc
� 2.18400 �0.95550 � 0.48533 � 0.20475

KMto
2.33600 1.31950 1.03133 0.93275

ro=a 0.2 0.4 0.6 0.8 1.0

Kyc
� 0.10923 � 0.03824 0.10078 0.28396 0.50000

KMc
� 2.44400 � 1.47550 � 1.26533 � 1.24475 �1.30000

KMra
� 0.26000 � 0.52000 � 0.78000 � 1.04000 �1.30000
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15. Uniform temperature

differential DT between the

bottom and top surface from

ro to a

15a. Simply

supported

ya ¼ 0; Mra ¼ 0; Qa ¼ 0

yc ¼
�gDT

2t
a2 � r2

o � r2
o ð1 þ nÞ ln

a

ro

� �

Mc ¼
gDð1 þ nÞDT

t
ð1 � L8Þ

ya ¼
gDT

ta
ða2 � r2

o Þ

y ¼ Ky

gDTa2

t
; y ¼ Ky

gDTa

t
; M ¼ KM

gDTD

t

Note: When the entire plate is subjected to the temperature differential,

there is no stress anywhere in the plate.
LTy ¼

gð1 þ nÞDT

t
r2G2

LTy ¼
gð1 þ nÞDT

t
rG5

LTM ¼
gDð1 þ nÞDT

t
ðG8 �hr � roi

0Þ

LTQ ¼ 0

Note: Values for KMto
are given

at a radius just greater than ro

15b. Fixed ya ¼ 0; ya ¼ 0; Qa ¼ 0

yc ¼
gð1 þ nÞDT

2t
r2

o ln
a

ro

Mc ¼
�gDð1 þ nÞ2DT

2ta2
ða2 � r2

o Þ

Mra ¼
�gDð1 þ nÞDT

ta2
ða2 � r2

o Þ

Note: When the entire plate is subjected to the temperature differential,

the moments are the same everywhere in the plate and there are no

deflections.

Note: the term
�gð1 � n2ÞDTD

t
hr � roi

0 must be added to Mt for this case 15. Also, if ro ¼ 0, then G2 ¼ 1
4
;G5 ¼ 1

2
;G8 ¼ ð1 þ nÞ=2, and hr � roi

0 ¼ 1 for all values of r.

Cases 16 to 31. The following cases include loadings on circular plates or plates bounded by some circular boundaries (each case is complete in itself) (Note: ln¼natural logarithm)

Case no., loading,

restraints Formulas Special cases

16. Uniform load over a very small

central circular area of radius

ro; edge simply supported

W ¼ qpr2
o

For r > ro

y ¼
�W

16pD

3 þ n
1 þ n

ða2 � r2Þ � 2r2 ln
a

r

� �

y ¼
Wr

4pD

1

1 þ n
þ ln

a

r

� �

Mr ¼
W

16p
4ð1 þ nÞ ln

a

r
þ ð1 � nÞ

a2 � r2

a2

� �
r02o
r2

� �

where r0o ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:6r2

o þ t2
p

� 0:675t if ro < 0:5t

or r0o ¼ ro if ro > 0:5t

Mt ¼
W

16p
4ð1 þ nÞ ln

a

r
þ ð1 � nÞ 4 �

r02o
r2

� �� �

ymax ¼
�Wa2

16pD

3 þ n
1 þ n

at r ¼ 0

ymax ¼
Wa

4pDð1 þ nÞ
at r ¼ a

ðMrÞmax ¼
W

4p
ð1 þ nÞ ln

a

r0o
þ 1

� �
at r ¼ 0

ðMtÞmax ¼ ðMrÞmax at r ¼ 0

ro=a 0.0 0.2 0.4 0.6 0.8

Kyc
� 0.50000 � 0.43815 � 0.32470 � 0.20047 � 0.08717

Kya
1.00000 0.96000 0.84000 0.64000 0.36000

KMc
0.00000 0.43680 0.38220 0.29120 0.16380

KMto
� 0.47320 � 0.52780 � 0.61880 � 0.74620

ro=a 0.0 0.2 0.4 0.6 0.8

Kyc
0.00000 0.04185 0.09530 0.11953 0.09283

KMc
� 1.30000 �0.81120 �0.70980 �0.54080 �0.30420

KMro
�1.24800 �1.09200 �0.83200 �0.46800

KMto
�1.72120 �1.61980 �1.45080 �1.21420
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TABLE 11.2 Formulas for flat circular plates of constant thickness (Continued )

Case no., loading, restraints Formulas Special cases

17. Uniform load over a very

small central circular area of

radius ro ; edge fixed

W ¼ qpr2
o

For r > r0o

y ¼
�W

16pD
a2 � r2 1 þ 2 ln

a

r

� �h i

y ¼
Wr

4pD
ln

a

r

Mr ¼
W

4p
ð1 þ nÞ ln

a

r
� 1 þ

ð1 � nÞr02o
4r2

� �

where r0o ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:6r2

o þ t2
p

� 0:675t if ro < 0:5t

or r0o ¼ ro if ro 5 0:5t

Mt ¼
W

4p
ð1 þ nÞ ln

a

r
� nþ

nð1 � nÞr02o
4r2

� �

ymax ¼
�Wa2

16pD
at r ¼ 0

ymax ¼ 0:0293
Wa

D
at r ¼ 0:368a

ðþMrÞmax ¼
W

4p
ð1 þ nÞ ln

a

r0o
at r ¼ 0

ð�MrÞmax ¼
�W

4p
at r ¼ a

ðþMrÞmax ¼ ðþMrÞmax at r ¼ 0

ð�MtÞmax ¼
�nW

4p
at r ¼ a

18. Uniform load over a small

eccentric circular area of

radius ro ; edge simply

supported

Note:

r0o ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:6r2

o þ t2
p

� 0:675t

if ro < 0:5t

or r0o ¼ ro if ro 50:5t

ðMrÞmax ¼ ðMtÞmax ¼
W

4p
1 þ ð1 þ nÞ ln

a � p

r0o

� �
�

ð1 � nÞr02o
4ða � pÞ2

� �
at the load

At any point s,

Mr ¼ ðMrÞmax

ð1 þ nÞ lnða1=r1Þ

1 þ ð1 þ nÞ lnða1=r
0
oÞ
; Mt ¼ ðMtÞmax

ð1 þ nÞ lnða1=r1Þ þ 1 � n
1 þ ð1 þ nÞ lnða1=r

0
oÞ

y ¼ �½Koðr
3 � boar2 þ coa3Þ þ K1ðr

4 � b1ar3 þ c1a3rÞ cosfþ K2ðr
4 � b2ar3 þ c2a2r2Þ cos 2f�

where Ko ¼
W

pDa4

2ð1 þ nÞ
9ð5 þ nÞ

ðp3 � boap2 þ coa3Þ

K1 ¼
W

pDa6

2ð3 þ nÞ
3ð9 þ nÞ

ðp4 � b1ap3 þ c1a3pÞ

K2 ¼
W

pDa6

ð4 þ nÞ2

ð9 þ nÞð5 þ nÞ
ðp4 � b2ap3 þ c2a2p2Þ

where bo ¼
3ð2 þ nÞ
2ð1 þ nÞ

; b1 ¼
3ð4 þ nÞ
2ð3 þ nÞ

; b2 ¼
2ð5 þ nÞ

4 þ n
; co ¼

4 þ n
2ð1 þ nÞ

; c1 ¼
6 þ n

2ð3 þ nÞ
; c2 ¼

6 þ n
4 þ n

(See Ref. 1)
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19. Uniform load over a small

eccentric circular area of

radius ro ; edge fixed

At any point s,

y ¼
�W

16pD

p2r2
2

a2
� r2

1 1 þ 2 ln
pr2

ar1

� �� �
ðNote:As p ! 0;pr2 ! a2Þ

At the load point,

y ¼
�W

16pD

ða2 � p2Þ
2

a2

Mr ¼
W ð1 þ nÞ

16p
4 ln

a � p

r0o

� �
þ

r0o
a � p

� �2
" #

¼ Mmax if r0o < 0:6ða � pÞ ðNote: r0o defined in case 18)

At the near edge,

Mr ¼
�W

8p
2 �

r0o
a � p

� �2
" #

¼ Mmax if ro > 0:6ða � pÞ

[Formulas due to Michell (Ref. 2). See Ref. 60 for modified boundary conditions]

20. Central couple on an annular

plate with a simply supported

outer edge (trunnion loading)

(Note: For eccentric trunnions

loaded with vertical loads, couples,

and pressure on the plate, see

Refs. 86 and 87)

20a. Trunnion simply supported to plate. For n ¼ 0:3

y ¼
aM

Et3
; tmax ¼ trt ¼

lM

at2
at r ¼ b at 90
 to the plane of M

smax ¼ st ¼
gM
at2

at r ¼ b in the plane of M

(Ref. 85)

20b. Trunnion fixed to the plate

y ¼
aM

Et3
; ðsrÞmax ¼

bM

at2
at r ¼ b in the plane of M

(Ref. 21)

b=a 0.10 0.15 0.20 0.25 0.30 0.40 0.50 0.60 0.70 0.80

l 9.475 6.256 4.630 3.643 2.976 2.128 1.609 1.260 1.011 0.827

g 12.317 8.133 6.019 4.735 3.869 2.766 2.092 1.638 1.314 1.075

a 2.624 2.256 1.985 1.766 1.577 1.257 0.984 0.743 0.528 0.333

b=a 0.10 0.15 0.20 0.25 0.30 0.40 0.50 0.60 0.70 0.80

b 9.478 6.252 4.621 3.625 2.947 2.062 1.489 1.067 0.731 0.449

a 1.403 1.058 0.820 0.641 0.500 0.301 0.169 0.084 0.035 0.010
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TABLE 11.2 Formulas for flat circular plates of constant thickness (Continued )

Case no., loading,

load terms

21. Central couple on an annular

plate with a fixed outer edge

(trunnion loading)

(Note: For eccentric trunnions see

note in case 20 above)

21a. Trunnion simply supported to plate. For n ¼ 0:3

y ¼
aM

Et3
; tmax ¼ trt ¼

lM

at2
at r ¼ b at 90
 to the plane of M

ðsrÞmax ¼
bM

at2
at r ¼ a in the plane of M maxst ¼

gM
at2

at r ¼ b in the plane of M

(Ref. 85)

21b. Trunnion fixed to the plate. For n ¼ 0:3

y ¼
aM

Et3
smax ¼ sr ¼

bM

at2
at r ¼ b in the plane of M

sr ¼
bbM

a2t2
at r ¼ a in the plane of M

(Ref. 22)

22. Linearly distributed load

symmetrical about a diameter;

edge simply supported

ðMrÞmax ¼
qa2ð5 þ nÞ

72
ffiffiffi
3

p at r ¼ 0:577a

ðMtÞmax ¼
qa2ð5 þ nÞð1 þ 3nÞ

72ð3 þ nÞ
at r ¼ 0:675a

Max edge reaction per linear inch ¼
qa

4

ymax ¼ 0:042
qa4

Et3
at r ¼ 0:503a ðfor n ¼ 0:3Þ ðRefs: 20 and 21Þ

b=a 0.10 0.15 0.20 0.25 0.30 0.40 0.50 0.60 0.70 0.80

l 9.355 6.068 4.367 3.296 2.539 1.503 0.830 0.405 0.166 0.053

b 0.989 1.030 1.081 1.138 1.192 1.256 1.205 1.023 0.756 0.471

g 12.161 7.889 5.678 4.285 3.301 1.954 1.079 0.526 0.216 0.069

a 2.341 1.949 1.645 1.383 1.147 0.733 0.405 0.184 0.064 0.015

b=a 0.10 0.15 0.20 0.25 0.30 0.40 0.50 0.60 0.70 0.80

b 9.36 6.08 4.41 3.37 2.66 1.73 1.146 0.749 0.467 0.262

a 1.149 0.813 0.595 0.439 0.320 0.167 0.081 0.035 0.013 0.003
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23. Central couple balanced by

linearly distributed pressure

(footing)

ðAt inner edge) ðsrÞmax ¼ b
M

at2
where b is given in the following table:

(Values for n ¼ 0:3Þ (Ref. 21)

24. Concentrated load applied

at the outer edge of an

annular plate with a fixed

inner edge

(At inner edge) ðsrÞmax ¼ b
W

t2
where b is given in the following table:

(Values for n ¼ 0:3) (Ref. 93)

(See Ref. 64 for this loading on a plate with radially varying thickness. See graphs in Ref. 59 for the load distributed over an arc at the edge. See Ref. 60 for the

load W placed away from the edge)

25. Solid circular plate with a

uniformly distributed load q

over the shaded segment

smax ¼ ðsrÞmax ¼ b
qa2

t2

ymax ¼ a
qa4

Et3
on the symmetrical diameter at the value of r given in the table

Values for n ¼ 1
3

(Ref. 39)

a=b 1.25 1.50 2.00 3.00 4.00 5.00

b 0.1625 0.4560 1.105 2.250 3.385 4.470

a=b 1.25 1.50 2.00 3.00 4.00 5.00

b 3.665 4.223 5.216 6.904 8.358 9.667

y
Edge Coefficient

90
 120
 180


Supported a 0.0244, r ¼ 0:39a 0.0844, r ¼ 0:30a 0.345, r ¼ 0:15a

b 0.306, r ¼ 0:60a

Fixed a 0.00368, r ¼ 0:50a 0.0173, r ¼ 0:4a 0.0905, r ¼ 0:20a

b 0.285, r ¼ a
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TABLE 11.2 Formulas for flat circular plates of constant thickness (Continued )

Case no., loading,

load terms

26. Solid circular plate, uniform

load q over the shaded sector

For simply supported edges:

smax ¼ sr near the center along the loaded radius of symmetry (values not given)

sr at the center ¼
y

360
sr at the center of a fully loaded plate

ymax ¼ �a1

qa4

Et3
at approximately 1

4
the radius from center along the radius of symmetry (a1 given in table)

For fixed edges:

smax ¼ sr at point B ¼ b
qa2

t2

ymax ¼ �a2

qa4

Et3
at approximately 1

4
the radius from center along the radius of symmetry (b and a2 given in table)

[Note: For either edge condition yc ¼ ðy=360Þyc for a fully loaded plate] (Ref. 38)

27. Solid circular sector, uniformly

distributed load q over the

entire surface; edges simply

supported

ðsrÞmax ¼ b
qa2

t2
; ðstÞmax ¼ b1

qa2

t2
; ymax ¼ a

qa4

Et3

(Values for n ¼ 0:3Þ (Ref. 21)

y
Edge condition Coefficient

30
 60
 90
 120
 150
 180


Simply supported a1 0.061 0.121 0.179 0.235 0.289 0.343

Fixed a2 0.017 0.034 0.050 0.064 0.077 0.089

b 0.240 0.371 0.457 0.518 0.564 0.602

y 45
 60
 90
 180


b 0.102 0.147 0.240 0.522

b1 0.114 0.155 0.216 0.312

a 0.0054 0.0105 0.0250 0.0870
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28. Solid circular sector, uniformly

distributed load q over the

entire surface; straight edges

simply supported, curved edge

fixed

smax ¼ sr at curved edge ¼ b
qa2

t2
; ymax ¼ a

qa4

Et3

(Values for n ¼ 0:3Þ (Ref. 21)

29. Solid circular sector of infinite

radius, uniformly distributed

load q over entire surface;

straight edges fixed

At point P:

sr ¼
9qr2

8t2

3 þ n
3

�
4 cos y cos 2f� ð1 � nÞ cos 4f

2 cos2 yþ 1

� �

st ¼
9qr2

8t2

1 þ 3n
3

�
4n cos y cos 2fþ ð1 � nÞ cos 4f

2 cos2 yþ 1

� �

y ¼
�3ð1 � n2Þqr4

16Et3
1 þ

cos 4f� 4 cos y cos 2f
2 cos2 yþ 1

� �

(Note: y should not exceed 60
)

At the edge, f ¼ �y=2:

st ¼
3qr2

2t2

sin
2 y

1 þ 2 cos2 y

sr ¼ nst

Along the center line, f ¼ 0

sr ¼
3qr2

4t2

3ð1 � cos yÞ2 � n sin
2 y

1 þ 2 cos2 y

st ¼
3qr2

4t2

3nð1 � cos yÞ2 � sin
2 y

1 þ 2 cos2 y

y ¼
�3ð1 � n2Þqr4

8Et3

ð1 � cos yÞ2

1 þ 2 cos2 y
(Ref. 37)

30. Solid semicircular plate,

uniformly distributed load q

over the entire surface; all

edges fixed

smax ¼ sr at A ¼ �0:42
qa2

t2
(values for n ¼ 0:2Þ

sr at B ¼ �0:36
qa2

t2

sr at C ¼ 0:21
qa2

t2

(Ref. 40)

y 45
 60
 90
 180


b 0.1500 0.2040 0.2928 0.4536

a 0.0035 0.0065 0.0144 0.0380
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TABLE 11.2 Formulas for flat circular plates of constant thickness (Continued )

Case no., loading,

load terms

31. Semicircular annular plate,

uniformly loaded over entire

surface; outer edge supported,

all other edges free

Formulas valid for b5 0:7a

(At AÞ st ¼
6qcb

t2

b

c
�

1

3

� �
c1 1 � g2

1

c

b

� �
þ c2 1 � g2

2

c

b

� �
þ

c

b

h i
K max stress occurs on inner edge over central 60




(At BÞ y ¼
�24qc2b2

Et3

b

c
�

1

3

� �
c1 cosh g1aþ c2 cosh g2aþ

c

b

h i
max deflection occurs when a ¼

p
2

where c1 ¼
1

b

c
� g2

1

� �
ðl� 1Þ cosh

g1p
2

; c2 ¼
1

b

c
� g2

2

� �
1

l
� 1

� �
cosh

g2p
2

g1 ¼
gffiffiffi
2

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 �

4b2

c2g4

svuut
; g2 ¼

gffiffiffi
2

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 �

4b2

c2g4

svuut

g ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2b

c
þ 4 1 �

0:625t

2c

� �
G

E
1 þ

b

c

� �2
s

; l ¼

g1

b

c
� g2

1 þ l1

� �
b

c
� g2

2

� �
tanh

g1p
2

g2

b

c
� g2

2 þ l1

� �
b

c
� g2

1

� �
tanh

g2p
2

; l1 ¼ 4 1 �
0:625t

2c

� �
G

E
1 þ

b

c

� �2

K ¼ function of ðb � cÞ=ðb þ cÞ and has values as follows:

[Formulas due to Wahl (Ref. 10)]

ðb � cÞ=ðb þ cÞ 0.4 0.5 0.6 0.7 0.8 0.9 1.0

K 1.58 1.44 1.32 1.22 1.13 1.06 1.0
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32. Elliptical plate, uniformly

distributed load q over entire

surface

32a. Simply supported At the center:

smax ¼ sz ¼ �½2:816 þ 1:581n� ð1:691 þ 1:206nÞa�
qb2

t2

ymax ¼ �½2:649 þ 0:15n� ð1:711 þ 0:75nÞa�
qb4ð1 � n2Þ

Et3

[Approximate formulas for 0:2 < a < 1:0 (see numerical data in Refs. 21 and 56)]

32b. Fixed
At the edge of span b: smax ¼ sz ¼

6qb2

t2ð3 þ 2a2 þ 3a4Þ

At the edge of span a: sx ¼
6qb2a2

t2ð3 þ 2a2 þ 3a4Þ

At the center:

sz ¼
�3qb2ð1 þ na2Þ

t2ð3 þ 2a2 þ 3a4Þ
; sx ¼

�3qb2ða2 þ nÞ
t2ð3 þ 2a2 þ 3a4Þ

; ymax ¼
�3qb4ð1 � n2Þ

2Et3ð3 þ 2a2 þ 3a4Þ

(Ref. 5)

33. Elliptical plate, uniform load

over a small concentric

circular area of radius ro

(note definition of r0o in

case 18)

33a. Simply supported At the center:

smax ¼ sz ¼
�3W

2pt2
ð1 þ nÞ ln

b

r0o
þ nð6:57 � 2:57aÞ

� �

ymax ¼
�Wb2

Et3
ð0:76 � 0:18aÞ for n ¼ 0:25

[Approximate formulas by interpolation between cases of circular plate and infinitely long narrow strip (Ref. 4)]

33b. Fixed At the center:

sz ¼
�3W ð1 þ nÞ

2pt2
ln

2b

r0o
� 0:317a� 0:376

� �

ymax ¼
�Wb2

Et3
ð0:326 � 0:104aÞ for n ¼ 0:25

[Approximate formulas by interpolation between cases of circular plate and infinitely long narrow strip (ref. 6).]

a ¼
b

a

a ¼
b

a
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TABLE 11.3 Shear deflections for flat circular plates of constant thickness
NOTATION: ysb; ysa, and ysro

are the deflections at b, a, and ro , respectively, caused by transverse shear stresses. Ksb;Ksa, and Ksro
are deflection coefficients defined by the relationships ys ¼ Kswa=tG

for an annular line load and ys ¼ Ksqa2=tG for all distributed loadings (see Table 11.2 for all other notation and for the loading cases referenced)

Case no. Shear deflection coefficients Tabulated values for specific cases

1a, 1b, 1e, 1f, 9 Ksro
¼ Ksb ¼ �1:2

ro

a
ln

a

ro

ðNote: ro > 0Þ ro=a 0.1 0.3 0.5 0.7 0.9

Ksb �0.2763 � 0.4334 � 0.4159 � 0.2996 � 0.1138

2a, 2b, 2e, 2f, 10 Ksro
¼ Ksb ¼ �0:30 1 �

ro

a

� �2

1 þ 2 ln
a

ro

� �� �
Ksb �0.2832 � 0.2080 � 0.1210 � 0.0481 � 0.0058

3a, 3b, 3e, 3f, 11 Ksro
¼ Ksb ¼

�a

30ða � roÞ
4 � 9

ro

a
þ

ro

a

� �3

5 þ 6 ln
a

ro

� �� �
Ksb �0.1155 � 0.0776 � 0.0430 � 0.0166 � 0.0019

4a, 4b, 4e, 4f, 12
Ksro

¼ Ksb ¼
�a2

120ða � roÞ
2

9 � 32
ro

a
þ 36

ro

a

� �2

�
ro

a

� �4

13 þ 12 ln
a

ro

� �� �
Ksb �0.0633 � 0.0411 � 0.0223 � 0.0084 � 0.00098

1i, 1j, 1k, 1l Ksro
¼ Ksa ¼ �1:2

ro

a
ln

ro

b
ðNote: b > 0Þ

2i, 2j, 2k, 2l Ksro
¼ �0:60 1 �

ro

a

� �2
� �

ln
ro

b
ðNote: b > 0Þ

Ksa ¼ �0:30 2 ln
a

b
� 1 þ

ro

a

� �2

1 � 2 ln
ro

b

� �� �
ðNote: b > 0Þ

ro=a

b=a

0.2 0.4 0.6 0.8 1.0

0.1 � 0.1664 � 0.6654 � 1.2901 � 1.9963 � 2.7631

0.3 � 0.1381 � 0.4991 � 0.9416 � 1.4448

0.5 � 0.1313 � 0.4512 � 0.8318

0.7 Values of Ksa � 0.1282 � 0.4280

0.9 � 0.1264

ro=a

b=a

0.1 0.3 0.5 0.7 0.9

0.1 � 0.0000 � 0.5998 � 0.7242 � 0.5955 �0.2505

0.3 � 0.0000 � 0.2299 � 0.2593 �0.1252

0.5 � 0.0000 � 0.1030 �0.0670

0.7 Values of Ksro
� 0.0000 �0.0287

0.9 �0.0000

0.1 � 1.0846 � 1.0493 � 0.9151 � 0.6565 �0.2567

0.3 � 0.4494 � 0.4208 � 0.3203 �0.1315

0.5 � 0.1909 � 0.1640 �0.0732

0.7 Values of Ksa � 0.0610 �0.0349

0.9 �0.0062
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3i, 3j, 3k, 3l Ksro
¼ �0:20 2 �

ro

a
�

ro

a

� �2
� �

ln
ro

b
ðNote: b > 0Þ

Ksa ¼
�a

30ða � roÞ
6 2 � 3

ro

a

� �
ln

a

b
� 4 þ 9

ro

a
�

ro

a

� �3

ð5 � 6 ln
ro

b

� ��

(Note: b > 0Þ

4i, 4j, 4k, 4l Ksro
¼ �0:10 3 � 2

ro

a
�

ro

a

� �2
� �

ln
ro

b
ðNote: b > 0Þ

Ksa ¼
�a2

120ða � roÞ
2

12 3 � 8
ro

a
þ 6

ro

a

� �2
� �

ln
a

b
� 9 þ 32

ro

a
� 36

ro

a

� �2
	

þ
ro

a

� �4

13 � 12 ln
ro

b

� �

ðNote: b > 0Þ

ro=a

b=a

0.1 0.3 0.5 0.7 0.9

0.1 � 0.0000 � 0.3538 �0.4024 �0.3152 � 0.1274

0.3 � 0.0000 �0.1277 �0.1373 � 0.0637

0.5 �0.0000 �0.0545 � 0.0341

0.7 Values of Ksro
�0.0000 � 0.0146

0.9 � 0.0000

0.1 � 0.7549 � 0.6638 �0.5327 �0.3565 � 0.1316

0.3 � 0.3101 �0.2580 �0.1785 � 0.0679

0.5 �0.1303 �0.0957 � 0.0383

0.7 Values of Ksa �0.0412 � 0.0187

0.9 � 0.0042

ro=a

b=a

0.1 0.3 0.5 0.7 0.9

0.1 �0.0000 � 0.2538 � 0.2817 � 0.2160 � 0.0857

0.3 � 0.0000 � 0.0894 � 0.0941 � 0.0428

0.5 � 0.0000 � 0.0373 � 0.0229

0.7 Values of Ksro
� 0.0000 � 0.0098

0.9 � 0.0000

0.1 �0.5791 � 0.4908 � 0.3807 � 0.2472 � 0.0888

0.3 � 0.2370 � 0.1884 � 0.1252 � 0.0460

0.5 � 0.0990 � 0.0685 � 0.0261

0.7 Values of Ksa � 0.0312 � 0.0129

0.9 � 0.0031
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TABLE 11.4 Formulas for flat plates with straight boundaries and constant thickness
NOTATION: The notation for Table 11.2 applies with the following modifications: a and b refer to plate dimensions, and when used as subscripts for stress, they refer to the stresses in directions

parallel to the sides a and b, respectively. s is a bending stress which is positive when tensile on the bottom and compressive on the top if loadings are considered vertically downward. R is the

reaction force per unit length normal to the plate surface exerted by the boundary support on the edge of the plate. r0o is the equivalent radius of contact for a load concentrated on a very small area

and is given by r0o ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:6r2

o þ t2
p

� 0:675t if ro < 0:5t and r0o ¼ ro if ro 5 0:5t

Case no.,

shape, and supports Case no., loading Formulas and tabulated specific values

1. Rectangular plate; all

edges simply supported

1a. Uniform over entire

plate

(At center) smax ¼ sb ¼
bqb2

t2
and ymax ¼

�aqb4

Et3

(At center of long sides) Rmax ¼ gqb

(Ref. 21 for n ¼ 0:3)

1b. Uniform over small

concentric circle of

radius ro (note

definition of r0o)

(At center) smax ¼
3W

2pt2
ð1 þ nÞ ln

2b

pr0o
þ b

� �

ymax ¼
�aWb2

Et3

(Ref. 21 for n ¼ 0:3)

a=b 1.0 1.2 1.4 1.6 1.8 2.0 3.0 4.0 5.0 1

b 0.2874 0.3762 0.4530 0.5172 0.5688 0.6102 0.7134 0.7410 0.7476 0.7500

a 0.0444 0.0616 0.0770 0.0906 0.1017 0.1110 0.1335 0.1400 0.1417 0.1421

g 0.420 0.455 0.478 0.491 0.499 0.503 0.505 0.502 0.501 0.500

a=b 1.0 1.2 1.4 1.6 1.8 2.0 1

b 0.435 0.650 0.789 0.875 0.927 0.958 1.000

a 0.1267 0.1478 0.1621 0.1715 0.1770 0.1805 0.1851
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1c. Uniform over

central rectangular

area

(At center) smax ¼ sb ¼
bW

t2
where W ¼ qa1b1

(Values from charts of Ref. 8; n ¼ 0:3.)

1d. Uniformly

increasing along

length

smax ¼
bqb2

t2
and ymax ¼

�aqb4

Et3

(Values from charts of Ref. 8; n ¼ 0:3.)

1e. Uniformly

increasing along

width

smax ¼
bqb2

t2
and ymax ¼

�aqb4

Et3

(Values from charts of Ref. 8; n ¼ 0:3.)

a1=b a ¼ b a ¼ 1:4b a ¼ 2b

b1=b 0 0.2 0.4 0.6 0.8 1.0 0 0.2 0.4 0.8 1.2 1.4 0 0.4 0.8 1.2 1.6 2.0

0 1.82 1.38 1.12 0.93 0.76 2.0 1.55 1.12 0.84 0.75 1.64 1.20 0.97 0.78 0.64

0.2 1.82 1.28 1.08 0.90 0.76 0.63 1.78 1.43 1.23 0.95 0.74 0.64 1.73 1.31 1.03 0.84 0.68 0.57

0.4 1.39 1.07 0.84 0.72 0.62 0.52 1.39 1.13 1.00 0.80 0.62 0.55 1.32 1.08 0.88 0.74 0.60 0.50

0.6 1.12 0.90 0.72 0.60 0.52 0.43 1.10 0.91 0.82 0.68 0.53 0.47 1.04 0.90 0.76 0.64 0.54 0.44

0.8 0.92 0.76 0.62 0.51 0.42 0.36 0.90 0.76 0.68 0.57 0.45 0.40 0.87 0.76 0.63 0.54 0.44 0.38

1.0 0.76 0.63 0.52 0.42 0.35 0.30 0.75 0.62 0.57 0.47 0.38 0.33 0.71 0.61 0.53 0.45 0.38 0.30

a=b 1 1.5 2.0 2.5 3.0 3.5 4.0

b 0.16 0.26 0.34 0.38 0.43 0.47 0.49

a 0.022 0.043 0.060 0.070 0.078 0.086 0.091

a=b 1 1.5 2.0 2.5 3.0 3.5 4.0

b 0.16 0.26 0.32 0.35 0.37 0.38 0.38

a 0.022 0.042 0.056 0.063 0.067 0.069 0.070
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TABLE 11.4 Formulas for flat plates with straight boundaries and constant thickness (Continued )

Case no.,

shape, and supports Case no., loading Formulas and tabulated specific values

1f. Uniform over entire

plate plus uniform

tension or

compression

P lb=linear in

applied to short

edges

ymax ¼ a
qb4

Et3
ðsaÞmax ¼ bx

qb2

t2
ðsbÞmax ¼ by

qb2

t2
: Here a; bx; and by depend on ratios

a

b
and

P

PE

; where PE ¼
p2Et3

3ð1 � n2Þb2
; and have

the following values:

In the above formulas sa and sb are stresses due to bending only; add direct stress P=t to sa (Ref. 41)

Coef. P=PE 0 0.15 0.25 0.50 0.75 1 2 3 4 5

a=b

P, Tension

1 0.044 0.039 0.030 0.023 0.015 0.011 0.008 0.0075
11

2
0.084 0.075 0.060 0.045 0.0305 0.024 0.019 0.0170

a 2 0.110 0.100 0.084 0.067 0.0475 0.0375 0.030 0.0260
3 0.133 0.125 0.1135 0.100 0.081 0.066 0.057 0.0490
4 0.140 0.136 0.1280 0.118 0.102 0.089 0.080 0.072

1 0.287 0.135 0.096 0.072 0.054 0.045
11

2
0.300 0.150 0.105 0.078 0.066 0.048

bx 2 0.278 0.162 0.117 0.093 0.075 0.069
3 0.246 0.180 0.150 0.126 0.105 0.093
4 0.222 0.192 0.168 0.156 0.138 0.124

1 0.287 0.132 0.084 0.054 0.036 0.030
11

2
0.487 0.240 0.156 0.114 0.090 0.072

by 2 0.610 0.360 0.258 0.198 0.162 0.138
3 0.713 0.510 0.414 0.348 0.294 0.258
4 0.741 0.624 0.540 0.480 0.420 0.372

P, Compression

1 0.044 0.060 0.094 0.180
11

2
0.084 0.109 0.155 0.237

a 2 0.110 0.139 0.161 0.181
3 0.131 0.145 0.150 0.150
4 0.140 0.142 0.142 0.138

1 0.287 0.372 0.606 1.236
11

2
0.300 0.372 0.522 0.846

bx 2 0.278 0.330 0.390 0.450
3 0.246 0.228 0.228 0.210
4 0.222 0.225 0.225 0.225

1 0.287 0.420 0.600 1.260
11

2
0.487 0.624 0.786 1.380

by 2 0.610 0.720 0.900 1.020
3 0.713 0.750 0.792 0.750
4 0.741 0.750 0.750 0.750
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1g. Uniform over entire

plate plus uniform

tension P lb=linear

in applied to all

edges

ymax ¼ a
qb4

Et3
ðsaÞmax ¼ bx

qb2

t2
ðsbÞmax ¼ by

qb2

t2
: Here a; bx; and by depend on ratios

a

b
and

P

PE

; where PE ¼
p2Et3

3ð1 � n2Þb2
; and have

the following values:

In the above formulas sa and sb are stresses due to bending only; add direct stress P=t to sa and sb: (Ref. 42)

2. Rectangular plate; three

edges simply supported,

one edge (b) free

2a. Uniform over entire

plate

smax ¼
bqb2

t2
and ymax ¼

�aqb4

Et3

(Ref. 8 for v ¼ 0:3)

2d. Uniformly

increasing along

the a side

smax ¼
bqb2

t2
and ymax ¼

�aqb4

Et3

(Ref. 8 for v ¼ 0:3)

Coef. P=PE 0 0.15 0.5 1 2 3 4 5

a=b

1 0.044 0.035 0.022 0.015 0.008 0.006 0.004 0.003

11
2

0.084 0.060 0.035 0.022 0.012 0.008 0.006 0.005

a 2 0.110 0.075 0.042 0.025 0.014 0.010 0.007 0.006

3 0.133 0.085 0.045 0.026 0.016 0.011 0.008 0.007

4 0.140 0.088 0.046 0.026 0.016 0.011 0.008 0.007

1 0.287 0.216 0.132 0.084 0.048 0.033 0.026 0.021

11
2

0.300 0.204 0.117 0.075 0.045 0.031 0.024 0.020

bx 2 0.278 0.189 0.111 0.072 0.044 0.031 0.024 0.020

3 0.246 0.183 0.108 0.070 0.043 0.031 0.025 0.020

4 0.222 0.183 0.108 0.074 0.047 0.032 0.027 0.024

1 0.287 0.222 0.138 0.090 0.051 0.036 0.030 0.024

11
2

0.487 0.342 0.186 0.108 0.066 0.042 0.036 0.030

by 2 0.610 0.302 0.216 0.132 0.072 0.051 0.042 0.036

3 0.713 0.444 0.234 0.141 0.078 0.054 0.042 0.036

4 0.741 0.456 0.240 0.144 0.078 0.054 0.042 0.036

a=b 0.50 0.667 1.0 1.5 2.0 4.0

b 0.36 0.45 0.67 0.77 0.79 0.80

a 0.080 0.106 0.140 0.160 0.165 0.167

a=b 0.50 0.667 1.0 1.5 2.0 2.5 3.0 3.5 4.0

b 0.11 0.16 0.20 0.28 0.32 0.35 0.36 0.37 0.37

a 0.026 0.033 0.040 0.050 0.058 0.064 0.067 0.069 0.070
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TABLE 11.4 Formulas for flat plates with straight boundaries and constant thickness (Continued )

Case no.,

shape, and supports Case no., loading Formulas and tabulated specific values

3. Rectangular plate; three

edges simply supported,

one short edge (b) fixed

3a. Uniform over entire

plate
smax ¼

bqb2

t2
and ymax ¼

�aqb4

Et3

(Values from charts of Ref. 8; n ¼ 0:3)

4. Rectangular plate; three

edges simply supported,

one long edge (a) fixed

4a. Uniform over entire

plate
smax ¼

bqb2

t2
and ymax ¼

�aqb4

Et3

(Values from charts of Ref. 8; n ¼ 0:3)

5. Rectangular plate; two

long edges simply

supported, two short

edges fixed

5a. Uniform over entire

plate

(At center of short edges) smax ¼
�bqb2

t2

(At center) ymax ¼
�aqb4

Et3

(Ref. 21)

6. Rectangular plate; two

long edges fixed, two

short edges simply

supported

6a. Uniform over entire

plate

(At center of long edges) smax ¼
�bqb2

t2

(At center) ymax ¼
�aqb4

Et3

(Ref. 21)

a=b 1 1.5 2.0 2.5 3.0 3.5 4.0

b 0.50 0.67 0.73 0.74 0.75 0.75 0.75

a 0.030 0.071 0.101 0.122 0.132 0.137 0.139

a=b 1 1.5 2.0 2.5 3.0 3.5 4.0

b 0.50 0.66 0.73 0.74 0.74 0.75 0.75

a 0.030 0.046 0.054 0.056 0.057 0.058 0.058

a=b 1 1.2 1.4 1.6 1.8 2 1

b 0.4182 0.5208 0.5988 0.6540 0.6912 0.7146 0.750

a 0.0210 0.0349 0.0502 0.0658 0.0800 0.0922

a=b 1 1.2 1.4 1.6 1.8 2 1

b 0.4182 0.4626 0.4860 0.4968 0.4971 0.4973 0.500

a 0.0210 0.0243 0.0262 0.0273 0.0280 0.0283 0.0285
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7. Rectangular plate; one

edge fixed, opposite edge

free, remaining edges

simply supported

7a. Uniform over entire

plate

(At center of fixed edge) s ¼
�b1qb2

t2
and R ¼ g1qb

(At center of free edge) s ¼
b2qb2

t2

(At end of free edge) R ¼ g2qb

(Ref. 49 for n ¼ 0:2)

7aa. Uniform over 2
3

of

plate from fixed

edge

(At center of fixed edge) s ¼
�bqb2

t2
and R ¼ gqb

(Ref. 49 for n ¼ 0:2)

7aaa. Uniform over 1
3

of

plate from fixed

edge

(At center of fixed edge) s ¼
�bqb2

t2
and R ¼ gqb

(Ref. 49 for n ¼ 0:2Þ

7d. Uniformly

decreasing from

fixed edge to free

edge

(At center of fixed edge) s ¼
�bqb2

t2
and R ¼ gqb

(Ref. 49 for n ¼ 0:2Þ

a=b 0.25 0.50 0.75 1.0 1.5 2.0 3.0

b1 0.044 0.176 0.380 0.665 1.282 1.804 2.450

b2 0.048 0.190 0.386 0.565 0.730 0.688 0.434

g1 0.183 0.368 0.541 0.701 0.919 1.018 1.055

g2 0.131 0.295 0.526 0.832 1.491 1.979 2.401

a=b 0.25 0.50 0.75 1.0 1.5 2.0 3.0

b 0.044 0.161 0.298 0.454 0.730 0.932 1.158

g 0.183 0.348 0.466 0.551 0.645 0.681 0.689

a=b 0.25 0.50 0.75 1.0 1.5 2.0 3.0

b 0.040 0.106 0.150 0.190 0.244 0.277 0.310

g 0.172 0.266 0.302 0.320 0.334 0.338 0.338

a=b 0.25 0.50 0.75 1.0 1.5 2.0 3.0

b 0.037 0.120 0.212 0.321 0.523 0.677 0.866

g 0.159 0.275 0.354 0.413 0.482 0.509 0.517
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TABLE 11.4 Formulas for flat plates with straight boundaries and constant thickness (Continued )

Case no.,

shape, and supports Case no., loading Formulas and tabulated specific values

7dd. Uniformly

decreasing from

fixed edge to zero

at 2
3
b

(At center of fixed edge) s ¼
�bqb2

t2
and R ¼ gqb

(Ref. 49 for n ¼ 0:2)

7ddd. Uniformly

decreasing from

fixed edge to

zero at 1
3
b

(At center of fixed edge) s ¼
�bqb2

t2
and R ¼ gqb

(Ref. 49 for n ¼ 0:2)

7f. Distributed line load

w lb=in along free

edge

(At center of fixed edge) sb ¼
�b1wb

t2
and R ¼ g1w

(At center of free edge) sa ¼
b2wb

t2

(At ends of free edge) R ¼ g2w

(Ref. 49 for n ¼ 0:2)

8. Rectangular plate, all

edges fixed

8a. Uniform over entire

plate

(At center of long edge) smax ¼
�b1qb2

t2

(At center) s ¼
b2qb2

t2
and ymax ¼

aqb4

Et3

(Refs. 7 and 25 and Ref. 21 for n ¼ 0:3)

a=b 0.25 0.50 0.75 1.0 1.5 2.0 3.0

b 0.033 0.094 0.146 0.200 0.272 0.339 0.400

g 0.148 0.233 0.277 0.304 0.330 0.339 0.340

a=b 0.25 0.50 0.75 1.0 1.5 2.0 3.0

b 0.023 0.048 0.061 0.073 0.088 0.097 0.105

g 0.115 0.149 0.159 0.164 0.167 0.168 0.168

a=b 0.25 0.50 0.75 1.0 1.5 2.0 3.0

b1 0.000 0.024 0.188 0.570 1.726 2.899 4.508

b2 0.321 0.780 1.204 1.554 1.868 1.747 1.120

g1 0.000 0.028 0.160 0.371 0.774 1.004 1.119

g2 1.236 2.381 3.458 4.510 6.416 7.772 9.031

a=b 1.0 1.2 1.4 1.6 1.8 2.0 1

b1 0.3078 0.3834 0.4356 0.4680 0.4872 0.4974 0.5000

b2 0.1386 0.1794 0.2094 0.2286 0.2406 0.2472 0.2500

a 0.0138 0.0188 0.0226 0.0251 0.0267 0.0277 0.0284
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8b. Uniform over small

concentric circle of

radius ro (note

definition of r0o)

(At center) sb ¼
3W

2pt2
ð1 þ nÞ ln

2b

pr0o
þ b1

� �
and ymax ¼

aWb2

Et3

(At center of long edge) sb ¼
�b2W

t2

(Ref. 26 and Ref. 21 for n ¼ 0:3Þ

8d. Uniformly

decreasing

parallel to side b

ðAt x ¼ 0; z ¼ 0 ðsbÞmax ¼
�b1qb2

t2

ðAt x ¼ 0; z ¼ 0:4bÞ sb ¼
b2qb2

t2
and sa ¼

b3qb2

t2

ðAt x ¼ 0; z ¼ bÞ sb ¼
�b4qb2

t2

At x ¼ �
a

2
; z ¼ 0:45b

� �
ðsaÞmax ¼

�b5qb2

t2

ymax ¼
�aqb4

Et3

(Ref. 28 for n ¼ 0:3)

a=b 1.0 1.2 1.4 1.6 1.8 2.0 1

b1 � 0.238 � 0.078 0.011 0.053 0.068 0.067 0.067

b2 0.7542 0.8940 0.9624 0.9906 1.0000 1.004 1.008

a 0.0611 0.0706 0.0754 0.0777 0.0786 0.0788 0.0791

a=b 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

b1 0.1132 0.1778 0.2365 0.2777 0.3004 0.3092 0.3100 0.3068

b2 0.0410 0.0633 0.0869 0.1038 0.1128 0.1255 0.1157 0.1148

b3 0.0637 0.0688 0.0762 0.0715 0.0610 0.0509 0.0415 0.0356

b4 0.0206 0.0497 0.0898 0.1249 0.1482 0.1615 0.1680 0.1709

b5 0.1304 0.1436 0.1686 0.1800 0.1845 0.1874 0.1902 0.1908

a 0.0016 0.0047 0.0074 0.0097 0.0113 0.0126 0.0133 0.0136
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TABLE 11.4 Formulas for flat plates with straight boundaries and constant thickness (Continued )

Case no.,

shape, and supports Case no., loading Formulas and tabulated specific values

9. Rectangular plate, three

edges fixed, one edge

(a) simply supported

9a. Uniform over entire

plate
ðAt x ¼ 0; z ¼ 0Þ ðsbÞmax ¼

�b1qb2

t2
and R ¼ g1qb

ðAt x ¼ 0; z ¼ 0:6bÞ sb ¼
b2qb2

t2
and sa ¼

b3qb2

t2

ðAt x ¼ 0; z ¼ bÞ R ¼ g2qb

At x ¼ �
a

2
; z ¼ 0:6b

� �
sa ¼

�b4qb2

t2
and R ¼ g3qb

(Ref. 49 for n ¼ 0:2Þ

9aa. Uniform over 2
3

of

plate from fixed

edge

ðAt x ¼ 0; z ¼ 0Þ ðsbÞmax ¼
�b1qb2

t2
and R ¼ g1qb

ðAt x ¼ 0; z ¼ 0:6bÞ sb ¼
b2qb2

t2
and sa ¼

b3qb2

t2

ðAt x ¼ 0; z ¼ bÞ R ¼ g2qb

At x ¼ �
a

2
; z ¼ 0:4b

� �
sa ¼

�b4qb2

t2
and R ¼ g3qb

(Ref. 49 for n ¼ 0:2)

a=b 0.25 0.50 0.75 1.0 1.5 2.0 3.0

b1 0.020 0.081 0.173 0.307 0.539 0.657 0.718

b2 0.004 0.018 0.062 0.134 0.284 0.370 0.422

b3 0.016 0.061 0.118 0.158 0.164 0.135 0.097

b4 0.031 0.121 0.242 0.343 0.417 0.398 0.318

g1 0.115 0.230 0.343 0.453 0.584 0.622 0.625

g2 0.123 0.181 0.253 0.319 0.387 0.397 0.386

g3 0.125 0.256 0.382 0.471 0.547 0.549 0.530

a=b 0.25 0.50 0.75 1.0 1.5 2.0 3.0

b1 0.020 0.080 0.164 0.274 0.445 0.525 0.566

b2 0.003 0.016 0.044 0.093 0.193 0.252 0.286

b3 0.012 0.043 0.081 0.108 0.112 0.091 0.066

b4 0.031 0.111 0.197 0.255 0.284 0.263 0.204

g1 0.115 0.230 0.334 0.423 0.517 0.542 0.543

g2 0.002 0.015 0.048 0.088 0.132 0.139 0.131

g3 0.125 0.250 0.345 0.396 0.422 0.417 0.405
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9aaa. Uniform over 1
3

of

plate from fixed

edge

ðAt x ¼ 0; z ¼ 0Þ ðsbÞmax ¼
�b1qb2

t2
and R ¼ g1qb

ðAt x ¼ 0; z ¼ 0:2bÞ sb ¼
b2qb2

t2
and sa ¼

b3qb2

t2

ðAt x ¼ 0; z ¼ bÞ R ¼ g2qb

At x ¼ �
a

2
; z ¼ 0:2b

� �
sa ¼

�b4qb2

t2
and R ¼ g3qb

(Ref. 49 for n ¼ 0:2)

9d. Uniformly

decreasing from

fixed edge to simply

supported edge

ðAt x ¼ 0; z ¼ 0 ðsbÞmax ¼
�b1qb2

t2
and R ¼ g1qb

At x ¼ �
a

2
; z ¼ 0:4bÞ

� �
sa ¼

�b2qb2

t2
and R ¼ g2qb

(Ref. 49 for n ¼ 0:2)

a=b 0.25 0.50 0.75 1.0 1.5 2.0 3.0

b1 0.020 0.068 0.108 0.148 0.194 0.213 0.222

b2 0.005 0.026 0.044 0.050 0.047 0.041 0.037

b3 0.013 0.028 0.031 0.026 0.016 0.011 0.008

b4 0.026 0.063 0.079 0.079 0.068 0.056 0.037

g1 0.114 0.210 0.261 0.290 0.312 0.316 0.316

g2 0.000 0.000 0.004 0.011 0.020 0.021 0.020

g3 0.111 0.170 0.190 0.185 0.176 0.175 0.190

a=b 0.25 0.50 0.75 1.0 1.5 2.0 3.0

b1 0.018 0.064 0.120 0.192 0.303 0.356 0.382

b2 0.019 0.068 0.124 0.161 0.181 0.168 0.132

g1 0.106 0.195 0.265 0.323 0.383 0.399 0.400

g2 0.075 0.152 0.212 0.245 0.262 0.258 0.250
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TABLE 11.4 Formulas for flat plates with straight boundaries and constant thickness (Continued )

Case no.,

shape, and supports Case no., loading Formulas and tabulated specific values

9dd. Uniformly

decreasing

from fixed edge to

zero at 2
3
b

ðAt x ¼ 0; z ¼ 0Þ ðsbÞmax ¼
�b1qb2

t2
and R ¼ g1qb

At x ¼ �
a

2
; z ¼ 0:4b if a5 b or z ¼ 0:2b if a < b

� �
sa ¼

�b2qb2

t2
and R ¼ g2qb

(Ref. 49 for n ¼ 0:2Þ

9ddd. Uniformly

decreasing from

fixed edge to zero

at 1
3
b

ðAt x ¼ 0; z ¼ 0Þ ðsbÞmax ¼
�b1qb2

t2
and R ¼ g1qb

At x ¼ �
a

2
; z ¼ 0:2b

� �
sa ¼

�b2qb2

t2
and R ¼ g2qb

(Ref. 49 for n ¼ 0:2

a=b 0.25 0.50 0.75 1.0 1.5 2.0 3.0

b1 0.017 0.056 0.095 0.140 0.201 0.228 0.241

b2 0.019 0.050 0.068 0.098 0.106 0.097 0.074

g1 0.101 0.177 0.227 0.262 0.294 0.301 0.301

g2 0.082 0.129 0.146 0.157 0.165 0.162 0.158

a=b 0.25 0.50 0.75 1.0 1.5 2.0 3.0

b1 0.014 0.035 0.047 0.061 0.075 0.080 0.082

b2 0.010 0.024 0.031 0.030 0.025 0.020 0.013

g1 0.088 0.130 0.146 0.155 0.161 0.162 0.162

g2 0.046 0.069 0.079 0.077 0.074 0.074 0.082
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10. Rectangular plate; three

edges fixed, one edge

(a) free

10a. Uniform over entire

plate
ðAt x ¼ 0; z ¼ 0Þ ðsbÞmax ¼

�b1qb2

t2
and R ¼ g1qb

ðAt x ¼ 0; z ¼ bÞ sa ¼
b2qb2

t2

At x ¼ �
a

2
; z ¼ b

� �
sa ¼

�b3qb2

t2
and R ¼ g2qb

(Ref. 49 for n ¼ 0:2Þ

10aa. Uniform over 2
3

of

plate from fixed

edge

ðAt x ¼ 0; z ¼ 0Þ ðsbÞmax ¼
�b1qb2

t2
and R ¼ g1qb

At x ¼ �
a

2
; z ¼ 0:6b for a > b or z ¼ 0:4b for a4b

� �
sa ¼

�b2qb2

t2
and r ¼ g2qb

(Ref. 49 for n ¼ 0:2Þ

10aaa. Uniform over
1
3

of plate from

fixed edge

ðAt x ¼ 0; z ¼ 0Þ ðsbÞmax ¼
�b1qb2

t2
and R ¼ g1qb

At x ¼ �
a

2
; z ¼ 0:2b

� �
sa ¼

�b2qb2

t2
and R ¼ g2qb

(Ref. 49 for n ¼ 0:2Þ

a=b 0.25 0.50 0.75 1.0 1.5 2.0 3.0

b1 0.020 0.081 0.173 0.321 0.727 1.226 2.105

b2 0.016 0.066 0.148 0.259 0.484 0.605 0.519

b3 0.031 0.126 0.286 0.511 1.073 1.568 1.982

g1 0.114 0.230 0.341 0.457 0.673 0.845 1.012

g2 0.125 0.248 0.371 0.510 0.859 1.212 1.627

a=b 0.25 0.50 0.75 1.0 1.5 2.0 3.0

b1 0.020 0.080 0.164 0.277 0.501 0.710 1.031

b2 0.031 0.110 0.198 0.260 0.370 0.433 0.455

g1 0.115 0.230 0.334 0.424 0.544 0.615 0.674

g2 0.125 0.250 0.344 0.394 0.399 0.409 0.393

a=b 0.25 0.50 0.75 1.0 1.5 2.0 3.0

b1 0.020 0.068 0.110 0.148 0.202 0.240 0.290

b2 0.026 0.063 0.084 0.079 0.068 0.057 0.040

g1 0.115 0.210 0.257 0.291 0.316 0.327 0.335

g2 0.111 0.170 0.194 0.185 0.174 0.170 0.180
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TABLE 11.4 Formulas for flat plates with straight boundaries and constant thickness (Continued )

Case no.,

shape and supports Case no., loading Formulas and tabulated specific values

10d. Uniformly

decreasing from

fixed edge to

zero at free edge

ðAt x ¼ 0; z ¼ 0Þ ðsbÞmax ¼
�b1qb2

t2
and R ¼ g1qb

At x ¼ �
a

2
; z ¼ b if a > b or z ¼ 0:4b if a < b

� �
sa ¼

�b2qb2

t2
and R ¼ g2qb

(Ref. 49 for n ¼ 0:2Þ

10dd. Uniformly

decreasing from

fixed edge to zero

at 2
3
b

ðAt x ¼ 0; z ¼ 0Þ ðsbÞmax ¼
�b1qb2

t2
and R ¼ g1qb

At x ¼ �
a

2
; z ¼ 0:4b if a5 b or z ¼ 0:2b if a < b

� �
sb ¼

�b2qb2

t2
and R ¼ g2qb

(Ref. 49 for n ¼ 0:2Þ

a=b 0.25 0.50 0.75 1.0 1.5 2.0 3.0

b1 0.018 0.064 0.120 0.195 0.351 0.507 0.758

b2 0.019 0.068 0.125 0.166 0.244 0.387 0.514

g1 0.106 0.195 0.265 0.324 0.406 0.458 0.505

g2 0.075 0.151 0.211 0.242 0.106 0.199 0.313

a=b 0.25 0.50 0.75 1.0 1.5 2.0 3.0

b1 0.017 0.056 0.095 0.141 0.215 0.277 0.365

b2 0.019 0.050 0.068 0.099 0.114 0.113 0.101

g1 0.102 0.177 0.227 0.263 0.301 0.320 0.336

g2 0.082 0.129 0.146 0.157 0.163 0.157 0.146
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10ddd. Uniformly

decreasing from

fixed edge to

zero at 1
3
b

ðAt x ¼ 0; z ¼ 0Þ ðsbÞmax ¼
�b1qb2

t2
and R ¼ g1qb

At x ¼ �
a

2
; z ¼ 0:2b

� �
sa ¼

�b2qb2

t2
and R ¼ g2qb

(Ref. 49 for n ¼ 0:2Þ

11. Rectangular plate;

two adjacent edges

fixed, two remaining

edges free

11a. Uniform over entire

plate

ðAt x ¼ a; z ¼ 0Þ ðsbÞmax ¼
�b1qb2

t2
and R ¼ g1qb

At x ¼ 0; z ¼ b if a >
b

2
or a ¼ 0:8b if a4

b

2

� �
sa ¼

�b2qb2

t2
and R ¼ g2qb

(Ref. 49 for n ¼ 0:2)

11aa. Uniform over

plate from z ¼ 0

to z ¼ 2
3
b

ðAt x ¼ a; z ¼ 0Þ ðsbÞmax ¼
�b1qb2

t2
and R ¼ g1qb

At x ¼ 0; z ¼ 0:6b if a >
b

2
or z ¼ 0:4b if a4

b

2

� �
sa ¼

�b2qb2

t2
and R ¼ g2qb

(Ref. 49 for n ¼ 0:2Þ

a=b 0.125 0.25 0.375 0.50 0.75 1.0

b1 0.050 0.173 0.297 0.465 0.758 0.963

b2 0.044 0.143 0.230 0.286 0.396 0.435

g1 0.311 0.543 0.563 0.654 0.741 0.748

g2 0.126 0.249 0.335 0.377 0.384 0.393

a=b 0.25 0.50 0.75 1.0 1.5 2.0 3.0

b1 0.014 0.035 0.047 0.061 0.076 0.086 0.100

b2 0.010 0.024 0.031 0.030 0.025 0.020 0.014

g1 0.088 0.130 0.146 0.156 0.162 0.165 0.167

g2 0.046 0.069 0.079 0.077 0.073 0.073 0.079

a=b 0.125 0.25 0.375 0.50 0.75 1.0

b1 0.050 0.182 0.353 0.631 1.246 1.769

b2 0.047 0.188 0.398 0.632 1.186 1.769

g1 0.312 0.572 0.671 0.874 1.129 1.183

g2 0.127 0.264 0.413 0.557 0.829 1.183
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TABLE 11.4 Formulas for flat plates with straight boundaries and constant thickness (Continued )

Case no.,

shape, and supports Case no., loading Formulas and tabulated specific values

11aaa. Uniform over

plate from z ¼ 0

to z ¼ 1
3
b

ðAt x ¼ a; z ¼ 0Þ ðsbÞmax ¼
�b1qb2

t2
and R ¼ g1qb

At x ¼ 0; z ¼ 0:4b if a >
b

2
or z ¼ 0:2b if a4

b

2

� �
sa ¼

�b2qb2

t2
and R ¼ g2qb

(Ref. 49 for n ¼ 0:2Þ

11d. Uniformly

decreasing from

z ¼ 0 to z ¼ b

ðAt x ¼ a; z ¼ 0Þ ðsbÞmax ¼
�b1qb2

t2
and R ¼ g1qb

At x ¼ 0; z ¼ b if a ¼ b; or z ¼ 0:6b if
b

2
4a < b; or z ¼ 0:4b if a <

b

2

� �
sa ¼

�b2qb2

t2
and R ¼ g2qb

(Ref. 49 for n ¼ 0:2Þ

11dd. Uniformly

decreasing

from z ¼ 0 to

z ¼ 2
3
b

ðAt x ¼ a; z ¼ 0Þ ðsbÞmax ¼
�b1qb2

t2
and R ¼ g1qb

ðAt x ¼ 0; z ¼ 0:4b if a5 0:375b; or z ¼ 0:2b if a < 0:375bÞ sa ¼
�b2qb2

t2
and R ¼ g2qb

(Ref. 49 for n ¼ 0:2Þ

a=b 0.125 0.25 0.375 0.50 0.75 1.0

b1 0.034 0.099 0.143 0.186 0.241 0.274

b2 0.034 0.068 0.081 0.079 0.085 0.081

g1 0.222 0.311 0.335 0.343 0.349 0.347

g2 0.109 0.162 0.180 0.117 0.109 0.105

a=b 0.125 0.25 0.375 0.50 0.75 1.0

b1 0.043 0.133 0.212 0.328 0.537 0.695

b2 0.028 0.090 0.148 0.200 0.276 0.397

g1 0.271 0.423 0.419 0.483 0.551 0.559

g2 0.076 0.151 0.205 0.195 0.230 0.192

a=b 0.125 0.25 0.375 0.50 0.75 1.0

b1 0.040 0.109 0.154 0.215 0.304 0.362

b2 0.026 0.059 0.089 0.107 0.116 0.113

g1 0.250 0.354 0.316 0.338 0.357 0.357

g2 0.084 0.129 0.135 0.151 0.156 0.152
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11ddd. Uniformly

decreasing

from z ¼ 0

to z ¼ 1
3
b

ðAt x ¼ a; z ¼ 0Þ ðsbÞmax ¼
�b1qb2

t2
and R ¼ g1qb

ðAt x ¼ 0; z ¼ 0:2bÞ sa ¼
�b2qb2

t2
and R ¼ g2qb

(Ref. 49 for n ¼ 0:2Þ

12. Continuous plate;

supported at equal

intervals a on circular

supports of radius ro

12a. Uniform over

entire surface

(At edge of support)

sa ¼
0:15q

t2
a �

4

3
ro

� �2
1

n
þ 4

� �
when 0:154n < 0:30 ðRef: 9Þ

or sa ¼
3qa2

2pt2
ð1 þ nÞ ln

a

ro

� 21ð1 � nÞ
r2

o

a2
� 0:55 � 1:50n

� �
when n < 0:15

where n ¼
2ro

a

ðRef: 11Þ

13. Continuous plate;

supported continuously

on an elastic foundation

of modulus k (lb=in2=in)

13b. Uniform over a

small circle of

radius ro , remote

from edges

(Under the load)

smax ¼
3W ð1 þ nÞ

2pt2
ln

Le

ro

þ 0:6159

� �
where Le ¼

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Et3

12ð1 � n2Þk

s

Max foundation pressure qo ¼
W

8L2
e

ymax ¼
�W

8kL2
e

(Ref. 14)

a=b 0.125 0.25 0.375 0.50 0.75 1.0

b1 0.025 0.052 0.071 0.084 0.100 0.109

b2 0.014 0.028 0.031 0.029 0.025 0.020

g1 0.193 0.217 0.170 0.171 0.171 0.171

g2 0.048 0.072 0.076 0.075 0.072 0.072
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TABLE 11.4 Formulas for flat plates with straight boundaries and constant thickness (Continued )

Case no.,

shape, and supports Case no., loading Formulas and tabulated specific values

13bb. Uniform over a

small circle of

radius ro, adjacent

to edge but remote

from corner

(Under the load)

smax ¼
0:863W ð1 þ nÞ

t2
ln

Le

ro

þ 0:207

� �

ymax ¼ 0:408ð1 þ 0:4nÞ
W

kL2
e

(Ref. 14)

13bbb. Uniform over a

small circle of

radius ro,

adjacent to a

corner

(At the corner) ymax ¼ 1:1 � 1:245
ro

Le

� �
W

kL2
e

(At a distance ¼ 2:38
ffiffiffiffiffiffiffiffiffiffi
roLe

p
from the corner along diagonal)

smax ¼
3W

t2
1 � 1:083

ro

Le

� �0:6
" #

(Ref. 14)

14. Parallelogram plate

(skew slab); all edges

simply supported

14a. Uniform over

entire plate
(At center of plate) smax ¼

bqb2

t2
and ymax ¼

aqb4

Et3

For a=b ¼ 2:0

(Ref. 24 for n ¼ 0:2Þ

15. Parallelogram plate

(skew slab); shorter

edges simply supported,

longer edges free

15a. Uniform over

entire plate
(Along free edge) smax ¼

b1qb2

t2
and ymax

a1qb4

Et3

(At center of plate) smax ¼
b2qb2

t2
and ymax ¼

a2qb4

Et3

For a=b ¼ 2:0

(Ref. 24 for n ¼ 0:2Þ

y 0
 30
 45
 60
 75


b 0.585 0.570 0.539 0.463 0.201

a 0.119 0.118 0.108 0.092 0.011

y 0
 30
 45
 60


b1 3.05 2.20 1.78 0.91

b2 2.97 2.19 1.75 1.00

a1 2.58 1.50 1.00 0.46

a2 2.47 1.36 0.82 0.21
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16. Parallelogram plate

(skew slab); all edges

fixed

16a. Uniform over entire

plate

Along longer edge toward obtuse angle) smax ¼
b1qb2

t2

(At center of plate) s ¼
b2qb2

t2
and ymax ¼

aqb4

Et3

(Ref. 53 for n ¼ 1
3
Þ

17. Equilateral triangle; all

edges simply supported

17a. Uniform over entire

plate
ðAt x ¼ 0; z ¼ �0:062aÞ ðszÞmax ¼

0:1488qa2

t2

ðAt x ¼ 0; z ¼ 0:129aÞ ðsxÞmax ¼
0:1554qa2

t2

ðAt x ¼ 0; z ¼ 0Þ ymax ¼
�qa4ð1 � n2Þ

81Et3

(Refs. 21 and 23 for n ¼ 0:3)

17b. Uniform over

small circle of

radius ro

at x ¼ 0; z ¼ 0

ðAt x ¼ 0; z ¼ 0Þ smax ¼
3W

2pt2

1 � n
2

þ ð1 þ nÞ ln
0:377a

r0o

� �

ymax ¼ 0:069W ð1 � n2Þa2=Et3

y a=b 1.00 1.25 1.50 1.75 2.00 2.25 2.50 3.00

b1 0.308 0.400 0.454 0.481 0.497

0
 b2 0.138 0.187 0.220 0.239 0.247

a 0.0135 0.0195 0.0235 0.0258 0.0273

b1 0.320 0.412 0.483 0.531 0.553

15
 b2 0.135 0.200 0.235 0.253 0.261

a 0.0127 0.0189 0.0232 0.0257 0.0273

b1 0.400 0.495 0.547 0.568 0.580

30
 b2 0.198 0.221 0.235 0.245 0.252

a 0.0168 0.0218 0.0249 0.0268 0.0281

b1 0.394 0.470 0.531 0.575 0.601

45
 b2 0.218 0.244 0.260 0.265 0.260

a 0.0165 0.0208 0.0242 0.0265 0.0284

b1 0.310 0.450 0.538 0.613

60
 b2 0.188 0.204 0.214 0.224

a 0.0136 0.0171 0.0198 0.0245
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TABLE 11.4 Formulas for flat plates with straight boundaries and constant thickness (Continued )

Case no.,

shape, and supports Case no., loading Formulas and tabulated specific values

18. Right-angle isosceles

triangle; all edges

simply supported

18a. Uniform over

entire plate

smax ¼ sz ¼
0:262qa2

t2

ðsxÞmax ¼
0:225qa2

t2

ymax ¼
0:038qa4

Et3

(Ref. 21 for n ¼ 0:3Þ

19. Regular polygonal

plate; all edges simply

supported

Number of sides¼n

19a. Uniform over

entire plate
(At center) s ¼

bqa2

t2
and ymax ¼

�aqa4

Et3

(At center of straight edge) Max slope ¼
xqa3

Et3

(Ref. 55 for n ¼ 0:3Þ

20. Regular polygonal

plate; all edges fixed

Number of sides¼n

20a. Uniform over

entire plate

(At center ) s ¼
b1qa2

t2
and ymax ¼

�aqa4

Et3

(At center of straight edge) smax ¼
�b2qa2

t2

(Ref. 55 for n ¼ 0:3Þ

n 3 4 5 6 7 8 9 10 15 1

b 1.302 1.152 1.086 1.056 1.044 1.038 1.038 1.044 1.074 1.236

a 0.910 0.710 0.635 0.599 0.581 0.573 0.572 0.572 0.586 0.695

x 1.535 1.176 1.028 0.951 0.910 0.888 0.877 0.871 0.883 1.050

n 3 4 5 6 7 8 9 10 1

b 0.589 0.550 0.530 0.518 0.511 0.506 0.503 0.500 0.4875

b2 1.423 1.232 1.132 1.068 1.023 0.990 0.964 0.944 0.750

a 0.264 0.221 0.203 0.194 0.188 0.184 0.182 0.180 0.171
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Chapter

12
Columns and Other

Compression Members

12.1 Columns; Common Case

The formulas and discussion of this section are based on the following

assumptions: (1) The column is nominally straight and is subjected

only to nominally concentric and axial end loads, and such crooked-

ness and eccentricity as may occur are accidental and not greater than

is consistent with standard methods of fabrication and ordinary

conditions of service; (2) the column is homogeneous and of uniform

cross section; (3) if the column is made up of several longitudinal

elements, these elements are so connected as to act integrally; (4)

there are no parts so thin as to fail by local buckling before the column

as a whole has developed its full strength.

End conditions. The strength of a column is in part dependent on the

end conditions, that is, the degree of end fixity or constraint. A column

with ends that are supported and fixed, so that there can be neither

lateral displacement nor change in slope at either end, is called fixed-

ended. A column with ends that are supported against lateral dis-

placement but not constrained against change in slope is called

round-ended. A column with one end fixed and the other end neither

laterally supported nor otherwise constrained is called free-ended.

A column with both end surfaces that are flat and normal to the

axis and that bear evenly against rigid loading surfaces is called

flat-ended. A column with ends that bear against transverse pins is

called pin-ended.

Truly fixed-ended and truly round-ended columns practically never

occur in practice; the actual conditions are almost always interme-

diate. The greatest degree of fixity is found in columns with ends that

are riveted or welded to relatively rigid parts that are also fixed.



Theoretically a flat-ended column is equivalent to a fixed-ended

column until the load reaches a certain critical value at which the

column ‘‘kicks out’’ and bears only on one edge of each end surface

instead of on the whole surface. Actually, flat-ended columns have a

degree of end constraint considerably less than that required to

produce fixity. The nearest approach to round-ended conditions is

found in pin-ended columns subject to vibration or other imposed

motion. The degree of end fixity may be expressed by the coefficient

of constraint [explained following Eq. (12.1-1)] or by the free or effective

length, which is the length measured between points of counterflexure

or the length of a round-ended column of equal strength.

Behavior. If sufficiently slender, a column will fail by elastic instabil-

ity (see Chap. 15). In this case the maximum unit stress sustained is

less than the proportional limit of the material; it depends on the

modulus of elasticity, the slenderness ratio (ratio of the length of the

column to the least radius of gyration of the section), and the end

conditions and is independent of the strength of the material. Columns

which fail in this way are called long columns.

Columns that are too short to fail by elastic instability are called

short columns; such a column will fail when the maximum fiber stress

due to direct compression and to the bending that results from

accidental crookedness and eccentricity reaches a certain value. For

structural steel this value is about equal to the tensile yield point; for

light alloys it is about equal to the compressive yield strength; and for

wood it lies between the flexural elastic limit and the modulus of

rupture.

For a given material and given end conditions, there is a certain

slenderness ratio which marks the dividing point between long and

short columns called the critical slenderness ratio.

Formulas for long columns. The unit stress at which a long column

fails by elastic instability is given by the Euler formula

P

A
¼

Cp2E

ðL=rÞ2
ð12:1-1Þ

where P ¼ total load, A ¼ area of section, E ¼ modulus of elasticity,

L=r ¼ slenderness ratio, and C is the coefficient of constraint, which

depends on end conditions. For round ends, C ¼ 1; for fixed ends,

C ¼ 4; and for the end conditions that occur in practice, C can rarely

be assumed greater than 2. It is generally not considered good practice

to employ long columns in building and bridge construction, but they

are used in aircraft. (Formulas for the loads producing elastic instabil-

ity of uniform and tapered bars under a wide variety of conditions of

loading and support are given in Table 15.1.)
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Formulas for short columns. It is not possible to calculate with accu-

racy the maximum stress produced in a short column by a nominally

concentric load because of the large influence of the indeterminate

crookedness and eccentricity. The maximum unit stress that a column

will sustain, however, can be expressed by any of a number of

formulas, each of which contains one or more terms that is empirically

adjusted to secure conformity with test results. Of such formulas,

those given below are the best known and provide the basis for most of

the design formulas used in American practice. In these equations P

denotes the load at failure, A the cross-sectional area, L the length,

and r the least radius of gyration of the section; the meaning of other

symbols used is explained in the discussion of each formula.

Secant formula

P

A
¼

s

1 þ
ec

r2
sec

KL

2r

ffiffiffiffiffiffiffi
P

AE

r ! ð12:1-2Þ

This formula is adapted from the formula for stress due to eccentric

loading [Eq. (12.4-1)]. Here s denotes the maximum fiber stress at

failure (usually taken as the yield point for steel and as the yield

strength for light alloys); e denotes the equivalent eccentricity (that

eccentricity which in a perfectly straight column would cause the same

amount of bending as the actual eccentricity and crookedness); c

denotes the distance from the central axis about which bending

occurs to the extreme fiber on the concave or compression side of the

bent column; and K is a numerical coefficient, dependent on end

conditions, such that KL is the effective length of the column, or

distance between points of inflection. The term ec=r2 is called the

eccentric ratio, and a value is assumed for this ratio which makes the

formula agree with the results of tests on columns of the type under

consideration. For example, tests on structural steel columns of

conventional design indicate that the average value of the eccentric

ratio is 0.25. In using the secant formula, P=A must be solved for by

trial or by the use of prepared charts.

Rankine formula

P

A
¼

s

1 þ fðL=rÞ2
ð12:1-3Þ

This is a semirational formula. The value of s is sometimes taken as

the ultimate strength of the material and the value of f as s=Cp2E,

thus making the formula agree with the results of tests on short

prisms when L=r is very small and with Euler’s equation when L=r is
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very large. More often s and f are adjusted empirically to make the

equation agree with the results of tests through the L=r range of most

importance.

Simple polynomial formula

P

A
¼ s� k

L

r

� �n

ð12:1-4Þ

This is an empirical formula. For most steels the exponent n is

chosen as 2 and s is chosen as the yield point to give the well-known

parabolic formula. The constant k is generally chosen to make the

parabola intersect tangent to the Euler curve for a long column. See

Refs. 1 to 4.

For cast irons and for many of the aluminum alloys (Refs. 1 and 5)

the exponent n is taken as unity to give a straight-line formula. If s
were here taken as the maximum fiber stress at failure and the

straight line made tangent to the Euler curve, the formula would

give values well below experimental values. For this reason the

straight-line formula is generally used for intermediate lengths with

s and k modified to make the straight line pass through the experi-

mental data of interest. For columns shorter than intermediate in

length, a constant value of P=A is given; for those longer than

intermediate, the Euler curve is specified.

For timber the exponent n is usually chosen as 4 (Refs. 1 and 6) and

then treated in the same manner as was the parabolic formula. The

value used for s is generally the ultimate compressive strength of the

timber.

Exponential formula

P

A
¼ Cl2

1 s where l ¼
KL

rp
s
E

� �1=2

ð12:1-5Þ

The American Institute of Steel Construction in Ref. 7 suggests the

use of a formula of the form shown in Eq. (12.1-5), where K , L, r, and s
are as defined for the secant formula. The constant l combines the

column dimensions L and r, the degree of end fixity indicated by K,

and the material properties s and E. The secant, Rankine, parabolic,

exponential, and Euler formulas can all be expressed in terms of l and

a simple tabulation used to compare them.

Parabolic formula
P=A

s
¼ 1 �

l2

4
for l < 1:414

Exponential formula
P=A

s
¼ 0:6922l2

for l < 1:649
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Rankine formula
P=A

s
¼

1

1 þ l2
for all l

Secant formula
P=A

s
¼

1

1 þ 0:25 sec
pl
2

ffiffiffiffiffiffiffiffiffiffi
P=A

s

r ! for all l

The Euler formula becomes ðP=AÞ=s ¼ 1=l2, and both the parabolic

and exponential formulas given above have been derived to be tangent

to the Euler formulas where they intersect. In the table on the next

page are shown the values of ðP=AÞ=s for each of the given equations or

sets of equations.

In the case of the secant formula at very short lengths, the lower

values can be attributed to the chosen eccentricity ratio of 0.25.

By applying a proper factor of safety a safe load can be calculated.

Many codes make use of safety factors which vary with the effective

L=r ratios, so the safe-load formulas may differ somewhat in form from

the ultimate-load formulas just discussed. See Ref. 1 for extensive

listings of applicable codes and design specifications.

Calculation of stress. The best way to compute the probable value of

the maximum fiber stress in a short column, caused by the imposition

of a nominally concentric load that is less than the ultimate load, is to

use the secant formula [Eq. (12.1-2)] with an assumed value of e or

ec=r2. However, by transposing terms, any one of Eqs. (12.1-3)–(12.1-5)

can be written so as to give the maximum stress s in terms of the load

P. Such procedure is logical only when s is the fiber stress at failure

and P the ultimate load; but if the maximum stress due to some

load that is less than the ultimate load is thus computed, the

result, although probably considerably in error, is almost sure to

be greater than the true stress and hence the method errs on the

side of safety.

12.2 Local Buckling

If a column is composed wholly or partially of thin material, local

buckling may occur at a unit load less than that required to cause

failure of the column as a whole. When such local buckling occurs at a

unit stress less than the proportional limit, it represents elastic

instability; the critical stress at which this occurs can be determined

by mathematical analysis. Formulas for the critical stress at which

bars and thin plates exhibit elastic instability, under various condi-

tions of loading and support, are given in Tables 15.1 and 15.2. All

such formulas are based upon assumptions as to homogeneity of

material, regularity of form, and boundary conditions that are never
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Values of ðP=AÞ=s for four different equations or sets of equations

l

Equations 0.000 0.200 0.400 0.600 0.800 1.000 1.200 1.400 1.600 1.800 2.000 2.200 2.400 2.600 2.800 3.000

Parabolic-Euler 1.000 0.990 0.960 0.910 0.840 0.750 0.640 0.510 0.391 0.309 0.250 0.207 0.174 0.148 0.128 0.111

Exponential-Euler 1.000 0.985 0.943 0.876 0.790 0.692 0.589 0.486 0.390 0.309 0.250 0.207 0.174 0.148 0.128 0.111

Rankine 1.000 0.962 0.862 0.735 0.610 0.500 0.410 0.338 0.281 0.236 0.200 0.171 0.148 0.129 0.113 0.100

Secant 0.800 0.794 0.773 0.734 0.673 0.589 0.494 0.405 0.331 0.273 0.227 0.191 0.163 0.140 0.122 0.107
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realized in practice; the critical stress to be expected under any actual

set of circumstances is nearly always less than that indicated by the

corresponding theoretical formula and can be determined with

certainty only by test. This is also true of the ultimate load that will

be carried by such parts as they buckle since elastic buckling is not

necessarily attended by failure and thin flanges and webs, by virtue of

the support afforded by attached parts, may carry a load considerably

in excess of that at which buckling occurs (see Sec. 12.6).

In the following paragraphs, the more important facts and relations

that have been established concerning local buckling are stated,

insofar as they apply to columns of more or less conventional design.

In the formulas given, b represents the unsupported width of the part

under consideration, t its thickness, sy the yield point or yield

strength, and E and n have their usual meanings.

Outstanding flanges. For a long flange having one edge fixed and the

other edge free, the theoretical formula for buckling stress is

s0 ¼
1:09E

1 � n2

t

b

� �2

ð12:2-1Þ

and for a flange having one edge simply supported and the other edge

free, the corresponding formula is

s0 ¼
0:416E

1 � n2

t

b

� �2

ð12:2-2Þ

(See Table 15.2.)

For the outstanding flange of a column, the edge condition is

intermediate, the degree of constraint depending upon the torsional

rigidity of the main member and on the way in which the flange is

attached. The conclusions of the ASCE Column Research Committee

(Ref. 8) on this point may be summed up as follows: For columns of

structural steel having a proportional limit of 30,000 lb=in2, an

outstanding flange riveted between two angles, each having a thick-

ness equal to that of the flange, will not fail by elastic buckling if b=t is

less than 15, b being measured from the free edge of the flange to the

first row of rivets; for wider flanges, the formula for buckling stress is

s0 ¼ 0:4E
t

b

� �2

ð12:2-3Þ

If the thickness of each supporting angle is twice that of the flange,

elastic buckling will not occur if b=t is less than 20, b in this case being

SEC. 12.2] Columns and Other Compression Members 531



measured from the free edge of the flange to the toe of the angle; for

wider flanges, the formula for buckling stress is

s0 ¼ 0:6E
t

b

� �2

ð12:2-4Þ

The ultimate strength of an outstanding flange is practically equal

to the area times the yield point up to a b=t ratio of 15; for wider

flanges the ultimate load is not appreciably greater, and so there is no

substantial gain in load-carrying capacity when the width of a flange

is increased to more than 15 times the thickness. In Ref. 2 are given

recommended limiting values of width=thickness ratios in terms of sy

for webs, flanges, and other parts subject to buckling.

In the case of aluminum, the allowable unit stress on an outstand-

ing flange may be found by the formulas

ðAllowable; lb=in2
Þ s ¼

15;000 � 123k
b

t
when k

b

t
< 81

33;000;000

k
b

t

� �2
when k

b

t
> 81

8>>>>><
>>>>>:

ð12:2-5Þ

ð12:2-6Þ

Here k is to be taken as 4 when the outstanding flange is one leg of an

angle T or other section having relatively little torsional rigidity, and

may be taken as 3 when the flange is part of or firmly attached to a

heavy web or other part that offers relatively great edge constraint.

A formula (Ref. 13) for the ultimate strength of short compression

members consisting of single angles, which takes into account both

local and general buckling, is

P

A
¼ s tanh K

t

b

� �2
" #

ð12:2-7Þ

where K ¼ 149:1 þ 0:1ðL=r � 47Þ2 and s, which depends on L=r, has

the following values:

L=r 0 20 40 60 80

s 40,000 38,000 34,000 27,000 18,000

This formula is for an alloy (24ST) having a yield strength of

43,000 lb=in2 and a modulus of elasticity of 10,500,000 lb=in2, and is

for round-ended columns (c ¼ 1). A more general formula for thin

sections other than angles is

P

A
¼ s tanhðKtÞ ð12:2-8Þ
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Here s ¼ syð1 þ BÞ=ð1 þ B þ B2Þ, where B ¼ syðL=rÞ
2=ðcp2EÞ, and

K ¼ Koðsy=sÞ
1=2, where Ko is a shape factor, the value of which is

found from Eq. (12.2-8), P=A being experimentally determined by

testing columns of the section in question that have a slenderness

ratio of about 20. For a closed box or ‘‘hat’’ section, Ko ¼ 15:6; for a

section with flat flanges with a width that is not more than 25 times

the thickness, Ko ¼ 10:8; for a section of oval form or having wholly or

partially curved flanges, Ko ranges from 12 to 32 (Ref. 13). (An

extensive discussion of design procedures and buckling formulas for

aluminum columns and other structural elements is found in Ref. 5.)

For spruce and other wood of similar properties, Trayer and March

(Chap. 14, Ref. 3) give as the formula for buckling stress

s0 ¼ 0:07E
t

b

� �2

ð12:2-9Þ

when the edge constraint is as great as normally can be expected in

all-wood construction and

s0 ¼ 0:044E
t

b

� �2

ð12:2-10Þ

when conditions are such as to make the edge constraint negligible.

Thin webs. For a long thin web that is fixed along each edge, the

theoretical formula for buckling stress is

s0 ¼
5:73E

1 � n2

t

b

� �2

ð12:2-11Þ

and for a web that is simply supported along each edge, the corre-

sponding formula is

s0 ¼
3:29E

1 � n2

t

b

� �2

ð12:2-12Þ

(See Table 15.2.)

For structural steel columns, the conclusion of the ASCE Column

Research Committee (Ref. 8) is that elastic buckling will not occur at

b=t ratios less than 30. Tests made by the Bureau of Standards (Ref.

14) on steel members consisting of wide webs riveted between edge

angles indicate that this conclusion is conservative and that b=t
may be safely as great as 35 if b is taken as the width between rivet

lines.
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For aluminum columns, the same formulas for allowable stress on a

thin web are suggested as are given previously for the outstanding

flange [(Eqs. (12.2-5) and (12.2-6)] but with k ¼ 1:2. (For discussion of

the ultimate strength developed by a thin web, see Sec. 12.6.)

Thin cylindrical tubes. For a thin cylindrical tube, the theoretical

formula for the critical stress at which buckling occurs is

s0 ¼
Effiffiffi

3
p ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � n2
p

t

R
ð12:2-13Þ

when R denotes the mean radius of the tube (see Table 15.2). Tests

indicate that the critical stress actually developed is usually only 40–

60% of this theoretical value.

Much recent work has been concerned with measuring initial

imperfections in manufactured cylindrical tubes and correlating

these imperfections with measured critical loads. For more detailed

discussions and recommendations refer to Refs. 1–5 in this chapter

and to Refs. 101–109 in Chap. 15.

Attached plates. When the flanges or web of a column are formed by

riveting a number of plates placed flat against one another, there is a

possibility that the outer plate or plates will buckle between points of

attachment if the unsupported length is too great compared with the

thickness. If the full yield strength sy of an outer plate is to be

developed, the ratio of unsupported length a to thickness t should

not exceed the value indicated by the formula

a

t
¼ 0:52

ffiffiffiffiffi
E

sy

s
ð12:2-14Þ

(Ref. 17). Some specifications (Ref. 10) guard against the possibility of

such buckling by limiting the maximum distance between rivets (in

the direction of the stress) to 16 times the thickness of the thinnest

outside plate and to 20 times the thickness of the thinnest inside plate;

the ratio 16 is in agreement with Eq. (12.2-14).

Local buckling of latticed columns. To guard against the possibility that

the longitudinal elements of a latticed column will buckle individually

between points of support, some specifications (Ref. 10) limit the

slenderness ratio of such parts between points of attachment of

lacing bars to 40 or to two-thirds the slenderness ratio of the column

as a whole, whichever is less.

Lacing bars. In a column composed of channels or other structural

shapes connected by lacing bars, the function of the lacing bars is to
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resist the transverse shear due to initial obliquity and that consequent

upon such bending as may occur under load. The amount of this shear

is conjectural since the obliquity is accidental and indeterminate.

Salmon (Ref. 17) shows that with the imperfections usually to be

expected, the transverse shear will be at least 1% of the axial load.

Moore and Talbot (Ref. 18) found that for certain experimental

columns the shear amounted to from 1% to 3% of the axial load.

Some specifications require that in buildings the lacing be designed to

resist a shear equal to 2% of the axial load (Ref. 2), and that in bridges

it be designed to resist a shear V given by

V ¼
P

100

100

ðL=rÞ þ 10
þ

L=r

100

� �

where P is the allowable axial load and r is the radius of gyration of

the column section with respect to the central axis perpendicular to

the plane of the lacing (Ref. 10).

The strength of individual lacing bars as columns has been inves-

tigated experimentally. For a bar of rectangular section with a single

rivet at each end, the ultimate strength (in psi) is given by

P

A
¼ 25;000 � 50

L

r
ðRef: 8Þ

or

P

A
¼ 21;400 � 45

L

r
ðRef: 18Þ

For bars of angle or channel section, these formulas are conservative.

For flat bars used as double lacing, the crossed bars being riveted

together, tests show that the effective L is about half the actual

distance between end rivets. Some specifications (Refs. 2 and 10)

require lacing bars of any section to be designed by the regular

column formula, L being taken as the distance between end rivets

for single lacing and as 70% of that distance for double lacing. There

are additional limitations as to slope of lacing, minimum section, and

method of riveting.

12.3 Strength of Latticed Columns

Although it is customary to assume that a latticed column acts

integrally and develops the full strength of the nominal section,

tests show that when bending occurs in the plane of the lacing, the

column is less stiff than would be the case if this assumption were

valid. For a column so designed that buckling occurs in a plane normal
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to that of the lacing, this fact is unimportant; but in long open columns

laced on all sides, such as are often used for derrick booms and other

light construction, it may be necessary to take it into account.

For any assumed transverse loading, it is easy to calculate that part

of the deflection of a latticed member which is due to strains in the

lacing bars and thus to derive a value for what may be called the

reduced modulus of elasticity KE. Such calculations agree reasonably

well with the results of tests (see Ref. 8), but K , of course, varies with

the nature of the assumed transverse loading or with the form of the

assumed elastic curve, which amounts to the same thing. For

uniformly distributed loading and end support, and for the type of

lacing shown in Fig. 12.1(a), K is given by

K ¼
1

1 þ
4:8I

AL2 cos2 y sin y

ð12:3-1Þ

where L ¼ length of the column, I ¼ moment of inertia of the column

cross section about the principal axis which is normal to the plane of

battens, and A ¼ cross-sectional area of a single lacing bar. For double

lacing, 2.4 should be used in place of 4.8. If KE is used in place of E, the

effect of reduced stiffness on the strength of a long column will be

approximately allowed for. The method is theoretically inexact mainly

because the form of elastic curve assumed is not identical with that

taken by the column, but the error due to this is small.

Timoshenko (Ref. 19) gives formulas based upon the assumption

that the elastic curve of the column is a sinusoid, from which the

following expressions for K may be derived: For the arrangement

shown in Fig. 12.1(a),

K ¼
1

1 þ
4:93I

AL2 cos2 y sin y

ð12:3-2Þ

For the arrangement shown in Fig. 12.1(b),

K ¼
1

1 þ
4:93I

A1L2 cos2 y sin y
þ

4:93I

A2L2 tan y

ð12:3-3Þ

Figure 12.1
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where A1 ¼ cross-sectional area of each diagonal bar and A2 ¼ cross-

sectional area of each transverse bar. For the channel and batten-plate

arrangement shown in Fig. 12.1(c),

K ¼
1

1 þ
p2I

L2

ab

12I2

þ
a2

24I1

� � ð12:3-4Þ

where a ¼ center-to-center distance between battens; b ¼ length of a

batten between rivets; I1 ¼ moment of inertia of a single-channel

section (or any similar section being used for each column leg) about

its own centroidal axis normal to the plane of the battens, and I2 ¼

moment of inertia of a pair of batten plates (that is, I2 ¼ 2tc3=12,

where t is the batten-plate thickness and c is the batten-plate width

measured parallel to the length of the column).

In all the preceding expressions for K, it is assumed that all parts

have the same modulus of elasticity, and only the additional deflection

due to longitudinal strain in the lacing bars and to secondary flexure of

channels and batten plates is taken into account. For fairly long

columns laced over practically the entire length, the values of K

given by Eqs. (12.3-1)–(12.3-3) are probably sufficiently accurate.

More elaborate formulas for shear deflection, in which direct shear

stress in the channels, bending of the end portions of channels

between stay plates, and rivet deformation, as well as longitudinal

strains in lacing bars, are taken into account, are given in Ref. 8; these

should be used when calculating the deflection of a short latticed

column under direct transverse loading.

The use of K as a correction factor for obtaining a reduced value of E

is convenient in designing long latticed columns; for short columns the

correction is best made by replacing L in whatever column formula is

selected by
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1=K Þ

p
L.

Several failure modes and the critical loads associated with these

modes are discussed in Refs. 11 and 12.

12.4 Eccentric Loading; Initial Curvature

When a round-ended column is loaded eccentrically with respect to one

of the principal axes of the section (here called axis 1), the formula for

the maximum stress produced is

s ¼
P

A
1 þ

ec

r2
sec

P

4EA

L

r

� �2
" #1=2

8<
:

9=
; ð12:4-1Þ
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where e ¼ eccentricity, c ¼ distance from axis 1 to the extreme fiber on

the side nearest the load, and r ¼ radius of gyration of the section with

respect to axis 1. (This equation may be derived from the formula for

case 3e, Table 8.8, by putting M1 ¼ Pe.)

If a column with fixed ends is loaded eccentrically, as is assumed

here, the effect of the eccentricity is merely to increase the constrain-

ing moments at the ends; the moment at midlength and the buckling

load are not affected. If the ends are partially constrained, as by a

frictional moment M , this constraint may be taken into account by

considering the actual eccentricity e reduced to e � M=P. If a free-

ended column is loaded eccentrically, as is assumed here, the formula

for the maximum stress is

s ¼
P

A
1 þ

ec

r2
sec

P

EA

L

r

� �2
" #1=2

8<
:

9=
; ð12:4-2Þ

where the notation is the same as for Eq. (12.4-1).

When a round-ended column is loaded eccentrically with respect to

both principal axes of the section (here called axes 1 and 2), the

formula for the maximum stress is

s ¼
P

A
1 þ

e1c1

r2
1

sec
P

4EA

L

r1

� �2
" #1=2

þ
e2c2

r2
2

sec
P

4EA

L

r2

� �2
" #1=2

8<
:

9=
;

ð12:4-3Þ

where the subscripts 1 and 2 have reference to axes 1 and 2 and the

notation is otherwise the same as for Eq. (12.4-1). [The use of Eq.

(12.4-1) is illustrated in the example below, which also shows the use

of Eq. (12.3-1) in obtaining a reduced modulus of elasticity to use with

a latticed column.]

If a round-ended column is initially curved in a plane that is

perpendicular to principal axis 1 of the section, the formula for the

maximum stress produced by concentric end loading is

s ¼
P

A
1 þ

dc

r2

8EA

PðL=rÞ2
sec

P

4EA

L

r

� �2
" #1=2

�1

8<
:

9=
;

0
@

1
A ð12:4-4Þ

where d ¼ maximum initial deflection, c ¼ distance from axis 1 to the

extreme fiber on the concave side of the column, and r ¼ radius of

gyration of the section with respect to axis 1. If the column is initially
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curved in a plane that is not the plane of either of the principal axes 1

and 2 of the section, the formula for the maximum stress is

s ¼
P

A
1 þ

d1c1

r2
1

8EA

PðL=r1Þ
2

sec
P

4EA

L

r1

� �2
" #1=2

�1

8<
:

9=
;

0
@

þ
d2c2

r2
2

8EA

PðL=r2Þ
2

sec
P

4EA

L

r2

� �2
" #1=2

�1

8<
:

9=
;
1
A ð12:4-5Þ

where d1 ¼ the component of the initial deflection perpendicular to the

plane of axis 1, d2 ¼ the component of the initial deflection perpendi-

cular to the plane of axis 2, and c1, c2, r1, and r2 each has reference to

the axis indicated by the subscript.

Eccentrically loaded columns and columns with initial curvature

can also be designed by the interaction formulas given in Sec. 12.5.

EXAMPLE

Figure 12.2 represents the cross section of a structural steel column composed
of two 10-in, 35-lb channels placed 12 in back to back and latticed together. The
length of the column is 349.3 in, and it has single lacing, the bars being of
rectangular section, 2 1

2
by 1

4
in, and inclined at 45�. This column is loaded

eccentrically, the load being applied on axis 2 but 2.40 in from axis 1. With
respect to bending in the plane of the eccentricity, the column is round-ended.
It is required to calculate the maximum fiber stress in the column when a load
of 299,000 lb, or 14,850 lb=in2, is thus applied.

Solution. For axis 1, r ¼ 5:38 in, c ¼ 6:03 in (measured), and e ¼ 2:40 in.
Since the bending due to eccentricity is in the plane of the lacing, a reduced
E is used. K is calculated by Eq. (12.3-1), where I ¼ 583in

4
, A ¼ 2 1

2
	 1

4
¼

0:625 in2, L ¼ 349:3 in, and y ¼ 45�. Therefore

K ¼
1

1 þ
ð4:8Þð583Þ

ð0:625Þð349:32Þð0:7072Þð0:707Þ

¼ 0:94

and using the secant formula [Eq. (23)], we have

s ¼ 14;850 1 þ
ð2:40Þð6:03Þ

5:382
sec

14;850

ð4Þð0:94Þð30;000;000Þ

349:3

5:38

� �2
" #1=2

8<
:

9=
;

¼ 25;300 lb=in2

Figure 12.2
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[This column was actually tested under the loading just described, and the
maximum stress (as determined by strain-gage measurements) was found to
be 25,250 lb=in2. Such close agreement between measured and calculated
stress must be regarded as fortuitous, however.]

12.5 Columns under Combined Compression and
Bending

A column bent by lateral forces or by couples presents essentially the

same problem as a beam under axial compression, and the stresses

produced can be found by the formulas of Table 8.8 provided the end

conditions are determinable. Because these and other uncertainties

generally preclude precise solution, it is common practice to rely upon

some interaction formula, such as one of those given below. The

column may be considered safe for the given loading when the relevant

equations are satisfied.

The following notation is common to all the equations; other terms

are defined as introduced:

Fa ¼ allowable value of P=A for the member considered as a

concentrically loaded column

Fb ¼ allowable value of compressive fiber stress for the member

considered as a beam under bending only

fa ¼ P=A ¼ average compressive stress due to the axial load P

fb ¼ computed maximum bending stress due to the transverse

loads, applied couples, or a combination of these

L ¼ Unbraced length in plane of bending

L=r ¼ slenderness ratio for buckling in that plane

For structural steel

fa

Fa

þ
Cmfb

ð1 � fa=FeÞFb

4 1 when
fa

Fa

> 0:15

fa

Fa

þ
fb

Fb

4 1 when
fa

Fa

< 0:15

for sections between braced points, and

fa

0:6Fy

þ
fb

Fb

4 1

for sections at braced points only. Here Fe ¼ 149;000;000=ðL=rÞ2 and

Fy ¼ yield point of steel; Cm ¼ 0:85 except that for restrained compres-

sion members in frames braced against joint translation and without
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transverse loading between joints; Cm ¼ 0:6 þ 0:4ðM1=M2Þ, where M1

is the smaller and M2 the larger of the moments at the ends of the

critical unbraced length of the member. M1=M2 is positive when the

unbraced length is bent in single curvature and negative when it is

bent in reverse curvature. For such members with transverse loading

between joints, Cm may be determined by rational analysis, or the

appropriate formula from Table 8.8 may be used. (Formulas are

adapted from Ref. 2, with Fe given in English units.)

For structural aluminum

fa

Fa

þ
fb

Fbð1 � fa=FeÞ
4 1

Here Fe ¼ 51;000;000=ðL=rÞ2 for building structures and Fe ¼

45;000;000=ðL=rÞ2 for bridge structures. (Formulas are taken from

Ref. 9 with some changes of notation and with Fe given in English

units.)

For wood (solid rectangular). When L=d4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:3E=Fa

p
,

fb

Fb

þ
fa

Fa

4 1

When L=d >
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:3E=Fa

p
:

1. Concentric end loads plus lateral loads,

fb

Fb � fa

þ
fa

Fa

4 1

2. Eccentric end load,

1:25fb

Fb � fa

þ
fa

Fa

4 1

3. Eccentric end load plus lateral loads,

fbl þ 1:25fbe

Fb � fa

þ
fa

Fa

4 1

Here d ¼ dimension of the section in the plane of bending, fbl ¼

computed bending stress due to lateral loads, and fbe ¼ computed

bending stress due to the eccentric moment. (Formulas are taken

from Ref. 16 with some changes of notation.)
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12.6 Thin Plates with Stiffeners

Compression members and compression flanges of flexural members

are sometimes made of a very thin sheet reinforced with attached

stiffeners; this construction is especially common in airplanes, where

both wings and fuselage are often of the ‘‘stressed-skin’’ type.

When a load is applied to such a combination, the portions of the

plate not very close to the stiffeners buckle elastically at a very low

unit stress, but those portions immediately adjacent to the stiffeners

develop the same stress as do the latter, and portions a short distance

from the stiffeners develop an intermediate stress. In calculating the

part of any applied load that will be carried by the plate or in

calculating the strength of the combination, it is convenient to make

use of the concept of ‘‘effective,’’ or ‘‘apparent,’’ width, i.e., the width of

that portion of the sheet which, if it developed the same stress as the

stiffener, would carry the same load as is actually carried by the entire

sheet.

For a flat, rectangular plate that is supported but not fixed along

each of two opposite edges and subjected to a uniform shortening

parallel to those edges, the theoretical expression (Ref. 20) for the

effective width is

w ¼
pt

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð1 � n2Þ

p
ffiffiffiffi
E

s

r
ð12:6-1Þ

where w ¼ the effective width along each supported edge, t ¼ the

thickness of the plate, and s ¼ the unit stress at the supported edge.

Since the maximum value of s is sy (the yield point or yield strength),

the maximum load that can be carried by the effective strip or by the

whole plate (which amounts to the same thing) is

P ¼
pt2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3ð1 � n2Þ
p ffiffiffiffiffiffiffiffiffi

Esy

q
ð12:6-2Þ

This formula can be written

P ¼ Ct2
ffiffiffiffiffiffiffiffiffi
Esy

q
ð12:6-3Þ

where C is an empirical constant to be determined experimentally for

any given material and manner of support. Tests (Ref. 21) made on

single plates of various metals, supported at the edges, gave values for

C ranging from 1.18 to 1.67; its theoretical value from Eq. (12.6-2)

(taking n ¼ 0:25) is 1.87.

Sechler (Ref. 22) represents C as a function of l ¼ ðt=bÞ
ffiffiffiffiffiffiffiffiffiffiffi
E=sy

p
, where

b is the panel width, and gives a curve showing experimentally

determined values of C plotted against l. The following table of
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corresponding values is taken from Sechler’s corrected graph:

l 0.02 0.05 0.1 0.15 0.2 0.3 0.4 0.5 0.6 0.8

C 2.0 1.76 1.62 1.50 1.40 1.28 1.24 1.20 1.15 1.10

The effective width at failure can be calculated by the relation

w ¼ 1
2
Ct

ffiffiffiffiffi
E

sy

s
¼ 1

2
Cbl

In the case of a cylindrical panel loaded parallel to the axis, the

effective width at failure can be taken as approximately equal to

that for a flat sheet, but the increase in the buckling stress in the

central portion of the panel due to curvature must be taken into

account. Sechler shows that the contribution of this central portion

to the strength of the panel may be allowed for by using for C in the

formula P ¼ Ct2
ffiffiffiffiffiffiffiffiffi
Esy

p
, a value given by

C ¼ Cf � 0:3CflZþ 0:3Z

where l ¼ ðt=bÞ
ffiffiffiffiffiffiffiffiffiffiffi
E=sy

p
, Z ¼ ðb=rÞ

ffiffiffiffiffiffiffiffiffiffiffi
E=sy

p
, and Cf , is the value of C for a

flat sheet, as given by the above table.

The above formulas and experimental data refer to single sheets

supported along each edge. In calculating the load carried by a flat

sheet with longitudinal stiffeners at any given stiffener stress ss, the

effective width corresponding to that stress is found by

w ¼ bð0:25 þ 0:91l2
Þ

where l ¼ ðt=bÞ
ffiffiffiffiffiffiffiffiffiffiffi
E=ss

p
and b ¼ distance between the stiffeners (Ref.

23). The total load carried by n stiffeners and the supported plate is

then

P ¼ nðAs þ 2wtÞss

where As is the section area of one stiffener. When ss is the maximum

unit load the stiffener can carry as a column, P becomes the ultimate

load for the reinforced sheet.

In calculating the ultimate load on a curved sheet with stiffeners,

the strength of each unit or panel may be found by adding to the

buckling strength of the central portion of the panel the strength of a

column made up of the stiffener and the effective width of the attached

sheet, this effective width being found by

w ¼ 1
2
Cf t

ffiffiffiffiffi
E

sc

s

where Cf is the flat-sheet coefficient corresponding to l ¼ ðt=bÞ
ffiffiffiffiffiffiffiffiffiffiffi
E=sc

p
and sc is the unit load that the stiffener-and-sheet column will carry
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before failure, determined by an appropriate column formula. [For the

type of thin section often used for stiffeners in airplane construction,

sc may be found by Eqs. (12.2-7) or (12.2-8).] Since the unit load sc and

the effective width w are interdependent (because of the effect of w on

the column radius of gyration), it is necessary to assume a value of sc,

calculate the corresponding w, and then ascertain if the value of sc is

consistent (according to the column formula used) with this w. (This

procedure may have to be repeated several times before agreement is

reached.) Then, sc and w being known, the strength of the stiffener-

and-sheet combination is calculated as

P ¼ n½scðAs þ 2wtÞ þ ðb � 2wÞts0�

where n is the number of stiffeners, As is the section area of one

stiffener, b is the distance between stiffeners (rivet line to rivet line)

and s0 is the critical buckling stress for the central portion of the sheet,

taken as s0 ¼ 0:3Et=r (r being the radius of curvature of the sheet).

Methods of calculating the strength of stiffened panels and thin

columns subject to local and torsional buckling are being continually

modified in the light of current study and experimentation. A more

extensive discussion than is appropriate here can be found in books on

airplane stress analysis, as well as in Refs. 4 and 5.

12.7 Short Prisms under Eccentric Loading

When a compressive or tensile load is applied eccentrically to a short

prism (i.e., one so short that the effect of deflection is negligible), the

resulting stresses are readily found by superposition. The eccentric

load P is replaced by an equal axial load P 0 and by couples Pe1 and Pe2,

where e1 and e2 denote the eccentricities of P with respect to the

principal axes 1 and 2, respectively. The stress at any point, or the

maximum stress, is then found by superposing the direct stress P0=A
due to the axial load and the bending stresses due to the couples Pe1

and Pe2, these being found by the ordinary flexure formula (Sec. 8.1).

If, however, the prism is composed of a material that can withstand

compression only (masonry) or tension only (very thin shell), this

method cannot be employed when the load acts outside the kern

because the reversal of stress implied by the flexure formula cannot

occur. By assuming a linear stress distribution and making use of the

facts that the volume of the stress solid must equal the applied load P

and that the center of gravity of the stress solid must lie on the line of

action of P, formulas can be derived for the position of the neutral axis

(line of zero stress) and for maximum fiber stress in a prism of any

given cross section. A number of such formulas are given in Table 12.1,

together with the dimensions of the kern for each of the sections
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considered. For any section that is symmetrical about the axis of

eccentricity, the maximum stress K ðP=AÞ is just twice the average

stress P=A when the load is applied at the edge of the kern and

increases as the eccentricity increases, becoming (theoretically) infi-

nite when the load is applied at the extreme fiber. A prism made of

material incapable of sustaining both tension and compression will fail

completely when the resultant of the loads falls outside the boundary

of any cross section, and will crack (under tension) or buckle (under

compression) part way across any section through which the resultant

of the loads passes at a point lying outside the kern.

For any section not shown in Table 12.1, a chart may be constructed

showing the relation between e and x; this is done by assuming

successive positions of the neutral axis (parallel to one principal

axis) and solving for the corresponding eccentricity by the relation

b ¼ I=M , where b ¼ distance from the neutral axis to the point of

application of the load (assumed to be on the other principal axis),

I ¼ moment of inertia, and M ¼ the statical moment about the neutral

axis of that part of the section carrying stress. The position of the

neutral axis for any given eccentricity being known, the maximum

stress can be found by the relation smax ¼ Px=M . These equations

simply express the facts stated above—that the center of gravity of the

stress solid lies on the line of action of P, and that the volume of the

stress solid is equal to P. The procedure outlined is simple in principle

but rather laborious when applied to any except the simpler type of

section since both M and I may have to be determined by graphical

integration.

The method of solution just outlined and all the formulas of Table

12.1 are based on the assumption that the load is applied on one of the

principal axes of the section. If the load is applied outside the kern and

on neither principal axis, solution is more difficult because neither the

position nor the direction of the neutral axis corresponding to a given

position of the load is known. The following graphical method, which

involves successive trials, may be used for a section of any form.

Let a prism of any section (Fig. 12.3) be loaded at any point P. Guess

the position of the neutral axis NN . Draw from NN to the most remote

fiber q the perpendicular aq. That part of the section on the load side of

NN is under compression, and the intensity of stress varies linearly

from 0 at NN to s at q. Divide the stressed area into narrow strips of

uniform width dy running parallel to NN . The total stress on any strip

acts at the center of that strip and is proportional to the area of the

strip w dy and to its distance y from NN . Draw the locus of the centers

of the strips bcq and mark off a length of strip extending 1
2
wy=x to each

side of this locus. This portion of the strip, if it sustained a unit stress

s, would carry the same total load as does the whole strip when

sustaining the actual unit stress sy=x and may be called the effective
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portion of the strip. The effective portions of all strips combine to form

the effective area, shown as the shaded portion of Fig. 12.3. Now if the

assumed position of NN is correct, the centroid of this effective area

will coincide with the point P and the maximum stress s will then be

equal to the load P divided by the effective area.

To ascertain whether or not the centroid of the effective area does

coincide with P, trace its outline on stiff cardboard; then cut out the

piece so outlined and balance it on a pin thrust through at P. If the

piece balances in any position, P is, of course, the centroid. Obviously

the chance of guessing the position of NN correctly at the first attempt

is remote, and a number of trials are likely to be necessary. Each trial,

however, enables the position of NN to be estimated more closely, and

the method is less tedious than might be supposed.

For a solid rectangular section, Esling (Ref. 15) explains a special

method of analysis and gives tabulated constants which greatly facil-

itate solution for this particular case. The coefficient K , by which the

average stress P=A is multiplied to give the maximum stress s, is

given as a function of the eccentric ratios e1=d and e2=b, where the

terms have the meaning shown by Fig. 12.4. The values of K , taken

from Esling’s paper, are as shown in the accompanying table.

e1=d
0 0.05 0.10 0.15 0.175 0.200 0.225 0.250 0.275 0.300 0.325 0.350 0.375 0.400

e2=b

0 1.0 1.30 1.60 1.90 2.05 2.22 2.43 2.67 2.96 3.33 3.81 4.44 5.33 6.67

0.05 1.30 1.60 1.90 2.21 2.38 2.58 2.81 3.09 3.43 3.87 4.41 5.16 6.17 7.73

0.10 1.60 1.90 2.20 2.56 2.76 2.99 3.27 3.60 3.99 4.48 5.14 5.99 7.16 9.00

0.15 1.90 2.21 2.56 2.96 3.22 3.51 3.84 4.22 4.66 5.28 6.03 7.04 8.45 10.60

0.175 2.05 2.38 2.76 3.22 3.50 3.81 4.16 4.55 5.08 5.73 6.55 7.66 9.17 11.50

0.200 2.22 2.58 2.99 3.51 3.81 4.13 4.50 4.97 5.54 6.24 7.12 8.33 9.98

0.225 2.43 2.81 3.27 3.84 4.16 4.50 4.93 5.18 6.05 6.83 7.82 9.13 10.90

0.250 2.67 3.09 3.60 4.22 4.55 4.97 5.48 6.00 6.67 7.50 8.57 10.0 12.00

0.275 2.96 3.43 3.99 4.66 5.08 5.54 6.05 6.67 7.41 8.37 9.55 11.1

0.300 3.33 3.87 4.48 5.28 5.73 6.24 6.83 7.50 8.37 9.37 10.80

0.325 3.81 4.41 5.14 6.03 6.55 7.12 7.82 8.57 9.55 10.80

0.350 4.44 5.16 5.99 7.04 7.66 8.33 9.13 10.00 11.10

0.375 5.33 6.17 7.16 8.45 9.17 9.98 10.90 12.00

0.400 6.67 7.73 9.00 10.60 11.50

By double linear interpolation, the value of K for any eccentricity within the limits of the table may readily be

found.

Figure 12.3
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EXAMPLE

A bridge pier of masonry, 80 ft high, is rectangular in section, measuring at the
base 20 by 10 ft, the longer dimension being parallel to the track. This pier is
subjected to a vertical load P (including its own weight) of 1500 tons, a
horizontal braking load (parallel to the track) of 60 tons, and a horizontal
wind load Pz (transverse to the track) of 50 tons. It is required to determine the
maximum compressive stress at the base of the pier, first assuming that the
masonry can sustain tension and, second, that it cannot.

Solution. For convenience in numerical work, the ton will be retained as the
unit of force and the foot as the unit of distance.

(a) Masonry can sustain tension: Take d ¼ 20 ft, and b ¼ 10 ft, and take axes 1
and 2 as shown in Fig. 12.5. Then, with respect to axis 1, the bending moment
M1 ¼ 60 	 80 ¼ 4800 ton-ft, and the section modulus ðI=cÞ1 ¼ 1

6
ð10Þð202Þ ¼

667 ft3. With respect to axis 2, the bending moment M2 ¼ 50 	 80 ¼

4000 ton-ft, and the section modulus ðI=cÞ2 ¼ 1
6
ð20Þð102Þ ¼ 333 ft3. The section

area is 10 	 20 ¼ 200 ft2. The maximum stress obviously occurs at the corner
where both bending moments cause compression and is

s ¼
1500

200
þ

4800

667
þ

4000

333
¼ 7:5 þ 7:2 þ 12 ¼ 26:7 tons=ft2

(b) Masonry cannot sustain tension: The resultant of the loads pierces the
base section of the pier at point P, at a distance e1 ¼ 60 	 80=1500 ¼ 3:2 ft from
axis 1 at e2 ¼ 50 	 80=1500 ¼ 2:67 ft from axis 2. This resultant is resolved at
point P into rectangular components, the only one of which causing compres-
sion is the vertical component, equal to 1500, with eccentricities e1 and e2. The
eccentric ratios are e1=d ¼ 0:16 and e2=b ¼ 0:267. Referring to the tabulated
values of K , linear interpolation between e1=d ¼ 0:15 and 0.175 at e2=b ¼ 0:250
gives K ¼ 4:35. Similar interpolation at e2=b ¼ 0:275 gives K ¼ 4:83. Linear
interpolation between these values gives K ¼ 4:68 as the true value at
e2=b ¼ 0:267. The maximum stress is therefore

s ¼
KP

A
¼ 4:68 	

1500

200
¼ 35:1 tons=ft2

12.8

Figure 12.4

Figure 12.5
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12.8 Tables

TABLE 12.1 Formulas for short prisms loaded eccentrically; stress reversal impossible

NOTATION: m and n are dimensions of the kern which is shown shaded in each case; x is the distance from the most stressed fiber to the neutral axis;
and A is the net area of the section. Formulas for x and for maximum stress assume the prism to be subjected to longitudinal load P acting outside
the kern on one principal axis of the section and at a distance e from the other principal axis

Form of section, form of

kern, and case no. Formulas for m, n, x, and smax

1. Solid rectangular section m ¼ 1
6
d n ¼ 1

6
b

x ¼ 3ð1
2
d � eÞ

smax ¼
P

A

4d

3d � 6e

2. Hollow rectangular section m ¼
1

6

bd3 � ca3

dðdb � acÞ
; n ¼

1

6

db3 � ac3

bðdb � acÞ

x satisfies
e

d
¼

1

2
�

1
6
bx3 � 1

2
a2cð1

2
d � 1

6
aÞ � 1

2
acdðx � 1

2
a � 1

2
dÞ

d½1
2
bx2 � acðx � 1

2
dÞ�

if
a þ d

2
< x < d

1

2
�

1
6
bx3 � 1

2
cðx � 1

2
d � 1

2
aÞ2ð1

3
x þ 1

6
d � 1

6
aÞ

d½1
2
bx2 � 1

2
cðx � 1

2
d � 1

2
aÞ2�

if
d � a

2
< x <

a þ d

2

8>>>>><
>>>>>:

smax ¼

P
1
2
bx � acðx � 1

2
dÞ=x

if
a þ d

2
< x < d

P
1
2
bx � cðx � 1

2
d þ 1

2
aÞ2=2x

if
d � a

2
< x <

a þ d

2

8>>>><
>>>>:

3. Thin-walled rectangular shell m ¼
1

6
d

dt1 þ 3bt2

dt1 þ bt2

� �
; n ¼

1

6
b

bt2 þ 3dt1

dt1 þ bt2

� �

x ¼
1

2

3

2
d � 3e

� �
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b

3

2
d

t2

t1

� 3e
t2

t1

� �
þ

1

4

3

2
d � 3e

� �2
s

smax ¼
P

xt1 þ bt2

5
4
8
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4. Solid circular section m ¼
r

4

x ¼ rð1 � sinfÞ where f satisfies
e

r
¼

1
8
p� 1

4
f� 5

12
sinf cosfþ 1

6
sin

3 f cosf

cosf� 1
3
cos3 f� 1

2
p sinfþ f sinf

smax ¼
P

A

pð1 � sinfÞ

A cosf� 1
3
cos3 f� 1

2
p sinfþ f sinf

or smax ¼
P

A
K where K is given by following table:

5. Hollow circular section m ¼

1
4
ðr2 þ r2

1Þ

r

smax ¼
P

A
K where K is given by following table:

e=r 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90

x=r 2.00 1.82 1.66 1.51 1.37 1.23 1.10 0.97 0.84 0.72 0.60 0.47 0.35 0.24

K 2.00 2.21 2.46 2.75 3.11 3.56 4.14 4.90 5.94 7.43 9.69 13.4 20.5 37.5

e=r

r1=r 0.29 0.30 0.34 0.35 0.40 0.41 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90

x=r 2.00 1.97 1.81 1.67 1.53 1.38 1.22 1.05 0.88 0.73 0.60 0.48 0.35 0.24
0.4

K 2.00 2.03 2.22 2.43 2.68 2.99 3.42 4.03 4.90 6.19 8.14 11.3 17.3 31.5

x=r 2.00 1.97 1.84 1.71 1.56 1.39 1.21 1.02 0.82 0.64 0.48 0.35 0.24
0.6

K 2.00 2.03 2.18 2.36 2.58 2.86 3.24 3.79 4.64 6.04 8.54 13.2 24.0

x=r 2.00 1.91 1.78 1.62 1.45 1.26 1.05 0.84 0.63 0.41 0.24
0.8

K 2.00 2.10 2.24 2.42 2.65 2.94 3.34 3.95 4.98 7.16 13.4

x=r 2.00 1.87 1.71 1.54 1.35 1.15 0.94 0.72 0.48
1.0

K 2.00 2.12 2.26 2.43 2.63 2.90 3.27 3.79 4.68
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TABLE 12.1 Formulas for short prisms loaded eccentrically; stress reversal impossible (Continued )

6. Thin-walled circular shell m ¼ 1
2
r

x ¼ rð1 � sinfÞ where f satisfies
e

r
¼

1
2
p� f� sinf cosf

2 cosf� p sinfþ 2f sinf

smax ¼
P

tr

1 � sinf
2 cosf� p sinfþ 2f sinf

or smax ¼
P

A
K where K is given by the above table ðcase 5Þ for

r1

r
¼ 1

7. Solid isosceles triangle m1 ¼
d

6
; m2 ¼

d

12
; n ¼

b

8
; A ¼

bd

2

For the load right of centroid and kern, that is, e1 > m1:

Distance from vertex to neutral axis ¼
4d

3
� 2e1

smax ¼ sB ¼
P1

A

6:75

ð2 � 3e1=dÞ
2

For the load left of centroid and kern, that is, e2 > m2:

Distance from base to neutral axis ¼ x2 where x2 satisfies

x2

2d

2 � x2=d

3 � x2=d
¼

1

3
�

e2

d

smax ¼ sA ¼
P2

A

3d

x2ð3 � x2=dÞ
or smax ¼

P

A
K

where K is given by following table:

(continued )

e2=d 0.083 0.100 0.125 0.150 0.175 0.200 0.225 0.250 0.275 0.300 0.325

x2=d 1.000 0.885 0.750 0.635 0.532 0.437 0.348 0.263 0.181 0.102 0.025

K 1.500 1.602 1.778 1.997 2.283 2.677 3.252 4.173 5.886 10.17 40.18
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8. Solid trapezoidal section q ¼
b1

b
; �xx ¼

d

3

1 þ 2q

1 þ q
; n ¼

b

8

1 þ q þ q2 þ q3

1 þ q þ q2

m1 ¼
d

6

1 þ 4q þ q2

1 þ 3q þ 2q2
; m2 ¼

d

6

1 þ 4q þ q2

2 þ 3q þ q2
; m3 ¼

d

12

1 þ 3q � 3q2 � q3

1 þ 2q þ 2q2 þ q3

A ¼
dðb þ b1Þ

2

smax ¼
P

A

3ð1 þ qÞ

3qx=d þ ð1 � qÞðx=dÞ2
where x satisfies

e

d
¼

2 þ q

3ð1 þ qÞ
�

x

2d

2q þ ð1 � qÞx=d

3q þ ð1 � qÞx=d

or smax ¼
P

A
K where K is given by following table:

q �xx=d m1=d m2=d m3=d n=b x=d 1.000 0.900 0.800 0.700 0.600 0.500 0.400 0.300 0.200

e=d 0.183 0.225 0.267 0.308 0.348 0.388 0.427 0.465 0.502
0.40 0.429 0.183 0.137 0.063 0.130

K 2.333 2.682 3.125 3.704 4.487 5.600 7.292 10.14 15.91

e=d 0.172 0.208 0.244 0.279 0.314 0.349 0.383 0.417 0.451
0.80 0.481 0.172 0.160 0.018 0.151

K 2.077 2.326 2.637 3.037 3.571 4.320 5.444 7.317 11.07

e=d 0.160 0.191 0.222 0.254 0.286 0.318 0.350 0.383 0.415
1.25 0.519 0.160 0.172 � 0.018 0.189

K 1.929 2.128 2.377 2.697 3.135 3.724 4.623 6.122 9.122

e=d 0.137 0.161 0.187 0.214 0.242 0.271 0.301 0.332 0.363
2.50 0.571 0.137 0.183 � 0.063 0.325

K 1.750 1.897 2.083 2.326 2.652 3.111 3.804 4.965 7.292
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Chapter

13
Shells of Revolution;

Pressure Vessels; Pipes

13.1 Circumstances and General State of Stress

The discussion and formulas in this section apply to any vessel that is

a figure of revolution. For convenience of reference, a line that

represents the intersection of the wall and a plane containing the

axis of the vessel is called a meridian, and a line representing the

intersection of the wall and a plane normal to the axis of the vessel is

called a circumference. Obviously the meridian through any point is

perpendicular to the circumference through that point.

When a vessel of the kind under consideration is subjected to a

distributed loading, such as internal or external pressure, the pre-

dominant stresses are membrane stresses, i.e., stresses constant

through the thickness of the wall. There is a meridional membrane

stress s1 acting parallel to the meridian, a circumferential, or hoop,

membrane stress s2 acting parallel to the circumference, and a

generally small radial stress s3 varying through the thickness of the

wall. In addition, there may be bending and=or shear stresses caused

by loadings or physical characteristics of the shell and its supporting

structure. These include (1) concentrated loads, (2) line loads along a

meridian or circumference, (3) sudden changes in wall thickness or an

abrupt change in the slope of the meridian, (4) regions in the vessel

where a meridian becomes normal to or approaches being normal to

the axis of the vessel, and (5) wall thicknesses greater than those

considered thin-walled, resulting in variations of s1 and s2 through

the wall.

In consequence of these stresses, there will be meridional, circum-

ferential, and radial strains leading to axial and radial deflections and

changes in meridional slope. If there is axial symmetry of both the



loading and the vessel, there will be no tendency for any circumference

to depart from the circular form unless buckling occurs.

13.2 Thin Shells of Revolution under Distributed
Loadings Producing Membrane Stresses Only

If the walls of the vessel are relatively thin (less than about one-tenth

the smaller principal radius of curvature) and have no abrupt changes

in thickness, slope, or curvature and if the loading is uniformly

distributed or smoothly varying and axisymmetric, the stresses s1

and s2 are practically uniform throughout the thickness of the wall

and are the only important ones present; the radial stress s3 and such

bending stresses as occur are negligibly small. Table 13.1 gives

formulas for the stresses and deformations under loadings such as

those just described for cylindrical, conical, spherical, and toroidal

vessels as well as for general smooth figures of revolution as listed

under case 4.

If two thin-walled shells are joined to produce a vessel, and if it is

desired to have no bending stresses at the joint under uniformly

distributed or smoothly varying loads, then it is necessary to choose

shells for which the radial deformations and the rotations of the

meridians are the same for each shell at the point of connection. For

example, a cylindrical shell under uniform internal pressure will have

a radial deformation of qR2ð1 � n=2Þ=Et while a hemispherical head of

equal thickness under the same pressure will have a radial deforma-

tion of qR2ð1 � nÞ=2Et; the meridian rotation c is zero in both cases.

This mismatch in radial deformation will produce bending and shear

stresses in the near vicinity of the joint. An examination of case 4a

(Table 13.1) shows that if R1 is infinite at y ¼ 90� for a smooth figure of

revolution, the radial deformation and the rotation of the meridian

will match those of the cylinder.

Flügge (Ref. 5) points out that the family of cassinian curves has the

property just described. He also discusses in some detail the ogival

shells, which have a constant radius of curvature R1 for the meridian

but for which R2 is a variable. If R2 is everywhere less than R1, the

ogival shell has a pointed top, as shown in Fig. 13.1(a). If R2 is infinite,

as it is at point A in Fig. 13.1(b), the center of the shell must be

supported to avoid large bending stresses although some bending

stresses are still present in the vicinity of point A. For more details

of these deviations from membrane action see Refs. 66 and 74–76.

For very thin shells where bending stresses are negligible, a

nonlinear membrane theory can provide more realistic values near

the crown, point A. Rossettos and Sanders have carried out such a

solution (Ref. 52). Chou and Johnson (Ref. 57) have examined large
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deflections of elastic toroidal membranes of a type used in some

sensitive pressure-measuring devices.

Galletly in Ref. 67 shows that simple membrane theory is not

adequate for the stress analysis of most torispherical pressure vessels.

Ranjan and Steele in Ref. 68 have worked with asymptotic expansions

and give a simple design formula for the maximum stress in the

toroidal segment which is in good agreement with experimental and

numerical studies. They present a simple condition that gives the

optimum knuckle radius for prescribed spherical cap and cylinder

geometries and also give expressions leading to a lower limit for

critical internal pressure at which wrinkles are formed due to circum-

ferential compression in the toroid.

Baker, Kovalevsky, and Rish (Ref. 6) give formulas for toroidal

segments, ogival shells, elliptical shells, and Cassini shells under

various loadings; all these cases can be evaluated from case 4 of

Table 13.1 once R1 and R2 are calculated. In addition to the axisym-

metric shells considered in this chapter, Refs. 5, 6, 45, 59, 66, 74, 81,

and 82 discuss in some detail the membrane stresses in nonaxisym-

metric shells, such as barrel vaults, elliptic cylinders, and hyperbolic

paraboloids.

EXAMPLES

1. A segment of a toroidal shell shown in Fig. 13.2 is to be used as a transition
between a cylinder and a head closure in a thin-walled pressure vessel. To
properly match the deformations, it is desired to know the change in radius
and the rotation of the meridian at both ends of the toroidal segment under an
internal pressure loading of 200 lb=in2. Given: E ¼ 30ð106Þ lb=in2, n ¼ 0:3, and
the wall thickness t ¼ 0:1 in.

Figure 13.1

Figure 13.2
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Solution. Since this particular case is not included in Table 13.1, the
general case 4a can be used. At the upper end y ¼ 30�, R1 ¼ 10 in, and
R2 ¼ 10 þ 5= sin 30� ¼ 20 in; therefore,

DR30� ¼
200ð202Þð0:5Þ

2ð30Þð106Þð0:1Þ
2 �

20

10
� 0:3

� �
¼ �0:002 in

Since R1 is a constant, dR1=dy ¼ 0 throughout the toroidal segment; therefore,

c30� ¼
200ð202Þ

2ð30Þð106Þð0:1Þð10Þð0:577Þ
3

10

20
� 5 þ

20

10
ð2 þ 0Þ

� �
¼ 0:00116 rad

At the lower end, y ¼ 90�, R1 ¼ 10 in, and R2 ¼ 15 in; therefore,

DR90� ¼
200ð152Þð1Þ

2ð30Þð106Þð0:1Þ
2 �

15

10
� 0:3

� �
¼ 0:0015 in

Since tan 90� ¼ infinity and dR1=dy ¼ 0, c90� ¼ 0. In this problem R2=R1 42,
so the value of s2 is never compressive, but this is not always true. One must
check for the possibility of circumferential buckling.

2. The truncated thin-walled cone shown in Fig. 13.3 is supported at its
base by the membrane stress s1. The material in the cone weighs 0.10 lb=in3,
t ¼ 0:25 in, E ¼ 10ð106Þ lb=in2, and Poisson’s ratio is 0.3. Find the stress s1 at
the base, the change in radius at the base, and the change in height of the cone
if the cone is subjected to an acceleration parallel to its axis of 399g.

Solution. Since the formulas for a cone loaded by its own weight are given
only for a complete cone, superposition will have to be used. From Table 13.1
cases 2c and 2d will be applicable. First take a complete cone loaded by its own
weight with its density multiplied by 400 to account for the acceleration. Since
the vertex is up instead of down, a negative value can be used for d. R ¼ 20 in,
d ¼ �40:0, and a ¼ 15�; therefore,

s1 ¼
�40ð20Þ

2 cos 15� cos 15�
¼ �1600 lb=in2

DR ¼
�40ð202Þ

10ð106Þ cos 15�
sin 15� �

0:3

2 sin 15�

� �
¼ 0:000531 in

Dy ¼
�40ð202Þ

10ð106Þ cos2 15�

1

4 sin
2

15�
� sin

2
15�

� �
¼ �0:00628 in

Figure 13.3
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Next we find the radius of the top as 11.96 in and calculate the change in
length and effective weight of the portion of the complete cone to be removed.
R ¼ 11:96 in, d ¼ �40:0, and a ¼ 15�; therefore,

Dy ¼ �0:00628
11:96

20

� �2

¼ �0:00225 in

The volume of the removed cone is

11:96

sin 15�

11:96ð2pÞ
2

ð0:25Þ ¼ 434 in
3

and the effective weight of the removed cone is 434ð0:1Þð400Þ ¼ 17;360 lb.
Removing the load of 17,360 lb can be accounted for by using case 2d, where

P ¼ 17;360, R ¼ 20 in, r ¼ 11:96 in, h ¼ 30 in, and a ¼ 15�:

s1 ¼
17;360

2pð20Þð0:25Þ cos 15�
¼ 572 lb=in2

DR ¼
�0:3ð17;360Þ

2pð10Þð106Þð0:25Þ cos 15�
¼ �0:000343 in

Dh ¼
17;360 lnð20=11:96Þ

2pð10Þð106Þð0:25Þ sin 15� cos2 15�
¼ 0:002353 in

Therefore, for the truncated cone,

s1 ¼ �1600 þ 572 ¼ �1028 lb=in2

DR ¼ 0:000531 � 0:000343 ¼ 0:000188 in

Dh ¼ �0:00628 þ 0:00225 þ 0:002353 ¼ �0:00168 in

13.3 Thin Shells of Revolution under Concentrated
or Discontinuous Loadings Producing
Bending and Membrane Stresses

Cylindrical shells. Table 13.2 gives formulas for forces, moments, and

displacements for several axisymmetric loadings on both long and

short thin-walled cylindrical shells having free ends. These expres-

sions are based on differential equations similar in form to those used

to develop the formulas for beams on elastic foundations in Chap. 8. To

avoid excessive redundancy in the presentation, only the free-end

cases are given in this chapter, but all of the loadings and boundary

conditions listed in Tables 8.5 and 8.6 as well as the tabulated data in

Tables 8.3 and 8.4 are directly applicable to cylindrical shells by

substituting the shell parameters l and D for the beam parameters

b and EI , respectively. (This will be demonstrated in the examples

which follow.) Since many loadings on cylindrical shells occur at the

ends, note carefully on page 148 the modified numerators to be used in

the equations in Table 8.5 for the condition when a ¼ 0. A special
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application of this would be the situation where one end of a cylind-

rical shell is forced to increase a known amount in radius while

maintaining zero slope at that same end. This reduces to an applica-

tion of an externally created concentrated lateral displacement D0 at

a ¼ 0 (Table 8.5, case 6) with the left end fixed. (See Example 4.)

Pao (Ref. 60) has tabulated influence coefficients for short cylind-

rical shells under edge loads with wall thicknesses varying according

to t ¼ Cxn for values of n ¼ 1
4
ð1
4
Þð2Þ and for values of t1=t2 of 2, 3, and 4.

Various degrees of taper are considered by representing data for

k ¼ 0:2ð0:2Þð1:0Þ where k4 ¼ 3ð1 � n2Þx4
1=R

2t2
1. Stanek (Ref. 49) has

tabulated similar coefficients for constant-thickness cylindrical shells.

A word of caution is in order at this point. The original differential

equations used to develop the formulas presented in Table 13.2 were

based on the assumption that radial deformations were small. If the

magnitude of the radial deflection approaches the wall thickness, the

accuracy of the equations declines. In addition, if axial loads are

involved on a relatively short shell, the moments of these axial loads

might have an appreciable effect if large deflections are encountered.

The effects of these moments are not included in the expressions

given.

EXAMPLES

1. A steel tube with a 4.180-in outside diameter and a 0.05-in wall thickness
is free at both ends and is 6 in long. At a distance of 2 in from the left end a
steel ring with a circular cross section is shrunk onto the outside of the tube
such as to compress the tube radially inward a distance of 0.001 in. The
maximum tensile stress in the tube is desired. Given: E ¼ 30ð106Þ lb=in2 and
n ¼ 0:30.

Solution. We calculate the following constants:

R ¼ 2:090 � 0:025 ¼ 2:065

l ¼
3ð1 � 0:32Þ

2:0652ð0:052Þ

� �1=4

¼ 4:00

D ¼
30ð106Þð0:053Þ

12ð1 � 0:32Þ
¼ 344

Since 6=l ¼ 6=4:0 ¼ 1:5 in and the closest end of the tube is 2 in from the load,
this can be considered a very long tube. From Table 13.2, case 15 indicates that
both the maximum deflection and the maximum moment are under the load,
so that

�0:001 ¼
�p

8ð344Þð4:003Þ
or p ¼ 176 lb=in

Mmax ¼
176

4ð4Þ
¼ 11:0 in-lb=in
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At the cross section under the load and on the inside surface, the following
stresses are present:

s1 ¼ 0

s01 ¼
6M

t2
¼

6ð11:0Þ

0:052
¼ 26;400 lb=in2

s2 ¼
yE

R
þ ns1 ¼

�0:001ð30Þð106Þ

2:065
¼ �14;500 lb=in2

s02 ¼ 0:30ð26;400Þ ¼ 7920 lb=in2

The principal stresses on the inside surface are 26,400 and �6580 lb=in2.

2. Given the same tube and loading as in Example 1, except the tube is only
1.2 in long and the ring is shrunk in place 0.4 in from the left end, the
maximum tensile stress is desired.

Solution. Since both ends are closer than 6=l ¼ 1:5 in from the load, the free
ends influence the behavior of the tube under the load. From Table 13.2, case 2
applies in this example, and since the deflection under the load is the given
value from which to work, we must evaluate y at x ¼ a ¼ 0:4 in. Note that
ll ¼ 4:0ð1:2Þ ¼ 4:8, lx ¼ la ¼ 4:0ð0:4Þ ¼ 1:6, and lðl � aÞ ¼ 4:0ð1:2 � 0:4Þ ¼ 3:2.
Also,

y ¼ yAF1 þ
cA

2l
þ LTy

yA ¼
�p

2Dl3

C3Ca2 � C4Ca1

C11

cA ¼
p

2Dl2

C3Ca2 � C4Ca1

C11

where

C3 ¼ �60:51809 ðfrom Table 8:3; under F3 for bx ¼ 4:8Þ

Ca2 ¼ �12:94222 ðfrom Table 8:3; under F2 for bx ¼ 3:2Þ

C4 ¼ �65:84195

C11 ¼ 3689:703

Ca1 ¼ �12:26569

C2 ¼ �55:21063

Also F1 (at x ¼ aÞ ¼ �0:07526 and F2 (at x ¼ aÞ ¼ 2:50700; therefore,

yA ¼
�p

2ð344Þð4:03Þ

�60:52ð�12:94Þ � ð�65:84Þð�12:27Þ

3689:7
¼ 0:154ð10�6Þp

cA ¼
�p

2ð344Þð4:02Þ

�55:21ð�12:94Þ � 2ð�60:52Þð�12:27Þ

3689:7
¼ �19:0ð10�6Þp

and LTy ¼ 0 since x is not greater than a. Substituting into the expression for y
at x ¼ a gives

�0:001 ¼ 0:154ð10�6Þpð�0:07526Þ �
19:0ð10�6Þpð2:507Þ

2ð4:0Þ
¼ �5:96ð10�6Þp

or p ¼ 168 lb=in, yA ¼ 0:0000259 in, and cA ¼ �0:00319 rad.

SEC. 13.3] Shells of Revolution; Pressure Vessels; Pipes 559



Although the position of the maximum moment depends upon the position of
the load, the maximum moment in this case would be expected to be under the
load since the load is some distance from the free end:

M ¼ �yA2Dl2F3 � cADlF4 þ LTM

and at x ¼ a, F3 ¼ 2:37456, F4 ¼ 2:64573, and LTM ¼ 0 since x is not greater
than a. Therefore,

Mmax ¼ �ð0:0000259Þð2Þð344Þð4:02Þð2:375Þ � ð�0:00319Þð344Þð4:0Þð2:646Þ

¼ 10:92 lb-in=in

At the cross section under the load and on the inside surface the following
stresses are present:

s1 ¼ 0; s2 ¼
�0:001ð30Þð106Þ

2:065
¼ �14;500 lb=in2

s01 ¼
6ð10:92Þ

0:052
¼ 26;200 lb=in2; s02 ¼ 0:30ð26;200Þ ¼ 7;860 lb=in2

The small change in the maximum stress produced in this shorter tube points
out how localized the effect of a load on a shell can be. Had the radial load been
the same, however, instead of the radial deflection, a greater difference might
have been noted and the stress s2 would have increased in magnitude instead
of decreasing.

3. A cylindrical aluminum shell is 10 in long and 15 in in diameter and must
be designed to carry an internal pressure of 300 lb=in2 without exceeding a
maximum tensile stress of 12,000 lb=in2. The ends are capped with massive
flanges, which are sufficiently clamped to the shell to effectively resist any
radial or rotational deformation at the ends. Given: E ¼ 10ð106Þ lb=in2 and
n ¼ 0:3.

First solution. Case 1c from Table 13.1 and cases 1 and 3 or cases 8 and 10
from Table 13.2 can be superimposed to find the radial end load and the end
moment which will make the slopes and deflections at both ends zero. Figure
13.4 shows the loadings applied to the shell. First we evaluate the necessary
constants:

R ¼ 7:5 in; l ¼ 10 in; D ¼
10ð106Þt3

12ð1 � 0:32Þ
¼ 915;800t3

l ¼
3ð1 � 0:32Þ

7:52t2

� �1=4

¼
0:4694

t0:5
; ll ¼

4:694

t0:5

Since the thickness is unknown at this step in the calculation, we can only
estimate whether the shell must be considered long or short, i.e., whether the
loads at one end will have any influence on the deformations at the other. To
make an estimate of this effect we can calculate the wall thickness necessary
for just the internal pressure. From case 1c of Table 13.1, the value of the hoop
stress s2 ¼ qR=t can be equated to 12,000 lb=in2 and the expression solved for
the thickness:

t ¼
300ð7:5Þ

12;000
¼ 0:1875 in

Using this value for t gives ll ¼ 10:84, which would be a very long shell.

560 Formulas for Stress and Strain [CHAP. 13



For a trial solution the assumption will be made that the radial load and
bending moment at the right end do not influence the deformations at the left
end. Owing to the rigidity of the end caps, the radial deformation and the
angular rotation of the left end will be set equal to zero. From Table 13.1, case
1c,

s1 ¼
qR

2t
¼

300ð7:5Þ

2t
¼

1125

t
; s2 ¼

qR

t
¼

2250

t
; c ¼ 0

DR ¼
qR2

Et
1 �

n
2

� �
¼

300ð7:52Þ

10ð106Þt
1 �

0:3

2

� �
¼

0:001434

t

From Table 13.2, case 8,

yA ¼
�Vo

2Dl3
¼

�Vo

2ð915;800t3Þð0:4694=t1=2Þ
3
¼

�5:279ð10�6ÞVo

t3=2

cA ¼
Vo

2Dl2
¼

2:478ð10�6ÞVo

t5=2

From Table 13.2, case 10,

yA ¼
Mo

2Dl2
¼

2:478ð10�6ÞMo

t2

cA ¼
�Mo

Dl
¼

�2:326ð10�6ÞMo

t5=2

Summing the radial deformations to zero gives

0:001434

t
�

5:279ð10�6ÞVo

t3=2
þ

2:478ð10�6ÞMo

t2
¼ 0

Similarly, summing the end rotations to zero gives

2:478ð10�6ÞVo

t2
�

2:326ð10�6ÞMo

t5=2
¼ 0

Figure 13.4
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Solving these two equations gives

Vo ¼ 543t1=2 and Mo ¼ 579t

A careful examination of the problem reveals that the maximum bending
stress will occur at the end, and so the following stresses must be combined:
From Table 13.1, case 1c,

s1 ¼
1125

t
; s2 ¼

2250

t

From Table 13.2, case 8,

s1 ¼ 0; s01 ¼ 0; s02 ¼ 0

s2 ¼
�2VolR

t
¼

�2ð543t1=2Þð0:4694=t1=2Þð7:5Þ

t
¼

�3826

t

From Table 13.2, case 10,

s1 ¼ 0

s2 ¼
2Mol

2R

t
¼

2ð579tÞð0:4694=t1=2Þ
2
ð7:5Þ

t
¼

1913

t

and on the inside surface

s01 ¼
6Mo

t2
¼

3473

t

s02 ¼ ns01 ¼
1042

t

Therefore, at the end of the cylinder the maximum longitudinal tensile stress
is 1125=t þ 3473=t ¼ 4598=t; similarly the maximum circumferential tensile
stress is 2250=t � 3826=t þ 1913=t þ 1042=t ¼ 1379=t.

Since the allowable tensile stress was 12,000 lb=in2, we can evaluate
4598=t ¼ 12;000 to obtain t ¼ 0:383 in. This allows ll to be calculated as
7.59, which verifies the assumption that the shell can be considered a long
shell for this loading and support.

Second solution. This loaded shell represents a case where both ends are
fixed and a uniform radial pressure is applied over the entire length. Since the
shell is considered long, we can find the expressions for RA and MA in Table
8.6, case 2, under the condition of the left end fixed and where the distance
a ¼ 0 and b can be considered infinite:

RA ¼
�2w

b
ðB1 � A1Þ and MA ¼

w

b2
ðB4 � A4Þ

If �Vo is substituted for RA, Mo for MA, l for b, and D for EI, the solution should
apply to the problem at hand. Care must be exercised when substituting for
the distributed load w. A purely radial pressure would produce a radial
deformation DR ¼ qR2=Et, while the effect of the axial pressure on the ends
reduces this to DR ¼ qR2ð1 � n=2Þ=Et. Therefore, for w we must substitute
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�300ð1 � n=2Þ ¼ �255 lb=in2. Also note that for a ¼ 0, A1 ¼ A4 ¼ 0:5, and for
b ¼ 1, B1 ¼ B4 ¼ 0. Therefore,

Vo ¼
�2ð255Þ

l
ð0 � 0:5Þ ¼

255

l
¼ 543t1=2

Mo ¼
�255

l2
ð0 � 0:5Þ ¼

127:5

l2
¼ 579t

which verifies the results of the first solution.
If we examine case 2 of Table 8.5 under the condition of both ends fixed, we

find the expression

Mo ¼ MA ¼
w

2l2

2C3C5 � C2
4

C11

Substituting for the several constants and reducing the expression to a simple
form, we obtain

Mo ¼
�w

2l2

sinh ll � sin ll

sinh ll þ sin ll

The hyperbolic sine of 7.59 is 989, and so for all practical purposes

Mo ¼
�w

2l2
¼ 579t

which, of course, is the justification for the formulas in Table 8.6.

4. A 2-in length of steel tube described in Example 1 is heated, and rigid
plugs are inserted 1

2
in into each end. The rigid plugs have a diameter equal to

the inside diameter of the tube plus 0.004 in at room temperature. Find the
longitudinal and circumferential stresses at the outside of the tube adjacent to
the end of the plug and the diameter at midlength after the tube is shrunk into
the plugs.

Solution. The most straightforward solution would consist of assuming that
the portion of the tube outside the rigid plug is, in effect, displaced radially a
distance of 0.002 in and owing to symmetry the midlength has zero slope. A
steel cylindrical shell 1

2
in in length, fixed on the left end with a radial

displacement of 0.002 in at a ¼ 0 and with the right end guided, i.e., slope
equal to zero, is the case to be solved.

From Example 1, R ¼ 2:065 in, l ¼ 4:00, and D ¼ 344; ll ¼ 4:0ð0:5Þ ¼ 2:0.
From Table 8.5, case 6, for the left end fixed and the right end guided, we find
the following expressions when a ¼ 0:

RA ¼ Do2EIb3 C2
4 þ C2

2

C12

and MA ¼ Do2EIb2 C1C4 � C3C2

C12
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Replace EI with D and b with l; Do ¼ 0:002, and from page 148 note that
C2

4 þ C2
2 ¼ 2C14 and C1C4 � C3C2 ¼ �C13. From Table 8.3, for ll ¼ 2:00, we

find that 2C14 ¼ 27:962, �C13 ¼ �14:023, and C12 ¼ 13:267. Therefore,

RA ¼ 0:002ð2Þð344Þð4:03Þ
27:962

13:267
¼ 185:6 lb=in

MA ¼ 0:002ð2Þð344Þð4:02Þ
�14:023

13:267
¼ �23:27 in-lb=in

To find the deflection at the midlength of the shell, which is the right end of
the half-shell being used here, we solve for y at x ¼ 0:5 in and lx ¼

4:0ð0:5Þ ¼ 2:0. Note that yA ¼ 0 because the deflection of 0.002 in was forced
into the shell just beyond the end in the solution being considered here.
Therefore,

y ¼
MA

2Dl2
F3 þ

RA

2Dl3
F4 þ DoFa1

where from Table 8.3 at lx ¼ 2:0

F3 ¼ 3:298; F4 ¼ 4:930; Fa1 ¼ F1 ¼ �1:566 since a ¼ 0

yx¼0:5 ¼
�23:27

2ð344Þð4:02Þ
3:298 þ

185:6

4ð344Þð4:03Þ
4:93 þ 0:002ð�1:566Þ ¼ 0:00029 in

For a partial check on the solution we can calculate the slope at midlength.
From Table 8.5, case 6,

y ¼
MA

2EIb
F2 þ

RA

2EIb2
F3 � DobFa4

where F2 ¼ 1:912 and Fa4 ¼ F4 since a ¼ 0. Therefore,

y ¼
�23:27

2ð344Þð4:0Þ
1:912 þ

185:6

2ð344Þð4:02Þ
3:298 � 0:002ð4:0Þð4:930Þ ¼ 0:00000

Now from Table 13.2,

s01 ¼
�6M

t2
¼

�6ð�23:27Þ

0:052
¼ 55;850 lb=in2

Since s1 ¼ 0,

s2 ¼
0:002ð30Þð106Þ

2:065
¼ 29;060 lb=in2

s02 ¼ 0:3ð55;800Þ ¼ 16;750 lb=in2

On the outside surface at the cross section adjacent to the plug the long-
itudinal stress is 55,850 lb=in2 and the circumferential stress is 29;060 þ

16;750 ¼ 45;810 lb=in2. Since a rigid plug is only hypothetical, the actual
stresses present would be smaller when a solid but elastic plug is used.
External clamping around the shell over the plugs would also be necessary
to fulfill the assumed fixed-end condition. The stresses calculated are, there-
fore, maximum possible values and would be conservative.
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Spherical shells. The format used to present the formulas for the

finite-length cylindrical shells could be adapted for finite portions of

open spherical and conical shells with both edge loads and loads

applied within the shells if we were to accept the approximate solu-

tions based on equivalent cylinders. Baker, Kovalevsky, and Rish (Ref.

6) present formulas based on this approximation for open spherical

and conical shells under edge loads and edge displacements. For

partial spherical shells under axisymmetric loading, Hetényi, in an

earlier work (Ref. 14), discusses the errors introduced by this same

approximation and compares it with a better approximate solution

derived therein. Table 13.3, case 1, gives formulas based on Hetényi’s

work, and although it is estimated that the calculational effort is twice

that of the simpler approximation, the errors in maximum stresses are

decreased substantially, especially when the opening angle f is much

different from 90�.

Stresses and deformations due to edge loads decrease exponentially

away from the loaded edges of axisymmetric shells, and consequently

boundary conditions or other restraints are not important if they are

far enough from the loaded edge. For example, the exponential term

decreases to approximately 1% when the product of the spherical shell

parameter b (see Table 13.3, case 1) and the angle o (in radians) is

greater than 4.5; similarly it reduces to approximately 5% at bo ¼ 3.

This means that a spherical shell with a radius=thickness ratio of 50,

for which b 	 9, can have an opening angle f as small as 1
3
rad, or 19�,

and still be solved with formulas for cases 1 with very little error.

Figure 13.5 shows three shells, for which R=t is approximately 50,

which would respond similarly to the edge loads Mo and Qo. In fact,

the conical portion of the shell in Fig. 13.5(c) could be extended much

closer than 19� to the loaded edge since the conical portion near the

junction of the cone and sphere would respond in a similar way to the

sphere. (Hetényi discusses this in Ref. 14.)

Similar bounds on nonspherical but axisymmetric shells can be

approximated by using closely matching equivalent spherical shells

(Ref. 6). (We should note that the angle f in Table 13.3, case 1, is not

limited to a maximum of 90�, as will be illustrated in the examples at

the end of this section.)

Figure 13.5

SEC. 13.3] Shells of Revolution; Pressure Vessels; Pipes 565



For shallow spherical shells where f is small, Gerdeen and Nieden-

fuhr (Ref. 46) have developed influence coefficients for uniform pres-

sure and for edge loads and moments. Shells with central cutouts are

also included as are loads and moments on the edge of the cutouts.

Many graphs as well as tabulated data are presented, which permits

the solution of a wide variety of problems by superposition.

Cheng and Angsirikul (Ref. 80) present the results of an elasticity

solution for edge-loaded spherical domes with thick walls and with

thin walls.

Conical shells. Exact solutions to the differential equations for both

long and short thin-walled truncated conical shells are described in

Refs. 30, 31, 64, and 65. Verifications of these expressions by tests are

described in Ref. 32, and applications to reinforced cones are described

in Ref. 33. In Table 13.3, case 4 for long cones, where the loads at one

end do not influence the displacements at the other, is based on the

solution described by Taylor (Ref. 65) in which the Kelvin functions

and their derivatives are replaced by asymptotic formulas involving

negative powers of the conical shell parameter k (presented here in a

modified form):

k ¼
2

sin a
12ð1 � n2ÞR2

t2 sec2 a

� �1=4

These asymptotic formulas will give three-place accuracy for the

Kelvin functions for all values of k > 5. To appreciate this fully, one

must understand that a truncated thin-walled cone with an R=t ratio

of 10 at the small end, a semiapex angle of 80�, and a Poisson’s ratio of

0.3 will have a value of k ¼ 4:86. For problems where k is much larger

than 5, fewer terms can be used in the series, but a few trial

calculations will soon indicate the number of terms it is necessary to

carry. If only displacements and stresses at the loaded edge are

needed, the simpler forms of the expressions can be used. (See the

example at the end of Sec. 13.4.)

Baltrukonis (Ref. 64) obtains approximations for the influence

coefficients which give the edge displacements for short truncated

conical shells under axisymmetric edge loads and moments; this is

done by using one-term asymptotic expressions for the Kelvin func-

tions. Applying the multiterm asymptotic expressions suggested by

Taylor to a short truncated conical shell leads to formulas that are too

complicated to present in a reasonable form. Instead, in Table 13.3,

case 5 tabulates numerical coefficients based upon this more accurate

formulation but evaluated by a computer for the case where Poisson’s
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ratio is 0.3. Because of limited space, only five values of k and six

values of the length parameter mD ¼ jkA � kBj=
ffiffiffi
2

p
are presented. If mD

is greater than 4, the end loads do not interact appreciably and the

formulas from case 4 may be used.

Tsui (Ref. 58) derives expressions for deformations of conical shells

for which the thickness tapers linearly with distance along the

meridian; influence coefficients are tabulated for a limited range of

shell parameters. Blythe and Kyser (Ref. 50) give formulas for thin-

walled conical shells loaded in torsion.

Toroidal shells. Simple closed-form solutions for toroidal shells are

generally valid for a rather limited range of parameters, so that

usually it is necessary to resort to numerical solutions. Osipova and

Tumarkin (Ref. 18) present extensive tables of functions for the

asymptotic method of solution of the differential equations for toroidal

shells; this reference also contains an extensive bibliography of work

on toroidal shells. Tsui and Massard (Ref. 43) tabulate the results of

numerical solutions in the form of influence coefficients and influence

functions for internal pressure and edge loadings on finite portions of

segments of toroidal shells. Segments having positive and negative

gaussian curvatures are considered; when both positive and negative

curvatures are present in the same shell, the solutions can be obtained

by matching slopes and deflections at the junction. References 29, 51,

and 61 describe similar solutions.

Stanley and Campbell (Ref. 77) present the principal test results on

17 full-size, production-quality torispherical ends and compare them

to theory. Kishida and Ozawa (Ref. 78) compare results arrived at from

elasticity, photoelasticity, and shell theory. References 67 and 68

discuss torispherical shells and present design formulas. See the

discussion in Sec. 13.2 on this topic.

Jordon (Ref. 53) works with the shell-equilibrium equations of a

deformed shell to examine the effect of pressure on the stiffness of an

axisymmetrically loaded toroidal shell.

Kraus (Ref. 44), in addition to an excellent presentation of the

theory of thin elastic shells, devotes one chapter to numerical analysis

under static loadings and another to numerical analysis under

dynamic loadings. Comparisons are made among results obtained by

finite-element methods, finite-difference methods, and analytic solu-

tions. Numerical techniques, element sizes, and techniques of shell

subdivision are discussed in detail. It would be impossible to list here

all the references describing the finite-element computer programs

available for solving shell problems, but Perrone (Ref. 62) has
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presented an excellent summary and Bushnell (Ref. 63) describes

work on shells in great detail.

EXAMPLES

1. Two partial spheres of aluminum are to be welded together as shown in
Fig. 13.6 to form a pressure vessel to withstand an internal pressure of
200 lb=in2. The mean radius of each sphere is 2 ft, and the wall thickness is
0.5 in. Calculate the stresses at the seam. Given: E ¼ 10ð106Þ lb=in2 and
n ¼ 0:33.

Solution. The edge loading will be considered in three parts, as shown in
Fig. 13.6(b). The tangential edge force T will be applied to balance the internal
pressure and, together with the pressure, will cause only membrane stresses
and the accompanying change in circumferential radius DR; this loading will
produce no rotation of the meridian. Owing to the symmetry of the two shells,
there is no resultant radial load on the edge, and so Qo is added to eliminate
that component of T . Mo is needed to ensure no edge rotation.

First apply the formulas from Table 13.1, case 3a:

s1 ¼ s2 ¼
qR2

2t
¼

200ð24Þ

2ð0:5Þ
¼ 4800 lb=in2

DR ¼
qR2

2ð1 � nÞ sin y
2Et

¼
200ð242Þð1 � 0:33Þ sin 120�

2ð10Þð106Þð0:5Þ
¼ 0:00668 in

T ¼ s1t ¼ 4800ð0:5Þ ¼ 2400 lb=in

c ¼ 0

Next apply case 1a from Table 13.3:

Qo ¼ T sin 30� ¼ 2400ð0:5Þ ¼ 1200 lb=in

f ¼ 120�

b ¼ 3ð1 � n2Þ
R2

t

� �2
" #1=4

¼ 3ð1 � 0:332Þ
24

0:5

� �2
" #1=4

¼ 8:859

Figure 13.6
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At the edge where o ¼ 0,

K1 ¼ 1 �
1 � 2n

2b
cotf ¼ 1 �

1 � 2ð0:33Þ

2ð8:859Þ
cot 120� ¼ 1:011

K2 ¼ 1 �
1 þ 2n

2b
cotf ¼ 1:054

DR ¼
QoR2b sin

2 f
EtK1

ð1 þ K1K2Þ ¼
1200ð24Þð8:859Þ sin

2
120�

10ð106Þð0:5Þð1:011Þ
½1 þ 1:011ð1:054Þ


¼ 0:0782 in

c ¼
Qo2b2 sinf

EtK1

¼
1200ð2Þð8:8592Þ sin 120�

10ð106Þð0:5Þð1:011Þ
¼ 0:0323 rad

s1 ¼
Qo cosf

t
¼

1200 cos 120�

0:5
¼ �1200 lb=in2

s01 ¼ 0

s2 ¼
Qob sinf

2t

2

K1

þ K1 þ K2

� �
¼

1200ð8:859Þ sin 120�

2ð0:5Þ

2

1:011
þ 1:011 þ 1:054

� �
¼ 37;200 lb=in2

s02 ¼
�Qob

2 cosf
K1R2

¼
�1200ð8:8592Þ cos 120�

1:011ð24Þ
¼ 1940 lb=in2

Now apply case 1b from Table 13.3:

DR ¼
Mo2b2 sinf

EtK1

¼ 0:00002689Mo

c ¼
Mo4b3

EtR2K1

¼
Mo4ð8:859Þ3

10ð106Þð0:5Þð24Þð1:011Þ
¼ 0:00002292Mo

Since the combined edge rotation c must be zero,

0 ¼ 0 þ 0:0323 þ 0:00002292Mo or Mo ¼ �1409 lb-in=in

and

DR ¼ 0:00668 þ 0:0782 þ 0:00002689ð�1409Þ ¼ 0:04699 in

s1 ¼ 0

s01 ¼
�6ð�1409Þ

0:052
¼ 33;800 lb=in2

s2 ¼
Mo2b2

R2K1t
¼

�1409ð2Þð8:8592Þ

24ð1:011Þð0:5Þ
¼ �18;200 lb=in2

M2 ¼
Mo

2nK1

½ð1 þ n2ÞðK1 þ K2Þ � 2K2


¼
�1409

2ð0:33Þð1:011Þ
½ð1 þ 0:332Þð1:011 þ 1:054Þ � 2ð1:054Þ
 ¼ �384 lb-in=in

s02 ¼
�6ð�384Þ

0:52
¼ 9220 lb=in2
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The superimposed stresses at the joint are, therefore,

s1 ¼ 4800 � 1200 þ 0 ¼ 3600 lb=in2

s01 ¼ 0 þ 0 þ 33;800 ¼ 33;800 lb=in2

s2 ¼ 4800 þ 37;200 � 18;200 ¼ 23;800 lb=in2

s02 ¼ 0 þ 1940 þ 9220 ¼ 11;160 lb=in2

The maximum stress is a tensile meridional stress of 37,400 lb=in2 on the
outside surface at the joint. A further consideration would be given to any
stress concentrations due to the shape of the weld cross section.

2. To reduce the high stresses in Example 1, it is proposed to add to the joint
a reinforcing ring of aluminum having a cross-sectional area A. Calculate the
optimum area to use.

Solution. If the ring could be designed to expand in circumference by the
same amount that the sphere does under membrane loading only, then all
bending stresses could be eliminated. Therefore, let a ring be loaded radially
with a load of 2Qo and have the radius increase by 0.00668 in. Since
DR=R ¼ 2QoR=AE, then

A ¼
2QoR2

EDR
¼

2ð1200Þð242Þ sin
2

60�

10ð106Þð0:00668Þ
¼ 15:5 in

2

With this large an area required, the simple expression just given for DR=R
based on a thin ring is not adequate; furthermore, there is not enough room to
place such a ring external to the shell. An internal reinforcement seems more
reasonable. If a 6-in-diameter hole is required for passage of the fluid, the
internal reinforcing disk can have an outer radius of 20.78 in, an inner radius
of 3 in, and a thickness t1 to be determined. The loading on the disk is shown in
Fig. 13.7. The change in the outer radius is desired.

From Table 13.5, case 1a, the effect of the 200 lb=in2 internal pressure can be
evaluated:

Da ¼
q

E

2ab2

a2 � b2
¼

200

10ð106Þ

2ð20:78Þð32Þ

20:782 � 32
¼ 0:0000177 in

Figure 13.7
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From Table 13.5, case 1c, the effect of the loads Qo can be determined if the
loading is modeled as an outward pressure of �2Qo=t1. Therefore,

Da ¼
�qa

E

a2 þ b2

a2 � b2
� n

� �
¼

2ð1200Þð20:78Þ

t110ð106Þ

20:782 þ 32

20:782 � 32
� 0:33

� �
¼

0:00355

t1

The longitudinal pressure of 200 lb=in2 will cause a small lateral expansion in
the outer radius of

Da ¼
200ð0:33Þð20:78Þ

10ð106Þ
¼ 0:000137 in

Summing the changes in the outer radius to the desired value gives

0:00668 ¼ 0:0000177 þ 0:000137 þ
0:00355

t1

or t1 ¼ 0:545 in

(Undoubtedly further optimization could be carried out on the volume of
material required and the ease of welding the joint by varying the thickness
of the disk and the size of the internal hole.)

3. A truncated cone of aluminum with a uniform wall thickness of 0.050 in
and a semiapex angle of 55� has a radius of 2 in at the small end and 2.5 in at
the large end. It is desired to know the radial loading at the small end which
will increase the radius by half the wall thickness. Given: E ¼ 10ð106Þ lb=in2

and n ¼ 0:33.

Solution. Evaluate the distances from the apex along a meridian to the two
ends of the shell and then obtain the shell parameters:

RA ¼ 2:5 in

RB ¼ 2:0 in

kA ¼
2

sin 55�

12ð1 � 0:332Þð2:52Þ

0:0502 sec2 55�

� �1=4

¼ 23:64

kB ¼ 21:15

mD ¼
23:64 � 21:15

2
¼ 1:76

b ¼ ½12ð1 � 0:332Þ

1=2

¼ 3:27

From Table 13.3, case 6c, tabulated constants for shell forces, moments, and
deformations can be found when a radial load is applied to the small end. For
the present problem the value of KDR at the small end (O ¼ 1:0) is needed when
mD ¼ 1:76 and kA ¼ 23:64. Interpolation from the following data gives
KDR ¼ 1:27:

kA 10.0 20.0 40.0

mn 0.8 1.2 1.6 3.2 0.8 1.2 1.6 3.2 0.8 1.2 1.6 3.2

KDR 2.085 1.610 1.343 1.113 2.400 1.696 1.351 1.051 2.491 1.709 1.342 1.025

At O ¼ 1:0
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Therefore,

DRB ¼
�QBð2:0Þ sin 55�

10ð106Þð0:050Þ

21:15ffiffiffi
2

p ð1:27Þ ¼ �0:00006225QB

Since DRB ¼ 0:050=2 (half the thickness), QB ¼ �402 lb=in (outward).

13.4 Thin Multielement Shells of Revolution

The discontinuity stresses at the junctions of shells or shell elements

due to changes in thickness or shape are not serious under static

loading of ductile materials; however, they are serious under condi-

tions of cyclic or fatigue loading. In Ref. 9, discontinuity stresses are

discussed with a numerical example; also, allowable levels of the

membrane stresses due to internal pressure are established, as well

as allowable levels of membrane and bending stresses due to disconti-

nuities under both static and cyclic loadings.

Langer (Ref. 10) discusses four modes of failure of a pressure

vessel—bursting due to general yielding, ductile tearing at a disconti-

nuity, brittle fracture, and creep rupture—and the way in which these

modes are affected by the choice of material and wall thickness; he also

compares pressure-vessel codes of several countries. Zaremba (Ref. 47)

and Johns and Orange (Ref. 48) describe in detail the techniques for

accurate deformation matching at the intersections of axisymmetric

shells. See also Refs. 74 and 75.

The following example illustrates the use of the formulas in Tables

13.1–13.3 to determine discontinuity stresses.

EXAMPLE

The vessel shown in quarter longitudinal section in Fig. 13.8(a) consists of a
cylindrical shell (R ¼ 24 in and t ¼ 0:633 in) with conical ends (a ¼ 45� and
t ¼ 0:755 in). The parts are welded together, and the material is steel, for
which E ¼ 30ð106Þ lb=in2 and n ¼ 0:25. It is required to determine the maxi-
mum stresses at the junction of the cylinder and cone due to an internal
pressure of 300 lb=in2. (This vessel corresponds to one for which the results of a
supposedly precise analysis and experimentally determined stress values are
available. See Ref. 17.)

Solution. For the cone, case 2a in Table 13.1 and cases 4a and 4b in Table
13.3 can be used: R ¼ 24 in, a ¼ 45�, and t ¼ 0:755 in. The following conditions
exist at the end of the cone: From Table 13.1, case 2a, for the load T and

Figure 13.8
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pressure q,

s1 ¼
300ð24Þ

2ð0:755Þ cos 45� ¼ 6740 lb=in2; T ¼ 6740ð0:755Þ ¼ 5091 lb=in

s2 ¼ 13;480 lb=in2; s01 ¼ 0; s02 ¼ 0

DR ¼
300ð242Þ

30ð106Þð0:755Þ cos 45� 1 �
0:25

2

� �
¼ 0:00944 in

c ¼
3ð300Þð24Þð1Þ

2ð30Þð106Þð0:755Þ cos 45� ¼ 0:000674 rad

From Table 13.3, case 4a, for the radial edge load Qo,

RA ¼ 24 in

kA ¼
2

sin 45�

12ð1 � 0:252Þð242Þ

0:7552 sec2 45�

� �1=4

¼ 24:56

b ¼ ½12ð1 � 0:252Þ

1=2

¼ 3:354

Only values at R ¼ RA are needed for this solution. Therefore, the series
solutions for the constants can be used to give

F9A ¼ C1 ¼ 0:9005; F1A ¼ 0; F3A ¼ 0; F2A ¼ 0:8977

F4A ¼ 0:8720; F5A ¼ F8A ¼ 0:8746; F10A ¼ F7A ¼ F6A ¼ 0:8947

DRA ¼
Qo24ð0:7071Þð24:56Þ

30ð106Þð0:755Þð
ffiffiffi
2

p
Þð0:9005Þ

0:8720 �
4ð0:252Þ

24:562
0:8977

� �
¼ 12:59ð10�6ÞQo

cA ¼
Qo24ð3:354Þ

30ð106Þð0:7552Þð0:9005Þ
ð0:8947Þ ¼ 4:677ð10�6ÞQo

N1A ¼ 0:7071Qo; M1A ¼ 0

N2A ¼
Qoð0:7071Þð24:56Þ

2ð0:9005Þ
0:8720 þ

2ð0:25Þ

24:56
0:8746

� �
¼ 12:063Qo

M2A ¼
Qoð0:7071Þð1 � 0:252Þð0:755Þ

3:354ð0:9005Þ
0:8947 ¼ 0:1483Qo

From Table 13.3, case 4b, for the edge moment MA,

DRA ¼ 4:677ð10�6ÞMo ðsame coefficient shown for cA for the loading Qo

as would be expected from Maxwell0s theoremÞ

cA ¼
Mo2

ffiffiffi
2

p
ð3:3542Þð24Þ

30ð106Þð0:7553Þð24:56Þð0:7071Þ

0:8977

0:9005
¼ 3:395ð10�6ÞMo

N1A ¼ 0; N2A ¼ Mo

3:354ð0:8947Þ

0:755ð0:9005Þ
¼ 4:402Mo

M1A ¼ Mo; M2A ¼ Mo 0:25 þ
2ð2Þð1 � 0:252Þð0:8977Þ

24:56ð0:9005Þ

� �
¼ 0:3576Mo

For the cylinder, case 1c in Table 13.1 and cases 8 and 10 in Table 13.2 can
be used (it is assumed that the other end of the cylinder is far enough away so
as to not affect the deformations and stresses at the cone-cylinder junction):

SEC. 13.4] Shells of Revolution; Pressure Vessels; Pipes 573



R ¼ 24 in; t ¼ 0:633 in; l ¼ ½3ð1 � 0:252Þ=242=0:6332

1=4

¼ 0:3323; and D ¼

30ð106Þð0:6333Þ=12ð1 � 0:252Þ ¼ 6:76ð105Þ. The following conditions exist at
the end of the cylinder: From Table 13.1, case 1c, for the axial load H and
the pressure q,

s1 ¼
300ð24Þ

2ð0:633Þ
¼ 5690 lb=in2; H ¼ 5690ð0:633Þ ¼ 3600 lb=in

s2 ¼ 11;380 lb=in2; s01 ¼ 0; s02 ¼ 0

DR ¼
300ð242Þ

30ð106Þð0:633Þ
1 �

0:25

2

� �
¼ 0:00796 in

c ¼ 0

From Table 13.2, case 8, for the radial end load Vo,

cA ¼
Vo

2ð6:76Þð105Þð0:33232Þ
¼ 6:698ð10�6ÞVo

DRA ¼ yA ¼
�Vo

2ð6:76Þð105Þð0:33232Þ
¼ �20:16ð10�6ÞVo

s1 ¼ 0; s2 ¼
yE

R
¼

�20:16ð10�6ÞVoð30Þð106Þ

24
¼ �25:20Vo

s01 ¼ 0; s02 ¼ 0

From Table 13.2, case 10, for the end moment Mo,

cA ¼
�Mo

6:76ð105Þð0:3323Þ
¼ �4:452ð10�6ÞMo

DRA ¼ yA ¼
Mo

2ð6:76Þð105Þð0:33232Þ
¼ 6:698ð10�6ÞMo

s1 ¼ 0; s2 ¼
2Mol

2R

t
¼

2Moð0:33232Þð24Þ

0:633
¼ 8:373Mo

s01 ¼
�6Mo

t2
¼

�6Mo

0:6332
¼ �14:97Mo; s02 ¼ ns01 ¼ �3:74Mo

Summing the radial deflections for the end of the cone and equating to the sum
for the cylinder gives

0:00944 þ 12:59ð10�6ÞQo þ 4:677ð10�6ÞMo ¼ 0:00796 � 20:16ð10�6ÞVo

þ 6:698ð10�6ÞMo

Doing the same with the meridian rotations gives

0:000674 þ 4:677ð10�6ÞQo þ 3:395ð10�6ÞMo ¼ 0 þ 6:698ð10�6ÞVo

� 4:452ð10�6ÞMo

Finally, equating the radial forces gives

Qo þ 5091 cos 45� ¼ Vo

574 Formulas for Stress and Strain [CHAP. 13



Solving the three equations simultaneously yields

Q ¼ �2110 lb=in; Vo ¼ 1490 lb=in; Mo ¼ 2443 lb-in=in

In the cylinder,

s1 ¼ 5690 þ 0 þ 0 ¼ 5690 lb=in2

s2 ¼ 11;380 � 25:20ð1490Þ þ 8:373ð2443Þ ¼ �5712 lb=in2

s01 ¼ 0 þ 0 � 14:97ð2443Þ ¼ �36;570 lb=in2

s02 ¼ 0 þ 0 � 3:74ð2443Þ ¼ �9140 lb=in2

Combined hoop stress on outside ¼ �5712 � 9140 ¼ �14;852 lb=in2

Combined hoop stress on inside ¼ �5712 þ 9140 ¼ 3428 lb=in2

Combined meridional stress on outside ¼ 5690 � 36;570
¼ �30;880 lb=in2

Combined meridional stress on inside ¼ 5690 þ 36;570
¼ 42;260 lb=in2

Similarly, in the cone,

s1 ¼ 6740 þ
0:7071ð�2110Þ

0:755
þ 0 ¼ 4764 lb=in2

s2 ¼ 13;480 þ
12:063ð�2110Þ

0:755
þ

4:402ð2443Þ

0:755
¼ �5989 lb=in2

s01 ¼ 0 þ 0 �
2443ð6Þ

0:7552
¼ �25;715 lb=in2

s02 ¼ 0 �
0:1483ð�2110Þð6Þ

0:7552
�

0:3576ð2443Þð6Þ

0:7552
¼ �5902 lb=in2

Combined hoop stress on outside ¼ �5989 � 5902 ¼ �11;891 lb=in2

Combined hoop stress on inside ¼ �5989 þ 5902 ¼ �87 lb=in2

Combined meridional stress on outside ¼ 4764 � 25;715
¼ �20;951 lb=in2

Combined meridional stress on inside ¼ 4764 þ 25;715
¼ 30;480 lb=in2

These stress values are in substantial agreement with the computed and
experimental values cited in Refs. 17 and 26. Note that the radial deflections
are much less than the wall thicknesses. See the discussion in the third
paragraph of Sec. 13.3.

In the problem just solved by the method of deformation matching

only two shells met at their common circumference. The method,

however, can be extended to cases where more than two shells meet

in this manner. The primary source of difficulty encountered when

setting up the equations to carry out such a solution is the rigor

needed when labeling the several edge loads and the establishment of

SEC. 13.4] Shells of Revolution; Pressure Vessels; Pipes 575



the proper signs for the radial and rotational deformations. An addi-

tional problem arises when the several shells intersect not at a single

circumference but at two or more closely spaced circumferences.

Figure 13.9 illustrates two conical shells and a spherical shell joined

together by a length of cylindrical shell. The length of this central

cylinder is a critical dimension in determining how the cylinder is

treated. If the length is small enough for a given radius and wall

thickness, it may be sufficient to treat it as a narrow ring whose cross

section deflects radially and rotates with respect to the original

meridian but whose cross section does not change shape. For an

example as to how these narrow rings are treated see Sec. 11.9. For

a longer cylinder the cross section does change shape and it is treated

as a short cylinder, using expressions from Table 13.2. Here there are

two circumferences where slopes and deflections are to be matched but

the loads on each end of the cylinder influence the deformations at the

other end. Finally, if the cylinder is long enough, ll > 6, for example,

the ends are far enough apart so that two separate problems may be

solved.

Table 13.3 presents formulas and tabulated data for several combi-

nations of thin shells of revolution and thin circular plates joined two

at a time at a common circumference. All shells are assumed long

enough so that the end interactions can be neglected. Loadings include

axial load, a loading due to a rotation at constant angular velocity

about the central axis, and internal or external pressure where the

pressure is either constant or varying linearly along the axis of the

shell. For the pressure loading the equations represent the case where

the junction of the shells carries no axial loading such as when a

cylindrical shell carries a frictionless piston which is supported axially

by structures other than the cylinder walls. The decision to present the

pressure loadings in this form was based primarily on the ease of

presentation. When used for closed pressure vessels, the deformations

and stresses for the axial load must be superposed on those for the

pressure loading.

Figure 13.9
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The reasons for presenting the tabulated data in this table are

several. (1) In many instances one merely needs to know whether the

stresses and deformations at such discontinuities are important to the

safety and longevity of a structure. Using interpolation one can

explore quickly the tables of tabulated data to make such a determina-

tion. (2) The tabulated data also allow those who choose to solve the

formulas to verify their results.

The basic information in Table 13.4 can be developed as needed from

formulas in the several preceding tables, but the work has been

extended a few steps further by modifying the expressions in order

to make them useful for shells with somewhat thicker walls.

In the sixth edition of this book, correction terms were presented to

account for the fact that internal pressure loading acts on the inner

surface, not at the mid-thickness. For external pressure, the proper

substitutions are indicated by notes for the several cases. This has

already been accounted for in the general pressure loadings on the

several shell types, but there is an additional factor to account for at

the junction of the shells. In Fig. 13.10(a), the internal pressure is

shown acting all the way to the hypothetical end of the left-hand shell.

The general equations in Table 13.1 assumes this to be the case, and

the use of these equations in Table 13.4 makes this same assumption.

The correction terms in the sixth edition of this book added or

subtracted, depending upon the signs of a1, a2, and q, the pressure

loading over the length x shown in Fig. 13.10(b). These corrections

included the effects of the radial components, the axial components,

and the moments about point A of this local change in loading. The

complexity of these corrections may seem out of proportion to the

benefits derived, and, depending upon their needs, users will have to

decide whether or not to include them in their calculations. To assist

users in making this decision, the following example will compare

results with and without the correction terms and show the relative

Figure 13.10
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effect of using only the radial component of the change in the local

pressure loading at the junction of a cone and cylinder.

EXAMPLE

For this example, the pressurized shell is that of the previous example shown
in Fig. 13.8. The calculations for that example were carried out using
equations from Tables 13.1 and 13.3. The stresses in the cylinder at the
junction are given at the end of the solution, and the radial deflection and
the rotation at the junction can be calculated from the expressions given just
before the stress calculations. The following results table lists these stresses
and deflections in column [1]. As stated above, the equations used in Table 13.4
to solve for the shell junction stresses were those given in Tables 13.1–13.3,
but modified somewhat to make them more accurate for shells with thicker
walls. Using cases 2a and 2b from Table 13.4 gives the results shown in
columns [2]–[7] in the results table. The axial load used for column [2] was
P ¼ pð24 � 0:633=2Þ2ð300Þ ¼ 528;643 lb. All of the stresses in the results table
are those found in the cylinder at the junction. Column [3] gives data for the
internal pressure loading with no correction factors and column [4] is the sums
for the axial load and internal pressure, columns [2] plus [3]. Column [5] is for
the internal pressure corrected for the change in loading at the joint. Column
[7], is the difference in the numbers of columns [4] and [6], and gives the
changes due to the correction factors in Table 13.4.

Column [8] shows the changes due to the radial component of the correction
in the joint loading which are calculated as follows. Figure 13.11(a) shows the
joint being considered, with the dimensions. The value of x ¼ 0:2669 in, and
when this is multiplied by the internal pressure of 300 lb=in2, one obtains
Q1 þ Q2 ¼ 80:07 lb=in, the radially inward load needed to compensate for the
radial component of the internal pressure not acting on the joint.

Using already evaluated expressions from the previous example, the follow-
ing equations can be written.

For the cone:

DRA ¼ �12:59ð10�6ÞQ1 þ 4:677ð10�6ÞM1

cA ¼ �4:677ð10�6ÞQ1 þ 3:395ð10�6ÞM1

For the cylinder:

DRA ¼ �20:16ð10�6ÞQ2 þ 6:698ð10�6ÞM1

cA ¼ 6:698ð10�6ÞQ2 � 4:452ð10�6ÞM1

Figure 13.11
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Equating the equations for DRA and cA with Q1 þ Q2 ¼ 80:07 lb=in yields
Q1 ¼ 48:83 lb=in, Q2 ¼ 31:24 lb=in, M1 ¼ 55:77 lb-in=in, DRA ¼ �0:000354 in,
and cA ¼ �0:000039 rad.

As would be expected, the radial component is a major contributor for the
joint being discussed and would be for most pressure vessel joints.

RESULTS table (stresses in lb=in2, deflection in inches, rotation in radians)

From Table 13.4

From Case 2b Case 2a Sum Case 2a Sum Change Change due

previous Axial Internal [2] þ [3] Internal [2] þ [5] due to the to the approx.

example Load Pressure Pressure use of the corrections

without with correction given above

corrections corrections terms

[1] [2] [3] [4] [5] [6] [7] [8]

s1 5,690 5,538 0 5,538 0 5,538 0 0

s2 �5,712 �17,038 11,647 �5,391 11,252 �5,786 �395 �321

s01 �36,570 �3,530 1,927 �35,604 1,030 �36,500 �896 �835

s02 �9,140 �9,382 482 �8,900 258 �9,124 �224 �209

DRA �0.005699 �0.01474 0.00932 �0.00542 0.00900 �0.00574 �0.00032 �0.000354

cA �0.000900 0.001048 �0.000174 0.000874 �0.000146 0.000902 �0.000028 �0.000039

Most shell intersections have a common circumference, identified by

the radius RA, and defined as the intersection of the midsurfaces of the

shells. If the two shells have meridional slopes which differ substan-

tially at this intersection, the shape of the joint is easily described. See

Fig. 13.12(a). If, however, these slopes are very nearly the same and

the shell thicknesses differ appreciably, the intersection of the two

midsurfaces could be far away from an actual joint, and the midthick-

ness radius must be defined for each shell. See Fig. 13.12(b).

For this reason there are two sets of correction terms based on these

two joint contours. All correction terms are treated as external loads

on the right-hand member. The appropriate portion of this loading is

transferred back to the left-hand member by small changes in the

radial load V1 and the moment M1 which are found by equating the

deformations in the two shells at the junction. In each case the

formulas for the stresses at the junction are given only for the left-

Figure 13.12
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hand member. Stresses are computed on the assumption that each

member ends abruptly at the joint with the end cross section normal to

the meridian. No stress concentrations are considered, and no reduc-

tion in stress due to any added weld material or joint reinforcement

has been made. The examples show how such corrections can be made

for the stresses.

While the discussion above has concentrated primarily on the

stresses at or very near the junction of the members, there are cases

where stresses at some distance from the junction can be a source of

concern. Although a toroidal shell is not included in Table 13.4, the

presence of large circumferential compressive stress in the toroidal

region of a torispherical head on a pressure vessel is known to create

buckling instabilities when such a vessel is subjected to internal

pressure. Section 15.4 describes this problem and others of a similar

nature such as a truncated spherical shell under axial tension.

EXAMPLES

1. The shell consisting of a cone and a partial sphere shown in Fig. 13.13 is
subjected to an internal pressure of 500 N=cm2. The junction deformations and
the circumferential and meridional stress components at the inside surface of
the junction are required. Use E ¼ 7ð106ÞN=cm2 and n ¼ 0:3 for the material in
both portions of the shell. All the linear dimensions will be given and used in
centimeters.

Solution. The meridional slopes of the cone and sphere are the same at the
junction, and the sphere is not truncated nor are any penetrations present at
any other location, so y2 ¼ f2 ¼ 105�. Using case 6 from Table 13.4, the cone
and shell parameters and the limiting values for which the given equations are
acceptable are now evaluated.

For the cone using Table 13.3, case 4:

a1 ¼ 15�; RA ¼ R1 ¼ 50 sin 105� ¼ 48:296

kA ¼
2

sin 15�

12ð1 � 0:32Þð48:2962Þ

1:22 sec2 15�

� �0:25

¼ 87:58

Where m ¼ 4, the value of kB ¼ 87:58 � 4
ffiffiffi
2

p
¼ 81:93 and RB ¼ 42:26. Since

both kA and kB are greater than 5 and both RA and RB are greater than 5

Figure 13.13
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(1:2 cos 15�), the cone parameters are within the acceptable range for use
with the equations. b1 ¼ 48:296 � 1:2 cos 15�=2 ¼ 47:717, a1 ¼ 48:876, and
b1 ¼ ½12ð1 � 0:32Þ


0:5
¼ 3:305.

For the sphere using Table 13.3, case 1:

b2 ¼ 3ð1 � 0:32Þ
50

1:2

� �2
" #0:25

¼ 8:297

b2 ¼ 50 �
1:2

2
¼ 49:40; a2 ¼ 50:60

and, at the edge, where o ¼ 0,

K12 ¼ 1 � ½1 � 2ð0:3Þ

ðcot 105�Þ=2

8:297
¼ 1:0065 and K22 ¼ 1:0258

Since 3=b2 ¼ 0:3616 and p� 3=b2 ¼ 2:78, the value of f2 ¼ 1:833 rad lies
within this range, so the spherical shell parameters are also acceptable.

Next the several junction constants are determined from the shell para-
meters just found and from any others required. Again from Table 13.3, case 4:

F2A ¼ 1 �
2:652

87:58
þ

3:516

87:582
�

2:610

87:583
þ

0:038

87:584
¼ 0:9702

Similarly,

F4A ¼ 0:9624; F7A ¼ 0:9699; and C1 ¼ 0:9720

Using these values, CAA1 ¼ 638:71, CAA2 ¼ 651:39, CAA ¼ 1290:1, CAB1 ¼

�132:72, CAB2 ¼ 132:14, CAB ¼ �0:5736, CBB1 ¼ 54:736, CBB2 ¼ 54:485, and
CBB ¼ 109:22.

Turning now to the specific loadings needed, one uses case 6a for internal
pressure with no axial load on the junction and case 6b with an axial load
P ¼ 500pð47:72Þ2 ¼ 3:577ð106ÞN.

For case 6a: Although the tables of numerical data include a1 ¼ 15� and
f2 ¼ 105� as a given pair of parameters, the value of R1=t1 ¼ 40:25 is not one of
the values for which data are given. The load terms are

LTA1 ¼
47:72ð48:3Þ

1:22 cos 15�
¼ 1656:8; LTA2 ¼ �1637:0; LTB1 ¼ �22:061;

LTB2 ¼ 0

In this example the junction meridians are tangent and the inside surface is
smooth, so there are no correction terms to consider. Had the radii and the
thicknesses been such that the welded junction had an internal step, either
abrupt or tapered, the internal pressure acting upon this step would be
accounted for by the appropriate correction terms (see the next example).

Now combining the shell and load terms, LTA ¼ 1656:8 � 1637:0 þ 0 ¼ 19:8,
LTB ¼ �22:06, KV1 ¼ 0:0153, KM1 ¼ �0:2019, V1 ¼ 9:193, M1 ¼ �145:4, N1 ¼
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�2:379, DRA ¼ 0:1389, cA ¼ 641ð10�6Þ, s1 ¼ �1:98, s2 ¼ 20;128, s01 ¼ 605:7,
and s02 ¼ 196:2.

For case 6b:

LTA1 ¼
�0:3ð48:302Þ

2ð1:22Þ cos 15�
¼ �251:5; LTA2 ¼ 1090:0

LTB1 ¼ 5:582; LTB2 ¼ 0; LTAC ¼ 0; LTBC ¼ 0

LTA ¼ 838:5; LTB ¼ 5:582

Again combine the shell and load terms to get KV 1 ¼ 0:6500, KM1 ¼ 0:0545,
V1 ¼ 380:7, M1 ¼ 38:33, N1 ¼ 12;105, DRA ¼ �0:0552, cA ¼ �0:0062, s1 ¼

10;087, s2 ¼ �4972, s01 ¼ �159:7, and s02 ¼ �188.
The final step is to sum the deformations and stresses. DRA ¼ 0:0837,

cA ¼ �0:0056, s1 ¼ 10;085, s2 ¼ 15;156, s01 ¼ 446:0, s02 ¼ 8:2. A check of
these values against the tabulated constants shows that reasonable values
could have been obtained by interpolation. At the junction the shell moves
outward a distance of 0.0837 cm, and the upper meridian as shown in Fig.
13.13 rotates 0.0056 rad clockwise. On the inside surface of the junction the
circumferential stress is 15,164 N=cm2 and the meridional stress is
10,531 N=cm2.

As should have been expected by the smooth transition from a conical to a
spherical shell of the same thickness, the bending stresses are very small. In
the next example the smooth inside surface will be retained but the cone and
sphere will be different in thickness, and external pressure will be applied to
demonstrate the use of the terms which correct for the pressure loading on the
step in the wall thickness at the junction.

2. The only changes from Example 1 will be to make the pressure external at
1000 N=cm2 and to increase the cone thickness to 4 cm and the sphere
thickness to 2 cm. The smooth inside surface will be retained. If the correction
terms are not used in this example, the external pressure will be presumed to
act on the outer surface of the cone up to the junction and on the external
spherical surface of the sphere. There will be no consideration given for the
external pressure acting upon the 2-cm-wide external shoulder at the junction.
The correction terms treat the additional axial and radial loadings and the
added moment due to this pressure loading on the shoulder. If a weld fillet
were used at the junction, the added pressure loading would be the same, so
the correction terms are still applicable but no consideration is made for the
added stiffness due to the extra material in the weld fillet. If the meridians for
the cone and for the sphere intersect at an angle more than about 5�, a
different correction term is used. This second correction term assumes that no
definite step occurs on either the inner or the outer surface. See the discussion
in Sec. 13.4 related to Fig. 13.12.

Solution. For the cone using Table 13.3, case 4: a1 ¼ 15�, RA ¼ R1 ¼

51 sin 105� ¼ 49:262, and kA ¼ 48:449 when the radius and thickness are
changed to the values shown in Fig. 13.14. Where m ¼ 4, the value of
kB ¼ 42:793 and RB ¼ 38:4, which is greater than 5 (4 cos 15�). Thus, again
kA and kB are greater than 5 and the cone parameters are within the
acceptable range for use with the equations. In a similar manner the para-
meters for the sphere are found to be within the range for which the equations
are acceptable. Repeating the calculations as was done for the first example,
with and without correction terms, one finds the following stresses:
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Case 6a (q ¼ �1000 N=cm2)

Without With Case 6b

correction terms correction terms (P ¼ �8;233;600 N)

DRA �0.1244 �0.1262 0.0566

gA �0.00443 �0.00425 0.00494

s1 �110.15 �133.64 �6739.1

s2 �17,710 �17,972 6021.3

s01 1317.2 342.3 �1966.2

s02 283.7 �99.0 �454.3

The effect of the correction terms is apparent but does not cause large
changes in the larger stresses or the deformations. Summing the values for
cases 6a with correction terms and for 6b gives the desired results as follows.
The radial deflection at the junction is 0.0696 cm inward, the upper meridian
rotates 0.00069 rad clockwise, on the inside of the junction the circumferential
stress is �12,504 N=cm2, and the meridional stress is �8497 N=cm2.

3. The vessel shown in Fig. 13.15 is conical with a flat-plate base supported
by an annular line load at a radius of 35 in. The junction deformations and the
meridional and circumferential stresses on the outside surface at the junction
of the cone and plate are to be found. The only loading to be considered is the
hydrostatic loading due to the water contained to a depth of 50 in. Use
E ¼ 10ð106Þ lb=in2 and n ¼ 0:3 for the material in the shell and in the plate.
All linear dimensions will be given and used in inches.

Figure 13.14

Figure 13.15
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Solution. The proportions chosen in this example are ones matching the
tabulated data in cases 7b and 7c from Table 13.4 in order to demonstrate the
use of this tabulated information.

From case 7c with the loading an internal hydrostatic pressure with no
axial load on the junction and for a ¼ �30�, R1 ¼ 50, t1 ¼ 1, R1=t1 ¼ 50, t2 ¼ 2,
t2=t1 ¼ 2, x1 ¼ 50, x1=R1 ¼ 1, R2=R1 ¼ 35

50
¼ 0:7, n1 ¼ n2 ¼ 0:3; and for a2 ¼ a1

due to the plate extending only to the outer surface of the cone at the junction,
we find from the table the following coefficients: KV1 ¼ 3:3944, KM1 ¼ 2:9876,
KDRA ¼ 0:1745, KcA ¼ �7:5439, and Ks2 ¼ 0:1847. Since water has a weight of
62.4 lb=ft3, the internal pressure q1 at the junction is 62:4ð50Þ=1728 ¼

1:806 lb=in2. Using these coefficients and the dimensions and the material
properties we find that

V1 ¼ 1:806ð1Þð3:3944Þ ¼ 6:129

M1 ¼ 1:806ð12Þð2:9876Þ ¼ 5:394

N1 ¼ �6:129 sin�30� ¼ 3:064

DRA ¼
1:806ð502Þ

10ð106Þð1Þ
0:1745 ¼ 78:77ð10�6Þ

cA ¼
1:806ð50Þ

10ð106Þð1Þ
ð�7:5439Þ ¼ �68:10ð10�6Þ

s1 ¼
3:064

1
¼ 3:064

s2 ¼ 78:77ð10�6Þ
10ð106Þ

50
þ 0:3ð3:064Þ ¼ 16:673

s01 ¼
�6ð5:394Þ

12
¼ �32:364

s02 ¼ �2:895 ðNote: The extensive calculations are not shownÞ

In the above calculations no correction terms were used. When the correction
terms are included and the many calculations carried out, the deformations
and stresses are found to be

DRA ¼ 80:13ð10�6Þ; cA ¼ �68:81ð10�6Þ

s1 ¼ 3:028; s2 ¼ 16:934; s01 ¼ �30:595; s02 ¼ �2:519

There is not a great change due to the correction terms.
For case 7b the axial load to be used must now be calculated. The radius of

the fluid at the plate is 50 � 0:5=cos 30� ¼ 49:423. The radius of the fluid at the
top surface is 49:423 þ 50 tan 30� ¼ 78:290. The vertical distance below the top
of the plate down to the tip of the conical inner surface is 49:423=
tan 30� ¼ 85:603. The volume of fluid ¼ pð78:290Þ2ð85:603 þ 50Þ=3 �

pð49:423Þ2ð85:603Þ=3 ¼ 651;423 in3. The total weight of the fluid ¼

651;423ð62:4Þ=1728 ¼ 23;524 lb. The axial load acting on the plate in case
7c ¼ q1pb2

1 ¼ 1:806pð49:56Þ2 ¼ 13;940 lb. Using case 7b with the axial compres-
sive load P ¼ 13;940 � 23;524 ¼ �9584 gives the following results:

DRA ¼ 496:25ð10�6Þ; cA ¼ �606:03ð10�6Þ

s1 ¼ �57:973; s2 ¼ 81:858; s01 ¼ 1258:4; s02 ¼ 272:04
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Summing the results from case 7c with correction terms and from case 7b
produces DRA ¼ 576:38ð10�6Þ, cA ¼ �674:84ð10�6Þ, s1 ¼ �54:945, s2 ¼ 98:792,
s01 ¼ 1227:8, and s02 ¼ 269:5.

The junction moves radially outward a distance of 0.00058 in, and the
junction meridian on the right in Fig. 13.15 rotates 0.000675 rad clockwise.
On the outside of the cone at the junction, the circumferential stress is
368.3 lb=in2 and the meridional stress is 1173 lb=in2.

13.5 Thin Shells of Revolution under External
Pressure

All formulas given in Tables 13.1 and 13.3 for thin vessels under

distributed pressure are for internal pressure, but they will apply

equally to cases of external pressure if q is given a negative sign. The

formulas in Table 13.2 for distributed pressure are for external

pressure in order to correspond to similar loadings for beams on

elastic foundations in Chap. 8. It should be noted with care that the

application of external pressure may cause an instability failure due to

stresses lower than the elastic limit, and in such a case the formulas in

this chapter do not apply. This condition is discussed in Chap. 15, and

formulas for the critical pressures or stresses producing instability are

given in Table 15.2.

A vessel of moderate thickness may collapse under external pressure

at stresses just below the yield point, its behavior being comparable to

that of a short column. The problem of ascertaining the pressure that

produces failure of this kind is of special interest in connection with

cylindrical vessels and pipe. For external loading such as that in Table

13.1, case 1c, the external collapsing pressure can be given by

q0 ¼
t

R

sy

1 þ ð4sy=EÞðR=tÞ2
ðsee Refs: 1; 7; and 8Þ

In Refs. 8 and 9, charts are given for designing vessels under external

pressure.

A special instability problem should be considered when designing

long cylindrical vessels or even relatively short corrugated tubes under

internal pressure. Haringx (Refs. 54 and 55) and Flügge (Ref. 5) have

shown that vessels of this type will buckle laterally if the ends are

restrained against longitudinal displacement and if the product of the

internal pressure and the cross-sectional area reaches the Euler load

for the column as a whole. For cylindrical shells this is seldom a

critical factor, but for corrugated tubes or bellows this is recognized as

a so-called squirming instability. To determine the Euler load for a

bellows, an equivalent thin-walled circular cross section can be estab-

lished which will have a radius equal to the mean radius of the bellows

and a product Et, for which the equivalent cylinder will have the same
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axial deflection under end load as would the bellows. The overall

bending moment of inertia I of the very thin equivalent cylinder can

then be used in the expression Pu ¼ Kp2EI=l2 for the Euler load. In a

similar way Seide (Ref. 56) discusses the effect of pressure on the

lateral bending of a bellows.

EXAMPLE

A corrugated-steel tube has a mean radius of 5 in, a wall thickness of 0.015 in,
and 60 semicircular corrugations along its 40-in length. The ends are rigidly
fixed, and the internal pressure necessary to produce a squirming instability is
to be calculated. Given: E ¼ 30ð106Þ lb=in2 and n ¼ 0:3.

Solution. Refer to Table 13.3, case 6b: a ¼ 5 in, length ¼ 40 in, b ¼ 40
120

¼

0:333 in, and t ¼ 0:015 in

m ¼
b2

at

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12ð1 � n2Þ

p
¼

0:3332

5ð0:015Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12ð1 � 0:32Þ

p
¼ 4:90

Axial stretch ¼
�0:577Pbn

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � n2

p

Et2
¼

0:577Pð0:333Þð60Þ
ffiffiffiffiffiffiffiffiffiffi
0:91

p

30ð106Þð0:0152Þ
¼ �0:00163P

If a cylinder with a radius of 5 in and product E1t1 were loaded in compres-
sion with a load P, the stretch would be

Stretch ¼
�Pl

A1E1

¼
�Pð40Þ

2p5t1E1

¼ �0:00163P

or

t1E1 ¼
40

2ð5Þð0:00163Þ
¼ 780:7 lb=in

The bending moment of inertia of such a cylinder is I1 ¼ pR3t1 (see Table A.1,
case 13). The Euler load for fixed ends is

Pcr ¼
4p2E1I1

l2
¼

4p2E1pR3t1

l2
¼

4p353ð780:7Þ

402
¼ 7565 lb

The internal pressure is therefore

q0 ¼
Pcr

pR2
¼

7565

p52
¼ 96:3 lb=in2

From Table 13.3, case 6c, the maximum stresses caused by this pressure are

ðs2Þmax ¼ 0:955ð96:3Þð0:91Þ1=6
5ð0:333Þ

0:0152

� �2=3

¼ 34;400 lb=in2

ðs0Þmax ¼ 0:955ð96:3Þð0:91Þ�1=3 5ð0:333Þ

0:0152

� �2=3

¼ 36;060 lb=in2

If the yield strength is greater than 36,000 lb=in2, the corrugated tube should
buckle laterally, that is, squirm, at an internal pressure of 96.3 lb=in2.
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13.6 Thick Shells of Revolution

If the wall thickness of a vessel is more than about one-tenth the

radius, the meridional and hoop stresses cannot be considered uniform

throughout the thickness of the wall and the radial stress cannot be

considered negligible. These stresses in thick vessels, called wall

stresses, must be found by formulas that are quite different from

those used in finding membrane stresses in thin vessels.

It can be seen from the formulas for cases 1a and 1b of Table 13.5

that the stress s2 at the inner surface of a thick cylinder approaches q

as the ratio of outer to inner radius approaches infinity. It is apparent,

therefore, that if the stress is to be limited to some specified value s,

the pressure must never exceed q ¼ s, no matter how thick the wall is

made. To overcome this limitation, the material at and near the inner

surface must be put into a state of initial compression. This can be

done by shrinking on one or more jackets (as explained in Sec. 3.12

and in the example which follows) or by subjecting the vessel to a high

internal pressure that stresses the inner part into the plastic range

and, when removed, leaves residual compression there and residual

tension in the outer part. This procedure is called autofrettage, or self-

hooping. If many successive jackets are superimposed on the original

tube by shrinking or wrapping, the resulting structure is called a

multilayer vessel. Such a construction has certain advantages, but it

should be noted that the formulas for hoop stresses are based on the

assumption that an isotropic material is used. In a multilayered vessel

the effective radial modulus of elasticity is less than the tangential

modulus, and in consequence the hoop stress at and near the outer

wall is less than the formula would indicate; therefore, the outer

layers of material contribute less to the strength of the vessel than

might be supposed.

Cases 1e and 1f if in Table 13.5 represent radial body-force loading,

which can be superimposed to give results for centrifugal loading, etc.

(see Sec. 16.2). Case 1f is directly applicable to thick-walled disks with

embedded electrical conductors used to generate magnetic fields. In

many such cases the magnetic field varies linearly through the wall to

zero at the outside. If there is a field at the outer turn, cases 1e and 1f

can be superimposed in the necessary proportions.

The tabulated formulas for elastic wall stresses are accurate for both

thin and thick vessels, but formulas for predicted yield pressures do

not always agree closely with experimental results (Refs. 21, 34–37,

and 39). The expression for qy given in Table 13.5 is based on the

minimum strain-energy theory of elastic failure. The expression for

bursting pressure

qu ¼ 2su

a � b

a þ b
ð13:6-1Þ
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commonly known as the mean diameter formula, is essentially empiri-

cal but agrees reasonably well with experiment for both thin and thick

cylindrical vessels and is convenient to use. For very thick vessels the

formula

qu ¼ su ln
a

b
ð13:6-2Þ

is preferable. Greater accuracy can be obtained by using with this

formula a multiplying factor that takes into account the strain-hard-

ening properties of the material (Refs. 10, 20, and 37). With the same

objective, Faupel (Ref. 39) proposes (with different notation) the

formula

qu ¼
2syffiffiffi

3
p 2 �

sy

su

� �
ln

a

b
ð13:6-3Þ

A rather extensive discussion of bursting pressure is given in Ref. 38,

which presents a tabulated comparison between bursting pressures as

calculated by a number of different formulas and as determined by

actual experiment.

EXAMPLE

At the powder chamber, the inner radius of a 3-in gun tube is 1.605 in and the
outer radius is 2.425 in. It is desired to shrink a jacket on this tube to produce a
radial pressure between the tube and jacket of 7600 lb=in2. The outer radius of
this jacket is 3.850 in. It is required to determine the difference between the
inner radius of the jacket and the outer radius of the tube in order to produce
the desired pressure, calculate the stresses in each part when assembled, and
calculate the stresses in each part when the gun is fired, generating a powder
pressure of 32,000 lb=in2.

Solution. Using the formulas for Table 13.5, case 1c, it is found that for an
external pressure of 7600 lb=in2, the stress s2 at the outer surface of the tube is
�19,430 lb=in2, the stress s2 at the inner surface is �27,050 lb=in2, and the
change in outer radius Da ¼ �0:001385 in; for an internal pressure of
7600 lb=in2, the stress s2 at the inner surface of the jacket is þ17,630 lb=in2,
the stress s2 at the outer surface is þ10,050 lb=in2, and the change in inner
radius Db ¼ þ0:001615 in. (In making these calculations the inner radius of
the jacket is assumed to be 2.425 in.) The initial difference between the
inner radius of the jacket and the outer radius of the tube must
be equal to the sum of the radial deformations they suffer, or
0:001385 þ 0:001615 ¼ 0:0030 in; therefore the initial radius of the jacket
should be 2:425 � 0:0030 ¼ 2:422 in.

The stresses produced by the powder pressure are calculated at the inner
surface of the tube, at the common surface of tube and jacket (r ¼ 2:425 in),
and at the outer surface of the jacket. These stresses are then superimposed on
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those found previously. The calculations are as follows: For the tube at the
inner surface,

s2 ¼ þ32;000
3:852 þ 1:6052

3:852 � 1:6052
¼ 45;450 lb=in2

s3 ¼ �32;000 lb=in2

For tube and jacket at the interface,

s2 ¼ þ32;000
1:6052

2:4252

3:852 þ 2:4252

3:852 � 1:6052
¼ þ23;500 lb=in2

s3 ¼ �32;000
1:6052

2:4252

3:852 � 2:4252

3:852 � 1:6052
¼ �10;200 lb=in2

For the jacket at the outer surface,

s2 ¼ þ32;000
1:6052

3:852

3:852 þ 3:852

3:852 � 1:6052
¼ þ13;500 lb=in2

These are the stresses due to the powder pressure. Superimposing the stresses
due to the shrinkage, we have as the resultant stresses:

At inner surface of tube,

s2 ¼ �27;050 þ 45;450 ¼ þ18;400 lb=in2

s3 ¼ 0 � 32;000 ¼ �32;000 lb=in2

At outer surface of tube,

s2 ¼ �19;430 þ 23;500 ¼ þ4070 lb=in2

s3 ¼ �7600 � 10;200 ¼ �17;800 lb=in2

At inner surface of jacket,

s2 ¼ þ17;630 þ 23;500 ¼ þ41;130 lb=in2

s3 ¼ �7600 � 10;200 ¼ �17;800 lb=in2

At outer surface of jacket,

s2 þ 10;050 þ 13;500 ¼ þ23;550 lb=in2

13.7 Pipe on Supports at Intervals

For a pipe or cylindrical tank supported at intervals on saddles or

pedestals and filled or partly filled with liquid, the stress analysis is

difficult and the results are rendered uncertain by doubtful boundary

conditions. Certain conclusions arrived at from a study of tests (Refs.

11 and 12) may be helpful in guiding design: See also Ref. 75.
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1. For a circular pipe or tank supported at intervals and held circular

at the supports by rings or bulkheads, the ordinary theory of

flexure is applicable if the pipe is completely filled.

2. If the pipe is only partially filled, the cross section at points between

supports becomes out of round and the distribution of longitudinal

fiber stress is neither linear nor symmetrical across the section.

The highest stresses occur for the half-full condition; then the

maximum longitudinal compressive stress and the maximum

circumferential bending stresses occur at the ends of the horizontal

diameter, the maximum longitudinal tensile stress occurs at the

bottom, and the longitudinal stress at the top is practically zero.

According to theory (Ref. 4), the greatest of these stresses is the

longitudinal compression, which is equal to the maximum long-

itudinal stress for the full condition divided by

K ¼
L

R

ffiffiffiffi
t

R

r !1=2

where R ¼ pipe radius, t ¼ thickness, and L ¼ span. The maximum

circumferential stress is about one-third of this. Tests (Ref. 11) on a

pipe having K ¼ 1:36 showed a longitudinal stress that is some-

what less and a circumferential stress that is considerably greater

than indicated by this theory.

3. For an unstiffened pipe resting in saddle supports, there are high

local stresses, both longitudinal and circumferential, adjacent to

the tips of the saddles. These stresses are less for a large saddle

angle b (total angle subtended by arc of contact between pipe and

saddle) than for a small angle, and for the ordinary range of

dimensions they are practically independent of the thickness of

the saddle, i.e., its dimension parallel to the pipe axis. For a pipe

that fits the saddle well, the maximum value of these localized

stresses will probably not exceed that indicated by the formula

smax ¼ k
P

t2
ln

R

t

where P ¼ total saddle reaction, R ¼ pipe radius, t ¼ pipe thick-

ness, and k ¼ coefficient given by

k ¼ 0:02 � 0:00012ðb� 90Þ

where b is in degrees. This stress is almost wholly due to circum-

ferential bending and occurs at points about 15� above the saddle

tips.

590 Formulas for Stress and Strain [CHAP. 13



4. The maximum value of P the pipe can sustain is about 2.25 times

the value that will produce a maximum stress equal to the yield

point of the pipe material, according to the formula given above.

5. The comments in conclusion 3 above are based on the results of

tests performed on very thin-walled pipe. Evces and O’Brien in Ref.

73 describe similar tests on thicker-walled ductile-iron pipe for

which R=t does not normally exceed 50. They found that optimum

saddle angles lie in the range 90� > b > 120� and that for R=t5 28

the formulas for smax can be used if the value of k is given by

k ¼ 0:03 � 0:00017ðb� 90Þ

The maximum stress will be located within �15� of the tip if the

pipe fits the saddle well.

6. For a pipe supported in flexible slings instead of on rigid saddles,

the maximum local stresses occur at the points of tangency of sling

and pipe section; in general, they are less than the corresponding

stresses in the saddle-supported pipe but are of the same order of

magnitude.

A different but closely related support system for horizontal cylin-

drical tanks consists of a pair of longitudinal line loads running the

full length of the vessel. If the tank wall is thin, accounting for the

deformations, which are normally ignored in standard stress formulas,

it shows that the stresses are significantly lower. Cook in Ref. 79 uses

a nonlinear analysis to account for deformations and reports results

for various positions of the supports, radius=thickness ratios, and

depths of fill in the tank.
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TABLE 13.1 Formulas for membrane stresses and deformations in thin-walled pressure vessels
NOTATION: P ¼ axial load (force); p ¼ unit load (force per unit length); q and w ¼ unit pressures (force per unit area); d ¼ density (force per unit volume); s1 ¼ meridional stress; s2 ¼ circumferential,

or hoop, stress; R1 ¼ radius of curvature of a meridian, a principal radius of curvature of the shell surface; R2 ¼ length of the normal between the point on the shell and the axis of rotation, the second

principal radius of curvature; R ¼ radius of curvature of a circumference; DR ¼ radial displacement of a circumference; Dy ¼ change in the height dimension y; y ¼ length of cylindrical or conical shell

and is also used as a vertical position coordinate, positive upward, from an indicated origin in some cases; c ¼ rotation of a meridian from its unloaded position, positive when that meridional rotation

represents an increase in DR when y or y increases; E ¼ modulus of elasticity; and n ¼ Poisson’s ratio

Case no., form of vessel Manner of loading Formulas

1. Cylindrical 1a. Uniform axial load, p

force=unit length
s1 ¼

p

t

s2 ¼ 0

DR ¼
�pnR

Et

Dy ¼
py

Et

c ¼ 0

1b. Uniform radial pressure, q

force=unit area
s1 ¼ 0

s2 ¼
qR

t

DR ¼
qR2

Et

Dy ¼
�qRny

Et

c ¼ 0
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1c. Uniform internal or exter-

nal pressure, q force=unit

area (ends capped)

At points away from the ends

s1 ¼
qR

2t

s2 ¼
qR

t

DR ¼
qR2

Et
1 �

n
2

� �
Dy ¼

qRy

Et
ð0:5 � nÞ

c ¼ 0

1d. Linearly varying radial

pressure, q force=unit

area

q ¼
q0y

l

(where y must be measured from a free end. If pressure starts away from the end, see case 6 in Table 13.2)

s1 ¼ 0

s2 ¼
qR

t
¼

q0Ry

lt

DR ¼
qR2

Et
¼

q0R2y

Etl

Dy ¼
�q0Rny2

2Etl

c ¼
q0R2

Etl

1e. Own weight, d force=unit

volume; top edge support,

bottom edge free

s1 ¼ dy

s2 ¼ 0

DR ¼
�dnRy

E

Dy ¼
dy2

2E

c ¼
�dnR

E

S
E
C
.
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3
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TABLE 13.1 Formulas for membrane stresses and deformations in thin-walled pressure vessels (Continued )

Case no., form of vessel Manner of loading Formulas

1f. Uniform rotation, o rad=s,

about central axis

dm ¼ mass density

s1 ¼ 0

s2 ¼ dmR2o2

DR ¼
dmR3o2

E

Dy ¼
�ndmR2o2y

E

c ¼ 0

2. Cone

R2

t
> 10

2a. Uniform internal or

external pressure, q

force=unit area; tangential

edge support

s1 ¼
qR

2t cos a

s2 ¼
qR

t cos a

DR ¼
qR2

Et cos a
1 �

n
2

� �
Dy ¼

qR2

4Et sin a
ð1 � 2n� 3 tan2 aÞ

c ¼
3qR tan a
2Et cos a
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2b. Filled to depth d with

liquid of density d force=

unit volume; tangential

edge support

At any level y below the liquid surface y4d

s1 ¼
dy tan a
2t cos a

d �
2y

3

� �
; ðs1Þmax ¼

3d2 tan a
16t cos a

when y ¼
3d

4

s2 ¼
yðd � yÞd tan a

t cos a
; ðs2Þmax ¼

dd2 tan a
4t cos a

when y ¼
d

2

DR ¼
dy2 tan2 a
Et cos a

d 1 �
n
2

� �
� y 1 �

n
3

� �h i
Dy ¼

dy2 sin a
Et cos4 a

d

4
ð1 � 2nÞ �

y

9
ð1 � 3nÞ � sin

2 a
d

2
ð2 � nÞ �

y

3
ð3 � nÞ

� �� �

c ¼
dy sin

2 a
6Et cos3 a

ð9d � 16yÞ

At any level y above the liquid level

s1 ¼
dd3 tan a
6ty cos a

; s2 ¼ 0; DR ¼
�ndd3 tan2 a

6Et cos a

Dy ¼
dd3 sin a
6Et cos4 a

5

6
� nð1 � sin

2 aÞ þ ln
y

d

� �

c ¼
�dd3 sin

2 a
6Et cos3 a

1

y

2c. Own weight, d force=unit

volume tangential top edge

support

s1 ¼
dR

2 sin a cos a
s2 ¼ dR tan a

DR ¼
dR2

E cos a
sin a�

n
2 sin a

� �
Dy ¼

dR2

E cos2 a
1

4 sin
2 a

� sin
2 a

� �

c ¼
2dR

E cos2 a
sin

2 a 1 þ
n
2

� �
�

1

4
ð1 þ 2nÞ

� �

(Note: There is a discontinuity in the rate of increase in fluid

pressure at the top of the liquid. This leads to some bending in

this region and is indicated by a discrepancy in the two

expressions for the meridional slope at y ¼ d.)
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TABLE 13.1 Formulas for membrane stresses and deformations in thin-walled pressure vessels (Continued )

Case no., form of vessel Manner of loading Formulas

2d. Tangential loading only;

resultant load ¼ P s1 ¼
P

2pRt cos a
r must be finite to avoid infinite stress and r=t > 10 to be considered thin-walled

s2 ¼ 0

DR ¼
�nP

2pEt cos a

Dy ¼
P

2pEt sin a cos2 a
ln

R

r

c ¼
�P sin a

2pERt cos2 a

2e. Uniform loading, force=

unit area; on the

horizontal projected area;

tangential top edge support

s1 ¼
wR

2t cos a

s2 ¼
wR sin

2 a
t cos a

DR ¼
wR2

Et cos a
sin

2 a�
n
2

� �
Dy ¼

wR2

2Et cos2 a
1

2 sin a
þ nð1 � sin aÞ � 2 sin

2 a
� �

c ¼
wR sin a

2Et cos2 a
ð4 sin

2 a� 1 � 2n cos2 aÞ

2f. Uniform rotation, o rad=s,

about central axis

dm ¼ mass density

s1 ¼ 0

s2 ¼ dmR2o2

DR ¼
dmR3o2

E

Dy ¼
�dmR3o2

E cos a
sin aþ

n
3 sin a

� �
c ¼

dmR2o2 tan a
E

ð3 þ nÞ
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3. Spherical

R2

t
> 10

3a. Uniform internal or

external pressure, q

force=unit area; tangential

edge support

s1 ¼ s2 ¼
qR2

2t

DR ¼
qR2

2ð1 � nÞ sin y
2Et

DR2 ¼
qR2

2ð1 � nÞ
2Et

Dy ¼
qR2

2ð1 � nÞð1 � cos yÞ
2Et

c ¼ 0

3b. Filled to depth d with

liquid of density d force=

unit volume; tangential

edge support

At any level y below the liquid surface, y < d

s1 ¼
dR2

2

6t
3

d

R2

� 1 þ
2 cos2 y

1 þ cos y

� �

s2 ¼
dR2

2

6t
3

d

R2

� 5 þ
ð3 þ 2 cos yÞ2 cos y

1 þ cos y

� �

DR ¼
dR3

2 sin y
6Et

3ð1 � nÞ
d

R2

� 5 þ nþ 2 cos y
3 þ ð2 � nÞ cos y

1 þ cos y

� �

Dy ¼
dR3

2

6Et
3ð1 � nÞ

d

R2

ð1 � cos yÞ þ cos y
� �

� ð2 � nÞ cos2 yþ ð1 þ nÞ 1 þ 2 ln
2

1 þ cos y

� �� �

c ¼
�dR2

2

Et
sin y Weight of liquid ¼ P ¼ dpd2 R2 �

d

3

� �

At any level y above the liquid level use case 3d with the load equal to the entire weight of the liquid

3c. Own weight, d force=unit

volume; tangential

top edge support

s1 ¼
dR2

1 þ cos y
; s2 ¼ �dR2

1

1 þ cos y
� cos y

� �

Max tensile s2 ¼
dR2

2
at y ¼ 0

s2 ¼ 0 at y ¼ 51:83�

DR ¼
�dR2

2 sin y
E

1 þ n
1 þ cos y

� cos y
� �

Dy ¼
dR2

2

E
sin

2 yþ ð1 þ nÞ ln
2

1 þ cos y

� �

c ¼
�dR2

E
ð2 þ nÞ sin y

(Note: See the note in case 2b regarding the discrepancy in the meridional

slope at y ¼ d)
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TABLE 13.1 Formulas for membrane stresses and deformations in thin-walled pressure vessels (Continued )

Case no., form of vessel Manner of loading Formulas

3d. Tangential loading only;

resultant load ¼ P s1 ¼
P

2pR2t sin
2 y

; s2 ¼ �s1

DR ¼
�Pð1 þ nÞ
2pEt sin y

Dy ¼
Pð1 þ nÞ

2pEt
ln tan

y
2

� �
� ln tan

yo

2

� �� �

c ¼ 0

3e. Uniform loading, w force=

unit area; on the horizontal

projected area; tangential

top edge support

For y4 90�

s1 ¼
wR2

2t

s2 ¼
wR2

2t
cos 2y

DR ¼
wR2

2 sin y
2Et

ðcos 2y� nÞ

Dy ¼
wR2

2

2Et
½2ð1 � cos3 yÞ þ ð1 þ nÞð1 � cos yÞ


c ¼
�wR2

Et
ð3 þ nÞ sin y cos y

3f. Uniform rotation, o rad=s,

about central axis

dm ¼ mass density

s1 ¼ 0

s2 ¼ dmR2o2

DR ¼
dmR3o2

E

Dy ¼
�dmR3

2o
2

E
ð1 þ n� n cos y� cos3 yÞ

c ¼
dmR2

2o
2 sin y cos y
E

ð3 þ nÞ

(Note: yo is the angle to the lower edge and cannot go to zero without

local bending occurring in the shell)
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4. Any smooth figure of

revolution if R2 is less

than infinity

4a. Uniform internal or

external pressure, q force=

unit area; tangential

edge support

s1 ¼
qR2

2t

s2 ¼
qR2

2t
2 �

R2

R1

� �

DR ¼
qR2

2 sin y
2Et

�
2 �

R2

R1

� n
�

c ¼
qR2

2

2EtR1 tan y
3

R1

R2

� 5 þ
R2

R1

2 þ
1

R1

dR1

dy
tan y

� �� �

R2

t
> 10

4b. Filled to depth d with

liquid of density d force=

unit volume; tangential

edge support. W ¼ weight

of liquid contained to a

depth y

At any level y below the liquid surface, y < d,

s1 ¼
W

2pR2t sin
2 y

þ
dR2ðd � yÞ

2t

s2 ¼
�W

2pR1t sin
2 y

þ
dR2ðd � yÞ

2t
2 �

R2

R1

� �

DR ¼
R2 sin y

E
ðs2 � ns1Þ

At any level y above the liquid level use case 4d with the load equal to the entire weight of the liquid

4c. Own weight, d force=unit

volume; tangential top

edge support. W ¼ weight

of vessel below the level y

s1 ¼
W

2pR2t sin
2 y

s2 ¼
W

2pR1t sin
2 y

þ dR2 cos y

DR ¼
R2 sin y

E
ðs2 � ns1Þ

4d. Tangential loading only,

resultant load ¼ P s1 ¼
P

2pR2t sin
2 y

s2 ¼
�P

2pR1t sin
2 y

DR ¼
�P

2pEt sin y
R2

R1

þ n
� �

c ¼
�P

2pEtR1 sin
2 y

1

tan y
1 þ

R1

R2

� 2
R2

R1

� �
�

R2

R2
1

dR1

dy

� �
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TABLE 13.1 Formulas for membrane stresses and deformations in thin-walled pressure vessels (Continued )

Case no., form of vessel Manner of loading Formulas

4e. Uniform loading, w

force=unit area, on the

horizontal projected

area; tangential top

edge support

For y4 90�

s1 ¼
wR2

2t

s2 ¼
wR2

2t
2 cos2 y�

R2

R1

� �

DR ¼
wR2

2 sin y
2Et

2 cos2 y�
R2

R1

� n
� �

c ¼
w

2EtR1 tan y
R1R2ð4 cos2 y� 1 � 2n sin

2 yÞ � R2
2ð7 � 2 cos yÞ þ

R3
2

R1

2 þ
tan y
R1

dR1

dy

� �� �

4f. Uniform rotation, o rad=s,

about central axis

dm ¼ mass density

s1 ¼ 0

s2 ¼ dmR2o2

DR ¼
dmR3o2

E

c ¼
dmR2o2

E tan y
ð3 þ nÞ

5. Toroidal shell 5a. Uniform internal or

external pressure, q

force=unit area

s1 ¼
qb

2t

r þ a

r

ðs1Þmax ¼
qb

2t

2a � b

a � b
at point O

s2 ¼
qb

2t
ðthroughoutÞ

Dr ¼
qb

2Et
½r � nðr þ aÞ


[Note: There are some bending stresses at the top and bottom where R2 (see case 4) is infinite (see Ref. 42)]

6
0
0

F
o
rm

u
la
s
fo
r
S
tre

s
s
a
n
d
S
tra

in
[C
H
A
P
.
1
3



TABLE 13.2 Shear, moment, slope, and deflection formulas for long and short thin-walled cylindrical shells under axisymmetric loading
NOTATION: Vo, H , and p ¼ unit loads (force per unit length); q ¼ unit pressure (force per unit area); Mo ¼ unit applied couple (force-length per unit length); all loads are positive as shown.

At a

distance x from the left end, the following quantities are defined: V ¼ meridional radial shear, positive when acting outward on the right hand portion; M ¼ meridional bending moment, positive

when

compressive on the outside; c ¼ meridional slope (radians), positive when the deflection increases with x; y ¼ radial deflection, positive outward. s1 and s2 ¼ meridional and circumferential membrane

stresses; positive when tensile; s01 and s02 ¼ meridional and circumferential bending stresses, positive when tensile on the outside; t ¼ meridional radial shear stress; E ¼ modulus of elasticity;

n ¼ Poisson’s ratio; R ¼ mean radius; t ¼ wall thickness.

The following constants and functions are hereby defined in order to permit condensing the tabulated formulas which follow:

l ¼
3ð1 � n2Þ

R2t2

� �1=4

D ¼
Et3

12ð1 � n2Þ

(Note: See page 131 for a definition ofhx � ain ; also all hyperbolic and trigonometric functions of the argumenthx � aiare also defined as zero if x < a) (Note

also

the limitations on maximum deflections discussed in paragraph 3 of Sec 13.3)

F1 ¼ cosh lx cos lx

F2 ¼ cosh lx sin lx þ sinh lx cos lx

F3 ¼ sinh lx sin lx

F4 ¼ cosh lx sin lx � sinh lx cos lx

Fa1 ¼hx � ai0 cosh lhx � aicos lhx � ai

Fa2 ¼ cosh lhx � aisin lhx � aiþ sinh lhx � aicos lhx � ai

Fa3 ¼ sinh lhx � aisin lhx � ai

Fa4 ¼ cosh lhx � aisin lhx � ai� sinh lhx � aicos lhx � ai

Fa5 ¼hx � ai0 � Fa1

Fa6 ¼ 2lðx � aÞhx � ai0 � Fa2

A1 ¼ 1
2
e�la cos la

A2 ¼ 1
2
e�laðsin la � cos laÞ

A3 ¼ � 1
2
e�la sin la

A4 ¼ 1
2
e�laðsin la þ cos laÞ

C1 ¼ cosh ll cos ll C11 ¼ sinh
2 ll � sin

2 ll

C2 ¼ cosh ll sin ll þ sinh ll cos ll C12 ¼ cosh ll sinh ll þ cos ll sin ll

C3 ¼ sinh ll sin ll C13 ¼ cosh ll sinh ll � cos ll sin ll

C4 ¼ cosh ll sin ll � sinh ll cos ll C14 ¼ sinh
2 ll þ sin

2 ll

Ca1 ¼ cosh lðl � aÞ cos lðl � aÞ

Ca2 ¼ cosh lðl � aÞ sin lðl � aÞ þ sinh lðl � aÞ cos lðl � aÞ

Ca3 ¼ sinh lðl � aÞ sin lðl � aÞ

Ca4 ¼ cosh lðl � aÞ sin lðl � aÞ � sinh lðl � aÞ cos lðl � aÞ

Ca5 ¼ 1 � Ca1

Ca6 ¼ 2lðl � aÞ � Ca2

B1 ¼ 1
2
e�lb cos lb

B2 ¼ 1
2
e�lbðsin lb � cos lbÞ

B3 ¼ � 1
2
e�lb sin lb

B4 ¼ 1
2
e�lbðsin lb þ cos lbÞ

Numerical values of F1, F2, F3, and F4 for lx ranging from 0 to 6 are tabulated in Table 8.3; numerical values of C11, C12, C13, and C14 are tabulated in Table 8.4.
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TABLE 13.2 Shear, moment, slope, and deflection formulas for long and short thin-walled cylindrical shells under axisymmetric loading
(Continued )

Short shells with free ends

R=t > 10

Meridional radial shear ¼ V ¼ �yA2Dl3F2 � cA2Dl2F3 þ LTV

Meridional bending moment ¼ M ¼ �yA2Dl2F3 � cADlF4 þ LTM

Meridional slope ¼ c ¼ cAF1 � yAlF4 þ LTc

Radial deflection ¼ y ¼ yAF1 þ
cA

2l
F2 þ LTy

Circumferential membrane stress ¼ s2 ¼
yE

R
þ ns1

Meridional bending stress ¼ s01 ¼
�6M

t2

Circumferential bending stress ¼ s02 ¼ ns01

Meridional radial shear stress ¼ t ¼
V

t
ðaverage valueÞ

(Note: The load terms LTV , LTM , etc., are given for each of the following

cases)

Loading and case no. End deformations Load terms or load and deformation equations Selected values

1. Radial end load, Vo lb=in

If ll > 6, see case 8

cA ¼
Vo

2Dl2

C14

C11

yA ¼
�Vo

2Dl3

C13

C11

cB ¼
Vo

2Dl2

2C3

C11

yB ¼
Vo

2Dl3

C4

C11

LTV ¼ �VoF1

LTM ¼
�Vo

2l
F2

LTc ¼
�Vo

2Dl2
F3

LTy ¼
�Vo

4Dl3
F4

s1 ¼ 0 ðs2Þmax ¼
yAE

R

cmax ¼ cA

ymax ¼ yA

2. Intermediate radial load,

p lb=in

If ll > 6, consider case 9

cA ¼
p

2Dl2

C2Ca2 � 2C3Ca1

C11

yA ¼
�p

2Dl3

C3Ca2 � C4Ca1

C11

cB ¼ cAC1 � yAlC4 �
p

2Dl2
Ca3

yB ¼ yAC1 þ
cAC2

2l
�

p

4Dl3
Ca4

LTV ¼ �pFa1

LTM ¼
�p

2l
Fa2

LTc ¼
�p

2Dl2
Fa3

LTy ¼
�p

4Dl3
Fa4

s1 ¼ 0
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3. End moment, Mo lb-in=in

If ll > 6, see case 10

cA ¼
�Mo

Dl
C12

C11

yA ¼
Mo

2Dl2

C14

C11

cB ¼
�Mo

Dl
C2

C11

yB ¼
�Mo

Dl2

C3

C11

LTV ¼ �MolF4

LTM ¼ MoF1

LTc ¼
Mo

2Dl
F2

LTy ¼
Mo

2Dl2
F3

s1 ¼ 0

ðs2Þmax ¼
yAE

R

Mmax ¼ Mo ðat x ¼ 0Þ

cmax ¼ cA

ymax ¼ yA

4. Intermediate applied

moment, Mo lb-in=in

If ll > 6, consider case 11

cA ¼
�Mo

Dl
C2Ca1 þ C3Ca4

C11

yA ¼
Mo

2Dl2

2C3Ca1 þ C4Ca4

C11

cB ¼ cAC1 � yAlC4 þ
Mo

2Dl
Ca2

yB ¼ yAC1 þ
cA

2l
C2 þ

Mo

2Dl2
Ca3

LTV ¼ �MolFa4

LTM ¼ MoFa1

LTc ¼
Mo

2Dl
Fa2

LTy ¼
Mo

2Dl2
Fa3

5. Uniform radial pressure from

a to l

If ll > 6, consider case 12

cA ¼
q

2Dl3

C2Ca3 � C3Ca2

C11

yA ¼
�q

4Dl4

2C3Ca3 � C4Ca2

C11

cB ¼ cAC1 � yAlC4 �
q

4Dl3
Ca4

yB ¼ yAC1 þ
cA

2l
C2 �

q

4Dl4
Ca5

LTV ¼
�q

2l
Fa2

LTM ¼
�q

2l2
Fa3

LTc ¼
�q

4Dl3
Fa4

LTy ¼
�q

4Dl4
Fa5

6. Uniformly increasing

pressure from a to l cA ¼
�q

4Dl4
ðl � aÞ

2C3Ca3 � C2Ca4

C11

yA ¼
�q

4Dl5
ðl � aÞ

C3Ca4 � C4Ca3

C11

cB ¼ cAC1 � yAlC4 �
qCa5

4Dl4
ðl � aÞ

yB ¼ yAC1 þ
cA

2l
C2 �

qCa6

8Dl5
ðl � aÞ

LTV ¼
�q

2l2
ðl � aÞ

Fa3

LTM ¼
�q

4l3
ðl � aÞ

Fa4

LTc ¼
�q

4Dl4
ðl � aÞ

Fa5

LTy ¼
�q

8Dl5
ðl � aÞ

Fa6

s1 ¼ 0

ðs2Þmax ¼
yBE

R

ymax ¼ yB

cmax ¼ cB
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(Continued )



TABLE 13.2 Shear, moment, slope, and deflection formulas for long and short thin-walled cylindrical shells under axisymmetric loading
(Continued )

Loading and case no. End deformations Load terms or load and deformation equations Selected values

7. Axial load along the portion

from a to l only cA ¼
nH

2Dl3R

C2Ca3 � C3Ca2

C11

yA ¼
�nHR

Et

2C3Ca3 � C3Ca2

C11

cB ¼ cAC1 � yAlC4 �
nHRl

Et
Ca4

yB ¼ yAC1 þ
cAC2

2l
�
nHR

Et
Ca5

LTV ¼
�nH
2lR

Fa2

LTM ¼
�nH

2l2R
Fa3

LTc ¼
�nHRl

Et
Fa4

LTy ¼
�nHR

Et
Fa5

s1 ¼
H

t
hx � ai0

Long shells with the left end free (right end more

than 6=l units of length from the closest load)
Meridional radial shear ¼ V ¼ �yA2Dl3F2 � cA2Dl2F3 þ LTV

Meridional bending moment ¼ M ¼ �yA2Dl2F3 � cADlF4 þ LTM

Meridional slope ¼ c ¼ cAF1 � yAlF4 þ LTc

Radial deflection ¼ y ¼ yAF1 þ
cA

2l
F2 þ LTy

Circumferential membrane stress ¼ s2 ¼
yE

R
þ ns1

Meridional bending stress ¼ s01 ¼
�6M

t2

Circumferential bending stress ¼ s02 ¼ ns01

Meridional radial shear stress ¼ t ¼
V

t
ðaverage valueÞ

(Note: The load terms LTV , LTM , etc., are given where needed in the

following cases)

8. Radial end load, Vo lb=in
cA ¼

Vo

2Dl2

yA ¼
�Vo

2Dl3

V ¼ �Voe�lxðcos lx � sin lxÞ

M ¼
�Vo

l
e�lx sin lx

c ¼
Vo

2Dl2
e�lxðcos lx þ sin lxÞ

y ¼
�Vo

2Dl3
e�lx cos lx

Vmax ¼ �Vo at x ¼ 0

Mmax ¼ �0:3224
Vo

l
at x ¼

p
4l

cmax ¼ cA ymax ¼ yA

s1 ¼ 0

ðs2Þmax ¼
�2VolR

t
at x ¼ 0

9. Intermediate radial load,

p lb=in

If la > 3, consider case 15

cA ¼
�p

Dl2
A2

yA ¼
�p

Dl3
A1

LTV ¼ �pFa1

LTM ¼
�p

2l
Fa2

LTc ¼
�p

2Dl2
Fa3

LTy ¼
�p

4Dl3
Fa4

s1 ¼ 0

6
0
4

F
o
rm

u
la
s
fo
r
S
tre

s
s
a
n
d
S
tra

in
[C
H
A
P
.
1
3



10. End moment, Mo lb-in=in
cA ¼

�Mo

Dl

yA ¼
Mo

2Dl2

V ¼ �2Mole�lx sin lx

M ¼ Moe�lxðcos lx þ sin lxÞ

c ¼
�Mo

Dl
e�lx cos lx

y ¼
�Mo

2Dl2
e�lxðsin lx � cos lxÞ

Vmax ¼ �0:6448Mol at x ¼
p
4l

Mmax ¼ Mo at x ¼ 0

cmax ¼ cA; ymax ¼ yA

s1 ¼ 0

ðs2Þmax ¼
2Mol

2R

t
at x ¼ 0

11. Intermediate applied

moment, Mo lb-in=in

If la > 3, consider case 16

cA ¼
�2Mo

Dl
A1

yA ¼
Mo

Dl2
A4

LTV ¼ �MolFa4

LTM ¼ MoFa1

LTc ¼
Mo

2Dl
Fa2

LTy ¼
Mo

2Dl2
Fa3

s1 ¼ 0

12. Uniform radial pressure

from a to b
cA ¼

�q

Dl3
ðB3 � A3Þ

yA ¼
�q

2Dl4
ðB2 � A2Þ

LTV ¼
�q

2l
ðFa2 � Fb2Þ

LTM ¼
�q

2l2
ðFa3 � Fb3Þ

LTc ¼
�q

4Dl3
ðFa4 � Fb4Þ

LTy ¼
�q

4Dl4
ðFa5 � Fb5Þ

s1 ¼ 0

13. Uniformly increasing

pressure from a to b cA ¼
q

D

B4 � A4

2l4
ðb � aÞ

�
B3

l3

� �

yA ¼
q

2D

B3 � A3

l5
ðb � aÞ

�
B2

l4

� � LTV ¼
�q

2

Fa3 � Fb3

l2
ðb � aÞ

�
Fb2

l

� �

LTM ¼
�q

2

Fa4 � Fb4

2l3
ðb � aÞ

�
Fb3

l2

� �

LTc ¼
�q

4D

Fa5 � Fb5

l4
ðb � aÞ

�
Fb4

l3

� �

LTy ¼
�q

4D

Fa6 � Fb6

2l5
ðb � aÞ

�
Fb5

l4

� �

s1 ¼ 0

For values of Fb1 to Fb6

substitute b for a in the

expressions for Fa1 to Fa6

See note in

case 12
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TABLE 13.2 Shear, moment, slope, and deflection formulas for long and short thin-walled cylindrical shells under axisymmetric loading
(Continued )

Loading and case no. End deformations Load terms or load and deformation equations Selected values

14. Axial load along the portion

from a to b cA ¼
�nH

RDl3
ðB3 � A3Þ

yA ¼
�nH

2RDl4
ðB2 � A2Þ

LTV ¼
�nH
2Rl

ðFa2 � Fb2Þ

LTM ¼
�nH

2Rl2
ðFa3 � Fb3Þ

LTc ¼
�nH

4RDl3
ðFa4 � Fb4Þ

LTy ¼
�nH

4RDl4
ðFa5 � Fb5Þ

s1 ¼
H

t
hx � ai0 �

H

t
hx � bi0

Very long shells (both ends more than 6=l units of length from the nearest loading)

Circumferential membrane stress ¼ s2 ¼
yE

R
þ ns1

Meridional bending stress ¼ s01 ¼
�6M

t2

Circumferential bending stress ¼ s02 ¼ ns01

Meridional radial shear stress ¼ t ¼
V

t

Loading and case no. Load and deformation equations Selected values

15. Concentrated radial load, p

(lb=linear in of

circumference)

V ¼
�p

2
e�lx cos lx

M ¼
p

4l
e�lxðcos lx � sin lxÞ

c ¼
p

4Dl2
e�lx sin lx

y ¼
�p

8Dl3
e�lrðcos lx þ sin lxÞ

Vmax ¼
�p

2
at x ¼ 0; s1 ¼ 0

Mmax ¼
p

4l
at x ¼ 0

cmax ¼ 0:0806
p

Dl2
at x ¼

p
4l

ymax ¼
�p

8Dl3
at x ¼ 0

R=t > 10
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16. Applied moment
V ¼

�Mol
2

e�lxðcos lx þ sin lxÞ

M ¼
Mo

2
e�lx cos lx

c ¼
�Mo

4Dl
e�lxðcos lx � sin lxÞ

y ¼
�Mo

4Dl2
e�lx sin lx

Vmax ¼
�Mol

2
at x ¼ 0; s1 ¼ 0

Mmax ¼
Mo

2
at x ¼ 0

cmax ¼
�Mo

4Dl
at x ¼ 0

ymax ¼ �0:0806
Mo

Dl2
at x ¼

p
4l

17. Uniform pressure over a band of

width 2a

Superimpose cases 10 and 12 to make cA

(at x ¼ 0Þ ¼ 0 [Note: x is measured from the

midlength of the loaded band]

Mmax ¼
q

2l2
e�la sin la at x ¼ 0

ymax ¼
�q

4Dl4
ð1 � e�la cos laÞ at x ¼ 0

s1 ¼ 0
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TABLE 13.3 Formulas for bending and membrane stresses and deformations in thin-walled pressure vessels
NOTATION: Qo and p unit loads (force per unit length); q ¼ unit pressure (force per unit area); Mo ¼ unit applied couple (force-length per unit length); co ¼ applied edge rotation (radians); Do ¼ applied

edge displacement, all loads are positive as shown. V ¼ meridional transverse shear, positive as shown; M1 and M2 ¼ meridional and circumferential bending moments, respectively, positive when

compressive on the outside; c ¼ change in meridional slope (radians), positive when the change is in the same direction as a positive M1; DR ¼ change in circumferential radius, positive outward; s1 and

s2 ¼ meridional and circumferential membrane stresses, positive when tensile; s01 and s02 ¼ meridional and circumferential bending stresses, positive when tensile on the outside. E ¼ modulus of

elasticity; n ¼ Poisson’s ratio; and D ¼ Et3=12ð1 � n2Þ

1. Partial spherical shells

b ¼ 3ð1 � n2Þ
R2

t

� �2
" #1=4

K1 ¼ 1 �
1 � 2n

2b
cotðf� oÞ

K2 ¼ 1 �
1 þ 2n

2b
cotðf� oÞ

K3 ¼
e�boffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sinðf� oÞ
p

R2

t
> 10

Meridional radial shear ¼ V1 ¼ �CK3 sinðboþ zÞ (Note: Expressions for C and z are given below for the several loads)

Meridional bending moment ¼ M1 ¼
CR2K3

2b
½K1 cosðboþ zÞ þ sinðboþ zÞ


Circumferential bending moment ¼ M2 ¼
CR2K3

2b
n sinðboþ zÞ þ 2 � 1 �

n
2

� �
ðK1 þ K2Þ

h i
cosðboþ zÞ

n o

Change in meridional slope ¼ c ¼
C2b2K3

Et
cosðboþ zÞ

Change in radius of circumference ¼ DR ¼
CR2bK3 sinðf� oÞ

Et
½cosðboþ zÞ � K2 sinðboþ zÞ


Meridional membrane stress ¼ s1 ¼
�CK3 cotðf� oÞ

t
sinðboþ zÞ

Meridional bending stress ¼ s01 ¼
�6M1

t2

Circumferential membrane stress ¼ s2 ¼
CbK3

2t
½2 cosðboþ zÞ � ðK1 þ K2Þ sinðboþ zÞ


Circumferential bending stress ¼ s02 ¼
�6M2

t2

Meridional radial shear stress ¼ t ¼
V1

t
ðaverage valueÞ

[Note: For reasonable accuracy 3=b < f < p� 3=b. Deformations and stresses due to edge loads and displacements are essentially zero when o > 3=b (see

discussion)]
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Case no., loading Formulas

1a. Uniform radial force Qo

at the edge C ¼
QoðsinfÞ3=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ K2

1

p
K1

and z ¼ tan�1ð�K1Þ where �
p
2
< z <

p
2

Max value of M1 occurs at o ¼ p=4b
At the edge where o ¼ 0,

V1 ¼ Qo sinf; M1 ¼ 0; s01 ¼ 0; s1 ¼
Qo cosf

t

s2 ¼
Qob sinf

2t

2

K1

þ K1 þ K2

� �
¼ ðs2Þmax

M2 ¼
Qot2B2 cosf

6K1R2

; s02 ¼
�QoB2 cosf

K1R2

c ¼
Qo2b2 sinf

EtK1

; DR ¼
QoR2b sin

2 f
EtK1

ð1 þ K1K2Þ ðRefs: 14 and 42Þ

1b. Uniform edge moment Mo

C ¼
Mo2b

ffiffiffiffiffiffiffiffiffiffiffi
sinf

p
R2K1

; z ¼ 0

At the edge where o ¼ 0,

V1 ¼ 0; s1 ¼ 0; M1 ¼ Mo; s01 ¼
�6Mo

t2

s2 ¼
Mo2b2

R2K1t
; M2 ¼

Mo

2nK1

½ð1 þ n2ÞðK1 þ K2Þ � 2K2 
; s02 ¼
�6M2

t2

c ¼
Mo4b3

EtR2K1

; DR ¼
Mo2b2 sinf

EtK1

ðRefs: 14 and 42Þ

1c. Radial displacement Do ; no

edge rotation C ¼
�DoEt

R2bK2

ffiffiffiffiffiffiffiffiffiffiffi
sinf

p ; z ¼
p
2
¼ 90�

At the edge where o ¼ 0,

V1 ¼
DoEt

R2bK2 sinf
; s1 ¼

DoE cosf

R2bK2 sin
2 f

Resultant radial edge force ¼
DoEt

R2bK2 sin
2 f

M1 ¼
�DoEt

2b2K2 sinf
; s01 ¼

3DoE

tb2K2 sinf

s2 ¼
DoEðK1 þ K2Þ

2R2K2 sinf
; M2 ¼

�DoEtn

2b2K2 sinf
; s02 ¼

3DoEn

tb2K2 sinf

c ¼ 0; DR ¼ Do
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TABLE 13.3 Formulas for bending and membrane stresses and deformations in thin-walled pressure vessels (Continued )

Case no., loading Formulas

1d. Edge rotation, co rad; no

edge displacement C ¼
coEt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 þ K2

2 Þ sinf
q

2b2K2

; z ¼ tan�1 1

K2

where 0 < z < p

At the edge where o ¼ 0,

V1 ¼
�coEt

2b2K2

; s1 ¼
�coE cotf

2b2K2

Resultant radial edge force ¼
�coEt

2b2K2 sinf

M1 ¼
coEtR2

4b3
K1 þ

1

K2

� �
; s01 ¼

�6M1

t2

s2 ¼
�coE

4bK2

ðK1 � K2Þ; M2 ¼
coEtR2

8nb3
ð1 þ n2ÞðK1 þ K2Þ � 2K2 þ

2n2

K2

� �
; s02 ¼

�6M2

t2

c ¼ co; DR ¼ 0

2. Partial spherical shell, load P

concentrated on small circular

area of radius ro at pole; any

edge support

Note: r0o ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:6t2

0 þ t2

q
� 0:675t

if ro < 0:5t; r0o ¼ ro if ro 5 0:5t

(see Sec. 11.1).

For f > sin
�1

ð1:65
ffiffiffiffiffiffiffiffiffiffiffiffi
t=R2Þ

p

Note: The deflection for this case is measured locally relative to the undeformed shell. It does not include any deformations due to the edge supports or

membrane stresses remote from the loading. The formulas for deflection and stress are applicable also to off-axis loads if no edge is closer than

f ¼ sin
�1

ð1:65
ffiffiffiffiffiffiffiffiffiffiffiffi
t=R2Þ

p
. If an edge were as close as half this angle, the results would be modified very little.

Deflection under the center of the load ¼ �A
PR2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � n2

p

Et2

Max membrane stress under the center of the load s1 ¼ s2 ¼ �B
P

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � n2

p

t2
Note : See also Ref: 72

Max bending stress under the center of the load s01 ¼ s02 ¼ �C
Pð1 þ nÞ

t2

Here A, B, and C are numerical coefficients that depend upon

m ¼ r0o
12ð1 � n2Þ

R2
2t2

� �1=4

and have the values tabulated below

(Ref. 15)

m 0 0.1 0.2 0.4 0.6 0.8 1.0 1.2 1.4

A 0.433 0.431 0.425 0.408 0.386 0.362 0.337 0.311 0.286

B 0.217 0.215 0.212 0.204 0.193 0.181 0.168 0.155 0.143

C 1 1.394 1.064 0.739 0.554 0.429 0.337 0.266 0.211
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3. Shallow spherical shell,

point load P at the pole 3a: Edge vertically supported and guided Max deflection y ¼ �A1

PR2

16pD

Edge moment Mo ¼ �B1

P

4p

3b: Edge fixed and held Max deflection y ¼ �A2

PR2

16pD

Edge moment Mo ¼ �B2

P

4p

h <
R

8

t <
R2

10

Here A and B are numerical coefficients that depend upon a ¼ 2
3ð1 � n2Þh2

t2

� �1=4

and have the values tabulated below

4. Long conical shells with edge loads. Expressions are accurate if R=ðt cos aÞ > 10 and jkj > 5 everywhere in the region from the loaded end to the position where m ¼ 4

k ¼
2

sin a
12ð1 � n2ÞR2

t2 sec2 a

� �1=4

m ¼
kA � kffiffiffi

2
p

����
����

b ¼ ½12ð1 � n2Þ

1=2

l ¼ 1 �
1:326

k
�

0:218

k3
�

0:317

k4

m ¼
1:326

k
�

0:820

k2
�

0:218

k3

s ¼ 1 �
1:679

k
þ

1:233

k3
þ

0:759

k4

f ¼
1:679

k
�

3:633

k2
þ

1:233

k3

C1 ¼ lAðsA � fAÞ þ mAðsA þ fAÞ þ
2

ffiffiffi
2

p
n

kA

ðl2
A þ m2

AÞ

(Note: The subscript A denotes that the quantity subscripted is

evaluated at R ¼ RA)

s1 ¼
N1

t
; s2 ¼

N2

t
; s01 ¼

�6M1

t2
; s02 ¼

�6M2

t2

V1 ¼
N1

tan a

(Note: If the cone increases in radius below the section A, the angle a
is negative, making k negative as well. As indicated for a position a,

the positive values of N1 and M1 are as shown and V1 is still positive

when acting outward on the lower portion.)

F1 ¼ mlA � lmA

F2 ¼ llA þ mmA

F3 ¼ fsA � sfA

F4 ¼ ssA þ ffA

F5 ¼ lðsA � fAÞ þ mðsA þ fAÞ

F6 ¼ lðsA þ fAÞ � mðsA � fAÞ

F7 ¼ sðlA � mAÞ þ f ðlA þ mAÞ

F8 ¼ sðlA þ mAÞ � f ðlA � mAÞ

F9 ¼ F5 þ
2

ffiffiffi
2

p
n

kA

F2

F10 ¼ F6 �
2

ffiffiffi
2

p
n

kA

F1

F11 ¼ F4 þ

ffiffiffi
2

p
n

kA

F8

F12 ¼ F3 þ

ffiffiffi
2

p
n

kA

F7

(Note: At sections where m > 4,

the deformations and stresses

have decreased to negligible

values)

(Ref. 65)

a 0 1 2 3 4 5 6 7 8 9 10

A1 1.000 0.996 0.935 0.754 0.406 0.321 0.210 0.148 0.111 0.085 0.069

B1 1.000 0.995 0.932 0.746 0.498 0.324 0.234 0.192 0.168 0.153 0.140

A2 1.000 0.985 0.817 0.515 0.320 0.220 0.161 0.122 0.095 0.075 0.061

B2 1.000 0.975 0.690 0.191 �0.080 �0.140 �0.117 �0.080 �0.059 �0.034 �0.026
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TABLE 13.3 Formulas for bending and membrane stresses and deformations in thin-walled pressure vessels (Continued )

For use at the loaded end where R ¼ RA,

F1A ¼ F3A ¼ 0

F4A ¼ 1 �
3:359

kA

þ
5:641

k2
A

�
9:737

k3
A

þ
14:716

k4
A

F10A ¼ F7A ¼ F6A ¼ 1 �
2:652

kA

þ
1:641

k2
A

�
0:290

k3
A

�
2:211

k4
A

F2A ¼ 1 �
2:652

kA

þ
3:516

k2
A

�
2:610

k3
A

þ
0:038

k4
A

F8A ¼ F5A ¼ 1 �
3:359

kA

þ
7:266

k2
A

�
10:068

k3
A

þ
5:787

k4
A

F9A ¼ C1 ¼ F5A þ
2

ffiffiffi
2

p
n

kA

F2A

Case no., loading Formulas

4a. Uniform radial force QA

N1 ¼ QA sin a
kA

k

� �5=2
e�m

C1

ðF9 cosm� F10 sin mÞ

N2 ¼ QA sin a
kA

k

� �3=2
kAffiffiffi

2
p

e�m

C1

ðF11 cos mþ F12 sinmÞ

M1 ¼ QA sin a
kA

k

� �3=2
kAtffiffiffi

2
p

b

e�m

C1

� F12 �

ffiffiffi
2

p
n

k
F10

 !
cos mþ F11 þ

ffiffiffi
2

p
n

k
F9

 !
sinm

" #

M2 ¼ QAn sin a
kA

k

� �3=2
kAtffiffiffi

2
p

b

e�m

C1

� F12 �

ffiffiffi
2

p

nk
F10

 !
cos mþ F11 þ

ffiffiffi
2

p

nk
F9

 !
sinm

" #

DR ¼
QAR

Et
sin a

kA

k

� �3=2
kAffiffiffi

2
p

e�m

C1

F11 �

ffiffiffi
2

p
n

k
F9

 !
cos mþ F12 þ

ffiffiffi
2

p
n

k
F10

 !
sinm

" #

c ¼
QARAb

Et2

kA

k

� �1=2
e�m

C1

ðF10 cos mþ F9 sinmÞ

At the loaded end where R ¼ RA,

N1A ¼ QA sin a; N2A ¼ QA sin a
kAffiffiffi
2

p
C1

F4A þ

ffiffiffi
2

p
n

kA

F8A

 !

M1A ¼ 0; M2A ¼ QA sin að1 � n2Þ
t

bC1

F10A

DRA ¼
QARA sin a

Et

kAffiffiffi
2

p
C1

F4A �
4n2

k2
A

F2A

� �
; cA ¼

QARAb
Et2C1

F10A
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4b. Uniform edge moment MA

N1 ¼ MA

kA

k

� �5=2
2

ffiffiffi
2

p
b

tkA

e�m

C1

ðF1 cosm� F2 sin mÞ

N2 ¼ MA

kA

k

� �3=2b
t

e�m

C1

ðF7 cosm� F8 sin mÞ

M1 ¼ MA

kA

k

� �3=2
e�m

C1

F8 þ
2

ffiffiffi
2

p
n

k
F2

 !
cos mþ F7 þ

2
ffiffiffi
2

p
n

k
F1

 !
sinm

" #

M2 ¼ MA

kA

k

� �3=2

n
e�m

C1

F8 þ
2

ffiffiffi
2

p

nk
F2

 !
cosmþ F7 þ

2
ffiffiffi
2

p

nk
F1

 !
sinm

" #

DR ¼ MA

kA

k

� �3=2 bR

Et2

e�m

C1

F7 �
2

ffiffiffi
2

p
n

k
F1

 !
cos m� F8 �

2
ffiffiffi
2

p
n

k
F2

 !
sin m

" #

c ¼ MA

kA

k

� �1=2
2

ffiffiffi
2

p
b2RA

Et3kA sin a
e�m

C1

ðF2 cos mþ F1 sin mÞ

At the loaded end where R ¼ RA,

N1A ¼ 0; N2A ¼ MA

b
tC1

F7A

M1A ¼ MA; M2A ¼ MA nþ
2

ffiffiffi
2

p
ð1 � n2Þ

kAC1

F2A

" #

DRA ¼ MA

bRA

Et2C1

F7A; cA ¼ MA

2
ffiffiffi
2

p
b2RA

Et3kAC1 sin a
F2A

5. Short conical shells. Expressions are accurate if R=ðt cos aÞ > 10 and jkj > 5 everywhere in the cone

k ¼
2

sin a
12ð1 � n2ÞR2

t2 sec2 a

� �1=4

; s1 ¼
N1

t
; s2 ¼

N2

t

mD ¼
kA � kBffiffiffi

2
p

����
����; s01 ¼

�6M1

t2
; s02 ¼

�6M2

t2

b ¼ ½12ð1 � n2Þ

1=2; V1 ¼

N1

tan a

5a. Uniform radial force QA

at the large end N1 ¼ QA sin aKN1; N2 ¼ QA sin a
kAffiffiffi

2
p KN2

M1 ¼ QA sin a
kAtffiffiffi

2
p

b
KM1; M2 ¼ QAn sin a

kAtffiffiffi
2

p
b

KM2; Dh ¼
QARA

Et
KDh1 �

QARA sin
2 a

Et cos a
kAffiffiffi

2
p KDh2

DR ¼
QARA sin a

Et

kAffiffiffi
2

p KDR; c ¼
QARAb

Et2
Kc

For RB=ðt cos aÞ > 10 and kB > 5 and for n ¼ 0:3, the following tables give the values of K at several locations along the shell [O ¼ ðRA � RÞ=ðRA � RBÞ]
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TABLE 13.3 Formulas for bending and membrane stresses and deformations in thin-walled pressure vessels (Continued )

mD ¼ 0:4 kB ¼ 9:434 KDh1 ¼ �0:266 KDh2 ¼ 2:979 mD ¼ 0:6 kB ¼ 9:151 KDh1 ¼ �0:266 KDh2 ¼ 2:899 mD ¼ 0:8 kB ¼ 8:869 KDh1 ¼ �0:269 KDh2 ¼ 2:587

kA O 0.000 0.250 0.500 0.750 1.000 0.000 0.250 0.500 0.750 1.000 0.000 0.250 0.500 0.750 1.000

KN1 1.000 0.548 0.216 0.025 0.000 1.000 0.450 0.068 �0.102 0.000 1.000 0.392 �0.029 �0.192 0.000

KN2 2.748 2.056 1.319 0.533 �0.307 2.304 1.643 0.919 0.123 �0.761 1.952 1.371 0.720 �0.016 �0.862

KM1 0.000 0.047 0.054 0.034 0.000 0.000 0.076 0.084 0.047 0.000 0.000 0.106 0.114 0.060 0.000
10

KM2 3.279 3.445 3.576 3.690 3.801 2.151 2.340 2.467 2.566 2.675 1.468 1.671 1.780 1.848 1.941

KDR 2.706 1.977 1.238 0.489 �0.274 2.262 1.558 0.842 0.111 �0.637 1.909 1.282 0.644 �0.006 �0.678

Kc 7.644 7.703 7.759 7.819 7.887 5.014 5.064 5.106 5.156 5.223 3.421 3.454 3.470 3.500 3.559

mD ¼ 1:2 kB ¼ 8:303 KDh1 ¼ �0:278 KDh2 ¼ 1:986 mD ¼ 1:6 kB ¼ 7:737 KDh1 ¼ �0:287 KDh2 ¼ 1:571 mD ¼ 3:2 kB ¼ 5:475 KDh1 ¼ �0:323 KDh2 ¼ 0:953

kA O 0.000 0.250 0.500 0.750 1.000 0.000 0.250 0.500 0.750 1.000 0.000 0.250 0.500 0.750 1.000

KN1 1.000 0.339 �0.133 �0.308 0.000 1.000 0.315 �0.185 �0.377 0.000 1.000 0.156 �0.301 �0.361 0.000

KN2 1.470 1.023 0.514 �0.080 �0.810 1.197 0.815 0.394 �0.082 �0.696 0.940 0.466 0.088 �0.097 �0.182

KM1 0.000 0.165 0.176 0.088 0.000 0.000 0.220 0.235 0.117 0.000 0.000 0.347 0.318 0.131 0.000
10

KM2 0.810 1.040 1.105 1.098 1.147 0.555 0.813 0.832 0.746 0.743 0.406 0.729 0.538 0.191 0.010

KDR 1.428 0.931 0.439 �0.051 �0.559 1.155 0.721 0.321 �0.046 �0.416 0.898 0.379 0.066 �0.039 �0.055

Kc 1.887 1.880 1.829 1.806 1.843 1.294 1.242 1.112 1.025 1.038 0.948 0.734 0.333 0.066 0.007
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mD ¼ 0:4 kB ¼ 19:434 KDh1 ¼ �0:293 KDh2 ¼ 5:488 mD ¼ 0:6 kB ¼ 19:151 KDh1 ¼ �0:294 KDh2 ¼ 4:247 mD ¼ 0:8 kB ¼ 18:869 KDh1 ¼ �0:296 KDh2 ¼ 3:368

kA O 0.000 0.250 0.500 0.750 1.000 0.000 0.250 0.500 0.750 1.000 0.000 0.250 0.500 0.750 1.000

KN1 1.000 0.346 �0.053 �0.175 0.000 1.000 0.281 �0.149 �0.256 0.000 1.000 0.255 �0.193 �0.296 0.000

KN2 4.007 2.674 1.298 �0.123 �1.591 2.975 1.954 0.885 �0.234 �1.410 2.334 1.528 0.677 �0.244 �1.186

KM1 0.000 0.052 0.052 0.025 0.000 0.000 0.082 0.078 0.035 0.000 0.000 0.111 0.106 0.045 0.000
20

KM2 2.974 3.079 3.133 3.163 3.198 1.546 1.668 1.704 1.703 1.717 0.933 1.072 1.093 1.064 1.059

KDR 3.985 2.629 1.263 �0.114 �1.052 2.954 1.908 0.852 �0.214 �1.293 2.313 1.481 0.644 �0.200 �1.056

Kc 13.866 13.918 13.967 14.020 14.079 7.210 7.241 7.263 7.293 7.338 4.349 4.359 4.351 4.360 4.393

mD ¼ 1:2 kB ¼ 18:303 KDh1 ¼ �0:298 KDh2 ¼ 2:334 mD ¼ 1:6 kB ¼ 17:737 KDh1 ¼ �0:300 KDh2 ¼ 1:777 mD ¼ 3:2 kB ¼ 15:475 KDh1 ¼ �0:305 KDh2 ¼ 1:023

kA O 0.000 0.250 0.500 0.750 1.000 0.000 0.250 0.500 0.750 1.000 0.000 0.250 0.500 0.750 1.000

KN1 1.000 0.236 �0.230 �0.337 0.000 1.000 0.222 �0.247 �0.352 0.000 1.000 0.049 �0.274 �0.215 0.000

KN2 1.629 1.059 0.460 �0.175 �0.867 1.283 0.808 0.334 �0.139 �0.655 0.977 0.390 0.027 �0.094 �0.112

KM1 0.000 0.168 0.160 0.066 0.000 0.000 0.222 0.211 0.087 0.000 0.000 0.342 0.253 0.079 0.000
20

KM2 0.458 0.639 0.634 0.553 0.514 0.299 0.519 0.489 0.359 0.289 0.211 0.507 0.322 0.089 �0.002

KDR 1.608 1.011 0.427 �0.147 �0.726 1.262 0.761 0.303 �0.111 �0.515 0.956 0.350 0.026 �0.062 �0.067

Kc 2.137 2.105 2.031 1.992 2.005 1.392 1.313 1.160 1.065 1.061 0.938 0.692 0.259 0.032 �0.007
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TABLE 13.3 Formulas for bending and membrane stresses and deformations in thin-walled pressure vessels (Continued )

mD ¼ 0:4 kB ¼ 39:434 KDh1 ¼ �0:299 KDh2 ¼ 6:866 mD ¼ 0:6 kB ¼ 39:151 KDh1 ¼ �0:299 KDh2 ¼ 4:776 mD ¼ 0:8 kB ¼ 38:869 KDh1 ¼ �0:300 KDh2 ¼ 3:634

kA O 0.000 0.250 0.500 0.750 1.000 0.000 0.250 0.500 0.750 1.000 0.000 0.250 0.500 0.750 1.000

KN1 1.000 0.238 �0.192 �0.275 0.000 1.000 0.216 �0.225 �0.304 0.000 1.000 0.209 �0.238 �0.317 0.000

KN2 4.692 2.998 1.277 �0.471 �2.248 3.234 1.060 0.860 �0.366 �1.621 2.459 1.565 0.649 �0.289 �1.255

KM1 0.000 0.055 0.051 0.021 0.000 0.000 0.084 0.077 0.030 0.000 0.000 0.112 0.103 0.040 0.000
40

KM2 1.851 1.922 1.934 1.921 1.917 0.863 0.957 0.959 0.924 0.906 0.498 0.617 0.611 0.555 0.524

KDR 4.681 2.974 1.261 �0.458 �2.185 3.223 2.036 0.844 �0.351 �1.553 2.448 1.541 0.634 �0.273 �1.185

Kc 17.256 17.286 17.311 17.341 17.377 8.048 8.058 8.059 8.069 8.092 4.645 4.637 4.612 4.603 4.617

mD ¼ 1:2 kB ¼ 38:303 KDh1 ¼ �0:300 KDh2 ¼ 2:446 mD ¼ 1:6 kB ¼ 37:737 KDh1 ¼ �0:300 KDh2 ¼ 1:847 mD ¼ 3:2 kB ¼ 35:475 KDh1 ¼ �0:300 KDh2 ¼ 1:053

kA O 0.000 0.250 0.500 0.750 1.000 0.000 0.250 0.500 0.750 1.000 0.000 0.250 0.500 0.750 1.000

KN1 1.000 0.202 �0.249 �0.327 0.000 1.000 0.189 �0.253 �0.324 0.000 1.000 0.012 �0.245 �0.165 0.000

KN2 1.677 1.055 0.430 �0.200 �0.850 1.309 0.792 0.304 �0.153 �0.616 0.991 0.352 0.007 �0.087 �0.092

KM1 0.000 0.168 0.154 0.060 0.000 0.000 0.221 0.200 0.077 0.000 0.000 0.333 0.223 0.063 0.000
40

KM2 0.237 0.405 0.385 0.291 0.236 0.152 0.367 0.331 0.201 0.126 0.107 0.408 0.250 0.066 �0.001

KDR 1.666 1.031 0.415 �0.184 �0.780 1.299 0.768 0.290 �0.137 �0.548 0.981 0.333 0.009 �0.072 �0.072

Kc 2.206 2.159 2.071 2.021 2.022 1.419 1.324 1.160 1.061 1.048 0.994 0.665 0.229 0.023 �0.009
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mD ¼ 0:4 kB ¼ 79:434 KDh1 ¼ �0:300 KDh2 ¼ 7:324 mD ¼ 0:6 kB ¼ 79:151 KDh1 ¼ �0:300 KDh2 ¼ 4:935 mD ¼ 0:8 kB ¼ 78:869 KDh1 ¼ �0:300 KDh2 ¼ 3:713

kA O 0.000 0.250 0.500 0.750 1.000 0.000 0.250 0.500 0.750 1.000 0.000 0.250 0.500 0.750 1.000

KN1 1.000 0.202 �0.235 �0.305 0.000 1.000 0.196 �0.245 �0.313 0.000 1.000 0.194 �0.248 �0.317 0.000

KN2 4.917 3.098 1.264 �0.584 �2.446 3.309 2.083 0.846 �0.403 �1.667 2.494 1.568 0.635 �0.306 �1.259

KM1 0.000 0.056 0.050 0.019 0.000 0.000 0.084 0.076 0.029 0.000 0.000 0.112 0.101 0.038 0.000
80

KM2 0.985 1.045 1.043 1.017 1.002 0.444 0.531 0.524 0.479 0.454 0.253 0.367 0.355 0.293 0.257

KDR 4.912 3.086 1.256 �0.576 �2.412 3.303 2.071 0.838 �0.395 �1.631 2.489 1.556 0.627 �0.298 �1.224

Kc 18.365 18.378 18.386 18.399 18.416 8.287 8.285 8.272 8.270 8.280 4.725 4.707 4.672 4.654 4.658

mD ¼ 1:2 kB ¼ 78:303 KDh1 ¼ �0:300 KDh2 ¼ 2:483 mD ¼ 1:6 kB ¼ 77:737 KDh1 ¼ �0:300 KDh2 ¼ 1:873 mD ¼ 3:2 kB ¼ 75:475 KDh1 ¼ �0:298 KDh2 ¼ 1:067

kA O 0.000 0.250 0.500 0.750 1.000 0.000 0.250 0.500 0.750 1.000 0.000 0.250 0.500 0.750 1.000

KN1 1.000 0.189 �0.251 �0.318 0.000 1.000 0.176 �0.252 �0.308 0.000 1.000 �0.002 �0.230 �0.145 0.000

KN2 1.691 1.047 0.415 �0.206 �0.832 1.318 0.781 0.290 �0.157 �0.593 0.997 0.334 0.000 �0.083 �0.084

KM1 0.000 0.168 0.150 0.057 0.000 0.000 0.220 0.194 0.073 0.000 0.000 0.327 0.208 0.056 0.000
80

KM2 0.119 0.285 0.264 0.169 0.113 0.076 0.292 0.258 0.132 0.059 0.053 0.363 0.221 0.057 �0.001

KDR 1.686 1.035 0.408 �0.198 �0.797 1.313 0.769 0.283 �0.149 �0.560 0.992 0.324 0.001 �0.076 �0.075

Kc 2.224 2.170 2.075 2.019 2.014 1.426 1.324 1.155 1.053 1.037 0.998 0.651 0.216 0.020 �0.009
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TABLE 13.3 Formulas for bending and membrane stresses and deformations in thin-walled pressure vessels (Continued )

mD ¼ 0:4 kB ¼ 159:434 KDh1 ¼ �0:300 KDh2 ¼ 7:452 mD ¼ 0:6 kB ¼ 159:151 KDh1 ¼ �0:300 KDh2 ¼ 4:980 mD ¼ 0:8 kB ¼ 158:869 KDh1 ¼ �0:300 KDh2 ¼ 3:738

kA O 0.000 0.250 0.500 0.750 1.000 0.000 0.250 0.500 0.750 1.000 0.000 0.250 0.500 0.750 1.000

KN1 1.000 0.192 �0.247 �0.312 0.000 1.000 0.190 �0.249 �0.314 0.000 1.000 0.189 �0.250 �0.315 0.000

KN2 4.979 3.121 1.257 �0.164 �2.493 3.329 2.086 0.839 �0.413 �1.671 2.505 1.566 0.628 �0.311 �1.254

KM1 0.000 0.056 0.050 0.019 0.000 0.000 0.084 0.075 0.028 0.000 0.000 0.112 0.100 0.038 0.000
160

KM2 0.500 0.558 0.552 0.522 0.504 0.224 0.309 0.300 0.253 0.225 0.127 0.240 0.227 0.164 0.127

KDR 4.977 3.115 1.253 �0.610 �2.475 3.327 2.080 0.835 �0.409 �1.654 2.502 1.560 0.624 �0.307 �1.236

Kc 18.666 18.668 18.667 18.670 18.678 8.350 8.341 8.322 8.313 8.316 4.746 4.724 4.683 4.660 4.660

mD ¼ 1:2 kB ¼ 158:303 KDh1 ¼ �0:300 KDh2 ¼ 2:497 mD ¼ 1:6 kB ¼ 157:737 KDh1 ¼ �0:300 KDh2 ¼ 1:884 mD ¼ 3:2 kB ¼ 155:475 KDh1 ¼ �0:298 KDh2 ¼ 1:073

kA O 0.000 0.250 0.500 0.750 1.000 0.000 0.250 0.500 0.750 1.000 0.000 0.250 0.500 0.750 1.000

KN1 1.000 0.185 �0.251 �0.312 0.000 1.000 0.171 �0.250 �0.300 0.000 1.000 �0.008 �0.223 �0.136 0.000

KN2 1.696 1.042 0.408 �0.208 �0.821 1.322 0.775 0.283 �0.158 �0.582 1.000 0.325 �0.003 �0.081 �0.080

KM1 0.000 0.168 0.149 0.056 0.000 0.000 0.219 0.191 0.071 0.000 0.000 0.324 0.201 0.053 0.000
160

KM2 0.060 0.226 0.205 0.111 0.055 0.038 0.255 0.223 0.100 0.028 0.027 0.341 0.207 0.054 �0.000

KDR 1.693 1.036 0.404 �0.204 �0.804 1.319 0.769 0.280 �0.154 �0.565 0.998 0.320 �0.003 �0.077 �0.076

Kc 2.230 2.171 2.074 2.015 2.006 1.429 1.323 1.151 1.048 1.030 0.999 0.644 0.210 0.018 �0.010

Case no., loading Formulas

5b. Uniform edge moment MA

at the large end N1 ¼ MA

2
ffiffiffi
2

p
b

tkA

KN1; N2 ¼ MA

b
t

KN2

M1 ¼ MAKM1; M2 ¼ MAnKM2

DR ¼ MA

bRA

Et2
KDR; c ¼ MA

2
ffiffiffi
2

p
b2RA

Et3kA sin a
Kc; Dh ¼

MARAb
Et2 sin a

KDh1 �
MAbRA sin a

Et2 cos a
KDh2

For RB=ðt cos aÞ > 10 and kB > 5 and for n ¼ 0:3, the following tables give the values of K at several locations along the shell [O ¼ ðRA � RÞ=ðRA � RBÞ]
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mD ¼ 0:4 kB ¼ 9:434 KDh1 ¼ �0:017 KDh2 ¼ 15:507 mD ¼ 0:6 kB ¼ 9:151 KDh1 ¼ �0:026 KDh2 ¼ 9:766 mD ¼ 0:8 kB ¼ 8:869 KDh1 ¼ �0:031 KDh2 ¼ 6:554

kA O 0.000 0.250 0.500 0.750 1.000 0.000 0.250 0.500 0.750 1.000 0.000 0.250 0.500 0.750 1.000

KN1 0.000 �0.584 �0.819 �0.647 0.000 0.000 �0.579 �0.830 �0.672 0.000 0.000 �0.527 �0.772 �0.641 0.000

KN2 7.644 4.020 0.170 �3.934 �8.328 5.014 2.687 0.163 �2.604 �5.674 3.421 1.851 0.138 �1.780 �3.983

KM1 1.000 0.816 0.538 0.238 0.000 1.000 0.844 0.554 0.229 0.000 1.000 0.865 0.568 0.226 0.000
10

KM2 17.470 17.815 18.122 18.475 18.961 8.300 8.428 8.481 8.581 8.867 4.850 4.836 4.718 4.644 4.792

KDR 7.644 3.957 0.227 �3.559 �7.413 5.014 2.625 0.215 �2.236 �4.752 3.421 1.795 0.181 �1.449 �3.133

Kc 19.197 19.268 19.368 19.503 19.671 8.509 8.480 8.489 8.548 8.656 4.488 4.381 4.320 4.325 4.393

mD ¼ 1:2 kB ¼ 8:303 KDh1 ¼ �0:038 KDh2 ¼ 3:401 mD ¼ 1:6 kB ¼ 7:737 KDh1 ¼ �0:042 KDh2 ¼ 2:086 mD ¼ 3:2 kB ¼ 5:475 KDh1 ¼ �0:050 KDh2 ¼ 0:953

kA O 0.000 0.250 0.500 0.750 1.000 0.000 0.250 0.500 0.750 1.000 0.000 0.250 0.500 0.750 1.000

KN1 0.000 �0.429 �0.642 �0.554 0.000 0.000 �0.370 �0.547 �0.476 0.000 0.000 �0.375 �0.389 �0.193 0.000

KN2 1.887 0.993 0.070 �0.951 �2.196 1.294 0.602 �0.004 �0.594 �1.323 0.948 0.127 �0.236 �0.240 �0.018

KM1 1.000 0.890 0.590 0.227 0.000 1.000 0.899 0.596 0.225 0.000 1.000 0.816 0.395 0.071 0.000
10

KM2 2.623 2.444 2.119 1.834 1.814 2.052 1.772 1.319 0.904 0.784 1.833 1.258 0.479 �0.058 �0.262

KDR 1.887 0.949 0.106 �0.694 �1.514 1.294 0.570 0.034 �0.387 �0.792 0.948 0.131 �0.132 �0.106 �0.005

Kc 1.892 1.670 1.506 1.436 1.458 1.226 0.915 0.674 0.553 0.547 0.971 0.425 0.064 �0.071 �0.091
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TABLE 13.3 Formulas for bending and membrane stresses and deformations in thin-walled pressure vessels (Continued )

mD ¼ 0:4 kB ¼ 19:434 KDh1 ¼ �0:008 KDh2 ¼ 27:521 mD ¼ 0:6 kB ¼ 19:151 KDh1 ¼ �0:009 KDh2 ¼ 14:217 mD ¼ 0:8 kB ¼ 18:869 KDh1 ¼ �0:010 KDh2 ¼ 8:477

kA O 0.000 0.250 0.500 0.750 1.000 0.000 0.250 0.500 0.750 1.000 0.000 0.250 0.500 0.750 1.000

KN1 0.000 �1.050 �1.435 �1.104 0.000 0.000 �0.821 �1.135 �0.883 0.000 0.000 �0.660 �0.919 �0.722 0.000

KN2 13.866 7.110 0.149 �7.036 �14.461 7.210 3.726 0.107 �3.672 �7.642 4.349 2.246 0.072 �2.210 �4.638

KM1 1.000 0.832 0.517 0.191 0.000 1.000 0.848 0.524 0.183 0.000 1.000 0.858 0.530 0.181 0.000
20

KM2 15.905 15.971 15.910 15.860 15.967 6.219 6.150 5.930 5.721 5.697 3.421 3.286 2.988 2.703 2.617

KDR 13.866 7.055 0.204 �6.696 �13.655 7.210 3.683 0.149 �3.408 �7.007 4.349 2.212 0.105 �1.999 �4.128

Kc 34.745 34.800 34.881 34.998 35.145 12.165 12.103 12.079 12.107 12.178 5.643 5.504 5.415 5.395 5.431

mD ¼ 1:2 kB ¼ 18:303 KDh1 ¼ �0:010 KDh2 ¼ 3:962 mD ¼ 1:6 kB ¼ 17:737 KDh1 ¼ �0:011 KDh2 ¼ 2:326 mD ¼ 3:2 kB ¼ 15:475 KDh1 ¼ �0:011 KDh2 ¼ 0:978

kA O 0.000 0.250 0.500 0.750 1.000 0.000 0.250 0.500 0.750 1.000 0.000 0.250 0.500 0.750 1.000

KN1 0.000 �0.476 �0.662 �0.524 0.000 0.000 �0.389 �0.519 �0.401 0.000 0.000 �0.357 �0.279 �0.091 0.000

KN2 2.137 1.051 0.008 �1.045 �2.179 1.392 0.587 �0.055 �0.611 �1.187 0.983 0.048 �0.240 �0.177 0.010

KM1 1.000 0.867 0.537 0.180 0.000 1.000 0.865 0.529 0.175 0.000 1.000 0.730 0.287 0.040 0.000
20

KM2 1.899 1.692 1.314 0.954 0.814 1.552 1.292 0.861 0.466 0.305 1.425 0.906 0.297 �0.011 �0.067

KDR 2.137 1.027 0.033 �0.898 �1.825 1.392 0.571 �0.029 �0.499 �0.934 0.983 0.057 �0.182 �0.121 0.006

Kc 2.096 1.846 1.664 1.585 1.588 1.286 0.943 0.690 0.571 0.559 0.992 0.369 0.019 �0.083 �0.094
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mD ¼ 0:4 kB ¼ 39:434 KDh1 ¼ �0:002 KDh2 ¼ 34:371 mD ¼ 0:6 kB ¼ 39:151 KDh1 ¼ �0:002 KDh2 ¼ 15:957 mD ¼ 0:8 kB ¼ 38:869 KDh1 ¼ �0:002 KDh2 ¼ 9:123

kA O 0.000 0.250 0.500 0.750 1.000 0.000 0.250 0.500 0.750 1.000 0.000 0.250 0.500 0.750 1.000

KN1 0.000 �1.300 �1.755 �1.333 0.000 0.000 �0.910 �1.234 �0.942 0.000 0.000 �0.698 �0.948 �0.726 0.000

KN2 17.256 8.734 0.089 �8.689 �17.610 8.048 4.080 0.052 �4.054 �8.255 4.645 2.339 0.024 �2.327 �4.743

KM1 1.000 0.842 0.508 0.168 0.000 1.000 0.849 0.511 0.166 0.000 1.000 0.852 0.514 0.165 0.000
40

KM2 10.272 10.179 9.917 9.657 9.577 3.910 3.768 3.449 3.134 3.009 2.290 2.125 1.780 1.441 1.298

KDR 17.256 8.700 0.124 �8.478 �17.115 8.048 4.056 0.076 �3.907 �7.909 4.645 2.321 0.043 �2.214 �4.478

Kc 43.228 43.226 43.250 43.310 43.397 13.566 13.468 13.409 13.403 13.438 6.015 5.852 5.741 5.700 5.714

mD ¼ 1:2 kB ¼ 38:303 KDh1 ¼ �0:003 KDh2 ¼ 4:136 mD ¼ 1:6 kB ¼ 37:737 KDh1 ¼ �0:003 KDh2 ¼ 2:404 mD ¼ 3:2 kB ¼ 34:475 KDh1 ¼ �0:003 KDh2 ¼ 0:986

kA O 0.000 0.250 0.500 0.750 1.000 0.000 0.250 0.500 0.750 1.000 0.000 0.250 0.500 0.750 1.000

KN1 0.000 �0.484 �0.649 �0.494 0.000 0.000 �3.388 �0.494 �0.362 0.000 0.000 �0.341 �0.233 �0.065 0.000

KN2 2.206 1.043 �0.026 �1.055 �2.105 1.419 0.565 �0.079 �0.603 �1.107 0.994 0.014 �0.231 �0.150 0.011

KM1 1.000 0.853 0.513 0.164 0.000 1.000 0.845 0.498 0.156 0.000 1.000 0.684 0.243 0.030 0.000
40

KM2 1.462 1.267 0.892 0.532 0.375 1.280 1.053 0.654 0.289 0.133 1.214 0.762 0.244 0.009 �0.025

KDR 2.206 1.032 �0.012 �0.980 �1.930 1.419 0.557 �0.065 �0.547 �0.985 0.994 0.020 �0.201 �0.125 0.009

Kc 2.154 1.888 1.696 1.610 1.603 1.303 0.944 0.687 0.569 0.552 0.999 0.342 0.005 �0.084 �0.091

S
E
C
.
1
3
.8
]

S
h
e
lls

o
f
R
e
v
o
lu
tio

n
;
P
re
s
s
u
re

V
e
s
s
e
ls
;
P
ip
e
s

6
2
1



TABLE 13.3 Formulas for bending and membrane stresses and deformations in thin-walled pressure vessels (Continued )

mD ¼ 0:4 kB ¼ 79:434 KDh1 ¼ �0:001 KDh2 ¼ 36:643 mD ¼ 0:6 kB ¼ 79:151 KDh1 ¼ �0:001 KDh2 ¼ 16:473 mD ¼ 0:8 kB ¼ 78:869 KDh1 ¼ �0:001 KDh2 ¼ 9:313

kA O 0.000 0.250 0.500 0.750 1.000 0.000 0.250 0.500 0.750 1.000 0.000 0.250 0.500 0.750 1.000

KN1 0.000 �1.380 �1.851 �1.397 0.000 0.000 �0.934 �1.254 �0.948 0.000 0.000 �0.707 �0.948 �0.716 0.000

KN2 18.365 9.234 0.044 �9.211 �18.539 8.287 4.159 0.019 �4.150 �8.363 4.725 2.348 �0.001 �2.348 �4.720

KM1 1.000 0.845 0.504 0.160 �0.000 1.000 0.847 0.505 0.160 0.000 1.000 0.848 0.506 0.160 0.000
80

KM2 5.934 5.791 5.466 5.142 5.004 2.498 2.340 1.998 1.657 1.507 1.656 1.489 1.138 0.791 0.636

KDR 18.365 9.216 0.063 �9.099 �18.277 8.287 4.147 0.032 �4.075 �8.186 4.725 2.339 0.009 �2.291 �4.588

Kc 46.009 45.963 45.944 45.961 46.004 13.967 13.848 13.768 13.742 13.755 6.117 5.941 5.818 5.765 5.767

mD ¼ 1:2 kB ¼ 78:303 KDh1 ¼ �0:001 KDh2 ¼ 4:192 mD ¼ 1:6 kB ¼ 77:737 KDh1 ¼ �0:001 KDh2 ¼ 2:432 mD ¼ 3:2 kB ¼ 75:475 KDh1 ¼ �0:001 KDh2 ¼ 0:988

kA O 0.000 0.250 0.500 0.750 1.000 0.000 0.250 0.500 0.750 1.000 0.000 0.250 0.500 0.750 1.000

KN1 0.000 �0.485 �0.637 �0.476 0.000 0.000 �0.386 �0.479 �0.342 0.000 0.000 �0.331 �0.212 �0.055 0.000

KN2 2.224 1.031 �0.043 �1.052 �2.054 1.426 0.551 �0.091 �0.596 �1.065 0.998 �0.001 �0.224 �0.138 0.010

KM1 1.000 0.845 0.501 0.157 0.000 1.000 0.834 0.483 0.148 0.000 1.000 0.660 0.224 0.027 0.000
80

KM2 1.233 1.051 0.687 0.335 0.179 1.140 0.937 0.558 0.211 0.062 1.107 0.697 0.223 0.017 �0.011

KDR 2.224 1.025 �0.035 �1.014 �1.968 1.426 0.547 �0.083 �0.568 �1.005 0.998 0.002 �0.210 �0.126 0.009

Kc 2.170 1.896 1.699 1.609 1.598 1.309 0.942 0.683 0.565 0.547 1.002 0.329 �0.001 �0.083 �0.089
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mD ¼ 0:4 kB ¼ 159:434 KDh1 ¼ �0:000 KDh2 ¼ 37:272 mD ¼ 0:6 kB ¼ 159:151 KDh1 ¼ �0:000 KDh2 ¼ 16:619 mD ¼ 0:8 kB ¼ 158:869 KDh1 ¼ �0:000 KDh2 ¼ 9:371

kA O 0.000 0.250 0.500 0.750 1.000 0.000 0.250 0.500 0.750 1.000 0.000 0.250 0.500 0.750 1.000

KN1 0.000 �1.401 �1.873 �1.409 �0.000 0.000 �0.939 �1.225 �0.944 0.000 0.000 �0.708 �0.944 �0.709 0.000

KN2 18.666 9.353 0.019 �9.342 �18.739 8.350 4.170 0.002 �4.169 �8.357 4.746 2.343 �0.014 �2.350 �4.691

KM1 1.000 0.845 0.502 0.158 0.000 1.000 0.845 0.502 0.158 0.000 1.000 0.845 0.502 0.157 0.000
160

KM2 3.508 3.353 3.012 2.672 2.520 1.755 1.595 1.249 0.904 0.749 1.329 1.166 0.817 0.470 0.314

KDR 18.666 9.344 0.029 �9.285 �18.607 8.350 4.164 0.009 �4.131 �8.269 4.746 2.338 �0.009 �2.321 �4.625

Kc 46.763 46.693 46.650 46.643 46.662 14.074 13.943 13.852 13.815 13.818 6.145 5.962 5.833 5.775 5.770

mD ¼ 1:2 kB ¼ 158:303 KDh1 ¼ �0:000 KDh2 ¼ 4:213 mD ¼ 1:6 kB ¼ 157:737 KDh1 ¼ �0:000 KDh2 ¼ 2:443 mD ¼ 3:2 kB ¼ 155:475 KDh1 ¼ �0:000 KDh2 ¼ 0:990

kA O 0.000 0.250 0.500 0.750 1.000 0.000 0.250 0.500 0.750 1.000 0.000 0.250 0.500 0.750 1.000

KN1 0.000 �0.484 �0.630 �0.466 0.000 1.000 �0.385 �0.471 �0.332 0.000 0.000 �0.325 �0.202 �0.051 0.000

KN2 2.230 1.022 �0.051 �1.048 �2.026 1.429 0.543 �0.096 �0.592 �1.044 0.999 �0.008 �0.221 �0.133 0.010

KM1 1.000 0.841 0.495 0.154 0.000 1.000 0.829 0.475 0.144 0.000 1.000 0.649 0.214 0.025 0.000
160

KM2 1.117 0.943 0.587 0.242 0.087 1.070 0.879 0.512 0.175 0.030 1.054 0.666 0.214 0.020 �0.005

KDR 2.230 1.020 �0.047 �1.029 �1.983 1.429 0.542 �0.092 �0.577 �1.014 0.999 �0.007 �0.214 �0.127 0.009

Kc 2.175 1.897 1.698 1.606 1.593 1.311 0.940 0.680 0.562 0.543 1.003 0.323 �0.004 �0.083 �0.088
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TABLE 13.3 Formulas for bending and membrane stresses and deformations in thin-walled pressure vessels (Continued )

Case no., loading Formulas

5c. Uniform radial force QB ,

at the small end N1 ¼ QB sin aKN1; N2 ¼ �QB sin a
kBffiffiffi

2
p KN2

M1 ¼ �QB sin a
kBtffiffiffi

2
p

b
KM1; M2 ¼ �QBn sin a

kBtffiffiffi
2

p
b

KM2; Dh ¼
QBRB

Et
KDh1 �

QBRB sin
2 a

Et cos a
kBffiffiffi

2
p KDh2

DR ¼
�QBRB sin a

Et

kBffiffiffi
2

p KDR; c ¼
QBRBb

Et2
Kc

For RB=ðt cos aÞ > 10 and kB > 5 and for n ¼ 0:3, the following tables give the values of K at several locations along the shell [O ¼ ðRA � RÞ=ðRA � RBÞ]

mD ¼ 0:4 kB ¼ 9:434 KDh1 ¼ 0:335 KDh2 ¼ 3:162 mD ¼ 0:6 kB ¼ 9:151 KDh1 ¼ 0:036 KDh2 ¼ 3:129 mD ¼ 0:8 kB ¼ 8:869 KDh1 ¼ 0:336 KDh2 ¼ 2:850

kA O 0.000 0.250 0.500 0.750 1.000 0.000 0.250 0.500 0.750 1.000 0.000 0.250 0.500 0.750 1.000

KN1 0.000 0.016 0.172 0.491 1.000 0.000 �0.075 0.033 0.372 1.000 0.000 �0.122 �0.048 0.292 1.000

KN2 �0.258 0.436 1.178 1.973 2.827 �0.583 0.047 0.744 1.519 2.387 �0.601 �0.077 0.523 1.219 2.037

KM1 0.000 0.026 0.046 0.043 0.000 0.000 0.032 0.066 0.069 0.000 0.000 0.037 0.085 0.095 0.000
10

KM2 �3.000 �3.086 �3.188 �3.321 �3.502 �1.866 �1.939 �2.026 �2.159 �2.376 �1.192 �1.246 �1.310 �1.434 �1.678

KDR �0.290 0.478 1.259 2.057 2.872 �0.696 0.050 0.818 1.611 2.433 �0.764 �0.100 0.591 1.317 2.085

Kc 7.413 7.478 7.550 7.627 7.702 4.752 4.817 4.895 4.985 5.070 3.133 3.192 3.274 3.376 3.469

mD ¼ 1:2 kB ¼ 8:303 KDh1 ¼ 0:336 KDh2 ¼ 2:283 mD ¼ 1:6 kB ¼ 7:737 KDh1 ¼ 0:340 KDh2 ¼ 1:882 mD ¼ 3:2 kB ¼ 5:475 KDh1 ¼ 0:431 KDh2 ¼ 1:213

kA O 0.000 0.250 0.500 0.750 1.000 0.000 0.250 0.500 0.750 1.000 0.000 0.250 0.500 0.750 1.000

KN1 0.000 �0.148 �0.120 0.197 1.000 0.000 �0.135 �0.138 0.134 1.000 0.000 �0.026 �0.065 �0.039 1.000

KN2 �0.464 �0.125 0.295 0.837 1.559 �0.322 �0.113 0.172 0.604 1.288 �0.030 �0.034 �0.020 0.137 1.036

KM1 0.000 0.043 0.155 0.144 0.000 0.000 0.045 0.134 0.185 0.000 0.000 0.014 0.073 0.190 0.000
10

KM2 �0.539 �0.560 �0.583 �0.691 �0.992 �0.263 �0.263 �0.258 �0.358 �0.729 �0.001 0.010 0.034 �0.019 �0.721

KDR �0.673 �0.177 0.354 0.943 1.610 �0.538 �0.181 0.220 0.713 1.343 �0.100 �0.098 �0.053 0.213 1.113

Kc 1.514 1.562 1.657 1.798 1.920 0.792 0.833 0.945 1.142 1.314 0.005 0.016 0.108 0.422 0.920
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mD ¼ 0:4 kB ¼ 19:434 KDh1 ¼ 0:308 KDh2 ¼ 5:616 mD ¼ 0:6 kB ¼ 19:151 KDh1 ¼ 0:306 KDh2 ¼ 4:390 mD ¼ 0:8 kB ¼ 18:869 KDh1 ¼ 0:306 KDh2 ¼ 3:518

kA O 0.000 0.250 0.500 0.750 1.000 0.000 0.250 0.500 0.750 1.000 0.000 0.250 0.500 0.750 1.000

KN1 0.000 �0.157 �0.057 0.322 1.000 0.000 �0.216 �0.145 0.247 1.000 0.000 �0.235 �0.181 0.211 1.000

KN2 �1.460 �0.151 1.201 2.600 4.048 �1.238 �0.255 0.778 1.867 3.018 �0.996 �0.242 0.565 1.435 2.377

KM1 0.000 0.022 0.048 0.051 0.000 0.000 0.029 0.071 0.079 0.000 0.000 0.036 0.093 0.107 0.000
20

KM2 �2.846 �2.877 �2.906 �2.962 �3.072 �1.439 �1.450 �1.454 �1.495 �1.624 �0.835 �0.831 �0.813 �0.844 �0.996

KDR �1.546 �0.162 1.235 2.645 4.070 �1.350 �0.278 0.810 1.915 3.040 �1.119 �0.271 0.595 1.484 2.400

Kc 13.655 13.714 13.781 13.851 13.918 7.007 7.055 7.116 7.188 7.251 4.128 4.169 4.232 4.314 4.381

mD ¼ 1:2 kB ¼ 18:303 KDh1 ¼ 0:305 KDh2 ¼ 2:490 mD ¼ 1:6 kB ¼ 17:737 KDh1 ¼ 0:306 KDh2 ¼ 1:932 mD ¼ 3:2 kB ¼ 15:475 KDh1 ¼ 0:313 KDh2 ¼ 1:138

kA O 0.000 0.250 0.500 0.750 1.000 0.000 0.250 0.500 0.750 1.000 0.000 0.250 0.500 0.750 1.000

KN1 0.000 �0.236 �0.205 0.171 1.000 0.000 �0.217 �0.208 0.138 1.000 0.000 �0.069 �0.144 �0.046 1.000

KN2 �0.664 �0.189 0.344 0.959 1.673 �0.457 �0.149 0.221 0.701 1.327 �0.052 �0.059 �0.022 0.234 1.023

KM1 0.000 0.048 0.133 0.160 0.000 0.000 0.057 0.165 0.207 0.000 0.000 0.030 0.137 0.277 0.000
20

KM2 �0.358 �0.332 �0.281 �0.302 �0.506 �0.178 �0.138 �0.065 �0.080 �0.341 0.001 0.028 0.105 0.145 �0.276

KDR �0.793 �0.223 0.372 1.010 1.696 �0.581 �0.185 0.246 0.752 1.351 �0.087 �0.092 �0.035 0.272 1.051

Kc 1.824 1.859 1.940 2.066 2.160 0.934 0.967 1.078 1.268 1.410 �0.006 0.012 0.155 0.557 0.994
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TABLE 13.3 Formulas for bending and membrane stresses and deformations in thin-walled pressure vessels (Continued )

mD ¼ 0:4 kB ¼ 39:434 KDh1 ¼ 0:301 KDh2 ¼ 6:940 mD ¼ 0:6 kB ¼ 39:151 KDh1 ¼ 0:301 KDh2 ¼ 4:853 mD ¼ 0:8 kB ¼ 38:869 KDh1 ¼ 0:301 KDh2 ¼ 3:711

kA O 0.000 0.250 0.500 0.750 1.000 0.000 0.250 0.500 0.750 1.000 0.000 0.250 0.500 0.750 1.000

KN1 0.000 �0.260 �0.189 0.227 1.000 0.000 �0.279 �0.219 0.200 1.000 0.000 �0.282 �0.229 0.188 1.000

KN2 �2.154 �0.480 1.222 2.952 4.713 �1.520 �0.374 0.803 2.012 3.255 �1.152 �0.296 0.591 1.516 2.480

KM1 0.000 0.020 0.049 0.055 0.000 0.000 0.028 0.073 0.083 0.000 0.000 0.036 0.097 0.111 0.000
40

KM2 �1.810 �1.807 �1.795 �1.808 �1.881 �0.830 �0.814 �0.782 �0.787 �0.884 �0.467 �0.440 �0.391 �0.391 �0.515

KDR �2.216 �0.493 1.237 2.976 4.724 �1.587 �0.389 0.818 2.036 3.266 �1.220 �0.312 0.606 1.540 2.491

Kc 17.115 17.153 17.196 17.244 17.288 7.909 7.937 7.978 8.029 8.071 4.478 4.502 4.549 4.614 4.662

mD ¼ 1:2 kB ¼ 38:303 KDh1 ¼ 0:301 KDh2 ¼ 2:523 mD ¼ 1:6 kB ¼ 37:737 KDh1 ¼ 0:301 KDh2 ¼ 1:923 mD ¼ 3:2 kB ¼ 35:475 KDh1 ¼ 0:300 KDh2 ¼ 1:107

kA O 0.000 0.250 0.500 0.750 1.000 0.000 0.250 0.500 0.750 1.000 0.000 0.250 0.500 0.750 1.000

KN1 0.000 �0.275 �0.234 0.170 1.000 0.000 �0.256 �0.232 0.149 1.000 0.000 �0.096 �0.182 �0.033 1.000

KN2 �0.747 �0.206 0.372 1.004 1.698 �0.517 �0.157 0.249 0.739 1.331 �0.064 �0.070 �0.016 0.278 1.013

KM1 0.000 0.051 0.141 0.164 0.000 0.000 0.063 0.177 0.214 0.000 0.000 0.040 0.167 0.303 0.000
40

KM2 �0.198 �0.154 �0.076 �0.070 �0.248 �0.100 �0.043 0.057 0.070 �0.162 0.001 0.039 0.148 0.235 �0.121

KDR �0.814 �0.223 0.386 1.029 1.709 �0.581 �0.175 0.261 0.764 1.342 �0.081 �0.086 �0.020 0.296 1.025

Kc 1.930 1.954 2.026 2.140 2.218 0.985 1.012 1.120 1.303 1.428 �0.009 0.014 0.180 0.602 1.001
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mD ¼ 0:4 kB ¼ 79:434 KDh1 ¼ 0:300 KDh2 ¼ 7:362 mD ¼ 0:6 kB ¼ 79:151 KDh1 ¼ 0:300 KDh2 ¼ 4:974 mD ¼ 0:8 kB ¼ 78:869 KDh1 ¼ 0:300 KDh2 ¼ 3:752

kA O 0.000 0.250 0.500 0.750 1.000 0.000 0.250 0.500 0.750 1.000 0.000 0.250 0.500 0.750 1.000

KN1 0.000 �0.296 �0.233 0.197 1.000 0.000 �0.300 �0.241 0.188 1.000 0.000 �0.299 �0.243 0.184 1.000

KN2 �2.395 �0.588 1.235 3.073 4.928 �1.614 �0.407 0.817 2.059 3.319 �1.207 �0.309 0.606 1.543 2.505

KM1 0.000 0.019 0.050 0.056 0.000 0.000 0.028 0.074 0.084 0.000 0.000 0.037 0.098 0.112 0.000
80

KM2 �0.973 �0.959 �0.933 �0.932 �0.993 �0.434 �0.410 �0.367 �0.362 �0.450 �0.243 �0.208 �0.151 �0.142 �0.257

KDR �2.429 �0.595 1.243 3.085 4.933 �1.649 �0.415 0.824 2.071 3.325 �1.241 �0.318 0.613 1.556 2.510

Kc 18.277 18.298 18.324 18.355 18.382 8.186 8.202 8.231 8.270 8.299 4.588 4.603 4.640 4.695 4.734

mD ¼ 1:2 kB ¼ 78:303 KDh1 ¼ 0:300 KDh2 ¼ 2:522 mD ¼ 1:6 kB ¼ 77:737 KDh1 ¼ 0:300 KDh2 ¼ 1:911 mD ¼ 3:2 kB ¼ 75:475 KDh1 ¼ 0:298 KDh2 ¼ 1:093

kA O 0.000 0.250 0.500 0.750 1.000 0.000 0.250 0.500 0.750 1.000 0.000 0.250 0.500 0.750 1.000

KN1 0.000 �0.291 �0.244 0.174 1.000 0.000 �0.274 �0.241 0.156 1.000 0.000 �0.111 �0.199 �0.024 1.000

KN2 �0.780 �0.209 0.386 1.022 1.702 �0.544 �0.159 0.262 0.755 1.329 �0.070 �0.075 �0.011 0.298 1.008

KM1 0.000 0.053 0.144 0.166 0.000 0.000 0.066 0.183 0.216 0.000 0.000 0.045 0.181 0.313 0.000
80

KM2 �0.103 �0.052 0.034 0.049 �0.122 �0.052 0.012 0.122 0.145 �0.079 0.000 0.044 0.171 0.278 �0.057

KDR �0.815 �0.218 0.394 1.034 1.707 �0.577 �0.167 0.269 0.767 1.334 �0.079 �0.082 �0.013 0.307 1.014

Kc 1.968 1.986 2.053 2.160 2.230 1.005 1.029 1.135 1.314 1.431 �0.009 0.015 0.192 0.621 1.001
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TABLE 13.3 Formulas for bending and membrane stresses and deformations in thin-walled pressure vessels (Continued )



TABLE 13.3 Formulas for bending and membrane stresses and deformations in thin-walled pressure vessels (Continued )

mD ¼ 0:4 kB ¼ 159:434 KDh1 ¼ 0:300 KDh2 ¼ 7:471 mD ¼ 0:6 kB ¼ 159:151 KDh1 ¼ 0:300 KDh2 ¼ 5:000 mD ¼ 0:8 kB ¼ 158:869 KDh1 ¼ 0:300 KDh2 ¼ 3:758

kA O 0.000 0.250 0.500 0.750 1.000 0.000 0.250 0.500 0.750 1.000 0.000 0.250 0.500 0.750 1.000

KN1 0.000 �0.307 �0.245 0.189 1.000 0.000 �0.307 �0.247 0.186 1.000 0.000 �0.306 �0.248 0.184 1.000

KN2 �2.466 �0.616 1.242 3.109 4.984 �1.645 �0.415 0.824 2.074 3.335 �1.227 �0.312 0.613 1.554 2.510

KM1 0.000 0.019 0.050 0.056 0.000 0.000 0.028 0.075 0.084 0.000 0.000 0.037 0.099 0.112 0.000

160 KM2 �0.497 �0.480 �0.450 �0.445 �0.502 �0.221 �0.193 �0.148 �0.140 �0.225 �0.123 �0.087 �0.026 �0.015 �0.128

KDR �2.484 �0.620 1.246 3.115 4.987 �1.662 �0.419 0.828 2.080 3.337 �1.245 �0.371 0.617 1.560 2.513

Kc 18.607 18.618 18.635 18.656 18.673 8.269 8.279 8.301 8.333 8.355 4.625 4.635 4.667 4.718 4.751

mD ¼ 1:2 kB ¼ 158:303 KDh1 ¼ 0:300 KDh2 ¼ 2:516 mD ¼ 1:6 kB ¼ 157:737 KDh1 ¼ 0:300 KDh2 ¼ 1:903 mD ¼ 3:2 kB ¼ 155:475 KDh1 ¼ 0:298 KDh2 ¼ 1:086

kA O 0.000 0.250 0.500 0.750 1.000 0.000 0.250 0.500 0.750 1.000 0.000 0.250 0.500 0.750 1.000

KN1 0.000 �0.299 �0.247 0.177 1.000 0.000 �0.283 �0.245 0.161 1.000 0.000 �0.119 �0.207 �0.019 1.000

KN2 �0.796 �0.210 0.394 1.030 1.701 �0.557 �0.159 0.269 0.762 1.327 �0.074 �0.077 �0.009 0.307 1.006

KM1 0.000 0.054 0.146 0.167 0.000 0.000 0.068 0.186 0.217 0.000 0.000 0.048 0.188 0.317 0.000

160 KM2 �0.053 0.001 0.090 0.108 �0.061 �0.027 0.040 0.155 0.182 �0.039 0.000 0.047 0.183 0.300 �0.028

KDR �0.813 �0.214 0.397 1.036 1.704 �0.573 �0.163 0.272 0.768 1.330 �0.078 �0.081 �0.010 0.311 1.008

Kc 1.983 1.998 2.062 2.166 2.233 1.014 1.036 1.142 1.318 1.431 �0.009 0.016 0.198 0.629 1.001

Case no., loading Formulas

5d. Uniform edge moment MB

at the small end N1 ¼ �MB

2
ffiffiffi
2

p
b

tkB

KN1; N2 ¼ MB

b
t

KN2

M1 ¼ MBKM1; M2 ¼ MBnKM2; Dh ¼
�MBRBb
Et2 sin a

KDh1 �
MBbRB sin a

Et2 cos a
KDh2

DR ¼ MB

bRB

Et2
KDR; c ¼ �MB

2
ffiffiffi
2

p
b2RB

Et3kB sin a
Kc

For RB=ðt cos aÞ > 10 and kB > 5 and for n ¼ 0:3, the following tables give the values of K at several locations along the shell [O ¼ ðRA � RÞ=ðRA � RBÞ]
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mD ¼ 0:4 kB ¼ 9:434 KDh1 ¼ �0:018 KDh2 ¼ �15:589 mD ¼ 0:6 kB ¼ 9:151 KDh1 ¼ �0:027 KDh2 ¼ �10:293 mD ¼ 0:8 kB ¼ 8:869 KDh1 ¼ �0:034 KDh2 ¼ �7:029

kA O 0.000 0.250 0.500 0.750 1.000 0.000 0.250 0.500 0.750 1.000 0.000 0.250 0.500 0.750 1.000

KN1 0.000 �0.507 �0.712 �0.563 0.000 0.000 �0.465 �0.670 �0.546 0.000 0.000 �0.389 �0.578 �0.487 0.000

KN2 �7.020 �3.707 �0.170 3.622 7.702 �4.374 �2.378 �0.172 2.290 5.070 �2.800 �1.571 �0.164 1.486 3.469

KM1 0.000 0.187 0.461 0.758 1.000 0.000 0.160 0.443 0.761 1.000 0.000 0.141 0.425 0.757 1.000
10

KM2 �15.021 �15.396 �15.742 �16.134 �16.657 �6.220 �6.412 �6.550 �6.740 �7.110 �2.965 �3.052 �3.069 �3.143 �3.433

KDR �7.887 �4.100 �0.248 3.681 7.702 �5.223 �2.773 �0.257 2.348 5.070 �3.559 �1.936 �0.249 1.537 3.469

Kc 18.558 18.722 18.917 19.149 19.416 7.922 8.031 8.183 8.390 8.651 3.896 3.973 4.101 4.305 4.582

mD ¼ 1:2 kB ¼ 8:303 KDh1 ¼ �0:043 KDh2 ¼ �3:764 mD ¼ 1:6 kB ¼ 7:737 KDh1 ¼ �0:049 KDh2 ¼ �2:352 mD ¼ 3:2 kB ¼ 5:475 KDh1 ¼ �0:068 KDh2 ¼ �0:927

kA O 0.000 0.250 0.500 0.750 1.000 0.000 0.250 0.500 0.750 1.000 0.000 0.250 0.500 0.750 1.000

KN1 0.000 �0.255 �0.407 �0.376 0.000 0.000 �0.161 �0.285 �0.301 0.000 0.000 �0.009 �0.051 �0.155 0.000

KN2 �1.271 �0.774 �0.153 0.690 1.920 �0.621 �0.429 �0.154 0.335 1.314 �0.002 �0.045 �0.107 �0.905 0.920

KM1 0.000 0.113 0.381 0.729 1.000 0.000 0.088 0.327 0.681 1.000 0.000 0.005 0.066 0.330 1.000
10

KM2 �0.862 �0.855 �0.771 �0.750 �1.004 �0.281 �0.245 �0.136 �0.092 �0.390 0.024 0.035 0.084 0.158 �0.517

KDR �1.843 �1.071 �0.239 0.725 1.920 �1.038 �0.672 �0.247 0.353 1.314 �0.007 �0.128 �0.248 �0.188 0.920

Kc 1.210 1.254 1.366 1.592 1.939 0.423 0.451 0.558 0.814 1.254 �0.050 �0.052 �0.024 0.174 0.968
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TABLE 13.3 Formulas for bending and membrane stresses and deformations in thin-walled pressure vessels (Continued )



TABLE 13.3 Formulas for bending and membrane stresses and deformations in thin-walled pressure vessels (Continued )

mD ¼ 0:4 kB ¼ 19:434 KDh1 ¼ �0:008 KDh2 ¼ 27:998 mD ¼ 0:6 kB ¼ 19:151 KDh1 ¼ �0:009 KDh2 ¼ �14:589 mD ¼ 0:8 kB ¼ 18:869 KDh1 ¼ �0:010 KDh2 ¼ �8:774

kA O 0.000 0.250 0.500 0.750 1.000 0.000 0.250 0.500 0.750 1.000 0.000 0.250 0.500 0.750 1.000

KN1 0.000 �0.979 �1.340 �1.031 0.000 0.000 �0.737 �1.022 �0.799 0.000 0.000 �0.567 �0.799 �0.636 0.000

KN2 �13.294 �6.833 �0.156 6.755 13.918 �6.729 �3.513 �0.130 3.448 7.251 �3.910 �2.081 �0.117 2.021 4.381

KM1 0.000 0.171 0.483 0.806 1.000 0.000 0.155 0.474 0.811 1.000 0.000 0.146 0.465 0.809 1.000
20

KM2 �14.236 �14.330 �14.303 �14.289 �14.426 �4.790 �4.771 �4.612 �4.465 �4.496 �2.074 �2.009 �1.798 �1.601 �1.594

KDR �14.079 �7.180 �0.221 6.809 13.918 �7.338 �3.787 �0.183 3.489 7.251 �4.393 �2.301 �0.162 2.054 4.381

Kc 34.151 34.302 34.481 34.697 34.944 11.662 11.744 11.867 12.045 12.269 5.124 5.178 5.284 5.463 5.705

mD ¼ 1:2 kB ¼ 18:303 KDh1 ¼ �0:011 KDh2 ¼ �4:165 mD ¼ 1:6 kB ¼ 17:737 KDh1 ¼ �0:011 KDh2 ¼ �2:471 mD ¼ 3:2 kB ¼ 15:475 KDh1 ¼ �0:013 KDh2 ¼ �0:988

kA O 0.000 0.250 0.500 0.750 1.000 0.000 0.250 0.500 0.750 1.000 0.000 0.250 0.500 0.750 1.000

KN1 0.000 �0.362 �0.533 �0.448 0.000 0.000 �0.242 �0.385 �0.355 0.000 0.000 �0.024 �0.199 �0.259 0.000

KN2 �1.679 �0.948 �0.117 0.887 2.160 �0.835 �0.527 �0.136 0.452 1.410 0.004 �0.085 �0.175 �0.067 0.994

KM1 0.000 0.131 0.440 0.793 1.000 0.000 0.113 0.403 0.766 1.000 0.000 0.013 0.135 0.516 1.000
20

KM2 �0.571 �0.477 �0.241 �0.016 0.003 �0.189 �0.096 0.132 0.359 0.369 0.024 0.039 0.144 0.394 0.443

KDR �2.005 �1.105 �0.155 0.908 2.160 �1.061 �0.648 �0.175 0.464 1.410 0.007 �0.130 �0.242 �0.095 0.994

Kc 1.454 1.486 1.593 1.810 2.127 0.496 0.520 0.635 0.898 1.305 �0.073 �0.073 �0.021 0.257 1.005
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mD ¼ 0:4 kB ¼ 39:434 KDh1 ¼ �0:002 KDh2 ¼ �34:665 mD ¼ 0:6 kB ¼ 39:151 KDh1 ¼ �0:002 KDh2 ¼ �16:163 mD ¼ 0:8 kB ¼ 38:869 KDh1 ¼ �0:003 KDh2 ¼ �9:280

kA O 0.000 0.250 0.500 0.750 1.000 0.000 0.250 0.500 0.750 1.000 0.000 0.250 0.500 0.750 1.000

KN1 0.000 �1.256 �1.696 �1.289 0.000 0.000 �0.861 �1.172 �0.898 0.000 0.000 �0.644 �0.885 �0.685 0.000

KN2 �16.889 �8.564 �0.100 8.514 17.288 �7.752 �3.966 �0.080 3.926 8.071 �4.360 �2.259 �0.075 2.221 4.662

KM1 0.000 0.159 0.492 0.830 1.000 0.000 0.153 0.487 0.831 1.000 0.000 0.149 0.482 0.828 1.000
40

KM2 �9.047 �8.972 �8.731 �8.493 �8.432 �2.761 �2.648 �2.363 �2.082 �1.985 �1.157 �1.031 �0.734 �0.440 �0.335

KDR �17.377 �8.778 �0.139 8.548 17.288 �8.092 �4.116 �0.107 3.950 8.071 �4.617 �2.373 �0.097 2.238 4.662

Kc 42.783 42.880 43.003 43.163 43.351 13.153 13.203 13.292 13.437 13.623 5.552 5.586 5.672 5.832 6.048

mD ¼ 1:2 kB ¼ 38:303 KDh1 ¼ �0:003 KDh2 ¼ �4:240 mD ¼ 1:6 kB ¼ 37:737 KDh1 ¼ �0:003 KDh2 ¼ �2:476 mD ¼ 3:2 kB ¼ 35:475 KDh1 ¼ �0:003 KDh2 ¼ �0:992

kA O 0.000 0.250 0.500 0.750 1.000 0.000 0.250 0.500 0.750 1.000 0.000 0.250 0.500 0.750 1.000

KN1 0.000 �0.412 �0.584 �0.471 0.000 0.000 �0.283 �0.427 �0.372 0.000 0.000 �0.034 �0.156 �0.294 0.000

KN2 �1.854 �1.007 �0.090 0.961 2.218 �0.933 �0.562 �0.120 0.498 1.428 0.007 �0.107 �0.199 �0.042 1.001

KM1 0.000 0.140 0.466 0.818 1.000 0.000 0.127 0.437 0.797 1.000 0.000 0.018 0.171 0.583 1.000
40

KM2 �0.315 �0.187 0.110 0.408 0.514 �0.105 0.014 0.295 0.594 0.701 0.015 0.033 0.174 0.518 0.757

KDR �2.022 �1.085 �0.107 0.972 2.218 �1.048 �0.621 �0.138 0.505 1.428 0.009 �0.129 �0.231 �0.052 1.001

Kc 1.535 1.560 1.660 1.870 2.170 0.521 0.544 0.660 0.923 1.313 �0.081 �0.079 �0.015 0.289 1.006
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TABLE 13.3 Formulas for bending and membrane stresses and deformations in thin-walled pressure vessels (Continued )

mD ¼ 0:4 kB ¼ 79:434 KDh1 ¼ �0:001 KDh2 ¼ 36:799 mD ¼ 0:6 kB ¼ 79:151 KDh1 ¼ �0:001 KDh2 ¼ �16:579 mD ¼ 0:8 kB ¼ 78:869 KDh1 ¼ �0:001 KDh2 ¼ �9:392

kA O 0.000 0.250 0.500 0.750 1.000 0.000 0.250 0.500 0.750 1.000 0.000 0.250 0.500 0.750 1.000

KN1 0.000 �1.356 �1.820 �1.374 0.000 0.000 �0.907 �1.222 �0.927 0.000 0.000 �0.675 �0.916 �0.700 0.000

KN2 �18.157 �9.146 �0.056 9.116 18.382 �8.105 �4.105 �0.048 4.081 8.299 �4.527 �2.314 �0.051 2.288 4.734

KM1 0.000 0.156 0.496 0.839 1.000 0.000 0.154 0.493 0.838 1.000 0.000 0.152 0.490 0.836 1.000
80

KM2 �4.864 �4.731 �4.417 �4.104 �3.976 �1.444 �1.301 �0.977 �0.653 �0.517 �0.601 �0.456 �0.130 0.195 0.333

KDR �18.417 �9.258 �0.076 9.134 18.382 �8.280 �4.181 �0.062 4.093 8.299 �4.658 �2.372 �0.062 2.297 4.734

Kc 45.679 45.733 45.813 45.930 46.074 13.610 13.639 13.709 13.832 13.997 5.685 5.708 5.783 5.931 6.133

mD ¼ 1:2 kB ¼ 78:303 KDh1 ¼ �0:001 KDh2 ¼ �4:244 mD ¼ 1:6 kB ¼ 77:737 KDh1 ¼ �0:001 KDh2 ¼ �2:468 mD ¼ 3:2 kB ¼ 75:475 KDh1 ¼ �0:001 KDh2 ¼ �0:992

kA O 0.000 0.250 0.500 0.750 1.000 0.000 0.250 0.500 0.750 1.000 0.000 0.250 0.500 0.750 1.000

KN1 0.000 �0.435 �0.605 �0.478 �0.000 0.000 �0.303 �0.446 �0.378 0.000 0.000 �0.041 �0.175 �0.308 0.000

KN2 �1.929 �1.028 �0.075 0.990 2.230 �0.979 �0.575 �0.111 0.518 1.431 0.008 �0.117 �0.209 �0.028 1.001

KM1 0.000 0.146 0.478 0.828 1.000 0.000 0.134 0.452 0.811 1.000 0.000 0.020 0.188 0.611 1.000
80

KM2 �0.164 �0.023 0.297 0.623 0.761 �0.055 0.075 0.381 0.709 0.855 0.008 0.029 0.190 0.578 0.886

KDR �2.014 �1.066 �0.083 0.995 2.230 �1.037 �0.604 �0.199 0.521 1.431 0.009 �0.128 �0.224 �0.033 1.001

Kc 1.564 1.585 1.682 1.887 2.178 0.531 0.552 0.670 0.931 1.314 �0.084 �0.081 �0.011 0.303 1.005
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mD ¼ 0:4 kB ¼ 159:434 KDh1 ¼ �0:000 KDh2 ¼ �37:352 mD ¼ 0:6 kB ¼ 159:151 KDh1 ¼ �0:000 KDh2 ¼ �16:672 mD ¼ 0:8 kB ¼ 158:869 KDh1 ¼ �0:000 KDh2 ¼ �9:411

kA O 0.000 0.250 0.500 0.750 1.000 0.000 0.250 0.500 0.750 1.000 0.000 0.250 0.500 0.750 1.000

KN1 0.000 �1.388 �1.857 �1.398 0.000 0.000 �0.923 �1.239 �0.936 0.000 0.000 �0.688 �0.923 �0.705 0.000

KN2 �18.547 �9.310 �0.033 9.292 18.673 �8.228 �4.146 �0.032 4.130 8.355 �4.594 �2.333 �0.039 2.313 4.751

KM1 0.000 0.156 0.498 0.842 1.000 0.000 0.155 0.496 0.841 1.000 0.000 0.153 0.494 0.839 1.000
160

KM2 �2.484 �2.335 �2.000 �1.666 �1.518 �0.733 �0.581 �0.245 0.092 0.241 �0.305 �0.154 0.182 0.519 0.668

KDR �18.679 �9.367 �0.043 9.301 18.673 �8.316 �4.185 �0.039 4.136 8.355 �4.660 �2.361 �0.044 2.317 4.751

Kc 46.497 46.527 46.584 46.677 46.796 13.745 13.764 13.823 13.935 14.089 5.729 5.746 5.816 5.957 6.153

mD ¼ 1:2 kB ¼ 158:303 KDh1 ¼ �0:000 KDh2 ¼ �4:239 mD ¼ 1:6 kB ¼ 157:737 KDh1 ¼ �0:000 KDh2 ¼ �2:461 mD ¼ 3:2 kB ¼ 155:475 KDh1 ¼ �0:000 KDh2 ¼ �0:991

kA O 0.000 0.250 0.500 0.750 1.000 0.000 0.250 0.500 0.750 1.000 0.000 0.250 0.500 0.750 1.000

KN1 0.000 �0.446 �0.614 �0.480 0.000 0.000 �0.313 �0.455 �0.381 0.000 0.000 �0.044 �0.184 �0.314 0.000

KN2 �1.964 �1.036 �0.067 1.002 2.233 �1.001 �0.581 �0.106 0.527 1.431 0.009 �0.122 �0.213 �0.022 1.001

KM1 0.000 0.148 0.484 0.833 1.000 0.000 0.137 0.460 0.817 1.000 0.000 0.022 0.197 0.624 1.000
160

KM2 �0.084 0.063 0.393 0.731 0.882 �0.028 0.107 0.424 0.767 0.929 0.004 0.026 0.198 0.608 0.945

KDR �2.006 �1.055 �0.071 1.005 2.233 �1.030 �0.596 �0.110 0.529 1.431 0.010 �0.128 �0.221 �0.024 1.001

Kc 1.576 1.594 1.689 1.892 2.179 0.536 0.556 0.674 0.935 1.313 �0.085 �0.081 �0.008 0.310 1.005

S
E
C
.
1
3
.8
]

S
h
e
lls

o
f
R
e
v
o
lu
tio

n
;
P
re
s
s
u
re

V
e
s
s
e
ls
;
P
ip
e
s

6
3
3

TABLE 13.3 Formulas for bending and membrane stresses and deformations in thin-walled pressure vessels (Continued )



TABLE 13.3 Formulas for bending and membrane stresses and deformations in thin-walled pressure vessels (Continued )

Case no., loading Formulas

6. Toroidal shells

m ¼
b2

at

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12ð1 � n2Þ

p
t

b
<

1

10

6a. Split toroidal shell under

axial load P (omega joint)

(Refs. 16 and 40)

For 4 < m < 40,

Stretch ¼
3:47Pb

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � n2

p

Et2

ðs2Þmax ¼
2:15P

2pat

abð1 � n2Þ

t2

� �1=3

for f ¼ 0�; 180�

ðs01Þmax ¼
2:99P

2pat

ab

t2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � n2

p

� �1=3

Range
� m ¼ 4; f ¼ 50� : m ¼ 40; f ¼ 20�

If m < 4, the following values for stretch should be used, where D ¼
Pb3

2aD
:

* Within range, f is approximately linear versus logm

6b. Corrugated tube under

axial load P

For 4 < m < 40,

Stretch ¼
0:577Pbn

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � n2

p

Et2
where n is the number of semicircular corrugations ðfive shown in figureÞ

ðs2Þmax ¼
0:925P

2pat

abð1 � n2Þ

t2

� �1=3

ðs01Þmax ¼
1:63P

2pat

ab

t2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � n2

p

� �1=3

ðRef: 16Þ

If m < 4, let D ¼
Pb3n

4aD
and use the tabulated values from case 6a

For U-shaped corrugations where a flat annular plate separates the inner and outer semicircles, see Ref. 41

m <1 1 2 3

Stretch 1:00D 0:95D 0:80D 0:66D
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6c. Corrugated tube under

internal pressure, q. If

internal pressure on the

ends must be carried by

the walls, calculate the

end load and use case 6b

in addition (see Ref. 55

and Sec. 13.5 for a

discussion of a possible

instability due to internal

pressure in a long bellows)

For 4 < m < 40,

Stretch per semicircular corrugation ¼ �2:45ð1 � n2Þ
1=3 a

t

� �4=3 b

t

� �1=3
bq

E

Total stretch ¼ 0 if there are an equal number of inner and outer corrugations

ðs2Þmax ¼ 0:955qð1 � n2Þ
1=6 ab

t2

� �2=3

ðs01Þmax ¼ 0:955qð1 � n2Þ
�1=3 ab

t2

� �2=3

If m < 1, the stretch per semicircular corrugation ¼ �3:28ð1 � n2Þ
b4q

Et3

For U-shaped corrugations, see Ref. 41

(Ref. 16)

7. Cylindrical shells with open

ends

7a. Diametrically opposite

and equal concentrated

loads, P at mid-length

For 1< L=R < 18 and R=t > 10,

Deflection under the load ¼ 6:5
P

Et

R

t

� �3=2
L

R

� ��3=4

For L=R > 18, the maximum stresses and deflections are approximately the same as for case 8a

For loads at the extreme ends, the maximum stresses are approximately four times as great as for loading at midlength

See Refs. 24 and 25
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TABLE 13.3 Formulas for bending and membrane stress and deformations in thin-walled pressure vessels (Continued )

Case no., loading Formulas

8. Cylindrical shells with closed

ends and end support

8a. Radial load P uniformly

distributed over small

area A, approximately

square or round, located

near midspan

Maximum stresses are circumferential stresses at center of loaded area and can be found from the following table. Values

given are for L=R ¼ 8 but may be used for L=R ratios between 3 and 40. [Coefficients adapted from Bjilaard (Refs. 22, 23, 28)]

For A very small (nominal point loading) at point of load

s2 ¼
0:4P

t2
s02 ¼

2:4P

t2
y ¼

P

Et
0:48

L

R

� �1=2
R

t

� �1:22
" #

(Approximate empirical formulas which are based on tests of Refs. 2 and 19)

For a more extensive presentation of Bjilaard’s work in graphic form over an extended range of parameters, see Refs. 27 and 60

to 71

A=R2

R=t 0.0004 0.0016 0.0036 0.0064 0.010 0.0144 0.0196 0.0256 0.0324 0.040 0.0576 0.090 0.160 0.25

Values of s02ðt
2=PÞ

300 1.475 1.11 0.906 0.780 0.678 0.600 0.522 0.450 0.390 0.348 0.264 0.186 0.120 0.078

100 1.44 1.20 1.044 0.918 0.840 0.750 0.666 0.600 0.540 0.444 0.342 0.240 0.180

50 1.44 1.254 1.11 1.005 0.900 0.840 0.756 0.720 0.600 0.480 0.360 0.264

15 0.990 0.888 0.780 0.600 0.468

Values of s2ðRt=PÞ

300 58 53.5 49 44.5 40 35.5 32 28 24 21 16 11 6 4

100 33.5 30.5 27.6 25 25.5 20 17.5 15 13 10 7 4.2 3.6

50 9.6 9 8.5 8.0 7.7 7.5 6.5 5.6 4.1 3.1

15 3.25 3.0 2.4 2.0 1.56
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8b. Center load, P lb,

concentrated on a very

short length 2b

At the top center,

ðs2Þmax ¼ �0:130BPR3=4b�3=2t�5=4

ðs02Þmax ¼ �1:56B�1PR1=4b�1=2t�7=4

ðs1Þmax ¼ �0:153B3PR1=4b�1=2t�7=4

Deflection ¼ 0:0820B5PR3=4L1=2t�9=4E�1

where B ¼ ½12ð1 � n2Þ

1=8 (Ref. 13)

8c. Uniform load, P lb=in,

over entire length of top

element

At the top center,

ðs2Þmax ¼ �0:492BpR3=4L�1=2t�5=4

ðs02Þmax ¼ �1:217B�1pR1=4L1=2t�7=4

ðs1Þmax ¼ �0:1188B3pR3=4L3=2t�9=4E�1

Deflection ¼ 0:0305B5pR3=4L3=2t�9=4E�1

where B is given in case 8b

Quarter-span deflection ¼ 0:774 midspan deflection (Ref. 13)

.
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TABLE 13.4 Formulas for discontinuity stresses and deformations at the junctions of shells and plates
NOTATION: RA ¼ radius of common circumference; DRA is the radial deflection of the common circumference, positive outward; cA is the rotation of the meridian at the common circumference, positive

as indicated. The notation used in Tables 11.2 and 13.1–13.3 is retained where possible with added subscripts 1 and 2 used for left and right members, respectively, when needed for clarification. There

are some exceptions in using the notation from the other tables when differences occur from one table to another

1. Cylindrical shell connected to another cylindrical shell. Expressions are accurate if R=t > 5. E1 and E2 are the moduli of elasticity and n1 and n2 the Poisson’s ratios for the left and right

cylinders, respectively. See Table 13.2 for formulas for D1 and l1. RA ¼ R1, b1 ¼ R1 � t1=2, and a1 ¼ R1 þ t1=2.

Similar expressions hold for b2, a2, D2, and l2.

KV1 ¼
LTACBB � LTBCAB

CAACBB � C2
AB

; KM1 ¼
LTBCAA � LTACAB

CAACBB � C2
AB

;
LTA ¼ LTA1 þ LTA2 þ LTAC

LTB ¼ LTB1 þ TLB2 þ LTBC

�
See cases 1a to 1d for

these load terms

CAA ¼ CAA1 þ CAA2; CAA1 ¼
E1

2D1l
3
1

; CAA2 ¼
R1E1

2R2D2l
3
2

CAB ¼ CAB1 þ CAB2; CAB1 ¼
�E1t1

2D1l
2
1

; CAB2 ¼
R1E1t1

2R2D2l
2
2

CBB ¼ CBB1 þ CBB2; CBB1 ¼
E1t2

1

D1l1

; CBB2 ¼
R1E1t2

1

R2D2l2

The stresses in the left cylinder at the junction are given by

s1 ¼
N1

t1

s2 ¼
DRAE1

RA

þ n1s1

s01 ¼
�6M1

t2
1

s02 ¼ n1s
0
1

Note: The use of joint load correction terms LTAC and LTBC depends upon the accuracy desired and the relative values of the thickness and the radii. Read Sec. 13.3 carefully. For thin-walled shells,

R=t > 10, they can be neglected.
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Loading and case no. Load terms Selected values

1a. Internal* pressure q

Note: There is no axial load on

the left cylinder. A small axial

load on the right cylinder

balances any axial pressure on

the joint. For an enclosed

pressure vessel superpose an

axial load P ¼ qpb2
1 using

case 1b.

LTA1 ¼
b1R1

t2
1

LTA2 ¼
�b2R2E1

E2t1t2

LTAC ¼
E1ðb

2
1 � b2

2Þ

8t1

a2 � b1

R2D2l
2
2

�
4n2

E2t2

 !

LTB1 ¼ 0; LTB2 ¼ 0

LTBC ¼ E1ðb
2
1 � b2

2Þ
a2 � b1

4R2D2l2

At the junction of the two cylinders,

V1 ¼ qt1KV1; M1 ¼ qt2
1KM1; N1 ¼ 0

DRA ¼
qt1

E1

ðLTA1 � KV1CAA1 � KM1CAB1Þ

cA ¼
q

E1

ðKV1CAB1 þ KM1CBB1Þ

For internal pressure, b1 ¼ b2 (smooth internal wall), E1 ¼ E2, n1 ¼ n2 ¼ 0:3, and for R=t > 5.

DRA ¼
qR2

1

E1t1

KDRA; cA ¼
qR1

E1t1

KcA; s2 ¼
qR1

t1

Ks2

* For external pressure, substitute �q for q, a1 for b1, b2 for a2, and a2 for b2 in the load terms.

R1=t1

t2

t1 10 15 20 30 50 100

1.1 0.0542 0.0688 0.0808 0.1007 0.1318 0.1884

1.2 0.1066 0.1353 0.1589 0.1981 0.2593 0.3705

KV1 1.5 0.2574 0.3269 0.3843 0.4791 0.6273 0.8966

2.0 0.4945 0.6286 0.7392 0.9220 1.2076 1.7264

3.0 1.1351 1.3356 1.6667 2.1840 3.1231

1.1 0.0065 0.0101 0.0137 0.0208 0.0352 0.0711

1.2 0.0246 0.0382 0.0518 0.0790 0.1334 0.2695

KM1 1.5 0.1295 0.2012 0.2730 0.4166 0.7038 1.4221

2.0 0.3891 0.6050 0.8211 1.2535 2.1186 4.2815

3.0 1.4312 1.9436 2.9691 5.0207 10.1505

1.1 0.9080 0.9232 0.9308 0.9383 0.9444 0.9489

1.2 0.8715 0.8853 0.8922 0.8991 0.9046 0.9087

KDRA 1.5 0.7835 0.7940 0.7992 0.8043 0.8084 0.8115

2.0 0.6765 0.6827 0.6857 0.6887 0.6910 0.6927

3.0 0.5285 0.5283 0.5281 0.5278 0.5275

1.1 �0.1618 �0.2053 �0.2412 �0.3006 �0.3934 �0.5620

1.2 �0.2862 �0.3633 �0.4269 �0.5321 �0.6965 �0.9952

KcA 1.5 �0.5028 �0.6390 �0.7515 �0.9372 �1.2275 �1.7547

2.0 �0.5889 �0.7501 �0.8831 �1.1026 �1.4454 �2.0676

3.0 �0.6118 �0.7216 �0.9026 �1.1850 �1.6971

1.1 0.9080 0.9232 0.9308 0.9383 0.9444 0.9489

1.2 0.8715 0.8853 0.8922 0.8991 0.9046 0.9087

Ks2 1.5 0.7835 0.7940 0.7992 0.8043 0.8084 0.8115

2.0 0.6765 0.6827 0.6857 0.6887 0.6910 0.6927

3.0 0.5285 0.5283 0.5281 0.5278 0.5275

S
E
C
.
1
3
.8
]

S
h
e
lls

o
f
R
e
v
o
lu
tio

n
;
P
re
s
s
u
re

V
e
s
s
e
ls
;
P
ip
e
s

6
3
9

TABLE 13.4 Formulas for discontinuity stresses and deformations at the junctions of shells and plates (Continued )



TABLE 13.4 Formulas for discontinuity stresses and deformations at the junctions of shells and plates (Continued )

Loading and case no. Load terms Selected values

1b. Axial load P
LTA1 ¼

�n1R2
1

2t2
1

; LTAC ¼ 0

LTA2 ¼
E1R2

1

2t1

n2

E2t2

�
R2 � R1

2R2D2l
2
2

 !

LTB1 ¼ 0; LTBC ¼ 0

LTB2 ¼
�ðR2 � R1ÞR

2
1E1

2R2D2l2

At the junction of the two cylinders,

V1 ¼
Pt1KV1

pR2
1

; M1 ¼
Pt2

1KM1

pR2
1

; N1 ¼
P

2pR1

DRA ¼
Pt1

E1pR2
1

ðLTA1 � KV1CAA1 � KM1CAB1Þ

cA ¼
P

E1pR2
1

ðKV1CAB1 þ KM1CBB1Þ

For axial tension, b1 ¼ b2 (smooth internal wall), E1 ¼ E2, n1 ¼ n2 ¼ 0:3, and for R=t > 5.

DRA ¼
Pn1

2pE1t1

KDRA; cA ¼
Pn1

2pE1t2
1

KcA; s2 ¼
P

2pR1t1

Ks2

R1=t1

t2

t1 10 15 20 30 50 100

1.1 �0.0583 �0.0715 �0.0825 �0.1011 �0.1306 �0.1847

1.2 �0.1129 �0.1383 �0.1598 �0.1958 �0.2529 �0.3577

KV1 1.5 �0.2517 �0.3089 �0.3571 �0.4378 �0.5657 �0.8005

2.0 �0.4084 �0.5022 �0.5811 �0.7132 �0.9222 �1.3058

3.0 �0.6732 �0.7800 �0.9586 �1.2411 �1.7589

1.1 �0.1170 �0.1756 �0.2341 �0.3513 �0.5856 �1.1714

1.2 �0.2194 �0.3294 �0.4394 �0.6594 �1.0995 �2.1995

KM1 1.5 �0.4564 �0.6863 �0.9163 �1.3761 �2.2957 �4.5949

2.0 �0.6892 �1.0389 �1.3887 �2.0883 �3.4876 �6.9860

3.0 �1.2874 �1.7242 �2.5981 �4.3462 �8.7167

1.1 �0.9416 �0.9416 �0.9416 �0.9416 �0.9416 �0.9416

1.2 �0.8717 �0.8716 �0.8716 �0.8716 �0.8715 �0.8715

KDRA 1.5 �0.6414 �0.6410 �0.6408 �0.6406 �0.6405 �0.6404

2.0 �0.3047 �0.3033 �0.3027 �0.3020 �0.3015 �0.3011

3.0 0.0883 0.0900 0.0918 0.0931 0.0942

1.1 �0.0810 �0.0662 �0.0573 �0.0468 �0.0363 �0.0257

1.2 �0.1443 �0.1180 �0.1022 �0.0835 �0.0647 �0.0458

KcA 1.5 �0.2630 �0.2154 �0.1869 �0.1528 �0.1185 �0.0839

2.0 �0.3345 �0.2752 �0.2392 �0.1961 �0.1524 �0.1080

3.0 �0.2663 �0.2326 �0.1915 �0.1494 �0.1062

1.1 0.0175 0.0175 0.0175 0.0175 0.0175 0.0175

1.2 0.0385 0.0385 0.0385 0.0385 0.0385 0.0385

Ks2 1.5 0.1076 0.1077 0.1077 0.1078 0.1079 0.1079

2.0 0.2086 0.2090 0.2092 0.2094 0.2096 0.2097

3.0 0.3265 0.3270 0.3275 0.3279 0.3283
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1c. Hydrostatic internal* pressure

q1 at the junction for x1 > 3=l1y

Note: There is no axial load on

the left cylinder. A small axial

load on the right cylinder

balances any axial pressure on

the joint.

LTA1 ¼
b1R1

t2
1

LTA2 ¼
�b2R2E1

E2t1t2

For LTAC use the expression from case 1a

LTB1 ¼
�b1R1

x1t1

; LTB2 ¼
b2R2E1

x1E2t2

For LTBC use the expression from case 1a

At the junction of the two cylinders,

V1 ¼ q1t1KV1; M1 ¼ q1t2
1KM1; N1 ¼ 0

DRA ¼
q1t1

E1

ðLTA1 � KV1CAA1 � KM1CAB1Þ

cA ¼
q1

E1

ð�LTB1 þ KV1CAB1 þ KM1CBB1Þ

For internal pressure, b1 ¼ b2 (smooth internal wall), E1 ¼ E2, n1 ¼ n2 ¼ 0:3, and for R=t > 5.

DRA ¼
q1R2

1

E1t1

KDRA; cA ¼
q1R1

E1t1

KcA; s2 ¼
q1R1

t1

Ks2

* For external pressure, substitute �q for q, a1 for b1, b2 for a2, and a2 for b2 in the load terms.

y If pressure increases right to left, substitute �x1 for x1 and verify that jx1j > 3=l2.

R1=t1

10 20

x1=R1 x1=R1

t2

t1
1 2 4 1 2 4

1.1 0.0536 0.0539 0.0541 0.0802 0.0805 0.0807

1.2 0.1041 0.1054 0.1060 0.1564 0.1577 0.1583

KV1 1.5 0.2445 0.2509 0.2542 0.3707 0.3775 0.3809

2.0 0.4556 0.4751 0.4848 0.6982 0.7187 0.7290

3.0 1.2385 1.2870 1.3113

1.1 �0.0107 �0.0021 0.0022 �0.0119 0.0009 0.0073

1.2 �0.0103 0.0071 0.0158 �0.0002 0.0258 0.0388

KM1 1.5 0.0406 0.0850 0.1073 0.1407 0.2068 0.2399

2.0 0.2152 0.3022 0.3456 0.5625 0.6918 0.7565

3.0 1.4882 1.7159 1.8298

1.1 0.9029 0.9055 0.9068 0.9269 0.9289 0.9298

1.2 0.8619 0.8667 0.8691 0.8851 0.8886 0.8904

KDRA 1.5 0.7647 0.7741 0.7788 0.7852 0.7922 0.7957

2.0 0.6507 0.6636 0.6701 0.6666 0.6761 0.6809

3.0 0.5090 0.5187 0.5235

1.1 0.7442 0.2912 0.0647 0.6875 0.2231 �0.0091

1.2 0.5781 0.1460 �0.0701 0.4580 0.0155 �0.2057

KcA 1.5 0.2511 �0.1259 �0.3143 0.0173 �0.3671 �0.5593

2.0 0.0226 �0.2831 �0.4360 �0.2637 �0.5734 �0.7282

3.0 �0.2905 �0.5060 �0.6138

1.1 0.9029 0.9055 0.9068 0.9269 0.9289 0.9298

1.2 0.8619 0.8667 0.8691 0.8851 0.8886 0.8904

Ks2 1.5 0.7647 0.7741 0.7788 0.7852 0.7922 0.7957

2.0 0.6507 0.6636 0.6701 0.6666 0.6761 0.6809

3.0 0.5090 0.5187 0.5235
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TABLE 13.4 Formulas for discontinuity stresses and deformations at the junctions of shells and plates (Continued )

Loading and case no. Load terms Selected values

1d. Rotation around the axis of

symmetry at o rad=s

Note: d ¼ mass=unit volume

LTA1 ¼
R2

1

t2
1

LTA2 ¼
�d2R3

2E1

d1R1E2t2
1

LTAC ¼ 0

LTB1 ¼ 0; LTB2 ¼ 0

LTBC ¼ 0

At the junction of the two cylinders,

V1 ¼ d1o
2R1t2

1KV1; M1 ¼ d1o
2R1t3

1KM1

N1 ¼ 0

DRA ¼
d1o

2R1t2
1

E1

ðLTA1 � KV1CAA1 � KM1CAB1Þ

cA ¼
d1o

2R1t1

E1

ðKV1CAB1 þ KM1CBB1Þ

For b1 ¼ b2 (smooth internal wall), d1 ¼ d2, E1 ¼ E2, n1 ¼ n2 ¼ 0:3, and for R=t > 5.

DRA ¼
d1o

2R3
1

E1

KDRA; cA ¼
d1o

2R2
1

E1

KcA; s2 ¼ d1o
2R2

1Ks2

R1=t1

t2

t1 10 15 20 30 50 100

1.1 �0.0100 �0.0081 �0.0070 �0.0057 �0.0044 �0.0031

1.2 �0.0215 �0.0175 �0.0151 �0.0123 �0.0095 �0.0067

KV1 1.5 �0.0658 �0.0534 �0.0461 �0.0375 �0.0289 �0.0204

2.0 �0.1727 �0.1391 �0.1196 �0.0970 �0.0747 �0.0526

3.0 �0.3893 �0.3322 �0.2673 �0.2046 �0.1434

1.1 �0.0012 �0.0012 �0.0012 �0.0012 �0.0012 �0.0012

1.2 �0.0049 �0.0049 �0.0049 �0.0049 �0.0049 �0.0049

KM1 1.5 �0.0331 �0.0328 �0.0327 �0.0326 �0.0325 �0.0324

2.0 �0.1359 �0.1339 �0.1328 �0.1318 �0.1310 �0.1304

3.0 �0.4908 �0.4834 �0.4761 �0.4703 �0.4660

1.1 1.0077 1.0051 1.0038 1.0026 1.0015 1.0008

1.2 1.0158 1.0105 1.0079 1.0052 1.0031 1.0016

KDRA 1.5 1.0426 1.0282 1.0211 1.0140 1.0084 1.0042

2.0 1.0955 1.0628 1.0468 1.0310 1.0185 1.0092

3.0 1.1503 1.1111 1.0730 1.0433 1.0215

1.1 0.0297 0.0242 0.0210 0.0171 0.0133 0.0094

1.2 0.0577 0.0470 0.0406 0.0331 0.0256 0.0181

KcA 1.5 0.1285 0.1043 0.0900 0.0733 0.0566 0.0400

2.0 0.2057 0.1659 0.1429 0.1159 0.0894 0.0630

3.0 0.2098 0.1795 0.1447 0.1110 0.0779

1.1 1.0077 1.0051 1.0038 1.0026 1.0015 1.0008

1.2 1.0158 1.0105 1.0079 1.0052 1.0031 1.0016

Ks2 1.5 1.0426 1.0282 1.0211 1.0140 1.0084 1.0042

2.0 1.0955 1.0628 1.0468 1.0310 1.0185 1.0092

3.0 1.1503 1.1111 1.0730 1.0433 1.0215
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2. Cylindrical shell connected to a conical shell.* To ensure accuracy, evaluate kA and the value of k in the cone at the position where m ¼ 4. The absolute values of k at both positions should be greater

than 5. R=ðt2 cos a2Þ should also be greater than 5 at both of these positions. E1 and E2 are the moduli of elasticity and n1 and

n2 the Poisson’s ratios for the cylinder and cone, respectively. See Table 13.2 for formulas for D1 and l1. b1 ¼ R1 � t1=2 and

a1 ¼ R1 þ t1=2. b2 ¼ R2 � ðt2 cos a2Þ=2 and a2 ¼ R2 þ ðt2 cos a2Þ=2, where R2 is the mid-thickness radius of the cone at the

junction. RA ¼ R1. See Table 13.3, case 4, for formulas for kA, b, m, C1, and the F functions.

KV1 ¼
LTACBB � LTBCAB

CAACBB � C2
AB

; KM1 ¼
LTBCAA � LTACAB

CAACBB � C2
AB

LTA ¼ LTA1 þ LTA2 þ LTAC

LTB ¼ LTB1 þ LTB2 þ LTBC

�
See cases 2a 2d for

these load terms

CAA ¼ CAA1 þ CAA2; CAA1 ¼
E1

2D1l
3
1

; CAA2 ¼
R1E1kA sin a2

E2t2

ffiffiffi
2

p
C1

F4A �
4n2

2

k2
A

F2A

� �

CAB ¼ CAB1 þ CAB2; CAB1 ¼
�E1t1

2D1l
2
1

; CAB2 ¼
R1E1t1bF7A

E2t2
2C1

CBB ¼ CBB1 þ CBB2; CBB1 ¼
E1t2

1

D1l1

; CBB2 ¼
R1E1t2

12
ffiffiffi
2

p
b2F2A

E2t3
2kAC1 sin a2

The stresses in the left cylinder at the junction are given by

s1 ¼
N1

t1

s2 ¼
DRAE1

RA

þ n1s1

s01 ¼
�6M1

t2
1

s02 ¼ n1s
0
1

Note: The use of joint load correction terms LTAC and LTBC depends upon the accuracy desired and the relative values of the thicknesses and the radii and the cone angle a. Read Sec. 13.4 carefully.

For thin-walled shells, R=t > 10 at the junction, they can be neglected.

* If the conical shell increases in radius away from the junction, substitute �a for a in all the formulas above and in those used from case 4, Table 13.3.
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TABLE 13.4 Formulas for discontinuity stresses and deformations at the junctions of shells and plates (Continued )

Loading and case no. Load terms Selected values

2a. Internal* pressure q

Note: There is no axial load on

the cylinder. An axial load on the

right end of the cone balances

any axial component of the

pressure on the cone and the

joint. For an enclosed pressure

vessel superpose an axial load

P ¼ qpb2
1 using case 2b.

LTA1 ¼
b1R1

t2
1

LTA2 ¼
�b2E1R2

E2t1t2 cos a2

LTAC ¼
t2 sin a2

2t1

CAA2 þ
t2
2 � t2

1

8t2
1

CAB2

þ
E1n2R1ðt1 � t2 cos a2Þ

2E2t1t2 cos a2

y

LTB1 ¼ 0

LTB2 ¼
�2E1b2 tan a2

E2t2 cos a2

LTBC ¼
t2 sin a2

2t1

CAB2 þ
t2
2 � t2

1

8t2
1

CBB2

þ
E1 sin a2

E2t2 cos2 a2

ðt1 � t2 cos a2Þ y

At the junction of the cylinder and cone

V1 ¼ qt1KV1; M1 ¼ qt2
1KM1; N1 ¼ 0

DRA ¼
qt1

E1

ðLTA1 � KV 1CAA1 � KM1CAB1Þ

cA ¼
q

E1

ðKV1CAB1 þ KM1CBB1Þ

For internal pressure, R1 ¼ R2, E1 ¼ E2, n1 ¼ n2 ¼ 0:3, and for R=t > 5. (Note: No correction terms are used)

DRA ¼
qR2

1

E1t1

KDRA; c1 ¼
qR1

E1t1

KcA; s2 ¼
qR1

t1

Ks2

* For external pressure, substitute �q for q, a1 for b1, and a2 for b2 in the load terms.

y If a2 approaches 0, use the correction term from case 1a.

R1=t1

20 40

a2 a2

t2

t1 �30 30 45 �30 30 45

0.8 �0.3602 �0.3270 �0.5983 �0.5027 �0.4690 �0.8578

1.0 �0.1377 �0.1419 �0.4023 �0.1954 �0.1994 �0.5633

KV1 1.2 0.0561 0.0212 �0.2377 0.0725 0.0374 �0.3165

1.5 0.3205 0.2531 �0.0083 0.4399 0.3715 0.0225

2.0 0.7208 0.6267 0.3660 1.0004 0.9040 0.5628

0.8 0.4218 �0.1915 �0.4167 0.6693 �0.2053 �0.4749

1.0 0.3306 �0.3332 �0.6782 0.4730 �0.4756 �0.9638

KM1 1.2 0.3562 �0.3330 �0.7724 0.5175 �0.4696 �1.1333

1.5 0.5482 �0.1484 �0.6841 0.8999 �0.1011 �0.9487

2.0 1.0724 0.4091 �0.1954 1.9581 0.9988 0.0084

0.8 1.2517 1.1314 1.2501 1.2471 1.1612 1.2969

1.0 1.1088 1.0015 1.0942 1.1060 1.0293 1.1368

KDRA 1.2 1.0016 0.9078 0.9840 1.0008 0.9335 1.0225

1.5 0.8813 0.8050 0.8667 0.8830 0.8281 0.9000

2.0 0.7378 0.6823 0.7323 0.7426 0.7026 0.7594

0.8 1.9915 0.7170 1.1857 2.5602 1.2739 2.1967

1.0 1.0831 �0.1641 0.0411 1.2812 0.0201 0.5668

KcA 1.2 0.4913 �0.7028 �0.6817 0.4554 �0.7544 �0.4765

1.5 �0.0178 �1.1184 �1.2720 �0.2449 �1.3635 �1.3488

2.0 �0.3449 �1.2939 �1.5808 �0.6758 �1.6457 �1.8483

0.8 1.2517 1.1314 1.2501 1.2471 1.1612 1.2969

1.0 1.1088 1.0015 1.0942 1.1060 1.0293 1.1368

Ks2 1.2 1.0016 0.9078 0.9840 1.0008 0.9335 1.0225

1.5 0.8813 0.8050 0.8667 0.8830 0.8281 0.9000

2.0 0.7378 0.6823 0.7323 0.7426 0.7026 0.7594
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2b. Axial load P
LTA1 ¼

�n1R2
1

2t2
1

LTA2 ¼
n2R2

1E1

2E2t1t2 cos a2

þ
R1CAA2

2t1

tan a2

LTAC ¼ 0

LTB1 ¼ 0

LTB2 ¼
E1R2

1 tan a2

2E2R2t2 cos a2

þ
R1CAB2

2t1

tan a2

LTBC ¼ 0

At the junction of the cylinder and cone,

V1 ¼
Pt1KV1

pR2
1

; M1 ¼
Pt2

1KM1

pR2
1

; N1 ¼
P

2pR1

DRA ¼
Pt1

E1pR2
1

ðLTA1 � KV1CAA1 � KM1CAB1Þ

cA ¼
P

E1pR2
1

ðKV1CAB1 þ KM1CBB1Þ

For axial tension, R1 ¼ R2, E1 ¼ E2, n1 ¼ n2 ¼ 0:3, and for R=t > 5.

DRA ¼
Pn1

2pE1t1

KDRA; cA ¼
Pn1

2pE1t2
1

KcA; s2 ¼
P

2pR1t1

Ks2

R1=t1

20 40

a2 a2

t2

t1
�30 30 45 �30 30 45

0.8 �2.9323 2.9605 4.8442 �5.8775 5.9175 9.7022

1.0 �2.7990 2.7667 4.5259 �5.5886 5.5429 9.0767

KV1 1.2 �2.6963 2.6095 4.2750 �5.3637 5.2411 8.5862

1.5 �2.5522 2.3879 3.9263 �5.0493 4.8171 7.9088

2.0 �2.3074 2.0205 3.3492 �4.5212 4.1161 6.7938

0.8 �4.5283 4.5208 7.4287 �12.7003 12.6851 20.8134

1.0 �4.9208 4.9206 8.0936 �13.8055 13.8053 22.6838

KM1 1.2 �5.0832 5.0531 8.3299 �14.2489 14.1890 23.3674

1.5 �5.0660 4.9455 8.1850 �14.1627 13.9229 23.0120

2.0 �4.7100 4.3860 7.3095 �13.0797 12.4341 20.6655

0.8 5.2495 �7.3660 �11.3820 7.9325 �10.0493 �15.8287

1.0 4.3064 �6.1827 �9.4297 6.5410 �8.4173 �13.1035

KDRA 1.2 3.7337 �5.4346 �8.2078 5.6872 �7.3879 �11.3978

1.5 3.2008 �4.7036 �7.0309 4.8827 �6.3855 �9.7578

2.0 2.6544 �3.9120 �5.7838 4.0481 �5.3060 �8.0287

0.8 0.3626 �0.3985 �0.6321 0.3938 �0.4193 �0.6840

1.0 �0.0327 0.0683 0.1395 �0.0127 0.0378 0.0792

KcA 1.2 �0.2488 0.3252 0.5655 �0.2359 0.2900 0.5024

1.5 �0.3965 0.5013 0.8580 �0.3897 0.4639 0.7959

2.0 �0.4408 0.5517 0.9392 �0.4381 0.5167 0.8847

0.8 1.8748 �1.9098 �3.1146 2.6797 �2.7148 �4.4486

1.0 1.5919 �1.5548 �2.5289 2.2623 �2.2252 �3.6310

Ks2 1.2 1.4201 �1.3304 �2.1623 2.0062 �1.9164 �3.1193

1.5 1.2602 �1.1111 �1.8093 1.7648 �1.6156 �2.6273

2.0 1.0963 �0.8736 �1.4351 1.5144 �1.2918 �2.1086
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TABLE 13.4 Formulas for discontinuity stresses and deformations at the junctions of shells and plates (Continued )

Loading and case no. Load terms Selected values

2c. Hydrostatic internal* pressure

q1 at the junction for

x1 > 3=l1y. If x1 < 3=l1 the

discontinuity in pressure

gradient introduces small

deformations at the junction.

Note: There is no axial load on

the cylinder. An axial load on the

right end of the cone balances

any axial component of pressure

in the cone and the joint.

LTA1 ¼
b1R1

t2
1

LTA2 ¼
�b2R2E1

E2t1t2 cos a2

For LTAC use the expression from case 2a

LTB1 ¼
�b1R1

x1t1

LTB2 ¼
E1b2

E2t2 cos a2

R2

x1

� 2 tan a2

� �

For LTBC use the expression from case 2a

At the junction of the cylinder and cone

V1 ¼ q1t1KV 1; M1 ¼ q1t2
1KM1; N1 ¼ 0

DRA ¼
q1t1

E1

ðLTA1 � KV1CAA1 � KM1CAB1Þ

cA ¼
q1

E1

ð�LTB1 þ KV1CAB1 þ KM1CBB1Þ

For internal pressure, R1 ¼ R2, x1 ¼ R1, E1 ¼ E2, n1 ¼ n2 ¼ 0:3, and for R=t > 5. (Note: No correction terms

are used)

DRA ¼
q1R2

1

E1t1

KDRA; cA ¼
q1R1

E1t1

KcA; s2 ¼
q1R1

t1

Ks2

R1=t1

20 40

a2 a2

t2

t1 7 30 30 45 7 30 30 45

0.8 �0.3660 �0.3329 �0.6082 �0.5085 �0.4748 �0.8678

1.0 �0.1377 �0.1418 �0.4020 �0.1954 �0.1994 �0.5631

KV1 1.2 0.0555 0.0206 �0.2346 0.0719 0.0368 �0.3134

1.5 0.3107 0.2429 �0.0109 0.4300 0.3614 0.0199

2.0 0.6843 0.5890 0.3392 0.9639 0.8666 0.5363

0.8 0.5047 �0.1081 �0.2814 0.7866 �0.0876 �0.2840

1.0 0.3698 �0.2938 �0.5779 0.5285 �0.4200 �0.8224

KM1 1.2 0.3442 �0.3451 �0.7175 0.5005 �0.4866 �1.0559

1.5 0.4542 �0.2430 �0.7070 0.7670 �0.2347 �0.9811

2.0 0.8455 0.1802 �0.3526 1.6371 0.6759 �0.2128

0.8 1.2688 1.1485 1.2781 1.2592 1.1733 1.3168

1.0 1.1153 1.0080 1.1106 1.1106 1.0338 1.1485

KDRA 1.2 1.0000 0.9062 0.9913 0.9996 0.9323 1.0277

1.5 0.8715 0.7952 0.8645 0.8761 0.8212 0.8983

2.0 0.7213 0.6662 0.7218 0.7310 0.6911 0.7519

0.8 3.1432 1.8696 2.4504 3.7245 2.4390 3.4736

1.0 2.1326 0.8856 1.2057 2.3432 1.0822 1.7437

KcA 1.2 1.4455 0.2515 0.3872 1.4221 0.2123 0.6049

1.5 0.8113 �0.2892 �0.3320 0.5967 �0.5218 �0.3962

2.0 0.3197 �0.6291 �0.8157 0.0014 �0.9683 �1.0706

0.8 1.2688 1.1485 1.2781 1.2592 1.1733 1.3168

1.0 1.1153 1.0080 1.1106 1.1106 1.0338 1.1485

Ks2 1.2 1.0000 0.9062 0.9913 0.9996 0.9323 1.0277

1.5 0.8715 0.7952 0.8645 0.8761 0.8212 0.8983

2.0 0.7213 0.6662 0.7218 0.7310 0.6911 0.7519

* For external pressure, substitute �q1 for q1, a1 for b1, and a2 for b2 in the load

terms.

y If pressure increases right to left, substitute �x1 for x1 and verify that jx1j is large

enough to extend into the cone as far as the position where jmj ¼ 4.
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2d. Rotation around the axis of

symmetry at o rad=s

Note: d ¼ mass=unit volume

LTA1 ¼
R2

1

t2
1

LTA2 ¼
�d2R3

2E1

d1t2
1E2R1

LTAC ¼ 0

LTB1 ¼ 0; LTB2 ¼
�d2R2

2E1ð3 þ n2Þ tan a2

d1E2t1R1

LTBC ¼ 0

For R1 ¼ R2, E1 ¼ E2, n1 ¼ n2 ¼ 0:3, d1 ¼ d2; and for R=t > 5.

DRA ¼
d1o

2R3
1

E1

KDRA; cA ¼
d1o

2R2
1

E1

KcA; s2 ¼ d1o
2R2

1Ks2

At the junction of the cylinder and cone,

V1 ¼ d1o
2R1t2

1KV1; M1 ¼ d1o
2R1t3

1KM1

N1 ¼ 0

DRA ¼
d1o

2R1t2
1

E1

ðLTA1 � KV1CAA1 � KM1CAB1Þ

cA ¼
d1o

2R1t1

E1

ðKV1CAB1 þ KM1CBB1Þ

R1=t1

20 40

a2 a2

t2

t1 �30 30 45 �30 30 45

0.8 �0.0248 0.0250 0.0425 �0.0249 0.0251 0.0428

1.0 �0.0000 �0.0006 �0.0022 �0.0001 �0.0004 �0.0013

KV1 1.2 0.0308 �0.0325 �0.0581 0.0308 �0.0320 �0.0565

1.5 0.0816 �0.0849 �0.1507 0.0817 �0.0840 �0.1480

2.0 0.1645 �0.1701 �0.3023 0.1649 �0.1687 �0.2979

0.8 0.3565 �0.3583 �0.5815 0.5043 �0.5061 �0.8207

1.0 0.4828 �0.4851 �0.7988 0.6829 �0.6852 �1.1269

KM1 1.2 0.6056 �0.6089 �1.0149 0.8566 �0.8599 �1.4309

1.5 0.7777 �0.7831 �1.3237 1.1000 �1.1053 �1.8646

2.0 1.0229 �1.0320 �1.7708 1.4469 �1.4559 �2.4920

0.8 1.0731 0.9264 0.8795 1.0518 0.9480 0.9148

1.0 1.0798 0.9202 0.8693 1.0565 0.9435 0.9074

KDRA 1.2 1.0824 0.9181 0.8657 1.0582 0.9420 0.9047

1.5 1.0816 0.9194 0.8679 1.0576 0.9428 0.9061

2.0 1.0744 0.9273 0.8812 1.0525 0.9483 0.9152

0.8 0.7590 �0.7633 �1.2450 0.7597 �0.7628 �1.2438

1.0 0.9173 �0.9194 �1.5101 0.9176 �0.9192 �1.5094

KcA 1.2 1.0488 �1.0494 �1.7360 1.0488 �1.0493 �1.7354

1.5 1.2078 �1.2071 �2.0164 1.2074 �0.2070 �2.0156

2.0 1.3995 �1.3984 �2.3649 1.3988 �1.3981 �2.3631

0.8 1.0731 0.9264 0.8795 1.0518 0.9480 0.9148

1.0 1.0798 0.9202 0.8693 1.0565 0.9435 0.9074

Ks2 1.2 1.0824 0.9181 0.8657 1.0582 0.9420 0.9047

1.5 1.0816 0.9194 0.8679 1.0576 0.9428 0.9061

2.0 1.0744 0.9273 0.8812 1.0525 0.9483 0.9152
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TABLE 13.4 Formulas for discontinuity stresses and deformations at the junctions of shells and plates (Continued )

3. Cylindrical shell connected to a spherical shell. To ensure accuracy R=t > 5 and the junction angle for the spherical shell must lie within the range 3=b1 < f2 < ðp� 3=b2Þ. The spherical shell

must also extend with no interruptions such as a second junction or a cutout, such that y2 > 3=b2. See the discussion on

page 565. E1 and E2 are the moduli of elasticity and n1 and n2 the Poisson’s ratios for the cylinder and sphere, respectively.

See Table 13.2 for formulas for D1 and l1. b1 ¼ R1 � t1=2 and a1 ¼ R1 þ t1=2. See Table 13.3, case 1, for formulas for K12,*

K22,* and b2 for the spherical shell. b2 ¼ R2 � t2=2 and a2 ¼ R2 þ t2=2. RA ¼ R1 and normally R2 sinf2 ¼ R1 but if f2 ¼ 90�

or is close to 90� the midthickness radii at the junction may not be equal. Under this condition different correction terms

will be used if necessary.

KV1 ¼
LTACBB � LTBCAB

CAACBB � C2
AB

; KM1 ¼
LTBCAA � LTACAB

CAACBB � C2
AB

;
LTA ¼ LTA1 þ LTA2 þ LTAC

LTB ¼ LTB1 þ LTB2 þ LTBC

�
See cases 3a 3d for

these load terms

CAA ¼ CAA1 þ CAA2; CAA1 ¼
E1

2D1l
3
1

; CAA2 ¼
RAE1b2 sinf2

E2t2

1

K12

þ K22

� �

CAB ¼ CAB1 þ CAB2; CAB1 ¼
�E1t1

2D1l
2
1

; CAB2 ¼
2E1RAt1b

2
2

E2R2t2K12

CBB ¼ CBB1 þ CBB2; CBB1 ¼
E1t2

1

D1l1

; CBB2 ¼
4E1RAt2

1b
3
2

R2
2E2t2K12 sinf2

The stresses in the cylinder at the junction are given by

s1 ¼
N1

t1

s2 ¼
DRAE1

RA

þ n1s1

s01 ¼
�6M1

t2
1

s02 ¼ n1s
0
1

Note: The use of joint load correction terms LTAC and LTBC depends upon the accuracy desired and the relative values of the thicknesses and the radii. Read Sec. 13.4 carefully. For thin-walled shells,

R=t > 10, they can be neglected.

* The second subscript is added to refer to the right-hand shell. Evaluate K at the junction where o ¼ 0.
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Loading and case no. Load terms Selected values

3a. Internal* pressure q

Note: There is no axial load on

the cylinder. An axial load on the

right end of the sphere balances

any axial component of the

pressure on the sphere and the

joint. For an enclosed pressure

vessel superpose an axial load

P ¼ qpb2
1 using case 3b.

LTA1 ¼
b1R1

t2
1

LTA2 ¼
�b2

2E1 sinf2

E2t1t2

LTAC ¼
t2 cosf2

2t1

CAA2 þ
t2
2 � t2

1

8t2
1

CAB2

þ
E1R1ð1 þ n2Þðt1 � t2 sinf2Þ

2E2t1t2 sinf2

y

LTB1 ¼ 0; LTB2 ¼ 0

LTBC ¼
t2 cosf2

2t1

CAB2 þ
t2
2 � t2

1

8t2
1

CBB2

þ
E1 cosf2ðt1 � t2 sinf2Þ

E2t2 sin
2 f2

y

For internal pressure, E1 ¼ E2, n1 ¼ n2 ¼ 0:3, R2 sinf2 ¼ R1, and for R=t > 5. (Note: No correction

terms are used)

DRA ¼
qR2

1

E1t1

KDRA; cA ¼
qR1

E1t1

KcA; s2 ¼
qR1

t1

Ks2

At the junction of the cylinder and sphere,

V1 ¼ qt1KV1; M1 ¼ qt2
1KM1; N1 ¼ 0

DRA ¼
qt1

E1

ðLTA1 � KV 1CAA1 � KM1CAB1Þ

cA ¼
q

E1

ðKV1CAB1 þ KM1CBB1Þ

* For external pressure, substitute �q for q, a1 for b1, b2 for a2, and a2 for b2 in the

load terms.

y If f2 ¼ 90� or is close to 90� the following correction terms should be used:

LTAC ¼
b2

1 � b2
2

4t2
1

a2 � b1

R1

CAB2 �
2E1t1ð1 þ n2Þ

E2t2

� �
; LTBC ¼

b2
1 � b2

2

4t2
1

a2 � b1

R1

CBB2

R1=t1

10 20

f2 f2

t2

t1
60 90 120 60 90 120

0.5 �0.5344 �0.3712 �0.5015 �0.7630 �0.5382 �0.7294

0.8 �0.2216 �0.1062 �0.2115 �0.3299 �0.1676 �0.3192

KV1 1.0 �0.0694 0.0292 �0.0668 �0.1190 0.0212 �0.1158

1.2 0.0633 0.1517 0.0614 0.0650 0.1917 0.0636

1.5 0.2472 0.3263 0.2410 0.3200 0.4344 0.3142

0.5 0.2811 0.2058 0.2591 0.5660 0.4219 0.5344

0.8 0.0560 0.0267 0.0483 0.1162 0.0597 0.1047

KM1 1.0 0.0011 0.0000 �0.0010 0.0019 0.0000 �0.0018

1.2 0.0130 0.0349 0.0148 0.0194 0.0624 0.0212

1.5 0.1172 0.1636 0.1225 0.2169 0.3081 0.2238

0.5 1.4774 1.3197 1.4433 1.5071 1.3541 1.4826

0.8 1.1487 1.0452 1.1379 1.1838 1.0812 1.1758

KDRA 1.0 1.0068 0.9263 1.0040 1.0437 0.9628 1.0413

1.2 0.9028 0.8382 0.9050 0.9408 0.8751 0.9420

1.5 0.7878 0.7388 0.7946 0.8269 0.7762 0.8313

0.5 2.5212 1.7793 2.3533 3.5965 2.5800 3.4255

0.8 0.8827 0.4228 0.8287 1.3109 0.6674 1.2536

KcA 1.0 0.2323 �0.0965 0.2180 0.3967 �0.0701 0.3792

1.2 �0.1743 �0.4076 �0.1631 �0.1780 �0.5151 �0.1698

1.5 �0.5021 �0.6387 �0.4671 �0.6453 �0.8504 �0.6132

0.5 1.4774 1.3197 1.4433 1.5071 1.3541 1.4826

0.8 1.1487 1.0452 1.1379 1.1838 1.0812 1.1758

Ks2 1.0 1.0068 0.9263 1.0040 1.0437 0.9628 1.0413

1.2 0.9028 0.8382 0.9050 0.9408 0.8751 0.9420

1.5 0.7878 0.7388 0.7946 0.8269 0.7762 0.8313
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TABLE 13.4 Formulas for discontinuity stresses and deformations at the junctions of shells and plates (Continued )

Loading and case no. Load terms Selected values

3b. Axial load P
LTA1 ¼

�n1R2
1

2t2
1

LTA2 ¼
R2

1E1ð1 þ n2Þ

2E2t1t2 sinf2

þ
R1CAA2

2t1 tanf2

LTAC ¼ 0 *

LTB1 ¼ 0

LTB2 ¼
R1CAB2

2t1 tanf2

LTBC ¼ 0 *

For axial tension, E1 ¼ E2, n1 ¼ n2 ¼ 0:3, R2 sinf2 ¼ R1, and for R=t > 5.

DRA ¼
Pn1

2pE1t1

KDRA; cA ¼
Pn1

2pE1t2
1

KcA; s2 ¼
P

2pR1t1

Ks2

At the junction of the cylinder and sphere,

V1 ¼
Pt1KV1

pR2
1

; M1 ¼
Pt2

1KM1

pR2
1

; N1 ¼
P

2pR1

DRA ¼
Pt1

E1pR2
1

ðLTA1 � KV1CAA1 � KM1CAB1Þ

cA ¼
P

E1pR2
1

ðKV1CAB1 þ KM1CBB1Þ

* If f2 ¼ 90� or is close to 90� the following correction terms should be used:

LTAC ¼
�R1ðR2 � R1ÞCAB2

2t2
1

; LTBC ¼
�R1ðR2 � R1ÞCBB2

2t2
1

R1=t1

10 20

f2 f2

t2

t1
60 90 120 60 90 120

0.5 2.2519 0.4487 �1.2194 4.1845 0.6346 �2.7251

0.8 1.8774 0.3483 �1.0921 3.5154 0.4925 �2.4052

KV1 1.0 1.7427 0.3075 �1.0535 3.2769 0.4349 �2.3023

1.2 1.6409 0.2781 �1.0186 3.0945 0.3933 �2.2145

1.5 1.5083 0.2435 �0.9620 2.8531 0.3444 �2.0804

0.5 0.8275 �0.2487 �1.3712 2.5815 �0.4975 �3.6682

0.8 1.4700 �0.0877 �1.6631 4.2478 �0.1754 �4.6337

KM1 1.0 1.7061 �0.0000 �1.7064 4.8334 �0.0000 �4.8338

1.2 1.8303 0.0640 �1.6870 5.1238 0.1280 �4.8367

1.5 1.8775 0.1221 �1.5987 5.1991 0.2442 �4.6411

0.5 �11.3815 �3.9800 2.5881 �14.1929 �3.9800 5.4031

0.8 �7.9365 �3.0808 1.2550 �9.7933 �3.0808 3.1133

KDRA 1.0 �6.6866 �2.6667 0.9502 �8.2341 �2.6667 2.4986

1.2 �5.8608 �2.3665 0.8041 �7.2151 �2.3665 2.1590

1.5 �5.0386 �2.0509 0.6916 �6.2071 �2.0509 1.8605

0.5 �3.4789 �1.4341 0.2306 �2.9746 �1.0140 0.6790

0.8 �1.5032 �0.9243 �0.5727 �1.1826 �0.6536 �0.2848

KcA 1.0 �0.7837 �0.6775 �0.7353 �0.5490 �0.4790 �0.5248

1.2 �0.3368 �0.4982 �0.7774 �0.1642 �0.3532 �0.6233

1.5 0.0397 �0.3178 �0.7440 0.1494 �0.2247 �0.6472

0.5 �3.1144 �0.8940 1.0764 �3.9579 �0.8940 1.9209

0.8 �2.0809 �0.6242 0.6765 �2.6380 �0.6242 1.2340

Ks2 1.0 �1.7060 �0.5000 0.5851 �2.1702 �0.5000 1.0496

1.2 �1.4582 �0.4099 0.5412 �1.8645 �0.4099 0.9477

1.5 �1.2116 �0.3153 0.5075 �1.5621 �0.3153 0.8581
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3c. Hydrostatic internal* pressure

q1 at the junction for x1 > 3=l1.y

If x1 < 3=l1 the discontinuity in

pressure gradient introduces

small deformations at the

junction.

Note: There is no axial load on

the cylinder. An axial load on the

right end of the sphere balances

the axial component of pressure

in the sphere and on the joint.

LTA1 ¼
b1R1

t2
1

LTA2 ¼
�b2

2E1 sinf2

E2t1t2

For LTAC use the expressions from case 3a

LTB1 ¼
�b1R1

x1t1

LTB2 ¼
E1b2R2 sinf2

E2t2x1

For LTBC use the expressions from case 3a

At the junction of the cylinder and sphere,

V1 ¼ q1t1KV 1; M1 ¼ q1t2
1KM1; N1 ¼ 0

DRA ¼
q1t1

E1

ðLTA1 � KV1CAA1 � KM1CAB1Þ

cA ¼
q1

E1

ð�LTB1 þ KV1CAB1 þ KM1CBB1Þ

For internal pressure, x1 ¼ R1, E1 ¼ E2, n1 ¼ n2 ¼ 0:3, R2 sinf2 ¼ R1, and for R=t > 5. (Note: No

correction terms are used)

DRA ¼
q1R2

1

E1t1

KDRA; cA ¼
q1R1

E1t1

KcA; s2 ¼
q1R1

t1

Ks2

* For external pressure, substitute �q for q1, a1 for b1, b2 for a2, and a2 for b2 in the load terms.

y If pressure increases right to left, substitute �x1 for x1 and verify that jx1 j is large enough to extend into the sphere as far as the position where y2 ¼ 3=b2.

R1=t1

10 20

f2 f2

t2

t1
60 90 120 60 90 120

0.5 �0.5636 �0.3928 �0.5284 �0.7918 �0.5598 �0.7566

0.8 �0.2279 �0.1095 �0.2169 �0.3360 �0.1710 �0.3247

KV 1 1.0 �0.0696 �0.0292 �0.0667 �0.1191 0.0212 �0.1157

1.2 0.0628 0.1490 0.0607 0.0644 0.1890 0.0629

1.5 0.2375 0.3119 0.2308 0.3101 0.4201 0.3041

0.5 0.3642 0.2737 0.3430 0.6837 0.5180 0.6528

0.8 0.1140 0.0615 0.1078 0.1986 0.1088 0.1885

KM1 1.0 0.0285 0.0000 0.0271 0.0408 0.0000 0.0378

1.2 0.0047 �0.0037 0.0062 0.0075 0.0078 0.0091

1.5 0.0515 0.0653 0.0552 0.1236 0.1691 0.1289

0.5 1.5286 1.3598 1.4929 1.5431 1.3824 1.5178

0.8 1.1730 1.0593 1.1620 1.2010 1.0913 1.1928

KDRA 1.0 1.0160 0.9263 1.0131 1.0502 0.9628 1.0477

1.2 0.9005 0.8276 0.9027 0.9392 0.8676 0.9403

1.5 0.7740 0.7180 0.7806 0.8171 0.7615 0.8215

0.5 3.7909 2.9832 3.6176 4.8904 3.8089 4.7155

0.8 2.0095 1.4769 1.9564 2.4627 1.7466 2.4061

KcA 1.0 1.2564 0.8535 1.2431 1.4459 0.9049 1.4291

1.2 0.7551 0.4477 0.7659 0.7764 0.3652 0.7842

1.5 0.3036 0.0949 0.3355 0.1849 �0.0919 0.2149

0.5 1.5286 1.3598 1.4929 1.5431 1.3824 1.5178

0.8 1.1730 1.0593 1.1620 1.2010 1.0913 1.1928

Ks2 1.0 1.0160 0.9263 1.0131 1.0502 0.9628 1.0477

1.2 0.9005 0.8276 0.9027 0.9392 0.8676 0.9403

1.5 0.7740 0.7180 0.7806 0.8171 0.7615 0.8215
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TABLE 13.4 Formulas for discontinuity stresses and deformations at the junctions of shells and plates (Continued )

Loading and case no. Load terms Selected values

3d. Rotation around the axis of

symmetry at o rad=s

Note: d ¼ mass=unit volume

LTA1 ¼
R2

1

t2
1

LTA2 ¼
�d2R3

2E1 sin
3 f2

d1R1E2t2
1

LTAC ¼ 0

LTB1 ¼ 0

LTB2 ¼
�d2R2

2E1ð3 þ n2Þ sinf2 cosf2

d1R1E2t1

LTBC ¼ 0

For E1 ¼ E2, n1 ¼ n2 ¼ 0:3, d1 ¼ d2, R2 sinf2 ¼ R1, and for R=t > 5.

DRA ¼
d1o

2R3
1

E1

KDRA; cA ¼
d1o

2R2
1

E1

KcA; s2 ¼ d1o
2R2

1Ks2

At the junction of the cylinder and sphere,

V1 ¼ d1o
2R1t2

1KV1; M1 ¼ d1o
2R1t3

1KM1

N1 ¼ 0

DRA ¼
d1o

2R1t2
1

E1

ðLTA1 � KV1CAA1 � KM1CAB1Þ

cA ¼
d1o

2R1t1

E1

ðKV1CAB1 þ KM1CBB1Þ

R1=t1

10 20

f2 f2

t2

t1
60 90 120 60 90 120

0.5 0.0425 0.0000 �0.0392 0.0420 0.0000 �0.0396

0.8 0.0270 0.0000 �0.0233 0.0264 0.0000 �0.0238

KV1 1.0 0.0020 0.0000 0.0018 0.0014 0.0000 0.0013

1.2 �0.0292 0.0000 0.0330 �0.0298 0.0000 0.0325

1.5 �0.0806 0.0000 0.0843 �0.0812 0.0000 0.0838

0.5 �0.1209 0.0000 0.1220 �0.1712 0.0000 0.1723

0.8 �0.2495 0.0000 0.2556 �0.3541 0.0000 0.3602

KM1 1.0 �0.3371 0.0000 0.3465 �0.4788 0.0000 0.4881

1.2 �0.4228 0.0000 0.4347 �0.6005 0.0000 0.6123

1.5 �0.5437 0.0000 0.5576 �0.7719 0.0000 0.7858

0.5 0.9255 1.0000 1.0722 0.9476 1.0000 1.0513

0.8 0.8956 1.0000 1.1034 0.9263 1.0000 1.0732

KDRA 1.0 0.8870 1.0000 1.1130 0.9201 1.0000 1.0799

1.2 0.8840 1.0000 1.1168 0.9179 1.0000 1.0825

1.5 0.8859 1.0000 1.1157 0.9191 1.0000 1.0817

0.5 �0.4653 0.0000 0.4573 �0.4639 0.0000 0.4583

0.8 �0.7594 0.0000 0.7636 �0.7600 0.0000 0.7629

KcA 1.0 �0.9122 0.0000 0.9248 �0.9140 0.0000 0.9229

1.2 �1.0394 0.0000 1.0585 �1.0422 0.0000 1.0557

1.5 �1.1943 0.0000 1.2195 �1.1980 0.0000 1.2158

0.5 0.9255 1.0000 1.0722 0.9476 1.0000 1.0513

0.8 0.8956 1.0000 1.1034 0.9263 1.0000 1.0732

Ks2 1.0 0.8870 1.0000 1.1130 0.9201 1.0000 1.0799

1.2 0.8840 1.0000 1.1168 0.9179 1.0000 1.0825

1.5 0.8859 1.0000 1.1157 0.9191 1.0000 1.0817
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4. Cylindrical shell connected to a circular plate. Expressions are accurate if R1=t1 > 5 and R1=t2 > 4. E1 and E2 are the moduli of elasticity and n1 and n2 the Poisson’s ratios for the cylinder and

plate, respectively. See Table 13.2 for formulas for D1 and l1. b1 ¼ R1 � t1=2 and a1 ¼ R1 þ t1=2. See Table 11.2 for the

formula for D2.

KP1 ¼ 1 þ
R2

1ð1 � n2Þ

a2
2ð1 þ n2Þ

; RA ¼ R1

KV1 ¼
LTACBB � LTBCAB

CAACBB � C2
AB

; KM1 ¼
LTBCAA � LTACAB

CAACBB � C2
AB

;
LTA ¼ LTA1 þ LTA2 þ LTAC

LTB ¼ LTB1 þ LTB2 þ LTBC

�
See cases 4a 4d for

these load terms

CAA ¼ CAA1 þ CAA2; CAA1 ¼
E1

2D1l
3
1

; CAA2 ¼
E1t2

2R1KP1

6D2

CAB ¼ CAB1 þ CAB2; CAB1 ¼
�E1t1

2D1l
2
1

; CAB2 ¼
E1t1t2R1KP1

4D2

CBB ¼ CBB1 þ CBB2; CBB1 ¼
E1t2

1

D1l1

; CBB2 ¼
E1t2

1R1KP1

2D2

The stresses in the left cylinder at the junction are given by

s1 ¼
N1

t1

s2 ¼
DRAE1

RA

þ n1s1

s01 ¼
�6M1

t2
1

s02 ¼ n1s
0
1

Note: The use of joint load correction terms LTAC and LTBC depends upon the accuracy desired and the relative values of the thicknesses and the radii. Read Sec. 13.4 carefully. For thin-walled shells,

R=t > 10, they can be neglected.
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TABLE 13.4 Formulas for discontinuity stresses and deformations at the junctions of shells and plates (Continued )

Loading and case no. Load terms Selected values

4a. Internal pressure* q

Note: There is no axial load on the

cylinder. The axial load on the plate

is reacted by the annular line load

w2 ¼ qb2
1=ð2R2Þ at a radius R2. For

an enclosed pressure vessel

superpose an axial load P ¼ qpb2
1

using case 4b.

LTA1 ¼
b1R1

t2
1

; LTAC ¼ 0

LTA2 ¼
E1t2b2

1

32D2t1R1

KP2

where

KP2 ¼

ð2R2
2 � b2

1ÞKP1 for R2 4R1

ð2R2
2 � b2

1ÞKP1 � 2ðR2
2 � R2

1Þ

þ4R2
1 ln

R2

R1

for R2 5R1

8>>>>><
>>>>>:

LTB1 ¼ 0; LTBC ¼ 0

LTB2 ¼
E1b2

1

16D2R1

KP2

At the junction of the cylinder and plate,

V1 ¼ qt1KV1; M1 ¼ qt2
1KM1; N1 ¼ 0

DRA ¼
qt1

E1

ðLTA1 � KV1CAA1 � KM1CAB1Þ

cA ¼
q

E1

ðKV1CAB1 þ KM1CBB1Þ

For internal pressure, E1 ¼ E2, n1 ¼ n2 ¼ 0:3, a2 ¼ a1, R2 ¼ 0:7R1, and for R1=t1 > 5 and R1=t2 > 4.

DRA ¼
qR2

1

E1t1

KDRA; cA ¼
qR1

E1t1

KcA; s2 ¼
qR1

t1

Ks2

* For external pressure, substitute �q for q and a1 for b1 in the load terms.

R1=t1

t2

t1
15 20 30 40 80 100

1.5 1.5578 1.8088 2.1689 2.4003 2.5659 2.3411

2.0 1.7087 1.9850 2.3934 2.6724 3.0336 2.9105

KV1 2.5 1.8762 2.1839 2.6518 2.9896 3.5949 3.6011

3.0 2.0287 2.3667 2.8931 3.2891 4.1422 4.2830

4.0 2.6452 3.2629 3.7513 5.0100 5.3783

1.5 1.1277 1.3975 1.6600 1.5275 �3.2234 �8.2255

2.0 1.5904 2.0300 2.6646 2.9496 0.3139 �3.3803

KM1 2.5 2.0582 2.6818 3.7244 4.4723 4.2328 2.0517

3.0 2.4593 3.2474 4.6606 5.8356 7.8744 7.1711

4.0 4.0612 6.0209 7.8344 13.3902 15.0391

1.5 0.1811 0.1661 0.1482 0.1380 0.1231 0.1213

2.0 0.1828 0.1693 0.1535 0.1449 0.1348 0.1350

KDRA 2.5 0.1747 0.1627 0.1489 0.1417 0.1353 0.1370

3.0 0.1618 0.1510 0.1388 0.1327 0.1284 0.1309

4.0 0.1254 0.1151 0.1099 0.1069 0.1093

1.5 �2.6740 �3.3226 �4.5926 �5.8801 �11.5407 �14.7243

2.0 �2.1579 �2.7034 �3.7762 �4.8690 �9.7264 �12.4897

KcA 2.5 �1.6854 �2.1223 �2.9864 �3.8720 �7.8591 �10.1571

3.0 �1.3096 �1.6521 �2.3314 �3.0303 �6.2088 �8.0614

4.0 �1.0265 �1.4437 �1.8728 �3.8376 �4.9966

1.5 0.1811 0.1661 0.1482 0.1380 0.1231 0.1213

2.0 0.1828 0.1693 0.1535 0.1449 0.1348 0.1350

Ks2 2.5 0.1747 0.1627 0.1489 0.1417 0.1353 0.1370

3.0 0.1618 0.1510 0.1388 0.1327 0.1284 0.1309

4.0 0.1254 0.1151 0.1099 0.1069 0.1093
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4b. Axial load P

w2 ¼
P

2pR2

LTA1 ¼
�n1R2

1

2t2
1

; LTAC ¼ 0

LTA2 ¼
E1t2R3

1

16D2t1

KP2

where

KP2 ¼

1 �
R2

2

R2
1

� �
KP1 for R2 4R1

�
1 � n2

1 þ n2

R2
2 � R2

1

a2
2

� 2 ln
R2

R1

for R2 5R1

8>>>>><
>>>>>:

LTB1 ¼ 0; LTBC ¼ 0

LTB2 ¼
E1R3

1

8D2

KP2

At the junction of the cylinder and plate,

V1 ¼
Pt1KV1

pR2
1

; M1 ¼
Pt2

1KM1

pR2
1

; N1 ¼
P

2pR1

DRA ¼
Pt1

E1pR2
1

ðLTA1 � KV1CAA1 � KM1CAB1Þ

cA ¼
P

E1pR2
1

ðKV1CAB1 þ KM1CBB1Þ

For axial tension, E1 ¼ E2, n1 ¼ n2 ¼ 0:3, a2 ¼ a1, and for R1=t1 > 5 and R1=t2 > 4.

DRA ¼
Pn1

2pE1t1

KDRA; cA ¼
Pn1

2pE1t2
1

KcA; s2 ¼
P

2pR1t1

Ks2

R2=R1

0.8 0.9

R1=t1 R1=t1

t2

t1
15 20 30 15 20 30

1.5 4.4625 7.2335 14.1255 2.2612 3.7073 7.3171

2.0 3.4224 5.6661 11.3633 1.6969 2.8629 5.8397

KV1 2.5 2.5276 4.2700 8.7738 1.2087 2.1078 4.4512

3.0 1.8389 3.1711 6.6622 0.8311 1.5116 3.3167

4.0 1.7432 3.8418 0.7339 1.7981

1.5 12.0771 22.7118 54.8202 6.3440 11.9494 28.8827

2.0 8.8772 17.0664 42.4231 4.6078 8.9085 22.2520

KM1 2.5 6.3757 12.4854 31.7955 3.2429 6.4308 16.5534

3.0 4.5632 9.0843 23.5956 2.2494 4.5854 12.1481

4.0 4.9077 13.2133 2.3106 6.5578

1.5 �3.0099 �3.7039 �4.9434 �1.6891 �2.0452 �2.6862

2.0 �3.1072 �3.9154 �5.4038 �1.7418 �2.1590 �2.9323

KDRA 2.5 �2.8215 �3.6112 �5.1054 �1.5858 �1.9944 �2.7723

3.0 �2.4354 �3.1463 �4.5192 �1.3741 �1.7421 �2.4573

4.0 �2.2748 �3.3184 �1.2673 �1.8107

1.5 5.2198 6.4135 8.5221 2.8636 3.4828 4.5818

2.0 3.6278 4.5653 6.2776 1.9999 2.4873 3.3814

KcA 2.5 2.5032 3.2024 4.5161 1.3863 1.7502 2.4369

3.0 1.7479 2.2592 3.2405 0.9723 1.2385 1.7516

4.0 1.1874 1.7331 0.6547 0.9399

1.5 �0.6030 �0.8112 �1.1830 �0.2067 �0.3135 �0.5059

2.0 �0.6322 �0.8746 �1.3211 �0.2225 �0.3477 �0.5797

Ks2 2.5 �0.5464 �0.7834 �1.2316 �0.1757 �0.2983 �0.5317

3.0 �0.4306 �0.6439 �1.0558 �0.1122 �0.2226 �0.4372

4.0 �0.3824 �0.6955 �0.0802 �0.2432
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TABLE 13.4 Formulas for discontinuity stresses and deformations at the junctions of shells and plates (Continued )

Loading and case no. Load terms Selected values

4c. Hydrostatic internal* pressure

q1 at the junction for x1 > 3=l1.y

Note: There is no axial load on

the cylinder. The axial load on

the plate is reacted by the

annular line load

w2 ¼ q1ðb
2
1=2R2Þ at a radius R2.

LTA1 ¼
b1R1

t2
1

; LTAC ¼ 0

LTA2 ¼
E1t2b2

1

32D2t1R1

KP2

where

KP2 ¼

ð2R2
2 � b2

1ÞKP1 for R2 4R1

ð2R2
2 � b2

1ÞKP1 � 2ðR2
2 � R2

1Þ

þ4R2
1 ln

R2

R1

for R2 5R1

8>>>>><
>>>>>:

LTB1 ¼
�b1R1

x1t1

; LTBC ¼ 0

LTB2 ¼
E1b2

1

16D2R1

KP2

At the junction of the cylinder and plate,

V1 ¼ q1t1KV1; M1 ¼ q1t2
1KM1; N1 ¼ 0

DRA ¼
q1t1

E1

ðLTA1 � KV1CAA1 � KM1CAB1Þ

cA ¼
q1

E1

ð�LTB1 þ KV1CAB1 þ KM1CBB1Þ

For internal pressure, E1 ¼ E2, n1 ¼ n2 ¼ 0:3, x1 ¼ R1, a2 ¼ a1, R2 ¼ 0:7R1, and for R1=t1 > 5 and

R1=t2 > 4.

DRA ¼
q1R2

1

E1t1

KDRA; cA ¼
q1R1

E1t1

KcA; s2 ¼
q1R1

t1

Ks2

* For external pressure, substitute �q for q1 and a1 for b1 in the load terms.

y If pressure increases right to left, substitute �x1 for x1.

R1=t1

t2

t1
15 20 30 40 80 100

1.5 1.5304 1.7832 2.1457 2.3788 2.5486 2.3251

2.0 1.6383 1.9170 2.3295 2.6119 2.9820 2.8620

KV1 2.5 1.7652 2.0747 2.5466 2.8880 3.5041 3.5144

3.0 1.8841 2.2228 2.7519 3.1509 4.0143 4.1593

4.0 2.4528 3.0704 3.5599 4.8249 5.1962

1.5 0.9101 1.1645 1.4064 1.2602 �3.5206 �8.5313

2.0 1.2404 1.6448 2.2289 2.4780 �0.2425 �3.9630

KM1 2.5 1.5946 2.1613 3.1188 3.8031 3.4026 1.1684

3.0 1.9073 2.6197 3.9156 4.9999 6.7971 6.0099

4.0 3.2916 5.0872 6.7688 11.9491 13.4589

1.5 0.1513 0.1424 0.1311 0.1247 0.1158 0.1153

2.0 0.1525 0.1448 0.1355 0.1305 0.1266 0.1283

KDRA 2.5 0.1463 0.1395 0.1316 0.1278 0.1271 0.1301

3.0 0.1362 0.1300 0.1230 0.1198 0.1207 0.1243

4.0 0.1089 0.1025 0.0997 0.1005 0.1039

1.5 �2.0945 �2.7054 �3.9258 �5.1808 �10.7721 �13.9361

2.0 �1.7263 �2.2355 �3.2576 �4.3151 �9.0908 �11.8293

KcA 2.5 �1.3687 �1.7750 �2.5946 �3.4475 �7.3540 �9.6258

3.0 �1.0757 �1.3940 �2.0371 �2.7086 �5.8157 �7.6438

4.0 �0.8776 �1.2726 �1.6843 �3.6009 �4.7423

1.5 0.1513 0.1424 0.1311 0.1247 0.1158 0.1153

2.0 0.1525 0.1448 0.1355 0.1305 0.1266 0.1283

Ks2 2.5 0.1463 0.1395 0.1316 0.1278 0.1271 0.1301

3.0 0.1362 0.1300 0.1230 0.1198 0.1207 0.1243

4.0 0.1089 0.1025 0.0997 0.1005 0.1039
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4d Rotation around the axis of

symmetry at o rad=s

Note: d ¼ mass=unit volume

LTA1 ¼
R2

1

t2
1

; LTAC ¼ 0

LTA2 ¼
�E1d2t3

2

96D2d1t2
1

a2
2ð3 þ n2Þ

1 þ n2

� R2
1

� �
LTB1 ¼ 0

LTB2 ¼ 0

LTBC ¼ 0

At the junction of the cylinder and plate,

V1 ¼ d1o
2R1t2

1KV 1; M1 ¼ d1o
2R1t3

1KM1

N1 ¼ 0

DRA ¼
d1o

2R1t2
1

E1

� ðLTA1 � KV1CAA1 � KM1CAB1Þ

cA ¼
d1o

2R1t1

E1

ðKV1CAB1 þ KM1CBB1Þ

For E1 ¼ E2, n1 ¼ n2 ¼ 0:3, d1 ¼ d2, a2 ¼ a1, and for R1=t1 > 5 and R1=t2 > 4.

DRA ¼
d1o

2R3
1

E1

KDRA; cA ¼
d1o

2R2
1

E1

KcA; s2 ¼ d1o
2R2

1Ks2

R1=t1

t2

t1
15 20 30 40 80 100

1.5 1.0683 1.2627 1.5887 1.8632 2.7105 3.0514

2.0 1.2437 1.4585 1.8143 2.1105 3.0101 3.3674

KV1 2.5 1.4257 1.6676 2.0656 2.3946 3.3815 3.7690

3.0 1.5852 1.8538 2.2957 2.6604 3.7505 4.1763

4.0 2.1297 2.6424 3.0676 4.3459 4.8472

1.5 0.3416 0.4269 0.5778 0.7109 1.1434 1.3236

2.0 0.8797 1.1304 1.5883 2.0037 3.4081 4.0109

KM1 2.5 1.3881 1.8157 2.6188 3.3673 6.0009 7.1688

3.0 1.8077 2.3920 3.5118 4.5776 8.4561 10.2267

4.0 3.1982 4.7871 6.3383 12.2402 15.0458

1.5 0.3661 0.3447 0.3180 0.3014 0.2682 0.2593

2.0 0.3683 0.3483 0.3234 0.3076 0.2756 0.2668

KDRA 2.5 0.3595 0.3414 0.3189 0.3048 0.2759 0.2680

3.0 0.3460 0.3295 0.3093 0.2968 0.2713 0.2643

4.0 0.3042 0.2871 0.2767 0.2565 0.2511

1.5 �2.7811 �3.3618 �4.3536 �5.2023 �7.8711 �8.9591

2.0 �2.1801 �2.6725 �3.5321 �4.2829 �6.7099 �7.7203

KcA 2.5 �1.6664 �2.0614 �2.7641 �3.3900 �5.4746 �6.3645

3.0 �1.2732 �1.5822 �2.1392 �2.6428 �4.3620 �5.1128

4.0 �0.9623 �1.3069 �1.6231 �2.7354 �3.2359

1.5 0.3661 0.3447 0.3180 0.3014 0.2682 0.2593

2.0 0.3683 0.3483 0.3234 0.3076 0.2756 0.2668

Ks2 2.5 0.3595 0.3414 0.3189 0.3048 0.2759 0.2680

3.0 0.3460 0.3295 0.3093 0.2968 0.2713 0.2643

4.0 0.3042 0.2871 0.2767 0.2565 0.2511
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TABLE 13.4 Formulas for discontinuity stresses and deformations at the junctions of shells and plates (Continued )

5. Conical shell connected to another conical shell.* To ensure accuracy, for each cone evaluate kA and the value of k in that cone at the position where m ¼ 4. The absolute values of k at all four positions

should be greater than 5. R=ðt cos aÞ should also be greater than 5 at all these positions. E1 and E2 are the moduli of elasticity and

n1 and n2 the Poisson’s ratios for the left and right cones, respectively. b1 ¼ R1 � ðt1 cos a1Þ=2, a1 ¼ R1 þ ðt1 cos a1Þ=2. RA ¼ R1. Similar

expressions are used for the right-hand cone. See Table 13.3, case 4, for formulas for kA, b, m, C1, and the F functions for each of the

two cones. Normally R2 ¼ R1, but if a1 þ a2 is close to zero the midthickness radii may not be equal at the junction. Under this

condition a different set of correction terms will be used if they are necessary. Note that rather than use an additional level of

subscripting in the following equations, use has been made of subscripted parentheses or brackets to denote which cone the

coefficients refer to.

KV 1 ¼
LTACBB � LTBCAB

CAACBB � C2
AB

; KM1 ¼
LTBCAA � LTACAB

CAACBB � C2
AB

;
LTA ¼ LTA1 þ LTA2 þ LTAC

LTB ¼ LTB1 þ LTB2 þ LTBC

�
See cases 5a 5d for

these load terms

CAA ¼ CAA1 þ CAA2; CAA1 ¼
R1 sin a

t1

ffiffiffi
2

p
kA

C1

F4A �
4n2

1

k2
A

F2A

� �� �
1

; CAA2 ¼
R1E1 sin a2

E2t2

ffiffiffi
2

p
kA

C1

F4A �
4n2

2

k2
A

F2A

� �� �
2

CAB ¼ CAB1 þ CAB2; CAB1 ¼
�R1

t1

bF7A

C1

� �
1

; CAB2 ¼
R1E1t1

E2t2
2

bF7A

C1

� �
2

CBB ¼ CBB1 þ CBB2; CBB1 ¼
R12

ffiffiffi
2

p

t1 sin a1

b2F2A

kAC1

 !
1

; CBB2 ¼
R1E1t2

12
ffiffiffi
2

p

E2t3
2 sin a2

b2F2A

kAC1

 !
2

* Note: If either conical shell increases in radius away from the junction, substitute �a for a for that cone in all the appropriate formulas above and in those used from case 4, Table 13.3.

The stresses in the left-hand cone at the junction are given by

s1 ¼
N1

t1

; s2 ¼
DRAE1

RA

þ n1s1

s01 ¼
�6M1

t2
1

s02 ¼
�6V1 sin a1

t1b1

ð1 � n2
1Þ

F7A

C1

� �
1

þs01 n1 þ
2

ffiffiffi
2

p

kAC1

ð1 � n2
1ÞF2A

" #
1
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5a. Internal* pressure q

Note: There is no axial load on

the junction. An axial load on the

left end of the left cone balances

any axial component of the

pressure on the left cone, and an

axial load on the right end of the

right cone balances any axial

component of the pressure on the

cone and the joint. For an

enclosed pressure vessel

superpose an axial load P ¼ qpb2
1

using case 5b.

LTA1 ¼
b1R1

t2
1 cos a1

LTA2 ¼
�b2R2E1

E2t1t2 cos a2

LTAC ¼
t2 sin a2 þ t1 sin a1

2t1

CAA2 þ
t2
2 � t2

1

8t2
1

CAB2

þ
E1R1n2ðt1 cos a1 � t2 cos a2Þ

2E2t1t2 cos a2

y

LTB1 ¼
�2b1 tan a1

t1 cos a1

LTB2 ¼
�2E1b2 tan a2

E2t2 cos a2

LTBC ¼
t2 sin a2 þ t1 sin a1

2t1

CAB2 þ
t2
2 � t2

1

8t2
1

CBB2

þ
E1 tan a2ðt1 cos a1 � t2 cos a2Þ

E2t2 cos a2

y

At the junction of the two cones,

V1 ¼ qt1KV1; M1 ¼ qt2
1KM1; N1 ¼ �V1 sin a1

DRA ¼
qt1

E1

ðLTA1 � KV1CAA1 � KM1CAB1Þ

cA ¼
q

E1

ð�LTB1 þ KV1CAB1 þ KM1CBB1Þ

For internal pressure, E1 ¼ E2, n1 ¼ n2 ¼ 0:3, t1 ¼ t2, R1 ¼ R2, and for R=t cos a > 5. (Note: No correction

terms are used)

DRA ¼
qR2

1

E1t1

KDRA; cA ¼
qR1

E1t1

KcA; s2 ¼
qR1

t1

Ks2

* For external pressure, substitute �q for q, a1 for b1, b2 for a2, and a2 for b2 in the load terms.

y If a1 þ a2 is zero or close to zero the following correction terms should be used:

LTAC ¼
b2

1 � b2
2

4t2
1 cos2 a2

a2 � b1

R1

CAB2 �
2n2E1t1 cos a2

E2t2

� �
; LTBC ¼

b2
1 � b2

2

4t2
1 cos2 a2

a2 � b1

R1

CBB2 �
2E1t2

1 sin a2

E2R2t2

� �

a1

�30 15

R1=t1 R1=t1

a2 10 20 50 10 20 50

�30.0 0.0000 0.0000 0.0000 �0.0764 �0.1081 �0.1711

�15.0 0.0746 0.1065 0.1696 0.0000 0.0000 0.0000

KV1 15.0 0.0764 0.1081 0.1711 0.0000 0.0000 0.0000

30.0 0.0000 0.0000 0.0000 �0.0800 �0.1114 �0.1742

45.0 �0.1847 �0.2583 �0.4056 �0.2708 �0.3746 �0.5832

�30.0 0.4408 0.6374 1.0216 0.1333 0.1924 0.3079

�15.0 0.3200 0.4634 0.7433 0.0000 0.0000 0.0000

KM1 15.0 0.1333 0.1924 0.3079 �0.1940 �0.2809 �0.4502

30.0 0.0000 0.0000 0.0000 �0.3238 �0.4672 �0.7472

45.0 �0.2441 �0.3482 �0.5529 �0.5603 �0.8025 �1.2770

�30.0 1.2502 1.2351 1.2123 1.0889 1.1022 1.1062

�15.0 1.1519 1.1479 1.1356 0.9853 1.0103 1.0253

KDRA 15.0 1.0889 1.1022 1.1062 0.9215 0.9640 0.9956

30.0 1.1047 1.1297 1.1447 0.9414 0.9954 1.0377

45.0 1.1689 1.2139 1.2477 1.0131 1.0868 1.1476

�30.0 0.0000 0.0000 0.0000 1.1418 1.2683 1.4897

�15.0 �0.5956 �0.7081 �0.9212 0.5280 0.5414 0.5494

KcA 15.0 �1.1418 �1.2683 �1.4897 0.0000 0.0000 0.0000

30.0 �1.2756 �1.3045 �1.3218 �0.0904 0.0078 0.2123

45.0 �1.3724 �1.1627 �0.6949 �0.1067 0.2286 0.9146

�30.0 1.2502 1.2351 1.2123 1.0894 1.1026 1.1065

�15.0 1.1530 1.1487 1.1361 0.9853 1.0103 1.0253

Ks2 15.0 1.0900 1.1030 1.1067 0.9215 0.9640 0.9956

30.0 1.1047 1.1297 1.1447 0.9421 0.9958 1.0380

45.0 1.1661 1.2120 1.2465 1.0152 1.0882 1.1485

S
E
C
.
1
3
.8
]

S
h
e
lls

o
f
R
e
v
o
lu
tio

n
;
P
re
s
s
u
re

V
e
s
s
e
ls
;
P
ip
e
s

6
5
9

TABLE 13.4 Formulas for discontinuity stresses and deformations at the junctions of shells and plates (Continued )



TABLE 13.4 Formulas for discontinuity stresses and deformations at the junctions of shells and plates (Continued )

Loading and case no. Load terms Selected values

5b. Axial load P
LTA1 ¼

�n1R2
1

2t2
1 cos a1

LTA2 ¼
n2R2

1E1

2E2t1t2 cos a2

þ
R1CAA2

2t1

ðtan a1 þ tan a2Þ

LTAC ¼ 0 *

LTB1 ¼
R1 tan a1

2t1 cos a1

LTB2 ¼
E1R2

1 tan a2

2E2R2t2 cos a2

þ
R1CAB2

2t1

ðtan a1 þ tan a2Þ

LTBC ¼ 0 *

At the junction of the two cones,

V1 ¼
Pt1KV1

pR2
1

; M1 ¼
Pt2

1KM1

pR2
1

N1 ¼
P

2pR1 cos a1

� V1 sin a1

DRA ¼
Pt1

E1pR2
1

ðLTA1 � KV1CAA1 � KM1CAB1Þ

cA ¼
P

E1pR2
1

ð�LTB1 þ KV 1CAB1 þ KM1CBB1Þ

For axial tension, E1 ¼ E2, n1 ¼ n2 ¼ 0:3, t1 ¼ t2, R1 ¼ R2, and for R=t cos a > 5.

DRA ¼
Pn1

2pE1t1

KDRA; cA ¼
Pn1

2pE1t2
1

KcA; s2 ¼
P

2pR1t1

Ks2

* If a1 þ a2 is zero or close to zero the following correction terms should be used:

LTAC ¼
�R1ðR2 � R1ÞCAB2

2t2
1 cos2 a2

; LTBC ¼
�R1ðR2 � R1ÞCBB2

2t2
1 cos2 a2

a1

�30 15

R1=t1 R1=t1

a2 10 20 50 10 20 50

�30.0 �2.8868 �5.7735 �14.4338 �0.7618 �1.5181 �3.7830

�15.0 �2.1629 �4.3306 �10.8367 0.0000 0.0000 0.0000

KV1 15.0 �0.7852 �1.5760 �3.9521 1.3397 2.6795 6.6987

30.0 0.0000 0.0000 0.0000 2.0473 4.0996 10.2597

45.0 0.9808 1.9747 4.9659 2.8992 5.8125 14.5630

�30.0 �3.4070 �9.4911 �37.1735 �0.9420 �2.6184 �10.2418

�15.0 �2.5628 �7.1386 �27.9573 0.0000 0.0000 0.0000

KM1 15.0 �0.9420 �2.6184 �10.2418 1.6690 4.6507 18.2184

30.0 0.0000 0.0000 0.0000 2.5628 7.1386 27.9573

45.0 1.2012 3.3225 12.9563 3.6553 10.1672 39.7823

�30.0 6.4309 9.5114 15.5525 0.8751 1.7262 3.3919

�15.0 4.5065 6.8241 11.3678 �1.0353 �1.0353 �1.0353

KDRA 15.0 0.8751 1.7262 3.3919 �4.3681 �5.8778 �8.8384

30.0 �1.1547 �1.1547 �1.1547 �6.1013 �8.4188 �12.9625

45.0 �3.6360 �4.7187 �6.8292 �8.1516 �11.4538 �17.9219

�30.0 0.0000 0.0000 0.0000 �0.1324 �0.0619 �0.0213

�15.0 0.0362 0.0144 0.0028 �0.0925 �0.0462 �0.0185

KcA 15.0 0.1324 0.0619 0.0213 0.0000 0.0000 0.0000

30.0 0.2222 0.1111 0.0444 0.0713 0.0394 0.0187

45.0 0.3819 0.2012 0.0885 0.1870 0.1045 0.0503

�30.0 2.1891 3.1132 4.9256 0.5849 0.8402 1.3399

�15.0 1.6335 2.3287 3.6917 0.0000 0.0000 0.0000

Ks2 15.0 0.5854 0.8406 1.3403 �1.0207 �1.4735 �2.3617

30.0 0.0000 0.0000 0.0000 �1.5516 �2.2469 �3.6100

45.0 �0.7150 �1.0396 �1.6725 �2.1799 �3.1707 �5.1112
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5c. Hydrostatic internal* pressure

q1 at the junction if jmj > 4y at

the position of zero pressure. If

jmj < 4 at this position the

discontinuity in pressure

gradient introduces

deformations at the junction.

Note: There is no axial load on

the junction. An axial load on the

left end of the left cone balances

any axial component of the

pressure on the left cone, and an

axial load on the right end of the

right cone balances the axial

component of pressure on the

right cone and on the joint.

LTA1 ¼
b1R1

t2
1 cos a1

LTA2 ¼
�b2R2E1

E2t1t2 cos a2

For LTAC use the expressions from case 5a

LTB1 ¼
�b1

t1 cos a1

R1

x1

þ 2 tan a1

� �

LTB2 ¼
E1b2

E2t2 cos a2

R2

x1

� 2 tan a2

� �

For LTBC use the expressions from case 5a

At the junction of the two cones,

V1 ¼ q1t1KV1; M1 ¼ q1t2
1KM1

N1 ¼ �V1 sin a1

DRA ¼
q1t1

E1

ðLTA1 � KV1CAA1 � KM1CAB1Þ

cA ¼
q1

E1

ð�LTB1 þ KV 1CAB1 þ KM1CBB1Þ

For internal pressure, x1 ¼ R1, E1 ¼ E2, n1 ¼ n2 ¼ 0:3, t1 ¼ t2, R1 ¼ R2, and for R=t cos a > 5.

(Note: No correction terms are used)

DRA ¼
q1R2

1

E1t1

KDRA; cA ¼
q1R1

E1t1

KcA; s2 ¼
q1R1

t1

Ks2

* For external pressure, substitute �q1 for q1, a1 for b1, b2 for a2, and a2 for b2 in the load terms.

y If pressure increases right to left, substitute �x1 for x1 and verify that jx1j is large enough to extend into the right cone as far as the position where jmj ¼ 4.

a1

�30 15

R1=t1 R1=t1

a2 10 20 50 10 20 50

�30.0 0.0000 0.0000 0.0000 �0.0764 �0.1081 �0.1712

�15.0 0.0746 0.1065 0.1696 0.0000 0.0000 0.0000

KV 1 15.0 0.0763 0.1081 0.1711 0.0000 0.0000 0.0000

30.0 0.0000 0.0000 0.0000 �0.0799 �0.1114 �0.1742

45.0 �0.1844 �0.2582 �0.4055 �0.2704 �0.3744 �0.5831

�30.0 0.4408 0.6374 1.0216 0.1546 0.2224 0.3554

�15.0 0.2988 0.4334 0.6958 0.0000 0.0000 0.0000

KM1 15.0 0.1120 0.1623 0.2604 �0.1940 �0.2809 �0.4502

30.0 0.0000 0.0000 0.0000 �0.3024 �0.4370 �0.6995

45.0 �0.2010 �0.2875 �0.4572 �0.4955 �0.7113 �1.1335

�30.0 1.2502 1.2351 1.2123 1.0959 1.1071 1.1093

�15.0 1.1449 1.1429 1.1324 0.9853 1.0103 1.0253

KDRA 15.0 1.0818 1.0972 1.1031 0.9215 0.9640 0.9956

30.0 1.1047 1.1297 1.1447 0.9484 1.0003 1.0408

45.0 1.1829 1.2239 1.2540 1.0341 1.1016 1.1570

�30.0 1.1047 1.1297 1.1447 2.1850 2.3365 2.5730

�15.0 0.4478 0.3602 0.1621 1.5133 1.5517 1.5747

KcA 15.0 �0.0986 �0.2000 �0.4064 0.9853 1.0103 1.0253

30.0 �0.1709 �0.1748 �0.1771 0.9530 1.0762 1.2957

45.0 �0.1440 0.0905 0.5732 1.0535 1.4138 2.1147

�30.0 1.2502 1.2351 1.2123 1.0965 1.1075 1.1096

�15.0 1.1460 1.1437 1.1329 0.9853 1.0103 1.0253

Ks2 15.0 1.0830 1.0980 1.1036 0.9215 0.9640 0.9956

30.0 1.1047 1.1297 1.1447 0.9491 1.0008 1.0411

45.0 1.1801 1.2219 1.2528 1.0362 1.1031 1.1579
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TABLE 13.4 Formulas for discontinuity stresses and deformations at the junctions of shells and plates (Continued )

Loading and case no. Load terms Selected values

5d. Rotation around the axis of

symmetry at o rad=s

Note: d ¼ mass=unit volume

LTA1 ¼
R2

1

t2
1

LTA2 ¼
�d2R3

2E1

d1R1E2t2
1

LTAC ¼ 0

LTB1 ¼
�R1ð3 þ n1Þ tan a1

t1

LTB2 ¼
�d2R2

2E1ð3 þ n2Þ tan a2

d1E2R1t1

LTBC ¼ 0

At the junction of the two cones,

V1 ¼ d1o
2R1t2

1KV1; N1 ¼ V1 sin a1

M1 ¼ d1o
2R1t3

1KM1

DRA ¼
d1o

2R1t2
1

E1

ðLTA1 � KV1CAA1 � KM1CAB1Þ

cA ¼
d1o

2R1t1

E1

ð�LTB1 þ KV1CAB1 þ KM1CBB1Þ

For E1 ¼ E2, n1 ¼ n2 ¼ 0:3, t1 ¼ t2, R1 ¼ R2, d1 ¼ d2, and for R=t cos a > 5.

DRA ¼
d1o

2R3
1

E1

KDRA; cA ¼
d1o

2R2
1

E1

KcA; s2 ¼ d1o
2R2

1Ks2

a1

�30 15

R1=t1 R1=t1

a2 10 20 50 10 20 50

�30.0 0.0000 0.0000 0.0000 �0.0001 �0.0002 �0.0001

�15.0 �0.0003 �0.0001 0.0000 0.0000 0.0000 0.0000

KV1 15.0 0.0001 0.0002 0.0001 0.0000 0.0000 0.0000

30.0 0.0000 0.0000 0.0000 �0.0011 �0.0006 �0.0003

45.0 �0.0016 �0.0010 �0.0005 �0.0043 �0.0023 �0.0011

�30.0 0.6583 0.9309 1.4726 0.1818 0.2569 0.4061

�15.0 0.4951 0.7004 1.1079 0.0000 0.0000 0.0000

KM1 15.0 0.1818 0.2569 0.4061 �0.3249 �0.4588 �0.7245

30.0 0.0000 0.0000 0.0000 �0.5001 �0.7053 �1.1129

45.0 �0.2315 �0.3260 �0.5141 �0.7149 �1.0061 �1.5851

�30.0 1.2173 1.1539 1.0975 1.0599 1.0424 1.0268

�15.0 1.1636 1.1158 1.0733 1.0000 1.0000 1.0000

KDRA 15.0 1.0599 1.0424 1.0268 0.8932 0.9245 0.9522

30.0 1.0000 1.0000 1.0000 0.8364 0.8842 0.9267

45.0 0.9248 0.9466 0.9662 0.7683 0.8356 0.8958

�30.0 0.0000 0.0000 0.0000 1.3796 1.3799 1.3803

�15.0 �0.4714 �0.4717 �0.4719 0.8842 0.8842 0.8842

KcA 15.0 �1.3796 �1.3799 �1.3803 0.0000 0.0000 0.0000

30.0 �1.9053 �1.9053 �1.9053 �0.4735 �0.4732 �0.4730

45.0 �2.5700 �2.5693 �2.5686 �1.0477 �1.0473 �1.0466

�30.0 1.2173 1.1539 1.0975 1.0599 1.0424 1.0268

�15.0 1.1636 1.1158 1.0733 1.0000 1.0000 1.0000

Ks2 15.0 1.0599 1.0424 1.0268 0.8932 0.9245 0.9522

30.0 1.0000 1.0000 1.0000 0.8364 0.8842 0.9267

45.0 0.9248 0.9466 0.9662 0.7683 0.8356 0.8958
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6. Conical shell connected to a spherical shell.* To ensure accuracy, evaluate kA and the value of k in the cone at the position where m ¼ 4. The absolute values of k at both positions should be greater

than 5. R=ðt1 cos a1Þ should also be greater than 5 at both these positions. The junction angle for the spherical shell must lie

within the range 3=b2 < f2 < p� 3=b2. The spherical shell must also extend with no interruptions such as a second junction or a

cutout, such that y2 > 3=b2. See the discussion on page 565. E1 and E2 are the moduli of elasticity and n1 and n2 the Poisson’s

ratios for the cone and the sphere, respectively. b1 ¼ R1 � ðt1 cos a1Þ=2, a1 ¼ R1 þ ðt1 cos a1Þ=2, and RA ¼ R1. See Table 13.3, case

4, for formulas for kA, b1, m, C1, and the F functions for the cone. See Table 13.3, case 1, for formulas for K12,y, K22,y and b2 for the

spherical shell. b2 ¼ R2 � t2=2 and a2 ¼ R2 þ t2=2. Normally R2 sinf2 ¼ R1, but if f2 � a1 ¼ 90� or is close to 90� the

midthickness radii at the junction may not be equal. Under this condition different correction terms will be used if necessary.

KV1 ¼
LTACBB � LTBCAB

CAACBB � C2
AB

; KM1 ¼
LTBCAA � LTACAB

CAACBB � C2
AB

;
LTA ¼ LTA1 þ LTA2 þ LTAC

LTB ¼ LTB1 þ LTB2 þ LTBC

�
See cases 6a 6d for these load terms

CAA ¼ CAA1 þ CAA2; CAA1 ¼
R1 sin a1

t1

ffiffiffi
2

p
kA

C1

F4A �
4n2

1

k2
A

F2A

� �� �
; CAA2 ¼

RAE1b2 sinf2

E2t2

1

K12

þ K22

� �

CAB ¼ CAB1 þ CAB2; CAB1 ¼
�R1

t1

b1F7A

C1

; CAB2 ¼
2E1RAt1b

2
2

E2R2t2K12

CBB ¼ CBB1 þ CBB2; CBB1 ¼
R12

ffiffiffi
2

p

t1 sin a1

b2
1F2A

kAC1

; CBB2 ¼
4E1RAt2

1b
3
2

R2
2E2t2K12 sinf2

The stresses in the left-hand cone at the junction are given by

s1 ¼
N1

t1

; s2 ¼
DRAE1

RA

þ n1s1

s01 ¼
�6M1

t2
1

; s02 ¼
�6V1 sin a1

t1b1

ð1 � n2
1Þ

F7A

C1

þ s01 n1 þ
2

ffiffiffi
2

p

kAC1

ð1 � n2
1ÞF2A

" #

Note: The use of joint load correction terms LTAC and LTBC depends upon the accuracy desired and the relative values of the thicknesses and the radii. Read Sec. 13.4 carefully. For thin-walled shells,

R=t > 10, they can be neglected.

* If the conical shell increases in radius away from the junction, substitute �a for a for the cone in all of the appropriate formulas above and in those used from case 4, Table 13.3.

yThe second subscript is added to refer to the right-hand shell.

S
E
C
.
1
3
.8
]

S
h
e
lls

o
f
R
e
v
o
lu
tio

n
;
P
re
s
s
u
re

V
e
s
s
e
ls
;
P
ip
e
s

6
6
3

TABLE 13.4 Formulas for discontinuity stresses and deformations at the junctions of shells and plates (Continued )



TABLE 13.4 Formulas for discontinuity stresses and deformations at the junctions of shells and plates (Continued )

Loading and case no. Load terms Selected values

6a. Internal* pressure q

Note: There is no axial load on

the junction. An axial load on the

left end of the cone balances any

axial component of the pressure

on the cone, and an axial load on

the right end of the sphere

balances any axial component of

the pressure on the sphere and

on the joint. For an enclosed

pressure vessel superpose an

axial load P ¼ qpb2
1 using case

6b.

LTA1 ¼
b1R1

t2
1 cos a1

LTA2 ¼
�b2

2E1 sinf2

E2t1t2

LTAC ¼
t2 cosf2 þ t1 sin a1

2t1

CAA2 þ
t2
2 � t2

1

8t2
1

CAB2

þ
E1R1ð1 þ n2Þðt1 cos a1 � t2 sinf2Þ

2E2t1t2 sinf2

y

LTB1 ¼
�2b1 tan a1

t1 cos a1

LTB2 ¼ 0

LTBC ¼
t2 cosf2 þ t1 sin a1

2t1

CAB2 þ
t2
2 � t2

1

8t2
1

CBB2

þ
E1 cosf2ðt1 cos a1 � t2 sinf2Þ

E2t2 sin
2 f2

y

At the junction of the cone and sphere,

V1 ¼ qt1KV1; M1 ¼ qt2
1KM1; N1 ¼ �V1 sin a1

DRA ¼
qt1

E1

ðLTA1 � KV1CAA1 � KM1CAB1Þ

cA ¼
q

E1

ð�LTB1 þ KV1CAB1 þ KM1CBB1Þ

For internal pressure, E1 ¼ E2, n1 ¼ n2 ¼ 0:3, t1 ¼ t2, R2 sinf2 ¼ R1, and for R=t cos a1 > 5 and

R2=t2 > 5. (Note: No correction terms are used)

DRA ¼
qR2

1

E1t1

KDRA; cA ¼
qR1

E1t1

KcA; s2 ¼
qR1

t1

Ks2

* For external pressure, substitute �q for q, a1 for b1, b2 for a2, and a2 for b2 in the load terms.

y If f2 � a1 ¼ 90� or is close to 90� the following correction terms should be used:

LTAC ¼
b2

1 � b2
2 sin

2 f2

4t2
1 sin

2 f2

a2 sinf2 � b1

R1

CAB2 �
2E1t1ð1 þ n2Þ sinf2

E2t2

� �
; LTBC ¼

b2
1 � b2

2 sin
2 f2

4t2
1 sin

2 f2

a2 sinf2 � b1

R1

CBB2

a1

�30 15

R1=t1 R1=t1

f2 10 20 50 10 20 50

45.0 �0.1504 �0.2338 �0.3900 �0.2313 �0.3470 �0.5661

60.0 0.0303 0.0220 0.0141 �0.0468 �0.0877 �0.1592

KV1 90.0 0.1266 0.1594 0.2327 0.0520 0.0528 0.0630

105.0 0.1050 0.1287 0.1839 0.0296 0.0215 0.0138

120.0 0.0316 0.0232 0.0150 �0.0460 �0.0861 �0.1570

45.0 0.2084 0.3034 0.4889 �0.0811 �0.1182 �0.1908

60.0 0.2172 0.3158 0.5081 �0.0920 �0.1335 �0.2146

KM1 90.0 0.2285 0.3306 0.5301 �0.0978 �0.1416 �0.2270

105.0 0.2288 0.3303 0.5285 �0.0973 �0.1408 �0.2255

120.0 0.2240 0.3224 0.5146 �0.0960 �0.1388 �0.2221

45.0 1.2913 1.3082 1.3113 1.1396 1.1841 1.2132

60.0 1.1526 1.1698 1.1735 0.9917 1.0371 1.0675

KDRA 90.0 1.0809 1.0969 1.0997 0.9124 0.9576 0.9880

105.0 1.0979 1.1137 1.1164 0.9301 0.9751 1.0055

120.0 1.1538 1.1703 1.1736 0.9898 1.0354 1.0662

45.0 �0.1762 0.0897 0.6014 1.0674 1.4565 2.1836

60.0 �0.7470 �0.7309 �0.7111 0.4315 0.5731 0.8128

KcA 90.0 �1.0321 �1.1548 �1.4058 0.0909 0.0946 0.0646

105.0 �0.9601 �1.0540 �1.2466 0.1658 0.1993 0.2288

120.0 �0.7317 �0.7212 �0.7058 0.4181 0.5574 0.7961

45.0 1.2891 1.3064 1.3101 1.1414 1.1854 1.2140

60.0 1.1531 1.1700 1.1735 0.9920 1.0375 1.0678

Ks2 90.0 1.0828 1.0981 1.1004 0.9120 0.9574 0.9879

105.0 1.0995 1.1146 1.1169 0.9299 0.9750 1.0055

120.0 1.1543 1.1705 1.1736 0.9901 1.0357 1.0665
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6b. Axial load P
LTA1 ¼

�n1R2
1

2t2
1 cos a1

LTA2 ¼
R2

1E1ð1 þ n2Þ

2E2t1t2 sinf2

þ
R1CAA2

2t1

tan a1 þ
1

tanf2

� �
LTAC ¼ 0

LTB1 ¼
R1 tan a1

2t1 cos a1

LTBC ¼ 0

LTB2 ¼
R1CAB2

2t1

tan a1 þ
1

tanf2

� �

At the junction of the cone and sphere,

V1 ¼
Pt1KV 1

pR2
1

; M1 ¼
Pt2

1KM1

pR2
1

N1 ¼
P

2pR1 cos a1

� V1 sin a1

DRA ¼
Pt1

E1pR2
1

ðLTA1 � KV1CAA1 � KM1CAB1Þ

cA ¼
P

E1pR2
1

ð�LTB1 þ KV1CAB1 þ KM1CBB1Þ

For axial tension, E1 ¼ E2, n1 ¼ n2 ¼ 0:3, t1 ¼ t2, R2 sinf2 ¼ R1, and for R=t cos a1 > 5 and

R2=t2 > 5.

DRA ¼
Pn1

2pE1t1

KDRA; cA ¼
Pn1

2pE1t2
1

KcA; s2 ¼
P

2pR1t1

Ks2

a1

�30 15

R1=t1 R1=t1

f2 10 20 50 10 20 50

45.0 1.4637 2.6550 6.0381 3.3529 6.4470 15.5559

60.0 0.3826 0.5404 0.8537 2.4117 4.6104 11.0611

KV1 90.0 �1.1708 �2.5296 �6.7444 0.9917 1.7969 4.0811

105.0 �1.8475 �3.8810 �10.1209 0.3241 0.4582 0.7244

120.0 �2.5422 �5.2810 �13.6476 �0.4001 �1.0054 �2.9706

45.0 1.0818 3.1542 12.6906 3.5439 10.0102 39.5349

60.0 �0.0630 �0.0887 �0.1397 2.5015 7.0525 27.8219

KM1 90.0 �1.7682 �4.9205 �19.2610 0.8411 2.3448 9.1872

105.0 �2.5375 �7.1021 �27.8984 0.0271 0.0384 0.0608

120.0 �3.3516 �9.4119 �37.0470 �0.8798 �2.5305 �10.1027

45.0 �6.4214 �7.3936 �9.4058 �10.7636 �13.9818 �20.3748

60.0 �3.2923 �3.2299 �3.1745 �8.1367 �10.4098 �14.9142

KDRA 90.0 1.0715 2.6784 5.8176 �4.3666 �5.1327 �6.6300

105.0 2.9144 5.2194 9.7519 �2.6671 �2.6945 �2.7189

120.0 4.7524 7.7965 13.8050 �0.8758 �0.0808 1.5350

45.0 �0.9108 �0.6635 �0.4304 �1.0097 �0.6930 �0.4266

60.0 �0.7412 �0.5450 �0.3563 �0.8384 �0.5768 �0.3558

KcA 90.0 �0.6135 �0.4575 �0.3026 �0.7396 �0.5126 �0.3183

105.0 �0.6090 �0.4562 �0.3028 �0.7536 �0.5247 �0.3272

120.0 �0.6513 �0.4888 �0.3250 �0.8121 �0.5683 �0.3560

45.0 �1.5361 �1.8318 �2.4391 �2.9706 �3.9340 �5.8502

60.0 �0.6298 �0.6144 �0.6008 �2.1679 �2.8482 �4.1980

Ks2 90.0 0.6327 1.1120 2.0512 �1.0148 �1.2432 �1.6911

105.0 1.1653 1.8540 3.2113 �0.4946 �0.5013 �0.5073

120.0 1.6959 2.6062 4.4060 0.0540 0.2942 0.7803
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TABLE 13.4 Formulas for discontinuity stresses and deformations at the junctions of shells and plates (Continued )

Loading and case no. Load terms Selected values

6c. Hydrostatic internal* pressure

q1 at the junction when jmj > 4y

at the position of zero pressure.

If jmj < 4 at this position the

discontinuity in pressure

gradient introduces small

deformations at the junction.

Note: There is no axial load on

the junction. An axial load on the

left end of the cone balances any

axial component of the pressure

on the cone, and an axial load on

the right end of the sphere

balances any axial component of

the pressure on the sphere and

on the joint.

LTA1 ¼
b1R1

t2
1 cos a1

LTA2 ¼
�b2

2E1 sinf2

E2t1t2

For LTAC use the expressions from case 6a

LTB1 ¼
�b1

t1 cos a1

R1

x1

þ 2 tan a1

� �

LTB2 ¼
E1b2R2 sinf2

E2t2x1

For LTBC use the expressions from case 6a

At the junction of the cone and sphere,

V1 ¼ q1t1KV1; M1 ¼ q1t2
1KM1

N1 ¼ �V1 sin a1

DRA ¼
q1t1

E1

ðLTA1 � KV1CAA1 � KM1CAB1Þ

cA ¼
q1

E1

ð�LTB1 þ KV1CAB1 þ KM1CBB1Þ

For internal pressure, x1 ¼ R1, E1 ¼ E2, n1 ¼ n2 ¼ 0:3, t1 ¼ t2, R2 sinf2 ¼ R1, and for R=t cos a1 > 5 and

R2=t2 > 5. (Note: No correction terms are used)

DRA ¼
q1R2

1

E1t1

KDRA; cA ¼
q1R1

E1t1

KcA; s2 ¼
q1R1

t1

Ks2

* For external pressure, substitute �q1 for q1, a1 for b1, b2 for a2, and a2 for b2 in load

terms.

y If pressure increases right to left, substitute �x1 for x1 and verify that jx1j is large

enough to extend into the sphere as far as the position where y2 ¼ 3=b2.

a1

�30 15

R1=t1 R1=t1

f2 10 20 50 10 20 50

45.0 �0.1508 �0.2341 �0.3902 �0.2320 �0.3475 �0.5664

60.0 0.0303 0.0220 0.0141 �0.0469 �0.0878 �0.1593

KV1 90.0 0.1266 0.1594 0.2327 0.0520 0.0528 0.0630

105.0 0.1050 0.1287 0.1839 0.0296 0.0215 0.0138

120.0 0.0316 0.0232 0.0150 �0.0459 �0.0860 �0.1569

45.0 0.2501 0.3628 0.5833 �0.0185 �0.0292 �0.0492

60.0 0.2172 0.3158 0.5081 �0.0710 �0.1037 �0.1673

KM1 90.0 0.2008 0.2914 0.4681 �0.1043 �0.1508 �0.2416

105.0 0.2074 0.3002 0.4809 �0.0973 �0.1408 �0.2255

120.0 0.2240 0.3224 0.5146 �0.0744 �0.1084 �0.1743

45.0 1.3054 1.3182 1.3176 1.1607 1.1990 1.2226

60.0 1.1526 1.1698 1.1735 0.9987 1.0421 1.0707

KDRA 90.0 1.0718 1.0904 1.0956 0.9103 0.9560 0.9870

105.0 1.0909 1.1087 1.1133 0.9301 0.9751 1.0055

120.0 1.1538 1.1703 1.1736 0.9968 1.0403 1.0694

45.0 1.0506 1.3418 1.8688 2.2254 2.6400 3.3827

60.0 0.3577 0.3988 0.4336 1.4744 1.6411 1.8960

KcA 90.0 �0.0076 �0.1053 �0.3413 1.0584 1.0871 1.0721

105.0 0.0830 0.0141 �0.1634 1.1511 1.2096 1.2541

120.0 0.3730 0.4085 0.4389 1.4618 1.6261 1.8797

45.0 1.3031 1.3164 1.3164 1.1625 1.2004 1.2235

60.0 1.1531 1.1700 1.1735 0.9990 1.0425 1.0709

Ks2 90.0 1.0737 1.0916 1.0963 0.9099 0.9558 0.9869

105.0 1.0925 1.1097 1.1138 0.9299 0.9750 1.0055

120.0 1.1543 1.1705 1.1736 0.9971 1.0407 1.0696

6
6
6

F
o
rm

u
la
s
fo
r
S
tre

s
s
a
n
d
S
tra

in
[C
H
A
P
.
1
3



6d. Rotation around the axis of

symmetry at o rad=s

Note: d ¼ mass=unit volume

LTA1 ¼
R2

1

t2
1

LTA2 ¼
�d2R3

2E1 sin
3 f2

d1R1E2t2
1

LTAC ¼ 0

LTB1 ¼
�R1ð3 þ n1Þ tan a1

t1

LTB2 ¼
�d2R2

2E1ð3 þ n2Þ sinf2 cosf2

d1R1t1E2

LTBC ¼ 0

At the junction of the cone and sphere,

V1 ¼ d1o
2R1t2

1KV1; M1 ¼ d1o
2R1t3

1KM1

N1 ¼ �V1 sin a1

DRA ¼
d1o

2R1t2
1

E1

ðLTA1 � KV 1CAA1 � KM1CAB1Þ

cA ¼
d1o

2R1t1

E1

ð�LTB1 þ KV1CAB1

þ KM1CBB1Þ

For E1 ¼ E2, n1 ¼ n2 ¼ 0:3, t1 ¼ t2; d1 ¼ d2, R2 sinf2 ¼ R1, and for R=t cos a1 > 5 and R2=t2 > 5.

DRA ¼
d1o

2R3
1

E1

KDRA; cA ¼
d1o

2R2
1

E1

KcA; s2 ¼ d1o
2R2

1Ks2

a1

�30 15

R1=t1 R1=t1

f2 10 20 50 10 20 50

45.0 0.0023 0.0015 0.0009 0.0078 0.0053 0.0033

60.0 0.0000 0.0000 0.0000 0.0035 0.0024 0.0015

KV1 90.0 �0.0001 0.0000 0.0001 0.0002 0.0001 0.0001

105.0 0.0012 0.0010 0.0007 0.0000 0.0000 0.0000

120.0 0.0034 0.0027 0.0019 0.0008 0.0006 0.0004

45.0 �0.2240 �0.3189 �0.5073 �0.6913 �0.9836 �1.5636

60.0 0.0000 0.0000 0.0000 �0.4906 �0.6961 �1.1039

KM1 90.0 0.3414 0.4828 0.7636 �0.1635 �0.2310 �0.3651

105.0 0.4988 0.7041 1.1117 0.0000 0.0000 0.0000

120.0 0.6678 0.9408 1.4829 0.1845 0.2597 0.4090

45.0 0.9243 0.9464 0.9661 0.7667 0.8350 0.8957

60.0 1.0000 1.0000 1.0000 0.8360 0.8840 0.9267

KDRA 90.0 1.1127 1.0798 1.0505 0.9461 0.9619 0.9759

105.0 1.1637 1.1159 1.0733 1.0000 1.0000 1.0000

120.0 1.2177 1.1541 1.0975 1.0600 1.0424 1.0268

45.0 �2.5613 �2.5631 �2.5646 �1.0229 �1.0292 �1.0349

60.0 �1.9053 �1.9053 �1.9053 �0.4625 �0.4653 �0.4679

KcA 90.0 �0.9169 �0.9173 �0.9177 0.4386 0.4385 0.4384

105.0 �0.4656 �0.4676 �0.4694 0.8842 0.8842 0.8842

120.0 0.0161 0.0113 0.0071 1.3838 1.3829 1.3821

45.0 0.9243 0.9464 0.9661 0.7666 0.8350 0.8957

60.0 1.0000 1.0000 1.0000 0.8360 0.8840 0.9267

Ks2 90.0 1.1127 1.0798 1.0505 0.9461 0.9619 0.9759

105.0 1.1637 1.1159 1.0733 1.0000 1.0000 1.0000

120.0 1.2177 1.1541 1.0975 1.0600 1.0424 1.0268
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TABLE 13.4 Formulas for discontinuity stresses and deformations at the junctions of shells and plates (Continued )

Loading and case no. Load terms Selected values

7. Conical shell connected to a circular plate.* To ensure accuracy, evaluate kA and the value of k in the cone at the position where m ¼ 4. The absolute values of k at both positions should be greater

than 5. R=ðt1 cos a1Þ should also be greater than 5 at both these positions. E1 and E2 are the moduli of elasticity and n1 and n2 the

Poisson’s ratios for the cone and the plate, respectively. b1 ¼ R1 � ðt1 cos a1Þ=2, a1 ¼ R1 þ ðt1 cos a1Þ=2, and RA ¼ R1. See Table 13.3,

case 4, for formulas kA, b1, m, C1, and the F functions for the cone. See Table 11.2 for the formulas for D2.

KP1 ¼ 1 þ
R2

1ð1 � n2Þ

a2
2ð1 þ n2Þ

KV1 ¼
LTACBB � LTBCAB

CAACBB � C2
AB

; KM1 ¼
LTBCAA � LTACAB

CAACBB � C2
AB

;
LTA ¼ LTA1 þ LTA2 þ LTAC

LTB ¼ LTB1 þ LTB2 þ LTBC

)
See cases 7a 7d for

these load terms

CAA ¼ CAA1 þ CAA2; CAA1 ¼
R1 sin a1

t1

ffiffiffi
2

p
kA

C1

F4A �
4n2

1

k2
A

F2A

� �� �
; CAA2 ¼

E1t2
2R1KP1

6D2

CAB ¼ CAB1 þ CAB2; CAB1 ¼
�R1

t1

bF7A

C1

� �
; CAB2 ¼

E1t1t2R1KP1

4D2

CBB ¼ CBB1 þ CBB2; CBB1 ¼
R12

ffiffiffi
2

p

t1 sin a1

b2F2A

kAC1

 !
1

; CBB2 ¼
E1t2

1R1KP1

2D2

The stresses in the left-hand cone at the junction are given by

s1 ¼
N1

t1

; s2 ¼
DRAE1

RA

þ n1s1

s01 ¼
�6M1

t2
1

; s02 ¼
�6V1 sin a1

t1b1

ð1 � n2
1Þ

F7A

C1

� �
1

þs01 n1 þ
2

ffiffiffi
2

p

kAC1

ð1 � n2
1ÞF2A

" #
1

Note: The use of joint load correction terms LTAC and LTBC depends upon the accuracy desired and the relative values of the thicknesses and the radii. Read Sec. 13.4 carefully. For thin-walled shells,

R=t > 10, they can be neglected.

* Note: If the conical shell increases in radius away from the junction, substitute �a for a for the cone in all of the appropriate formulas above and in those used from case 4, Table 13.3.
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Loading and case no. Load terms Selected values

7a. Internal* pressure q

Note: There is no axial load on

the junction. An axial load on the

left end of the cone balances any

axial component of the pressure

on the cone, and an axial load on

the plate is reacted by the

annular line load w2 ¼ qb2
1=ð2R2Þ

at a radius R2. For an enclosed

pressure vessel superpose an

axial load P ¼ qpb2
1 using case

7b.

LTA1 ¼
b1R1

t2
1 cos a1

; LTA2 ¼
E1t2b2

1

32D2t1R1

KP2

where

KP2 ¼

ð2R2
2 � b2

1ÞKP1 for R2 4R1

ð2R2
2 � b2

1ÞKP1 � 2ðR2
2 � R2

1Þ

þ4R2
1 ln

R2

R1

for R2 5R1

8>>>>><
>>>>>:

LTAC ¼
E1b1t2 sin a1

12D2

t2 �
3t1 sin a1

8

� �
KP1

LTB1 ¼
�2b1 tan a1

t1 cos a1

LTB2 ¼
E1b2

1

16D2R1

KP2

LTBC ¼
E1b1t1 sin a1

8D2

t2 �
t1 sin a1

2

� �
KP1

At the junction of the cone and plate,

V1 ¼ qt1KV1; M1 ¼ qt2
1KM1

N1 ¼ �V1 sin a1

DRA ¼
qt1

E1

ðLTA1 � KV1CAA1 � KM1CAB1Þ

cA ¼
q

E1

ð�LTB1 þ KV1CAB1 þ KM1CBB1Þ

For internal pressure, E1 ¼ E2, n1 ¼ n2 ¼ 0:3, a2 ¼ a1, R2 ¼ 0:7R1, and for R=t cos a1 > 5 and R1=t2 > 4.

(Note: No correction terms are used)

DRA ¼
qR2

1

E1t1

KDRA; cA ¼
qR1

E1t1

KcA; s2 ¼
qR1

t1

Ks2

* For external pressure, substitute �q for q and a1 for b1 in the load terms.

a1

�30 30

R1=t1 R1=t1

t2

t1
15 30 50 15 30 50

1.5 1.8080 2.5258 2.9931 1.8323 2.5642 3.0351

2.0 2.0633 2.8778 3.4621 1.9988 2.8319 3.4256

KV1 2.5 2.3269 3.2629 3.9945 2.1871 3.1396 3.8816

3.0 2.5567 3.6105 4.4891 2.3608 3.4267 4.3139

4.0 4.1282 5.2397 3.8687 4.9843

1.5 1.3216 1.7736 0.9500 0.7803 1.1393 0.2492

2.0 2.0621 3.2566 3.5429 1.2435 2.2323 2.3554

KM1 2.5 2.7563 4.7394 6.2463 1.7200 3.3817 4.6146

3.0 3.3251 6.0046 8.6287 2.1337 4.3961 6.6473

4.0 7.7864 12.0641 5.8744 9.6442

1.5 0.2625 0.2066 0.1777 0.1994 0.1699 0.1533

2.0 0.2632 0.2130 0.1880 0.2011 0.1754 0.1622

KDRA 2.5 0.2458 0.2047 0.1837 0.1927 0.1701 0.1594

3.0 0.2276 0.1891 0.1712 0.1793 0.1587 0.1496

4.0 0.1546 0.1403 0.1321 0.1241

1.5 �4.1463 �6.7069 �9.9970 �2.8696 �5.2149 �8.3411

2.0 �3.2400 �5.3937 �8.1941 �2.3306 �4.2811 �6.9166

KcA 2.5 �2.4705 �4.1900 �6.4582 �1.8320 �3.3853 �5.5109

3.0 �1.8858 �3.2264 �5.0124 �1.4327 �2.6460 �4.3184

4.0 �1.9618 �3.0515 �1.6459 �2.6691

1.5 0.2806 0.2192 0.1867 0.1811 0.1570 0.1442

2.0 0.2838 0.2274 0.1984 0.1811 0.1613 0.1519

Ks2 2.5 0.2717 0.2211 0.1957 0.1708 0.1544 0.1477

3.0 0.2532 0.2072 0.1847 0.1557 0.1416 0.1366

4.0 0.1753 0.1560 0.1127 0.1092
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TABLE 13.4 Formulas for discontinuity stresses and deformations at the junctions of shells and plates (Continued )

Loading and case no. Load terms Selected values

7b. Axial load P

w2 ¼
P

2pR2

LTA1 ¼
�n1R2

1

2t2
1 cos a1

; LTAC ¼ 0

LTA2 ¼
E1t2R3

1

16D2t1

KP2 þ
R1CAA2

2t1

tan a1

where

KP2 ¼

1 �
R2

2

R2
1

� �
KP1 for R2 4R1

�
1 � n2

1 þ n2

R2
2 � R2

1

a2
2

� 2 ln
R2

R1

for R2 5R1

8>>>>>>>>><
>>>>>>>>>:

LTB1 ¼
R1 tan a1

2t1 cos a1

; LTBC ¼ 0

LTB2 ¼
E1R3

1

8D2

KP2 þ
R1CAB2

2t1

tan a1

At the junction of the cone and plate,

V1 ¼
Pt1KV1

pR2
1

; M1 ¼
Pt2

1KM1

pR2
1

N1 ¼
P

2pR1

cos a1 � V1 sin a1

DRA ¼
Pt1

E1pR2
1

ðLTA1 � KV1CAA1 � KM1CAB1Þ

cA ¼
P

E1pR2
1

ð�LTB1 þ KV1CAB1 þ KM1CBB1Þ

For axial tension, E1 ¼ E2, n1 ¼ n2 ¼ 0:3, a2 ¼ a1, R2 ¼ 0:8R1, and for R=t cos a1 > 5 and R1=t2 > 4.

DRA ¼
Pn1

2pE1t1

KDRA; cA ¼
Pn1

2pE1t2
1

KcA; s2 ¼
P

2pR1t1

Ks2

a1

�30 30

R1=t1 R1=t1

t2

t1
15 30 50 15 30 50

1.5 3.5876 13.1267 31.6961 5.7802 16.6732 36.7478

2.0 2.4577 10.0731 25.5337 4.6739 13.7167 30.7925

KV 1 2.5 1.5630 7.3736 19.6429 3.6712 10.8769 24.7596

3.0 0.9203 5.2737 14.7796 2.8640 8.5120 19.5405

4.0 2.6122 8.2677 5.2609 12.1583

1.5 9.6696 48.9553 152.7700 13.8101 58.1862 169.2630

2.0 6.3808 36.0554 118.6220 10.7213 46.0816 137.0810

KM1 2.5 4.0214 25.6494 88.6891 8.1816 35.4643 107.1740

3.0 2.4296 18.0038 65.2524 6.2589 27.1071 82.6250

4.0 8.8324 35.4261 16.2264 49.6067

1.5 �2.1662 �4.2130 �6.4572 �4.0595 �6.0789 �8.2689

2.0 �2.2052 �4.6128 �7.3879 �4.1508 �6.5095 �9.1996

KDRA 2.5 �1.8764 �4.2328 �7.0820 �3.8563 �6.1865 �8.9613

3.0 �1.4888 �3.6069 �6.2667 �3.4421 �5.5641 �8.1742

4.0 �2.4320 �4.4893 �4.2647 �6.3131

1.5 5.0355 8.6001 12.4137 5.8059 9.2022 12.8653

2.0 3.2406 6.0555 9.2419 4.2033 6.8989 9.9584

KcA 2.5 2.0765 4.1764 6.6773 3.0207 5.0584 7.4756

3.0 1.3485 2.8815 4.7801 2.1953 3.7043 5.5547

4.0 1.4330 2.5079 2.0669 3.1302

1.5 �0.2317 �0.7862 �1.4006 �0.9870 �1.6440 �2.3547

2.0 �0.2660 �0.9367 �1.7168 �0.9923 �1.7436 �2.5982

Ks2 2.5 �0.1853 �0.8497 �1.6603 �0.8839 �1.6183 �2.4905

3.0 �0.0818 �0.6829 �1.4449 �0.7435 �1.4079 �2.2231

4.0 �0.3571 �0.9508 �0.9856 �1.6205
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7c. Hydrostatic internal* pressure

q1 at the junction when jmj > 4y

at position of zero pressure. If

jmj < 4 at this position, the

discontinuity in pressure

gradient introduces small

deformations at the junction.

Note: There is no axial load on

the junction. An axial load on the

left end of the cone balances any

axial component of the pressure

on the cone, and the axial load on

the plate is reacted by the

annular line load

w2 ¼ q1b2
1=ð2R2Þ at a radius R2.

LTA1 ¼
b1R1

t2
1 cos a1

LTA2 ¼
E1t2b2

1

32D2t1R1

For KP2 use the

expressions from case 7a

For LTAC use the expression from case 7a

LTB1 ¼
�b1

t1 cos a1

R1

x1

þ 2 tan a1

� �

LTB2 ¼
E1b2

1

16D2R1

KP2

For LTBC use the expression from case 7a

At the junction of the cone and plate,

V1 ¼ q1t1KV 1; M1 ¼ q1t2
1KM1

N1 ¼ �V1 sin a1

DRA ¼
q1t1

E1

ðLTA1 � KV1CAA1 � KM1CAB1Þ

cA ¼
q1

E1

ð�LTB1 þ KV1CAB1 þ KM1CBB1Þ

For internal pressure, E1 ¼ E2, n1 ¼ n2 ¼ 0:3, x1 ¼ R1, a2 ¼ a1, R2 ¼ 0:7R1, and for R=t cos a > 5 and

R1=t2 > 4. (Note: No correction terms are used.)

DRA ¼
q1R2

1

E1t1

KDRA; cA ¼
q1R1

E1t1

KcA; s2 ¼
q1R1

t1

Ks2;

* For external pressure, substitute �q1 for q1 and a1 for b1 in the load terms.

y If pressure increases right to left, substitute �x1 for x1.

a1

�30 30

R1=t1 R1=t1

t2

t1
15 30 50 15 30 50

1.5 1.7764 2.4985 2.9693 1.7997 2.5362 3.0107

2.0 1.9832 2.8038 3.3944 1.9143 2.7550 3.3559

KV1 2.5 2.2020 3.1423 3.8805 2.0538 3.0132 3.7634

3.0 2.3954 3.4503 4.3338 2.1871 3.2577 4.1520

4.0 3.9122 5.0243 3.6388 4.7582

1.5 1.0786 1.4887 0.6370 0.5358 0.8534 �0.0645

2.0 1.6780 2.7748 2.9876 0.8544 1.7465 1.7969

KM1 2.5 2.2541 4.0782 5.4554 1.2072 2.7112 3.8157

3.0 2.7328 5.1990 7.6390 1.5247 3.5749 5.6432

4.0 6.7888 10.7995 4.8492 8.3528

1.5 0.2290 0.1873 0.1652 0.1656 0.1505 0.1407

2.0 0.2295 0.1929 0.1745 0.1667 0.1550 0.1486

KDRA 2.5 0.2173 0.1856 0.1706 0.1604 0.1505 0.1461

3.0 0.1997 0.1718 0.1591 0.1501 0.1408 0.1372

4.0 0.1410 0.1307 0.1179 0.1142

1.5 �3.4953 �5.9545 �9.1782 �2.2131 �4.4588 �7.5197

2.0 �2.7619 �4.8159 �7.5439 �1.8429 �3.6961 �6.2610

KcA 2.5 �2.1234 �3.7579 �5.9594 �1.4738 �2.9444 �5.0049

3.0 �1.6313 �2.9042 �4.6343 �1.1675 �2.3150 �3.9328

4.0 �1.7760 �2.8303 �1.4529 �2.4417

1.5 0.2467 0.1998 0.1741 0.1476 0.1379 0.1317

2.0 0.2493 0.2069 0.1847 0.1475 0.1413 0.1385

Ks2 2.3 0.2393 0.2013 0.1822 0.1399 0.1355 0.1348

3.0 0.2236 0.1890 0.1721 0.1282 0.1245 0.1248

4.0 0.1606 0.1458 0.0997 0.0999
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TABLE 13.4 Formulas for discontinuity stresses and deformations at the junctions of shells and plates (Continued )

Loading and case no. Load terms Selected values

7d. Rotation around the axis of

symmetry at o rad=s

Note: d ¼ mass=unit volume

LTA1 ¼
R2

1

t2
1

; LTAC ¼ 0

LTA2 ¼
�E1d2t3

2

96D2d1t2
1

a2
2ð3 þ n2Þ

1 þ n2

� R2
1

� �

LTB1 ¼
�R1ð3 þ n1Þ tan a1

t1

; LTB2 ¼ 0

LTBC ¼ 0

At the junction of the cone and plate,

V1 ¼ d1o
2R1t2

1KV1; M1 ¼ d1o
2R1t3

1KM1

N1 ¼ �V1 sin a1

DRA ¼
d1o

2R1t2
1

E1

ðLTA1 � KV1CAA1 � KM1CAB1Þ

cA ¼
d1o

2R1t1

E1

ð�LTB1 þ KV1CAB1 þ KM1CBB1Þ

For E1 ¼ E2, n1 ¼ n2 ¼ 0:3, d1 ¼ d2, a2 ¼ a1, and for R=t cos a1 > 5 and R1=t2 > 4.

DRA ¼
d1o

2R3
1

E1

KDRA; cA ¼
d1o

2R2
1

E1

KcA; s2 ¼ d1o
2R2

1Ks2

a1

�30 30

R1=t1 R1=t1

t2

t1
15 30 50 15 30 50

1.5 1.1636 1.7101 2.2561 1.1171 1.6863 2.2484

2.0 1.4271 2.0268 2.6125 1.2301 1.8620 2.4739

KV1 2.5 1.6871 2.3651 3.0170 1.3556 2.0639 2.7440

3.0 1.9078 2.6661 3.3926 1.4704 2.2525 3.0036

4.0 3.1083 3.9624 2.5427 3.4113

1.5 0.7537 1.0646 1.3760 �0.0626 0.1247 0.3507

2.0 1.5184 2.3995 3.3469 0.2520 0.8420 1.5667

KM1 2.5 2.2034 3.7021 5.4006 0.5697 1.5965 2.9044

3.0 2.7495 4.7976 7.2098 0.8428 2.2625 4.1251

4.0 6.3200 9.8177 3.2332 5.9476

1.5 0.4259 0.3543 0.3148 0.3206 0.2950 0.2765

2.0 0.4268 0.3602 0.3226 0.3218 0.2986 0.2816

KDRA 2.5 0.4122 0.3529 0.3193 0.3162 0.2951 0.2799

3.0 0.3922 0.3394 0.3099 0.3073 0.2876 0.2740

4.0 0.3100 0.2864 0.2701 0.2585

1.5 �3.9694 �5.7840 �7.5904 �1.8922 �3.4239 �5.0395

2.0 �3.0329 �4.6016 �6.2200 �1.5261 �2.8111 �4.2173

KcA 2.5 �2.2734 �3.5442 �4.9013 �1.1937 �2.2231 �3.3850

3.0 �1.7119 �2.7097 �3.8033 �0.9300 �1.7377 �2.6689

4.0 �1.6292 �2.3148 �1.0810 �1.6660

1.5 0.4375 0.3629 0.3216 0.3094 0.2865 0.2697

2.0 0.4410 0.3703 0.3304 0.3095 0.2893 0.2742

Ks2 2.5 0.4291 0.3647 0.3284 0.3026 0.2848 0.2717

3.0 0.4113 0.3527 0.3200 0.2926 0.2764 0.2650

4.0 0.3255 0.2983 0.2574 0.2483
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8. Spherical shell connected to another spherical shell. To ensure accuracy, R=t > 5 and the junction angles for each of the spherical shells must lie within the range 3=b < f < p� 3=b. Each spherical

shell must also extend with no interruptions such as a second junction or a cutout, such that y > 3=b. See the discussion on page

565. E1 and E2 are the moduli of elasticity and n1 and n2 the Poisson’s ratios for the left and right spheres, respectively.

b1 ¼ R1 � t1=2, a2 ¼ R1 þ t1=2, and RA ¼ R1 sinf1. See Table 13.3, case 1, for formulas K11,* K21,* and b1 for the left-hand

spherical shell. Similar expressions hold for b2, a2, b2 and K12* and K22* for the right- hand sphere. Normally R2 sinf2 ¼ RA, but

if f1 þ f2 ¼ 180� or close to 180� the midthickness radii may not be equal at the junction. Under this condition a different set

of correction terms will be used if necessary.

KV1 ¼
LTACBB � LTBCAB

CAACBB � C2
AB

; KM1 ¼
LTBCAA � LTACAB

CAACBB � C2
AB

;
LTA ¼ LTA1 þ LTA2 þ LTAC

LTB ¼ LTB1 þ LTB2 þ LTBC

)
See cases 8a 8d for

these load terms

CAA ¼ CAA1 þ CAA2; CAA1 ¼
R1b1 sin

2 f1

t1

1

K11

þ K21

� �
; CAA2 ¼

RAE1b2 sinf2

E2t2

1

K12

þ K22

� �

CAB ¼ CAB1 þ CAB2; CAB1 ¼
�2b2

1 sinf1

K11

; CAB2 ¼
2E1RAt1b

2
2

E2R2t2K12

CBB ¼ CBB1 þ CBB2; CBB1 ¼
4t1b

3
1

R1K11

; CBB2 ¼
4E1RAt2

1b
3
2

R2
2E2t2K12 sinf2

The stresses in the left sphere at the junction are given by

s1 ¼
N1

t1

s2 ¼
DRAE1

RA

þ n1s1

s01 ¼
�6M1

t2
1

s02 ¼
V1b

2
1 cosf1

K11R1

�
6M1

t2
1K11

n1 þ
1 � n1=2

b1 tanf1

� �

Note: The use of joint load correction terms LTAC and LTBC depends upon the accuracy desired and the relative values of the thicknesses and the radii. Read Sec. 13.4 carefully. For thin-walled shells,

R=t > 10, they can be neglected.

* The second subscript refers to the left-hand (1) or right-hand (2) shell.
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TABLE 13.4 Formulas for discontinuity stresses and deformations at the junctions of shells and plates (Continued )

Loading and case no. Load terms Selected values

8a. Internal* pressure q

Note: There is no axial load on

the junction. An axial load on the

left end of the left sphere

balances any axial component of

the pressure on the left sphere,

and an axial load on the right

end of the right sphere balances

any axial component of the

pressure on the right sphere and

on the joint. For an enclosed

pressure vessel superpose an

axial load P ¼ qpb2
1 sin

2 f1

using case 8b.

LTA1 ¼
b2

1 sinf1

t2
1

LTA2 ¼
�b2

2E1 sinf2

E2t1t2

LTAC ¼
t2 cosf2 þ t1 cosf1

2t1

CAA2 þ
t2
2 � t2

1

8t2
1

CAB2

þ
E1R1n2ðt1 sinf1 � t2 sinf2Þ

2E2t1t2 sinf2

y

LTB1 ¼ 0; LTB2 ¼ 0

LTBC ¼
t2 cosf2 þ t1 cosf1

2t1

CAB2 þ
t2
2 � t2

1

8t2
2

CBB2

þ
E1 cosf2ðt1 sinf1 � t2 sinf2Þ

E2t2 sin
2 f2

y

At the junction of the two spheres,

V1 ¼ qt1KV1; M1 ¼ qt2
1KM1

N1 ¼ �V1 cosf1

DRA ¼
qt1

E1

ðLTA1 � KV1CAA1 � KM1CAB1Þ

cA ¼
q

E1

ð�LTB1 þ KV1CAB1 þ KM1CBB1Þ

For internal pressure, E1 ¼ E2, n1 ¼ n2 ¼ 0:3, t1 ¼ t2, R1 sinf1 ¼ R2 sinf2, and for R=t > 5. (Note: No

correction terms are used)

DRA ¼
qR2

1

E1t1

KDRA; cA ¼
qR1

E1t1

KcA; s2 ¼
qR1

t1

Ks2

* For external pressure, substitute �q for q, a1 for b1, b2 for a2, and a2 for b2 in the

load terms.

y If f1 þ f2 ¼ 180� or is close to 180� the following correction terms should be used:

LTAC ¼
b2

1 � b2
2

4t2
1

a2 � b1

R1

CAB2 �
2E1t1

E2t2

ð1 þ n2Þ sinf2

� �
; LTBC ¼

b2
1 � b2

2

4t2
1R1

ða2 � b1ÞCBB2

f1

75 120

R1=t1 R1=t1

f2 10 20 50 10 20 50

45.0 �0.2610 �0.3653 �0.5718 �0.1689 �0.2386 �0.3765

60.0 �0.0776 �0.1089 �0.1710 0.0000 0.0000 0.0000

KV1 75.0 0.0000 0.0000 0.0000 0.0705 0.1003 0.1590

90.0 0.0217 0.0306 0.0483 0.0896 0.1278 0.2032

135.0 �0.2462 �0.3505 �0.5570 �0.1587 �0.2282 �0.3660

45.0 0.0042 0.0059 0.0092 0.0063 0.0088 0.0139

60.0 0.0006 0.0009 0.0014 0.0000 0.0000 0.0000

KM1 75.0 0.0000 0.0000 0.0000 �0.0016 �0.0023 �0.0037

90.0 0.0002 0.0002 0.0004 �0.0014 �0.0020 �0.0032

135.0 �0.0074 �0.0105 �0.0168 �0.0012 �0.0018 �0.0029

45.0 1.0672 1.1124 1.1395 0.8907 0.9305 0.9542

60.0 0.9296 0.9760 1.0043 0.7816 0.8233 0.8488

KDRA 75.0 0.8717 0.9182 0.9467 0.7363 0.7784 0.8044

90.0 0.8557 0.9021 0.9305 0.7242 0.7662 0.7921

135.0 1.0524 1.1019 1.1329 0.8822 0.9244 0.9503

45.0 0.8559 1.1883 1.8470 0.4864 0.6858 1.0805

60.0 0.2526 0.3527 0.5506 0.0000 0.0000 0.0000

KcA 75.0 0.0000 0.0000 0.0000 �0.2005 �0.2856 �0.4538

90.0 �0.0696 �0.0982 �0.1546 �0.2530 �0.3621 �0.5780

135.0 0.7762 1.1091 1.7683 0.4383 0.6369 1.0309

45.0 1.1069 1.1530 1.1806 1.0260 1.0726 1.1007

60.0 0.9630 1.0108 1.0400 0.9025 0.9506 0.9801

Ks2 75.0 0.9025 0.9506 0.9801 0.8512 0.8996 0.9293

90.0 0.8857 0.9338 0.9632 0.8376 0.8857 0.9153

135.0 1.0915 1.1421 1.1737 1.0162 1.0657 1.0963
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8b. Axial load P
LTA1 ¼

�R2
1ð1 þ n1Þ

2t2
1 sinf1

LTA2 ¼
R2

1E1ð1 þ n2Þ

2E2t1t2 sinf2

þ
R1CAA2

2t1 sinf1

1

tanf1

þ
1

tanf2

� �
LTAC ¼ 0 *

LTB1 ¼ 0

LTB2 ¼
R1CAB2

2t1 sinf1

1

tanf1

þ
1

tanf2

� �
LTBC ¼ 0 *

At the junction of the two spheres,

V1 ¼
Pt1KV1

pR2
1

M1 ¼
Pt2

1KM1

pR2
1

N1 ¼
P

2pR1 sin
2 f1

� V1 cosf1

DRA ¼
Pt1

E1pR2
1

ðLTA1 � KV1CAA1 � KM1CAB1Þ

cA ¼
P

E1pR2
1

ð�LTB1 þ KV1CAB1 þ KM1CBB1Þ

For axial tension, E1 ¼ E2, n1 ¼ n2 ¼ 0:3, t1 ¼ t2, R1 sinf1 ¼ R2 sinf2, and for R=t > 5.

DRA ¼
Pn1

2pE1t1

KDRA; cA ¼
Pn1

2pE1t2
1

KcA; s2 ¼
P

2pR1t1

Ks2

* If f1 þ f2 ¼ 180� or is close to 180� the following correction terms should be used:

LTAC ¼
�R1ðR2 � R1ÞCAB2

2t2
1 sin

2 f2

; LTBC ¼
�R1ðR2 � R1ÞCBB2

2t2
1 sin

2 f2

f1

75 120

R1=t1 R1=t1

f2 10 20 50 10 20 50

45.0 3.1103 6.1700 15.3153 1.2155 2.3973 5.9187

60.0 2.1514 4.2888 10.6917 0.0000 0.0000 0.0000

KV1 75.0 1.3870 2.7740 6.9350 �0.9414 �1.8690 �4.6414

90.0 0.6936 1.3907 3.4844 �1.7581 �3.4981 �8.7042

135.0 �1.6776 �3.3955 �8.5790 �4.2542 �8.5470 �21.4561

45.0 3.5944 10.1684 40.1986 1.2318 3.4870 13.7907

60.0 2.5283 7.1514 28.2692 0.0000 0.0000 0.0000

KM1 75.0 1.6480 4.6612 18.4250 �0.9769 �2.7638 �10.9267

90.0 0.8311 2.3507 9.2922 �1.8388 �5.2015 �20.5626

135.0 �2.0739 �5.8688 �23.2056 �4.6045 �13.0241 �51.4841

45.0 �12.1536 �15.3196 �21.6051 �7.8717 �8.8421 �10.7727

60.0 �9.6988 �11.9270 �16.3487 �5.0037 �5.0037 �5.0037

KDRA 75.0 �7.8081 �9.2607 �12.1428 �2.8247 �2.0535 �0.5219

90.0 �6.1324 �6.8649 �8.3183 �0.9612 0.4913 3.3743

135.0 �0.6421 1.1826 4.8086 4.4902 8.1282 15.3477

45.0 �0.1836 �0.1273 �0.0791 �0.1098 �0.0073 �0.0487

60.0 �0.0505 �0.0352 �0.0220 0.0000 0.0000 0.0000

KcA 75.0 0.0000 0.0000 0.0000 0.0453 0.0322 0.0204

90.0 0.0126 0.0089 0.0056 0.0594 0.0424 0.0271

135.0 �0.1463 �0.1044 �0.0665 �0.1265 �0.0917 �0.0594

45.0 �3.5015 �4.4844 �6.4362 �2.2904 �2.6270 �3.2962

60.0 �2.7242 �3.4161 �4.7893 �1.3333 �1.3333 �1.3333

Ks2 75.0 �2.1251 �2.5762 �3.4713 �0.6067 �0.3394 0.1913

90.0 �1.5939 �1.8214 �2.2728 0.0143 0.5177 1.5167

135.0 0.1482 0.7152 1.8417 1.8278 3.0875 5.5879
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TABLE 13.4 Formulas for discontinuity stresses and deformations at the junctions of shells and plates (Continued )

Loading and case no. Load terms Selected values

8c. Hydrostatic internal* pressure

q1 at the junction where the

angle to the position of zero

pressure, y1 > 3=b1.y If y1 < 3=b1

the discontinuity in pressure

gradient introduces small

deformations at the junction.

Note: There is no axial load on

the junction. An axial load on the

left end of the left sphere

balances any axial component of

the pressure on the left sphere,

and an axial load on the right

end of the right sphere balances

any axial component of the

pressure on the right sphere and

on the joint.

LTA1 ¼
b2

1 sinf1

t2
1

LTA2 ¼
�b2

2E1 sinf2

E2t1t2

For LTAC use the expressions from case 8a

LTB1 ¼
�b1R1 sinf1

x1t1

LTB2 ¼
E1b2R2 sinf2

E2t2x1

For LTBC use the expressions from case 8a

At the junction of the two spheres,

V1 ¼ q1t1KV1

M1 ¼ q1t2
1KM1

N1 ¼ �V1 cosf1

DRA ¼
q1t1

E1

ðLTA1 � KV1CAA1 � KM1CAB1Þ

cA ¼
q1

E1

ð�LTB1 þ KV1CAB1 þ KM1CBB1Þ

For internal pressure, x1 ¼ R1, E1 ¼ E2, n1 ¼ n2 ¼ 0:3, t1 ¼ t2, R1 sinf1 ¼ R2 sinf2, and for R=t > 5. (Note:

No correction terms are used)

DRA ¼
q1R2

1

E1t1

KDRA; cA ¼
q1R1

E1t1

KcA; s2 ¼
q1R1

t1

Ks2

* For external pressure, substitute �q1 for q1, a1 for b1, b2 for a2, and a2 for b2 in the

load terms.

y If pressure increases right to left, substitute �x1 for x1 and verify that jx1 j is large

enough to extend into the right hand sphere as far as the position where y2 ¼ 3=b2.

f1

75 120

R1=t1 R1=t1

f2 10 20 50 10 20 50

45.0 �0.2614 �0.3656 �0.5720 �0.1695 �0.2390 �0.3768

60.0 �0.0776 �0.1090 �0.1710 0.0000 0.0000 0.0000

KV1 75.0 0.0000 0.0000 0.0000 0.0707 0.1004 0.1591

90.0 0.0216 0.0306 0.0483 0.0898 0.1279 0.2033

135.0 �0.2454 �0.3500 �0.5567 �0.1586 �0.2281 �0.3660

45.0 0.0632 0.0900 0.1431 0.0403 0.0571 0.0905

60.0 0.0204 0.0290 0.0461 0.0000 0.0000 0.0000

KM1 75.0 0.0000 0.0000 0.0000 �0.0189 �0.0267 �0.0421

90.0 �0.0060 �0.0085 �0.0134 �0.0241 �0.0339 �0.0535

135.0 0.0543 0.0763 0.1199 0.0344 0.0481 0.0752

45.0 1.0866 1.1261 1.1482 0.9006 0.9375 0.9586

60.0 0.9361 0.9805 1.0072 0.7816 0.8233 0.8488

KDRA 75.0 0.8717 0.9182 0.9467 0.7314 0.7749 0.8022

90.0 0.8537 0.9007 0.9296 0.7178 0.7617 0.7893

135.0 1.0718 1.1156 1.1416 0.8920 0.9314 0.9547

45.0 1.9353 2.2922 2.9657 1.3998 1.6213 2.0294

60.0 1.2243 1.3485 1.5610 0.8227 0.8444 0.8574

KcA 75.0 0.9176 0.9418 0.9563 0.5767 0.5131 0.3578

90.0 0.8314 0.8270 0.7850 0.5101 0.4224 0.2194

135.0 1.8593 2.2156 2.8887 1.3538 1.5740 1.9809

45.0 1.1270 1.1672 1.1896 1.0374 1.0807 1.1058

60.0 0.9697 1.0156 1.0430 0.9025 0.9506 0.9801

Ks2 75.0 0.9025 0.9506 0.9801 0.8456 0.8956 0.9268

90.0 0.8837 0.9323 0.9623 0.8302 0.8805 0.9120

135.0 1.1115 1.1563 1.1827 1.0276 1.0737 1.1014
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8d. Rotation around the axis of

symmetry at o rad=s

Note: d ¼ mass=unit volume

LTA1 ¼
R2

1 sin
3 f1

t2
1

LTA2 ¼
�d2R3

2E1 sin
3 f2

d1R1E2t2
1

LTAC ¼ 0

LTB1 ¼
�R1 sinf1 cosf1ð3 þ n1Þ

t1

LTB2 ¼
�d2R2

2E1ð3 þ n2Þ sinf2 cosf2

d1R1t1E2

LTBC ¼ 0

At the junction of the two spheres,

V1 ¼ d1o
2R1t2

1KV1

M1 ¼ d1o
2R1t3

1KM1

N1 ¼ �V1 cosf1

DRA ¼
d1o

2R1t2
1

E1

ðLTA1 � KV1CAA1 � KM1CAB1Þ

cA ¼
d1o

2R1t1

E1

ð�LTB1 þ KV1CAB1 þ KM1CBB1Þ

For E1 ¼ E2, n1 ¼ n2 ¼ 0:3, t1 ¼ t2, R1 sinf1 ¼ R2 sinf2, d1 ¼ d2, and for R=t > 5.

DRA ¼
d1o

2R3
1

E1

KDRA; cA ¼
d1o

2R2
1

E1

KcA; s2 ¼ d1o
2R2

1Ks2

f1

75 120

R1=t1 R1=t1

f2 10 20 50 10 20 50

45.0 0.0047 0.0033 0.0020 0.0034 0.0024 0.0015

60.0 0.0015 0.0010 0.0006 0.0000 0.0000 0.0000

KV1 75.0 0.0000 0.0000 0.0000 �0.0014 �0.0010 �0.0006

90.0 �0.0004 �0.0003 �0.0002 �0.0017 �0.0012 �0.0008

135.0 0.0047 0.0034 0.0021 0.0025 0.0018 0.0012

45.0 �0.6507 �0.9283 �1.4790 �0.1829 �0.2595 �0.4114

60.0 �0.4616 �0.6568 �1.0441 0.0000 0.0000 0.0000

KM1 75.0 �0.3030 �0.4302 �0.6826 0.1475 0.2082 0.3285

90.0 �0.1538 �0.2180 �0.3453 0.2795 0.3937 0.6201

135.0 0.3931 0.5534 0.8714 0.7152 1.0009 1.5678

45.0 0.6872 0.7500 0.8056 0.5965 0.6121 0.6259

60.0 0.7508 0.7949 0.8340 0.6495 0.6495 0.6495

KDRA 75.0 0.8032 0.8319 0.8574 0.6915 0.6792 0.6683

90.0 0.8518 0.8663 0.8791 0.7284 0.7053 0.6848

135.0 1.0249 0.9886 0.9565 0.8470 0.7891 0.7378

45.0 �0.9617 �0.9655 �0.9689 �1.9161 �1.9188 �1.9213

60.0 �0.4365 �0.4377 �0.4388 �1.4289 �1.4289 �1.4289

KcA 75.0 0.0000 0.0000 0.0000 �1.0397 �1.0385 �1.0374

90.0 0.4076 0.4080 0.4083 �0.6940 �0.6924 �0.6911

135.0 1.8800 1.8754 1.8713 0.4324 0.4299 0.4278

45.0 0.7115 0.7764 0.8340 0.6888 0.7068 0.7227

60.0 0.7773 0.8229 0.8634 0.7500 0.7500 0.7500

Ks2 75.0 0.8315 0.8613 0.8876 0.7984 0.7842 0.7716

90.0 0.8818 0.8968 0.9101 0.8411 0.8144 0.7907

135.0 1.0610 1.0235 0.9902 0.9780 0.9112 0.8519
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TABLE 13.4 Formulas for discontinuity stresses and deformations at the junctions of shells and plates (Continued )

9. Spherical shell connected to a circular plate. Expressions are accurate if R1=t1 > 5 and R1=t2 > 4. The junction angle for each the spherical shells must lie within the range 3=b < f1 < p� 3=b. The

spherical shell must also extend with no interruptions such as a second junction or a cutout, such that y1 > 3=b. See the discussion on page 565.

E1 and E2 are the moduli of elasticity and n1 and n2 the Poisson’s ratios for the sphere and plate, respectively. b1 ¼ R1 � t1=2, a1 ¼ R1 þ t1=2, and

sinf1 ¼ RA=R1. See Table 13.3, case 1, for formulas for K1, K2, and b for the spherical shell. See Table 11.2 for the formula for D2.

KP1 ¼ 1 þ
R2

Að1 � n2Þ

a2
2ð1 þ n2Þ

KV1 ¼
LTACBB � LTBCAB

CAACBB � C2
AB

; KM1 ¼
LTBCAA � LTACAB

CAACBB � C2
AB

;

LTA ¼ LTA1 þ LTA2 þ LTAC

LTB ¼ LTB1 þ LTB2 þ LTBC

9=
; See cases 9a 9d for

these load terms

CAA ¼ CAA1 þ CAA2; CAA1 ¼
R1b sin

2 f1

t1

1

K1

þ K2

� �
; CAA2 ¼

E1t2
2RAKP1

6D2

CAB ¼ CAB1 þ CAB2; CAB1 ¼
�2b2 sinf1

K1

; CAB2 ¼
E1t1t2RAKP1

4D2

CBB ¼ CBB1 þ CBB2; CBB1 ¼
4t1b

3

R1K1

; CBB2 ¼
E1t2

1RAKP1

2D2

The stresses in the left sphere at the junction are given by

s1 ¼
N1

t1

s2 ¼
DRAE1

RA

þ n1s1

s01 ¼
�6M1

t2
1

s02 ¼
V1b

2 cosf1

K1R1

�
6M1

t2
1K1

n1 þ
1 � n1=2

b tanf1

� �

Note: The use of joint load correction terms LTAC and LTBC depends upon the accuracy desired and the relative values of the thicknesses and the radii. Read Sec. 13.4 carefully. For thin-walled shells,

R=t > 10, they can be neglected.

6
7
8

F
o
rm

u
la
s
fo
r
S
tre

s
s
a
n
d
S
tra

in
[C
H
A
P
.
1
3



Loading and case no. Load terms Selected values

9a. Internal* pressure q

Note: There is no axial load on

the junction. An axial load on the

left end of the left sphere

balances any axial component of

the pressure on sphere, and the

axial load on the plate is reacted

by the annular line load

w2 ¼ qb2
1 sin

2 f1=ð2R2Þ at a

radius R2. For an enclosed

pressure vessel superpose an

axial load P ¼ qpb2
1 sin

2 f1

using case 9b.

LTA1 ¼
b2

1 sinf1

t2
1

: LTA2 ¼
E1t2b2

1 sinf1

32D2t1R1

Kp2

where KP2 ¼

ð2R2
2 � b2

1 sin
2 f1ÞKP1 for R2 4RA

ð2R2
2 � b2

1 sin
2 f1ÞKP1 � 2ðR2

2 � R2
AÞ þ 4R2

A ln
R2

RA

for R2 5RA

8>>>>><
>>>>>:
LTAC ¼

E1b1t2 sinf1 cosf1

12D2

t2 �
3t1 cosf1

8

� �
KP1

LTB1 ¼ 0

LTB2 ¼
E1b2

1 sinf1

16D2R1

KP2

LTBC ¼
E1b1t1 sinf1 cosf1

8D2

t2 �
t1 cosf1

2

� �
KP1

At the junction of the sphere and plate,

V1 ¼ qt1KV1; M1 ¼ qt2
1KM1

N1 ¼ �V1 cosf1

DRA ¼
qt1

E1

ðLTA1 � KV1CAA1 � KM1CAB1Þ

cA ¼
q

E1

ð�LTB1 þ KV1CAB1 þ KM1CBB1Þ

For internal pressure, E1 ¼ E2, n1 ¼ n2 ¼ 0:3, a2 ¼ a1 sinf1, R2 ¼ 0:8a2, and for R=t > 5 and RA=t2 > 4.

(Note: No correction terms are used.)

DRA ¼
qR2

1

E1t1

KDRA; cA ¼
qR1

E1t1

KcA; s2 ¼
qR1

t1

Ks2

* For external pressure, substitute �q for q and a1 for b1 in the load terms.

f1

60 120

R1=t1 R1=t1

t2

t1
15 30 50 15 30 50

1.5 3.7234 8.1706 15.4808 3.4307 7.6706 14.6997

2.0 3.4877 7.3413 13.6666 3.1733 6.8420 12.9155

KV1 2.5 3.3436 6.6565 11.9903 3.0014 6.1506 11.2632

3.0 3.2675 6.1516 10.6380 2.8981 5.6384 9.9338

4.0 5.5526 8.8672 5.0264 8.2023

1.5 5.2795 19.5856 53.6523 5.2058 19.4818 53.5198

2.0 4.6874 16.5098 44.7285 4.4942 16.1774 44.2151

KM1 2.5 4.3589 14.1907 37.1658 4.0654 13.6690 36.3338

3.0 4.1955 12.5748 31.3788 3.8241 11.9177 30.3314

4.0 10.7573 24.1731 9.9411 22.9142

1.5 0.0508 �0.0690 �0.1820 0.0121 �0.1011 �0.2113

2.0 0.0484 �0.0825 �0.2140 0.0121 �0.1124 �0.2414

KDRA 2.5 0.0535 �0.0722 �0.2040 0.0207 �0.0984 �0.2277

3.0 0.0582 �0.0556 �0.1778 0.0290 �0.0780 �0.1975

4.0 �0.0261 �0.1218 �0.0427 �0.1355

1.5 0.9467 7.1118 20.4155 1.5646 8.1319 21.9534

2.0 0.3077 4.6745 14.8148 0.7591 5.4222 15.9567

KcA 2.5 �0.0078 3.0100 10.4710 0.3206 3.5412 11.2759

3.0 �0.1516 1.9308 7.3488 0.0922 2.3109 7.9116

4.0 0.8078 3.7130 1.0178 4.0052

1.5 0.0214 �0.1205 �0.2566 0.0483 �0.0784 �0.1999

2.0 0.0210 �0.1320 �0.2881 0.0457 �0.0956 �0.2400

Ks2 2.5 0.0283 �0.1167 �0.2716 0.0539 �0.0829 �0.2991

3.0 0.0345 �0.0949 �0.2372 0.0624 �0.0619 �0.1982

4.0 �0.0579 �0.1673 �0.0242 �0.1319
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TABLE 13.4 Formulas for discontinuity stresses and deformations at the junctions of shells and plates (Continued )

Loading and case no. Load terms Selected values

9b. Axial load P

w2 ¼
P

2pR2

LTA1 ¼
�R2

1ð1 þ n1Þ

2t2
1 sinf1

; LTAC ¼ 0

LTA2 ¼
E1t2RAR2

1

16D2t1

KP2 þ
R1CAA2

2t1 sinf1

1

tanf1

where

KP2 ¼

1 �
R2

2

R2
A

� �
KP1 for R2 4RA

�
1 � n2

1 þ n2

R2
2 � R2

A

a2
2

� 2 ln
R2

RA

for R2 5RA

8>>>>>>>><
>>>>>>>>:

LTB1 ¼ 0; LTBC ¼ 0

LTB2 ¼
E1RAR2

1

8D2

KP2 þ
R1CAB2

2t1 sinf1

1

tanf1

At the junction of the sphere and plate,

V1 ¼
Pt1KV1

pR2
1

; M1 ¼
Pt2

1KM1

pR2
1

N1 ¼
P

2pR1 sin
2 f1

� V1 cosf1

DRA ¼
Pt1

E1pR2
1

ðLTA1 � KV1CAA1 � KM1CAB1Þ

cA ¼
P

E1pr2
1

ðKV1CAB1 þ KM1CBB1Þ

For axial tension, E1 ¼ E2, n1 ¼ n2 ¼ 0:3, a2 ¼ a1 sinf1, R2 ¼ 0:8a2, and for R=t > 5 and RA=t2 > 4.

DRA ¼
Pn1

2pE1t1

KDRA; cA ¼
Pn1

2pE1t2
1

KcA; s2 ¼
P

2pR1t1

Ks2

f1

60 120

R1=t1 R1=t1

t2

t1
15 30 50 15 30 50

1.5 4.6437 15.5843 36.3705 1.9491 10.9805 29.5359

2.0 3.3547 12.2448 29.6890 0.7536 7.7075 22.8663

KV1 2.5 2.1645 9.0429 22.9862 �0.2002 4.8369 16.5737

3.0 1.1889 6.3731 17.2246 �0.8920 2.6161 11.4344

4.0 2.6779 9.0973 �0.1930 4.6167

1.5 11.8774 53.5919 160.3030 7.5277 43.6643 142.3870

2.0 8.6537 41.2277 127.4680 4.2295 30.6183 107.6120

KM1 2.5 5.9474 30.3930 97.2405 1.8532 20.2072 77.5990

3.0 3.8585 21.8516 72.5898 0.2383 12.6155 54.3952

4.0 10.6527 39.5330 3.5467 25.1934

1.5 �4.4181 �6.0318 �7.9101 �2.3416 �4.0897 �6.0730

2.0 �4.4852 �6.3806 �8.6849 �2.3351 �4.3814 �6.8196

KDRA 2.5 �4.1953 �6.0555 �8.4140 �2.0124 �3.9922 �6.4701

3.0 �3.7890 �5.4660 �7.6662 �1.6431 �3.4017 �5.6919

4.0 �4.2468 �5.9485 �2.3204 �4.0641

1.5 5.8073 8.7035 11.9527 4.7495 7.9366 11.3940

2.0 4.2685 6.5301 9.2075 3.0929 5.5605 8.4063

KcA 2.5 3.1172 4.8036 6.8936 2.0145 3.8261 6.0299

3.0 2.3029 3.5366 5.1207 1.3359 2.6412 4.2959

4.0 2.0015 2.8983 1.3235 2.2456

1.5 �1.2233 �1.8453 �2.5584 �0.3722 �0.9069 �1.5265

2.0 �1.2208 �1.9328 �2.7867 �0.3938 �1.0407 �1.8252

Ks2 2.5 �1.0966 �1.7881 �2.6526 �0.3011 �0.9346 �1.7419

3.0 �0.9363 �1.5572 �2.3590 �0.1870 �0.7522 �1.5031

4.0 �1.0979 �1.7152 �0.4057 �0.9801
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9c. Hydrostatic internal* pressure

q1 at the junction where the

angle to the position of zero

pressure, y > 3=b.y If y < 3=b the

discontinuity in pressure

gradient introduces small

deformations at the junction.

Note: There is no axial load on

the junction. An axial load on the

left end of the sphere balances

any axial component of the

pressure on the sphere, and the

axial load on the plate is reacted

by the annular line load

w2 ¼ q1b2
1 sin

2 f1=ð2R2Þ at a

radius R2.

LTA1 ¼
b2

1 sinf1

t2
1

LTA2 ¼
E1t2b2

1 sinf1

32D2t1R1

KP2

For KP2 use the

expressions from case 9a

For LTAC use the expression from case 9a

LTB1 ¼
�b1R1 sinf1

x1t1

LTB2 ¼
E1b2

1 sinf1

16D2R1

KP2

For LTBC use the expression from case 9a

At the junction of the sphere and plate,

V1 ¼ q1t1KV1; M1 ¼ q1t2
1KM1

N1 ¼ �V1 cosf1

DRA ¼
q1t1

E1

ðLTA1 � KV1CAA1 � KM1CAB1Þ

cA ¼
q1

E1

ð�LTB1 þ KV1CAB1 þ KM1CBB1Þ

For internal pressure, E1 ¼ E2, n1 ¼ n2 ¼ 0:3, x1 ¼ R1, a2 ¼ a1 sinf1, R2 ¼ 0:8a2, and for R=t > 5 and

RA=t2 > 4. (Note: No correction terms are used.)

DRA ¼
q1R2

1

E1t1

KDRA; cA ¼
q1R1

E1t1

KcA; s2 ¼
q1R1

t1

Ks2

* For external pressure, substitute �q1 for q1 and a1 for b1 in the load terms.

y If pressure increases right to left, substitute �x1 for x1.

f1

60 120

R1=t1 R1=t1

t2

t1
15 30 50 15 30 50

1.5 3.6924 8.1443 15.4580 3.4040 7.6470 14.6788

2.0 3.4106 7.2712 13.6031 3.1050 6.7779 12.8563

KV1 2.5 3.2236 6.5428 11.8838 2.8953 6.0468 11.1641

3.0 3.1120 6.0007 10.4934 2.7617 5.5011 9.7996

4.0 5.3486 8.6670 4.8425 8.0177

1.5 5.0776 19.3466 53.3882 5.0013 19.2411 53.2544

2.0 4.3702 16.1090 44.2642 4.1753 15.7756 43.7503

KM1 2.5 3.9440 13.6425 36.5081 3.6524 13.1232 35.6786

3.0 3.7048 11.9073 30.5580 3.3402 11.2576 29.5179

4.0 9.9290 23.1258 9.1306 21.8848

1.5 0.0262 �0.0831 �0.1912 �0.0122 �0.1152 �0.2205

2.0 0.0235 �0.0973 �0.2239 �0.0122 �0.1270 �0.2512

KDRA 2.5 0.0302 �0.0864 �0.2137 �0.0016 �0.1122 �0.2371

3.0 0.0371 �0.0685 �0.1867 0.0090 �0.0904 �0.2062

4.0 �0.0364 �0.1290 �0.0525 �0.1424

1.5 1.4212 7.6631 21.0176 2.0380 8.6826 22.5550

2.0 0.6584 5.0979 15.2914 1.1033 5.8410 16.4299

KcA 2.5 0.2494 3.3278 10.8366 0.5689 3.8521 11.6362

3.0 0.0391 2.1689 7.6264 0.2736 2.5416 8.1831

4.0 0.9467 3.8764 1.1502 4.1631

1.5 �0.0067 �0.1367 �0.2671 0.0199 �0.0948 �0.2106

2.0 �0.0070 �0.1487 �0.2994 0.0170 �0.1128 �0.2515

Ks2 2.5 0.0026 �0.1325 �0.2824 0.0271 �0.0993 �0.2403

3.0 0.0117 �0.1091 �0.2470 0.0380 �0.0769 �0.2087

4.0 �0.0688 �0.1749 �0.0364 �0.1404
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TABLE 13.4 Formulas for discontinuity stresses and deformations at the junctions of shells and plates (Continued )

Loading and case no. Load terms Selected values

9d. Rotation around the axis of

symmetry at o rad=s

Note: d ¼ mass=unit volume

LTA1 ¼
R2

1 sin
3 f1

t2
1

; LTAC ¼ 0

LTA2 ¼
�E1d2t3

2

96D2d1t2
1

a2
2ð3 þ n2Þ

1 þ n2

� R2
A

� �

LTB1 ¼
�R1 sinf1 cosf1ð3 þ n1Þ

t1

; LTB2 ¼ 0

LTBC ¼ 0

At the junction of the sphere and plate,

V1 ¼ d1o
2R1t2

1KV1; M1 ¼ d1o
2R1t3

1KM1

N1 ¼ �V1 cosf1

DRA ¼
d1o

2R1t2
1

E1

ðLTA1 � KV1CAA1 � KM1CAB1Þ

cA ¼
d1o

2R1t1

E1

ð�LTB1 þ KV1CAB1 þ KM1CBB1Þ

For E1 ¼ E2, n1 ¼ n2 ¼ 0:3, d1 ¼ d2, a2 ¼ a1 sinf1, and for R=t > 5 and RA=t2 > 4.

DRA ¼
d1o

2R3
1

E1

KDRA; cA ¼
d1o

2R2
1

E1

KcA; s2 ¼ d1o
2R2

1Ks2

f1

60 120

R1=t1 R1=t1

t2

t1
15 30 50 15 30 50

1.5 0.8493 1.2962 1.7363 0.8885 1.3155 1.7419

2.0 0.9373 1.4358 1.9173 1.0957 1.5667 2.0264

KV1 2.5 1.0345 1.5946 2.1310 1.2971 1.8307 2.3441

3.0 1.1233 1.7419 2.3346 1.4665 2.0631 2.6355

4.0 1.9683 2.6525 2.4016 3.0728

1.5 �0.0650 0.0730 0.2432 0.5903 0.8287 1.0685

2.0 0.1543 0.5888 1.1308 1.1604 1.8275 2.5488

KM1 2.5 0.3751 1.1257 2.0941 1.6617 2.7842 4.0628

3.0 0.5652 1.5967 2.9649 2.0568 3.5782 5.3777

4.0 2.2823 4.2570 4.6700 7.2494

1.5 0.2286 0.2115 0.1992 0.3018 0.2528 0.2258

2.0 0.2292 0.2135 0.2022 0.3013 0.2559 0.2304

KDRA 2.5 0.2256 0.2111 0.2009 0.2910 0.2504 0.2277

3.0 0.2200 0.2062 0.1969 0.2774 0.2411 0.2211

4.0 0.1949 0.1868 0.2215 0.2053

1.5 �1.2055 �2.2272 �3.3080 �2.6485 �3.8683 �5.0838

2.0 �0.9706 �1.8202 �2.7526 �2.0059 �3.0513 �4.1317

KcA 2.5 �0.7594 �1.4356 �2.1999 �1.4946 �2.3348 �3.2333

3.0 �0.5928 �1.1213 �1.7304 �1.1213 �1.7774 �2.4967

4.0 �0.6988 �1.0794 �1.0645 �1.5120

1.5 0.2554 0.2377 0.2248 0.3573 0.2984 0.2660

2.0 0.2552 0.2394 0.2277 0.3589 0.3033 0.2722

Ks2 2.5 0.2501 0.2358 0.2255 0.3490 0.2983 0.2700

3.0 0.2428 0.2294 0.2203 0.3350 0.2888 0.2632

4.0 0.2153 0.2077 0.2678 0.2463
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TABLE 13.5 Formulas for thick-walled vessels under internal and external loading
NOTATION: q ¼ unit pressure (force per unit area); d and db ¼ radial body forces (force per unit volume); a ¼ outer radius; b ¼ inner radius; s1, s2, and s3 are normal stresses in the longitudinal,

circumferential, and radial directions, respectively (positive when tensile); E ¼ modulus of elasticity; n ¼ Poisson’s ratio. Da, Db, and Dl are the changes in the radii a and b and in the length l,

respectively. e1 ¼ unit normal strain in the longitudinal direction

Case no., form of vessel Case no., manner of loading Formulas

1. Cylindrical disk or shell 1a. Uniform internal radial

pressure q, longitudinal

pressure zero or externally

balanced; for a disk or a shell

s1 ¼ 0

s2 ¼
qb2ða2 þ r2Þ

r2ða2 � b2Þ
; ðs2Þmax ¼ q

a2 þ b2

a2 � b2
; at r ¼ b

s3 ¼
�qb2ða2 � r2Þ

r2ða2 � b2Þ
; ðs3Þmax ¼ �q; at r ¼ b

tmax ¼
s2 � s3

2
¼ q

a2

a2 � b2
; at r ¼ b

Da ¼
q

E

2ab2

a2 � b2
; Db ¼

qb

E

a2 þ b2

a2 � b2
þ n

� �
; Dl ¼

�qnl
E

2b2

a2 � b2

1b. Uniform internal pressure q,

in all directions; ends capped;

for a disk or a shell

s1 ¼
qb2

a2 � b2
½s2; s3; ðs2Þmax; ðs3Þmax; and tmax are the same as for case 1a


Da ¼
qa

E

b2ð2 � nÞ
a2 � b2

Db ¼
qb

E

a2ð1 þ nÞ þ b2ð1 � 2nÞ
a2 � b2

Dl ¼
ql

E

b2ð1 � 2nÞ
a2 � b2

1c. Uniform external radial

pressure q, longitudinal

pressure zero or externally

balanced; for a disk or a shell

s1 ¼ 0

s2 ¼
�qa2ðb2 þ r2Þ

r2ða2 � b2Þ
; ðs2Þmax ¼

�q2a2

a2 � b2
; at r ¼ b

s3 ¼
�qa2ðr2 � b2Þ

r2ða2 � b2Þ
; ðs3Þmax ¼ �q; at r ¼ a

tmax ¼
ðs2Þmax

2
¼

qa2

a2 � b2
at r ¼ b

Da ¼
�qa

E

a2 þ b2

a2 � b2
� n

� �
; Db ¼

�q

E

2a2

a2 � b2
; Dl ¼

qnl
E

2a2

a2 � b2
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TABLE 13.5 Formulas for thick-walled vessels under internal and external loading (Continued )

Case no., form of vessel Case no., manner of loading Formulas

1d. Uniform external pressure q

in all directions; ends capped;

for a disk or a shell

s1 ¼
�qa2

a2 � b2
½s2;s3; ðs2Þmax; ðs3Þmax; and tmax are the same as for case 1c


Da ¼
�qa

E

a2ð1 � 2nÞ þ b2ð1 þ nÞ
a2 � b2

; Db ¼
�qb

E

a2ð2 � nÞ
a2 � b2

Dl ¼
�ql

E

a2ð1 � 2nÞ
a2 � b2

1e. Uniformly distributed radial

body force d acting outward

throughout the wall; for a disk

only

s1 ¼ 0

s2 ¼
dð2 þ nÞ
3ða þ bÞ

a2 þ ab þ b2 � ða þ bÞ
1 þ 2n
2 þ n

� �
r þ

a2b2

r2

� �

ðs2Þmax ¼
da2

3

2ð2 þ nÞ
a þ b

þ
b

a2
ð1 � nÞ

� �
at r ¼ b

s3 ¼
dð2 þ nÞ
3ða þ bÞ

a2 þ ab þ b2 � ða þ bÞr �
a2b2

r2

� �

(Note: s3 ¼ 0 at both r ¼ b and r ¼ a.)

tmax ¼
ðs2Þmax

2
at r ¼ b

Da ¼
da2

3E
1 � nþ

2ð2 þ nÞb2

aða þ bÞ

� �
; Db ¼

dab

3E

b

a
ð1 � nÞ þ

2að2 þ nÞ
a þ b

� �

e1 ¼
�dan

E

2ða2 þ ab þ b2Þ

3aða þ bÞ
ð2 þ nÞ �

r

a
ð1 þ nÞ

� �

1f. Linearly varying radial body

force from db outward at r ¼ b

to zero at r ¼ a; for a disk only

s1 ¼ 0

s2 ¼ db

ð7 þ 5nÞa4 � 8ð2 þ nÞab3 þ 3ð3 þ nÞb4

24ða � bÞða2 � b2Þ
�
ð1 þ 2nÞa
3ða � bÞ

r þ
1 þ 3n

8ða � bÞ
r2 þ

b2a2

24r2

ð7 þ 5nÞa2 � 8ð2 þ nÞab þ 3ð3 þ nÞb2

ða � bÞða2 � b2Þ

� �

s3 ¼ db

ð7 þ 5nÞa4 � 8ð2 þ nÞab3 þ 3ð3 þ nÞb4

24ða � bÞða2 � b2Þ
�

ð2 þ nÞa
3ða � bÞ

r þ
ð3 þ nÞ

8ða � bÞ
r2 �

b2a2

24r2

ð7 þ 5nÞa � 3ð3 þ nÞb
a2 � b2

� �

(Note: s3 ¼ 0 at both r ¼ b and r ¼ a)

ðs2Þmax ¼
db

12

2a4 þ ð1 þ nÞa2ð5a2 � 12ab þ 6b2Þ � ð1 � nÞb3ð4a � 3bÞ

ða � bÞða2 � b2Þ
at r ¼ b
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tmax ¼
ðs2Þmax

2
at r ¼ b

Da ¼
dba

12E

ð1 � nÞa4 � 8ð2 þ nÞab3 þ 3ð3 þ nÞb4 þ 6ð1 þ nÞa2b2

ða � bÞða2 � b2Þ

Db ¼ ðs2Þmax

b

E

e1 ¼
�dbn

E

ð7 þ 5nÞa4 � 8ð2 þ nÞab3 þ 3ð3 þ nÞb4

12ða � bÞða2 � b2Þ
�

1 þ n
a � b

a �
r

2

� �
r

� �

2. Spherical 2a. Uniform internal pressure q
s1 ¼ s2 ¼

qb3

2r3

a3 þ 2r3

a3 � b3
; ðs1Þmax ¼ ðs2Þmax ¼

q

2

a3 þ 2b3

a3 � b3
at r ¼ b

s3 ¼
�qb3

r3

a3 � r3

a3 � b3
; ðs3Þmax ¼ �q at r ¼ b

tmax ¼
q3a3

4ða3 � b3Þ
at r ¼ b

The inner surface yields at q ¼
2sy

3
1 �

b3

a3

� �
ðRef: 20Þ

Da ¼
qa

E

3ð1 � nÞb3

2ða3 � b3Þ
; Db ¼

qb

E

ð1 � nÞða3 þ 2b3Þ

2ða3 � b3Þ
þ n

� �
ðRef: 3Þ

2b. Uniform external pressure q
s1 ¼ s2 ¼

�qa3

2r3

b3 þ 2r3

a3 � b3
; ðs1Þmax ¼ ðs2Þmax ¼

�q3a3

2ða3 � b3Þ
at r ¼ b

s3 ¼
�qa3

r3

r3 � b3

a3 � b3
; ðs3Þmax ¼ �q at r ¼ a

Da ¼
�qa

E

ð1 � nÞðb3 þ 2a3Þ

2ða3 � b3Þ
� n

� �
; Db ¼

�qb

E

3ð1 � nÞa3

2ða3 � b3Þ
ðRef: 3Þ
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Chapter

14
Bodies under Direct Bearing

and Shear Stress

14.1 Stress due to Pressure between
Elastic Bodies

The stresses caused by the pressure between elastic bodies are of

importance in conection with the design or investigation of ball and

roller bearings, gears, trunnions, expansion rollers, track stresses, etc.

Hertz (Ref. 1) developed the mathematical theory for the surface

stresses and deformations produced by pressure between curved

bodies, and the results of his analysis are supported by experiment.

Formulas based on this theory give the maximum compressive

stresses, which occur at the center of the surfaces of contact, but not

the maximum shear stresses, which occur in the interiors of the

compressed parts, nor the maximum tensile stress, which occurs at

the boundary of the contact area and is normal thereto.

Both surface and subsurface stresses were studied by Belajef (Refs.

28 and 29), and some of his results are cited in Ref. 6. A tabulated

summary of surface and subsurface stresses, greatly facilitating

calculation, is given in Ref. 33. For a cylinder on a plane and for

crossed cylinders Thomas and Hoersch (Ref. 2) investigated mathe-

matically surface compression and internal shear and checked the

calculated value of the latter experimentally. The stresses due to the

pressure of a sphere on a plate (Ref. 3) and of a cylinder on a plate (Ref.

4) have also been investigated by photoelasticity. The deformation and

contact area for a ball in a race were measured by Whittemore and

Petrenko (Ref. 8) and compared with the theoretical values. Addition-

ally, investigations have considered the influence of tangential loading

combined with normal loading (Refs. 35, 47–49, and 58).

In Table 14.1, formulas are given for the elastic stress and deforma-

tion produced by pressure between bodies of various forms, and for the



dimensions of the circular, elliptical, or rectangular area of contact

formed by the compressed surfaces. Except where otherwise indicated,

these equations are based on Hertz’s theory, which assumes the length

of the cylinder and dimensions of the plate to be infinite. For a very

short cylinder and for a plate having a width less than five or six times

that of the contact area or a thickness less than five or six times the

depth to the point of maximum shear stress, the actual stresses may

vary considerably from the values indicated by the theory (see Refs. 4,

45, and 50). Tu (Ref. 50) discusses the stresses and deformations for a

plate pressed between two identical elastic spheres with no friction;

graphs are also presented. Pu and Hussain (Ref. 51) consider the

unbonded contact between a flat plate and an elastic half-space when a

normal load is applied to the plate. Graphs of the contact radii are

presented for a concentrated load and two distributed loadings on

circular areas.

Hertz (Ref. 1) based his work on the assumption that the contact

area was small compared with the radius of the ball or cylinder;

Goodman and Keer (Ref. 52) compare the work of Hertz with a solution

which permits the contact area to be larger, such as the case when the

negative radius of one surface is only very slightly larger (1.01 to 1)

than the positive radius of the other. Cooper (Ref. 53) presents some

reformulated hertzian coefficients in a more easily interpolated form

and also points out some numerical errors in the coefficients originally

published by Hertz. Dundurs and Stippes (Ref. 54) discuss the effect of

Poisson’s ratio on contact stress problems.

The use of the formulas of Table 14.1 is illustrated in the example at

the end of this section. The general formula for case 4 can be used, as

in the example, for any contact-stress problems involving any geo-

metrically regular bodies except parallel cylinders, but for bearing

calculations use should be made of charts such as those given in Refs.

33 and 34, which not only greatly facilitate calculations but provide for

influences not taken into account in the formulas.

Because of the very small area involved in what initially approx-

imates a point or line contact, contact stresses for even light loads are

very high; but as the formulas show, the stresses do not increase in

proportion to the loading. Furthermore, because of the facts that the

stress is highly localized and triaxial, the actual stress intensity can be

very high without producing apparent damage. To make use of the

Hertz formulas for purposes of design or safe-load determination, it is

necessary to know the relationship between theoretical stresses and

likelihood of failure, whether from excessive deformation or fracture.

In discussing this relationship, it is convenient to refer to the

computed stress as the Hertz stress, whether the elastic range has

been exceeded or not. Some of the available information showing the

Hertz stress corresponding to loadings found to be safe and to loadings
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that produced excessive deformations or fracture may be summarized

as follows.

Static or near-static conditions

Cylinder. The American Railway Engineering Association gives as

the allowable loading for a steel cylinder on a flat steel plate the

formulas

p ¼

sy � 13;000

20;000
600d for d < 25 in

sy �13;000

20;000
3000

ffiffiffi
d

p
for 25 < d < 125 in

8>>><
>>>:

Here (and in subsequent equations) p is the load per linear inch in

pounds, d is the diameter of the cylinder in inches, and sy is the tensile

yield point of the steel in the roller or plate, whichever is lower. If sy is

taken as 32,000 lb=in2, the Hertz stress corresponding to this loading

is constant at 76,200 lb=in2 for any diameter up to 25 in and decreases

as d�1=4 to 50,900 at d ¼ 125 in. See Ref. 10.

Wilson (Refs. 7, 11, and 32) carried out several series of static and

slow-rolling tests on large rollers. From static tests on rollers of

medium-grade cast steel having diameters of 120 to 720 in, he

concluded that the load per linear inch required to produce appreci-

able permanent set could be represented by the empirical formula

p ¼ 500 þ 110d, provided the bearing plates were 3 in thick or more.

He found that p increased with the axial length of the roller up to a

length of 6 in, after which it remained practically constant (Ref. 32).

Slow-rolling tests (Ref. 11) undertaken to determine the load required

to produce a permanent elongation or spread of 0.001 in=in in the

bearing plate led to the empirical formula

p ¼ ð18;000 þ 120dÞ
sy �13;000

23;000

for rollers with d > 120 in. Wilson’s tests indicated that the average

pressure on the area of contact required to produce set was greater for

small rollers than for large rollers, and that there was little difference

in bearing capacity under static and slow-rolling conditions, though

the latter showed more tendency to produce surface deterioration.

Jensen (Ref. 4), making use of Wilson’s test results and taking into

account the three-dimensional aspect of the problem, proposed for the

load-producing set the formula

p ¼ 1 þ
1:78

1 þ d2=800L2

� �
s2

ydp
E
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where L is the length of the cylinder in inches and E is the modulus of

elasticity in pounds per square inch. For values of the ratio d=L from

0.1 to 10, the corresponding Hertz stress ranges from 1:66sy to 1:72sy.

Whittemore (Ref. 8) found that the elastic limit load for a flexible

roller of hardened steel (tensile strength about 265,000 lb=in2) tested

between slightly hardened races corresponded to a Hertz stress of

about 436,000 lb=in2. The roller failed before the races.

Sphere. Tests reported in Whittemore and Petrenko (Ref. 8) gave, for

balls 1, 1 1
4
, and 1 1

2
in in diameter, tested between straight races, Hertz

stresses of 239,000, 232,000, and 212,000 lb=in2, respectively, at loads

producing a permanent strain of 0.0001. The balls were of steel having

sclerescope hardness of 60 to 68, and the races were of approximately

the same hardness. The critical strain usually occurred first in the

races.

From the results of crushing tests of a sphere between two similar

spheres, SKF derived the empirical formula P ¼ 1960ð8dÞ1:75, where P

is the crushing load in pounds and d is the diameter of the sphere in

inches. The test spheres were made of steel believed to be of hardness

64 to 66 Rockwell C, and the formula corresponds to a Hertz stress of

about 4,000,000�d�1=12.

Knife-edge. Knife-edge pivots are widely used in scales and balances,

and if accuracy is to be maintained, the bearing loads must not cause

excessive deformation. It is impossible for a truly sharp edge to bear

against a flat plane without suffering plastic deformation, and so

pivots are not designed on the supposition that the contact stresses

will be elastic; instead, the maximum load per inch consistent with the

requisite degree of accuracy in weighing is determined by experience

or by testing. In Wilson et al. (Ref. 9), the National Bureau of

Standards is quoted as recommending that for heavy service the

load per linear inch should not exceed 5000 lb=in for high-carbon

steels or 6000 for special alloy steels; for light service the values can

be increased to 6000 and 7000, respectively. In the tests described in

Ref. 9, the maximum load that could be sustained without damage—

the so-called critical load—was defined as the load per linear inch that

produced an increase in the edge width of 0.0005 in or a sudden

increase in the load rate of vertical deformation. The two methods

gave about the same results when the bearing was harder than the

pivot, as it should be for good operation. The conclusions drawn from

the reported tests may be summarized as follows.

The bearing value of a knife-edge or pivot varies approximately with

the wedge angle for angles of 30�–120�, the bearing value of a flat pivot

varies approximately with the width of the edge for widths of 0.004–

0.04 in, and the bearing value of pivots increases with the hardness for
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variations in hardness of 45–60 on the Rockwell C scale. Successive

applications of a load less than the critical load will cause no plastic

flow; the edge of a pivot originally sharp will increase in width with

the load, but no further plastic deformation is produced by successive

applications of the same or smaller loads. The application of a load

greater than the critical load will widen the edge at the first applica-

tion, but additional applications of the same load will not cause

additional flow; the average unit pressure on 90� pivots having a

hardness represented by Rockwell C numbers of 50–60 is about

400,000–500,000 lb=in2 at the critical load. This critical unit pressure

appears to be independent of the width of the edge but increases with

the pivot angle and the hardness of the material (Ref. 9).

These tests and the quoted recommendations relate to applications

involving heavy loads (thousands of pounds) and reasonable accuracy.

For light loads and extreme accuracy, as in analytical balances, the

pressures are limited to much smaller values. Thus, in Ref. 39, on the

assumptions that an originally sharp edge indents the bearing and

that the common surface becomes cylindrical, it is stated that the

radius of the loaded edge must not exceed 0.25 mm (approximately

0.00001 in) if satisfactory accuracy is to be attained, and that the

corresponding loading would be about 35,000 lb=in2 of contact area.

Dynamic conditions. If the motion involved is a true rolling motion

without any slip, then under conditions of slow motion (expansion

rollers, bascules, etc.) the stress conditions are comparable with those

produced by static loading. This is indicated by a comparison of the

conclusions reached in Ref. 7, where the conditions are truly static,

with those reached in Ref. 11, where there is a slow-rolling action. If

there is even a slight amount of slip, however, the conditions are very

much more severe and failure is likely to occur through mechanical

wear. The only guide to proper design against wear is real or simulated

service testing (Refs. 24, 41, and 46).

When the motion involved is at high speed and produces cyclic

loading, as in ball and roller bearings, fatigue is an important

consideration. A great many tests have been made to determine the

fatigue properties of bearings, especially ball bearings, and such tests

have been carried out to as many as 1 billion cycles and with Hertz

stresses up to 750,000 lb=in2 (Ref. 37). The number of cycles to damage

(either spalling or excessive deformation) has been found to be inver-

sely proportional to the cube of the load for point contact (balls) and to

the fourth power for line contact; this would be inversely proportional

to the ninth and eighth powers, respectively, of the Hertz stress. Styri

(Ref. 40) found the cycles to failure to vary as the ninth power of the

Hertz stress and was unable to establish a true endurance limit. Some

of these tests show that ball bearings can run for a great number of

SEC. 14.1] Bodies under Direct Bearing and Shear Stress 693



cycles at very high stresses; for example, 1
2
-in balls of SAE 52,100 steel

(RC 63–64) withstood 17,500,000 cycles at a stress of 174,000 lb=in2

before 10% failures occurred, and withstood 700,000,000 cycles at that

stress before 90% failures occurred.

One difficulty in correlating different tests on bearings is the

difference in criteria for judging damage; some experimenters have

defined failure as a certain permanent deformation, others as visible

surface damage through spalling. Palmgren (Ref. 36) states that a

permanent deformation at any one contact point of rolling element and

bearing ring combined equal to 0.001 times the diameter of the rolling

element has no significant influence on the functioning of the bearing.

In the tests of Ref. 37, spalling of the surface was taken as the sign of

failure; this spalling generally originated on plates of maximum shear

stress below the surface.

Large-diameter bearings, usually incorporating integral gearing,

are heat-treated to produce a hardened case to resist wear and fatigue

and a tough machinable core. Sague in Ref. 56 describes how high

subsurface shear stresses have produced yielding in the core with

subsequent failure of the case due to lack of support.

It is apparent from the foregoing discussion that the practical design

of parts that sustain direct bearing must be based largely on experi-

ence since this alone affords a guide as to whether, at any given load

and number of stress cycles, there is enough deformation or surface

damage to interfere with proper functioning. The rated capacities of

bearings and gears are furnished by the manufacturers, with proper

allowance indicated for the conditions of service and recommendations

as to proper lubrication (Ref. 38). Valid and helpful conclusions,

however, can often be drawn from a comparison of service records

with calculated stresses.

EXAMPLE

A ball 1.50 in in diameter, in a race which has a diameter of 10 in and a groove
radius of 0.80 in, is subjected to a load of 2000 lb. It is required to find the
dimensions of the contact area, the combined deformation of ball and race at
the contact, and the maximum compressive stress.

Solution. The formulas and table of case 4 (Table 14.1) are used. The race is
taken as body 1 and the ball as body 2; hence R1 ¼ �0:80 in, R0

1 ¼ �5 in, and
R2 ¼ R0

2 ¼ 0:75 in. Taking E1 ¼ E2 ¼ 30;000;000 lb=in2 and n1 ¼ n2 ¼ 0:3, we
have

CE ¼
2ð1 � 0:09Þ

30ð106Þ
¼ 6:067ð10�8Þ in

2=lb

KD ¼
1:5

�1:25 þ 1:33 � 0:20 þ 1:33
¼ 1:233 in

cos y ¼
1:233

1:5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�1:25 þ 0:20Þ2 þ 0 þ 0

q
¼ 0:863
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From the table, by interpolation

a ¼ 2:710; b ¼ 0:495; l ¼ 0:546

Then

c ¼ 2:710
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2000ð1:233Þð6:067Þð10�8Þ

3
p

¼ 0:144 in

d ¼ 0:495
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2000ð1:233Þð6:067Þð10�8Þ

3
p

¼ 0:0263 in

ðscÞmax ¼
1:5ð20000Þ

0:144ð0:0263Þp
¼ 252;000 lb=in2

y ¼ 0:546

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
20002ð6:0672Þð10�16Þ

1:233

3

r
¼ 0:00125 in

Therefore the contact area is an ellipse with a major axis of 0.288 in and a
minor axis of 0.0526 in.

14.2 Rivets and Riveted Joints

Although the actual state of stress in a riveted joint is complex, it is

customary—and experience shows it is permissible—to ignore such

considerations as the stress concentration at the edges of rivet holes,

unequal division of load among rivets, and nonuniform distribution of

shear stress across the section of the rivet and of the bearing stress

between rivet and plate. Simplifying assumptions are made, which

may be summarized as follows: (1) The applied load is assumed to be

transmitted entirely by the rivets, friction between the connected

plates being ignored; (2) when the centroid of the rivet areas is on

the line of action of the load, all the rivets of the joint are assumed to

carry equal parts of the load if they are of the same size, or to be loaded

proportionally to their respective section areas if they are of different

sizes; (3) the shear stress is assumed to be uniformly distributed

across the rivet section; (4) the bearing stress between plate and

rivet is assumed to be uniformly distributed over an area equal to

the rivet diameter times the plate thickness; (5) the stress in a tension

member is assumed to be uniformly distributed over the net area; and

(6) the stress in a compression member is assumed to be uniformly

distributed over the gross area.

The design of riveted joints on the basis of these assumptions is the

accepted practice, although none of them is strictly correct and

methods of stress calculation that are supposedly more accurate

have been proposed (Ref. 12).

Details of design and limitations. The possibility of secondary failure

due to secondary causes, such as the shearing or tearing out of a plate

between the rivet and the edge of a plate or between adjacent rivets,

the bending or insufficient upsetting of long rivets, or tensile failure
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along a zigzag line when rivets are staggered, is guarded against in

standard specifications (Ref. 13) by detailed rules for edge clearance,

maximum grip of rivets, maximum pitch, and computing the net width

of riveted parts. Provision is made for the use of high-strength bolts in

place of rivets under certain circumstances (Ref. 42). Joints may be

made by welding instead of riveting, but the use of welding in

conjunction with riveting is not approved on new work; the division

of the load as between the welds and the rivets would be indetermi-

nate.

Tests on riveted joints. In general, tests on riveted joints show that

although under working loads the stress conditions may be consider-

ably at variance with the usual assumptions, the ultimate strength

may be closely predicted by calculations based thereon. Some of the

other conclusions drawn from such tests may be summarized as

follows.

In either lap or double-strap butt joints in very wide plates, the unit

tensile strength developed by the net section is greater than that

developed by the plate itself when tested in full width and is practi-

cally equal to that developed by narrow tension specimens cut from

the plate. The rivets in lap joints are as strong relative to undriven

rivets tested in shear as are the rivets in butt joints. Lap joints bend

sufficiently at stresses below the usual design stresses to cause open-

ing of caulked joints (Ref. 14).

Although it is frequently specified that rivets shall not be used in

tension, tests show that hot-driven buttonhead rivets develop a

strength in direct tension greater than the strength of the rod from

which they are made, and that they may be relied upon to develop this

strength in every instance. Although the initial tension in such rivets

due to cooling usually amounts to 70% or more of the yield strength,

this initial tension does not reduce the ability of the rivets to resist an

applied tensile load (see also Sec. 3.12). Unless a joint is subjected to

reversals of primary load, the use of rivets in tension appears to be

justified; but when the primary load producing shear in the rivets is

reversed, the reduction in friction due to simultaneous rivet tension

may permit slip to occur, with possible deleterious effects (Ref. 15).

With respect to the form of the rivet head, the rounded or button-

head type is standard; but countersunk rivets are often used, and tests

show that these develop the same ultimate strength, although they

permit much more slip and deformation at working loads than do the

buttonhead rivets (Ref. 16).

In designing riveted joints in very thin metals, especially the light

alloys, it may be necessary to take into account factors that are not

usually considered in ordinary structural-steel work, such as the
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radial stresses caused at the hole edges by closing pressure and the

buckling of the plates under rivet pressure (Ref. 17).

Eccentric loading. When the rivets of a joint are so arranged that the

centroid G of the areas of the rivet group lies not on the line of action of

the load but at a distance e therefrom, the load P can be replaced by an

equal and parallel load P0 acting through G and a couple Pe. The load

on any one of the n rivets is then found by vectorially adding the load

P=n due to P 0 and the load Q due to the couple Pe. This load Q acts

normal to the line from G to the rivet and is given by the equation

Q ¼ PeA1r1=J , where A1 is the area of the rivet in question, r1 is its

distance from G, and J ¼
P

Ar2 for all the rivets of the group. When

all rivets are of the same size, as is usually the case, the formula

becomes Q ¼ Per1=
P

r2. Charts and tables are available which greatly

facilitate the labor of the calculation involved, and which make

possible direct design of the joint without recourse to trial and error

(Ref. 18). (The direct procedure, as outlined previously, is illustrated in

the following example.)

The stiffness or resistance to angular displacement of a riveted joint

determines the degree of fixity that should be assumed in the analysis

of beams with riveted ends or of rectangular frames. Tests (Ref. 19)

have shown that although joints made with wide gusset plates are

practically rigid, joints made by simply riveting through clip angles

are not even approximately so. A method of calculating the elastic

constraint afforded by riveted joints of different types, based on an

extensive series of tests, has been proposed by Rathbun (Ref. 20).

Brombolich (Ref. 55) describes the use of a finite-element-analysis

procedure to determine the effect of yielding, interference fits, and

load sequencing on the stresses near fastener holes.

EXAMPLE

Figure 14.1 represents a lap joint in which three 1-in rivets are used to connect
a 15-in channel to a plate. The channel is loaded eccentrically as shown. It is
required to determine the maximum shear stress in the rivets. (This is not, of
course, a properly designed joint intended to develop the full strength of the
channel. It represents a simple arrangement of rivets assumed for the purpose
of illustrating the calculation of rivet stress due to a moment.)

Solution. The centroid of the rivet areas is found to be at G. The applied
load is replaced by an equal load through G and a couple equal to

15;000 � 5 ¼ 75;000 lb-in

as shown in Fig. 14.1(b). The distances r1, r2, and r3 of rivets 1, 2, and 3,
respectively, from G are as shown; the value of

P
r2 is 126. The loads on the
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rivets due to the couple of 75,000 lb-in are therefore

Q1 ¼ Q2 ¼
ð75;000Þð6:7Þ

126
¼ 3990 lb

Q3 ¼
ð75;000Þð6Þ

126
¼ 3570 lb

These loads act on the rivets in the directions shown. In addition, each rivet is
subjected to a load in the direction of P 0 of P=n ¼ 5000 lb. The resultant load on
each rivet is then found by graphically (or algebraically) solving for the
resultant of Q and P=n as shown. The resultant loads are R1 ¼ R2 ¼ 7670 lb;
R3 ¼ 1430 lb. The maximum shear stress occurs in rivets 1 and 2 and is
t ¼ 7670=0:785 ¼ 9;770 lb=in2.

14.3 Miscellaneous Cases

In most instances, the stress in bodies subjected to direct shear or

pressure is calculated on the basis of simplifying assumptions such as

are made in analyzing a riveted joint. Design is based on rules justified

by experience rather than exact theory, and a full discussion does not

properly come within the scope of this book. However, a brief consid-

eration of a number of cases is given here; a more complete treatment

of these cases may be found in books on machine and structural design

and in the references cited.

Pins and bolts. These are designed on the basis of shear and bearing

stress calculated in the same way as for rivets. In the case of pins

bearing on wood, the allowable bearing stress must be reduced to

provide for nonuniformity of pressure when the length of bolt is more

than five or six times its diameter. When the pressure is inclined to the

grain, the safe load is found by the formula

N ¼
PQ

P sin
2 yþ Q cos2 y

where N is the safe load for the case in question, P is the safe load

applied parallel to the grain, Q is the safe load applied transverse to

the grain, and y is the angle N makes with the direction of the grain

(Ref. 21).

Figure 14.1
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Hollow pins and rollers are thick-walled but can be analyzed as

circular rings by the appropriate use of the formulas of Table 9.2. The

loading is essentially as shown in Fig. 14.2, and the greatest circum-

ferential stresses, which occur at points 1–4, may be found by the

formula

s ¼ K
2p

pb

where p ¼ load=unit length of the pin and the numerical coefficient K

depends on the ratio a=b and has the following values [a plus sign for

K indicates tensile stress and a minus sign compressive stress (Ref.

30)]:

a=b

Point 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

1 �5.0 �5.05 �5.30 �5.80 �7.00 �9.00 �12.9 �21.4

2 þ3.0 þ3.30 þ3.80 þ4.90 þ7.00 þ10.1 þ16.0 þ31.0

3 0 þ0.06 þ0.20 þ1.0 þ1.60 þ3.0 þ5.8 þ13.1

4 þ0.5 þ0.40 0 �0.50 �1.60 �3.8 �8.4 �19.0

For changes in the mean vertical and horizontal diameters see case

1 in Table 9.2. Durelli and Lin in Ref. 59 have made extensive use of

Nelson’s equations for diametrically loaded hollow circular cylinders

from Ref. 60 and present, in graphical form, stress factors and radial

displacements at all angular positions along both inner and outer

boundaries. Results are plotted for the radius ratio a=b from near zero

to 0.92.

Gear teeth. Gear teeth may be investigated by considering the tooth

as a cantilever beam, the critical stress being the tensile bending

stress at the base. This stress can be calculated by the modified

Heywood formula for a very short cantilever beam (Sec. 8.10) or by a

combination of the modified Lewis formula and stress concentration

factor given for case 21 in Table 17.1 (see also Refs. 22–24). The

allowable stress is reduced according to speed of operation by one of

Figure 14.2
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several empirical formulas (Ref. 24). Under certain conditions, the

bearing stress between teeth may become important (especially as this

stress affects wear), and this stress may be calculated by the formula

for case 2b, Table 14.1. The total deformation of the tooth, the result of

direct compression at the point of contact and of beam deflection and

shear, may be calculated by the formula of case 2b and the methods of

Sec. 8.1 (Ref. 23).

Keys. Keys are designed for a total shearing force F ¼ T=r (Fig. 14.3),

where T represents the torque transmitted. The shear stress is

assumed to be uniformly distributed over the horizontal section AB,

and the bearing stress is assumed to be uniformly distributed over half

the face. These assumptions lead to the following formulas: t ¼ F=Lb;

sb ¼ 2F=tL on the sides; and sb ¼ 2Ft=b2L on top and bottom. Here L

is the length of the key; in conventional design 4b < L < 16b. As

usually made, b5 t; hence the bearing stress on the sides is greater

than that on the top and bottom.

Photoelastic analysis of the stresses in square keys shows that the

shear stress is not uniform across the breadth b but is greatest at A

and B, where it may reach a value of from two or four times the

average value (Ref. 25). Undoubtedly the shear stress also varies in

intensity along the length of the key. The bearing stresses on the

surfaces of the key are also nonuniform, that on the sides being

greatest near the common surface of shaft and hub, and that on the

top and bottom being greatest near the corners C and D. When

conservative working stresses are used, however, and the proportions

of the key are such as have been found satisfactory in practice, the

approximate methods of stress calculation that have been indicated

result in satisfactory design.

Fillet welds. These are successfully designed on the basis of uniform

distribution of shear stress on the longitudinal section of least area,

although analysis and tests show that there is considerable variation

in the intensity of shear stress along the length of the fillet (Refs. 26

and 27). (Detailed recommendations for the design of welded struc-

tural joints are given in Ref. 13.)

Figure 14.3
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Screwthreads. The strength of screwthreads is of great importance in

the design of joints, where the load is transferred to a bolt or stud by a

nut. A major consideration is the load distribution. The load is not

transferred uniformly along the engaged thread length; both mathe-

matical analysis and tests show that the maximum load per linear

inch of thread, which occurs near the loaded face of the nut, is several

times as great as the average over the engaged length. This ratio,

called the thread-load concentration factor and denoted by H, is often

2, 3, or even 4 (Ref. 43). The maximum load per linear inch on a

screwthread is therefore the total load divided by the helical length of

the engaged screwthread times H. The maximum stress due to this

loading can be computed by the Heywood–Kelley–Pedersen formula

for a short cantilever, as given in Sec. 8.10. It is important to note that

in some cases the values of kf given in the literature are for loading

through a nut, and so include H, while in other cases (as in rotating-

beam tests) this influence is absent. Because of the combined effects of

reduced area, nonuniform load distribution, and stress concentration,

the efficiency of a bolted joint under reversed repeated loading is likely

to be quite small. In Ref. 28 of Chap. 3, values from 18% (for a

60,000 lb=in2 steel with rolled threads) to 6.6% (for a 200,000 lb=in2

steel with machine-cut threads) are cited.

The design of bolted connections has received much study, and an

extensive discussion and bibliography are given in Heywood (Chap. 3,

Ref. 28) and in some of the papers of Ref. 32 of Chap. 3.
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TABLE 14.1 Formulas for stress and strain due to pressure on or between elastic bodies
NOTATION: P ¼ total load; p ¼ load per unit length; a ¼ radius of circular contact area for case 1; b ¼ width of rectangular contact area for case 2; c ¼ major semiaxis and d ¼ minor semiaxis of

elliptical contact area for cases 3 and 4; y ¼ relative motion of approach along the axis of loading of two points, one in each of the two contact bodies, remote from the contact zone; n ¼ Poisson’s ratio;

E ¼ modulus of elasticity. Subscripts 1 and 2 refer to bodies 1 and 2, respectively. To simplify expressions let

CE ¼
1 � n2

1

E1

þ
1 � n2

2

E2

Conditions and case no. Formulas

1. Sphere
a ¼ 0:721

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PKDCE

3
p

ðscÞmax ¼ 1:5
P

pa2

¼ 0:918

ffiffiffiffiffiffiffiffiffiffiffiffiffi
P

K2
DC2

E

3

s

y ¼ 1:040

ffiffiffiffiffiffiffiffiffiffiffiffiffi
P2C2

E

KD

3

s

If E1 ¼ E2 ¼ E and n1 ¼ n2 ¼ 0:3, then

a ¼ 0:881

ffiffiffiffiffiffiffiffiffiffi
PKD

E

3

r

ðscÞmax ¼ 0:616

ffiffiffiffiffiffiffiffiffiffi
PE2

K2
D

3

s

y ¼ 1:55

ffiffiffiffiffiffiffiffiffiffiffiffiffi
P2

E2KD

3

s

ðstÞmax 
 0:133ðscÞmax radially at the edge of contact area

tmax 
 1
3
ðscÞmax at a point on the load line a distance a=2 below the

contact surface

(Approximate stresses from Refs. 3 and 6)

For graphs of subsurface stress variations see Refs. 6 and 57

1a. Sphere on a flat plate

KD ¼ D2

1b. Sphere on a sphere

KD ¼
D1D2

D1 þ D2

1c. Sphere in a spherical socket

KD ¼
D1D2

D1 � D2

(Note: 50% of y occurs within a distance

of 1.2 times the contact radius a and 90%

within a distance 7a from the contact

zone)
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2. Cylinder of length L large as

compared with D; p ¼ load per

unit length ¼ P=L

b ¼ 1:60
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pKDCE

p
ðscÞmax ¼ 0:798

ffiffiffiffiffiffiffiffiffiffiffiffiffi
p

KDCE

r

If E1 ¼ E2 ¼ E and n1 ¼ n2 ¼ 0:3, then

b ¼ 2:15

ffiffiffiffiffiffiffiffiffiffi
pKD

E

r

ðscÞmax ¼ 0:591

ffiffiffiffiffiffiffi
pE

KD

s

For a cylinder between two flat plates

DD2 ¼
4pð1 � n2Þ

pE

1

3
þ ln

2D

b

� �
Refs: 5 and 44

For a cylinder on a cylinder the distance between centers is reduced by

2pð1 � n2Þ

pE

2

3
þ ln

2D1

b
þ ln

2D2

b

� �
Ref: 31

For graphs of subsurface stress variations see Refs. 6 and 56

2a. Cylinder on a flat plate

KD ¼ D2

tmax 
 1
3
ðscÞmax at a depth of 0:4b below the surface

of the plane

2b. Cylinder on a cylinder

KD ¼
D1D2

D1 þ D2

2c. Cylinder in a cylindrical socket

KD ¼
D1D2

D1 � D2

3. Cylinder on a cylinder; axes at

right angles c ¼ a 3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PKDCE

p
KD ¼

D1D2

D1 þ D2

and a; b; and l depend upon
D1

D2

as shown

d ¼ b 3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PKDCE

p
ðscÞmax ¼

1:5P

pcd

y ¼ l 3

ffiffiffiffiffiffiffiffiffiffiffiffiffi
P2C2

E

KD

s

tmax ¼ 1
3
ðscÞmax

D1=D2 1 1.5 2 3 4 6 10

a 0.908 1.045 1.158 1.350 1.505 1.767 2.175

b 0.908 0.799 0.732 0.651 0.602 0.544 0.481

l 0.825 0.818 0.804 0.774 0.747 0.702 0.641

S
E
C
.
1
4
.4
]

B
o
d
ie
s
u
n
d
e
r
D
ire
c
t
B
e
a
rin
g
a
n
d
S
h
e
a
r
S
tre
s
s

7
0
3

TABLE 14.1 Formulas for stress and strain due to pressure on or between elastic bodies (Continued)



TABLE 14.1 Formulas for stress and strain due to pressure on or between elastic bodies (Continued)

Conditions and case no. Formulas

4. General case of two bodies in

contact; P ¼ total load

At point of contact minimum and maximum radii of curvature are R1 and R0
1 for body 1, and R2 and R0

2 for body 2. Then 1=R1 and 1=R0
1 are principal curvatures

of body 1, and 1=R2 and 1=R0
2 of body 2; and in each body the principal curvatures are mutually perpendicular. The radii are positive if the center of curvature

lies within the given body, i.e., the surface is convex, and negative otherwise. The plane containing curvature 1=R1 in body 1 makes with the plane containing

curvature 1=R2 in body 2 the angle f. Then:

c ¼ a 3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PKDCE

p
d ¼ b 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PKDCE

p
ðscÞmax ¼

1:5P

pcd
and y ¼ l 3

ffiffiffiffiffiffiffiffiffiffiffiffiffi
P2C2

E

KD

s
where KD ¼

1:5

1=R1 þ 1=R2 þ 1=R0
1 þ 1=R0

2

and a, b, and l are given by the following table in which

cos y ¼
KD

1:5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

R1

�
1

R0
1

� �2

þ
1

R2

�
1

R0
2

� �2

þ2
1

R1

�
1

R0
1

� �
1

R2

�
1

R0
2

� �
cos 2f

s

(Ref. 8)

5. Rigid knife-edge across edge of

semi-infinite plate; load p ¼ P=t

where t is plate thickness

At any point Q.

sc ¼
2p cos y

pr
in the direction of the radius r

(Ref. 6)

6. Rigid block of width 2b across

edge of semi-infinite plate; load

p ¼ P=t where t is plate thick-

ness

At any point Q on surface of contact,

sc ¼
p

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � x2

p

(For loading on block of finite width and influence of distance of load from corner see Ref. 45)

(Ref. 6)

cos y 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.75 0.80 0.85 0.90 0.92 0.94 0.96 0.98 0.99

a 1.000 1.070 1.150 1.242 1.351 1.486 1.661 1.905 2.072 2.292 2.600 3.093 3.396 3.824 4.508 5.937 7.774

b 1.000 0.936 0.878 0.822 0.769 0.717 0.664 0.608 0.578 0.544 0.507 0.461 0.438 0.412 0.378 0.328 0.287

l 0.750 0.748 0.743 0.734 0.721 0.703 0.678 0.644 0.622 0.594 0.559 0.510 0.484 0.452 0.410 0.345 0.288
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7. Uniform pressure q over length

L across edge of semi-infinite

plate

At any point O1 outside loaded area; y ¼
2q

pE
ðL þ x1Þ ln

d

L þ x1

� x1 ln
d

x1


 �
þ qL

1 � n
pE

At any point O2 inside loaded area; y ¼
2q

pE
ðL � x2Þ ln

d

L � x2

þ x2 ln
d

x2


 �
þ qL

1 � n
pE

where y ¼ deflection relative to a remote point A a distance d from edge of loaded area

At any point Q,

sc ¼ 0:318qðaþ sin aÞ

t ¼ 0:318q sin a ðRef: 6Þ

8. Rigid cylindrical die of radius R

on surface of semi-infinite body;

total load P

y ¼
Pð1 � n2Þ

2RE

At any point Q on surface of contact sc ¼
P

2pR
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � r2

p

ðscÞmax ¼ 1 at edge ðtheoreticallyÞ

ðscÞmin ¼
P

2pR2
at center ðRef: 6Þ

9. Uniform pressure q over circular

area of radius R on surface of

semi-infinite body

ymax ¼
2qRð1 � n2Þ

E
at center

y at edge ¼
4qRð1 � n2Þ

pE

tmax ¼ 0:33q at point 0:638R below center of loaded area

10. Uniform pressure q over square

area of sides 2b on the surface of

semi-infinite body

ymax ¼
2:24qbð1 � n2Þ

E
at center

y ¼
1:12qbð1 � n2Þ

E
at corners

yaverage ¼
1:90qbð1 � n2Þ

E
ðRef: 6Þ
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Chapter

15
Elastic Stability

15.1 General Considerations

Failure through elastic instability has been discussed briefly in Sec.

3.13, where it was pointed out that it may occur when the bending or

twisting effect of an applied load is proportional to the deformation it

produces. In this chapter, formulas for the critical load or critical unit

stress at which such failure occurs are given for a wide variety of

members and conditions of loading.

Such formulas can be derived mathematically by integrating the

differential equation of the elastic curve or by equating the strain

energy of bending to the work done by the applied load in the

corresponding displacement of its point of application, the form of

the elastic curve being assumed when unknown. Of all possible forms

of the curve, that which makes the critical load a minimum is the

correct one; but almost any reasonable assumption (consistent with

the boundary conditions) can be made without gross error resulting,

and for this reason the strain-energy method is especially adapted to

the approximate solution of difficult cases. A very thorough discussion

of the general problem, with detailed solutions of many specified cases,

is given in Timoshenko and Gere (Ref. 1), from which many of the

formulas in this chapter are taken. Formulas for many cases are also

given in Refs. 35 and 36; in addition Ref. 35 contains many graphs of

numerically evaluated coefficients.

At one time, most of the problems involving elastic stability were of

academic interest only since engineers were reluctant to use compres-

sion members so slender as to fail by buckling at elastic stresses and

danger of corrosion interdicted the use of very thin material in exposed

structures. The requirements for minimum-weight construction in

the fields of aerospace and transportation, however, have given great



impetus to the theoretical and experimental investigation of elastic

stability and to the use of parts for which it is a governing design

consideration.

There are certain definite advantages in lightweight construction, in

which stability determines strength. One is that since elastic buckling

may occur without damage, part of a structure—such as the skin of an

airplane wing or web of a deep beam—may be used safely at loads that

cause local buckling, and under these circumstances the resistance

afforded by the buckled part is definitely known. Furthermore,

members such as Euler columns may be loaded experimentally to

their maximum capacity without damage or permanent deformation

and subsequently incorporated in a structure.

15.2 Buckling of Bars

In Table 15.1, formulas are given for the critical loads on columns,

beams, and shafts. In general, the theoretical values are in good

agreement with test results as long as the assumed conditions are

reasonably well-satisfied. It is to be noted that even slight changes in

the amount of end constraint have a marked effect on the critical

loads, and therefore it is important that such constraint be closely

estimated. Slight irregularities in form and small accidental eccentri-

cities are less likely to be important in the case of columns than in the

case of thin plates. For latticed columns or columns with tie plates, a

reduced value of E may be used, calculated as shown in Sec. 12.3.

Formulas for the elastic buckling of bars may be applied to conditions

under which proportional limit is exceeded if a reduced value of E

corresponding to the actual stress is used (Ref. 1), but the procedure

requires a stress-strain diagram for the material and, in general, is not

practical.

In Table 15.1, cases 1–3, the tabulated buckling coefficients are

worked out for various combinations of concentrated and distributed

axial loads. Tensile end loads are included so that the effect of axial

end restraint under axial loading within the column length can be

considered (see the example at the end of this section). Carter and

Gere (Ref. 46) present graphs of buckling coefficients for columns with

single tapers for various end conditions, cross sections, and degrees of

taper. Culver and Preg (Ref. 47) investigate and tabulate buckling

coefficients for singly tapered beam-columns in which the effect of

torsion, including warping restraint, is considered for the case where

the loading is by end moments in the stiffer principal plane.

Kitipornchai and Trahair describe (Ref. 55) the lateral stability of

singly tapered cantilever and doubly tapered simple I-beams, includ-

ing the effect of warping restraint; experimental results are favorably

compared with numerical solutions. Morrison (Ref. 57) considers the
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effect of lateral restraint of the tensile flange of a beam under lateral

buckling; example calculations are presented. Massey and McGuire

(Ref. 54) present graphs of buckling coefficients for both stepped and

tapered cantilever beams; good agreement with experiments is

reported. Tables of lateral stability constants for laminated timber

beams are presented in Fowler (Ref. 53) along with two design

examples.

Clark and Hill (Ref. 52) derive a general expression for the lateral

stability of unsymmetrical I-beams with boundary conditions based on

both bending and warping supports; tables of coefficients as well as

nomographs are presented. Anderson and Trahair (Ref. 56) present

tabulated lateral buckling coefficients for uniformly loaded and end-

loaded cantilevers and center- and uniformly loaded simply supported

beams having unsymmetric I-beam cross sections; favorable compari-

sons are made with extensive tests on cantilever beams.

The Southwell plot is a graph in which the lateral deflection of a

column or any other linearly elastic member undergoing a manner of

loading which will produce buckling is plotted versus the lateral

deflection divided by the load; the slope of this line gives the critical

load. For columns and some frameworks, significant deflections do

occur within the range where small-deflection theory is applicable. If

the initial imperfections are such that experimental readings of lateral

deflection must be taken beyond the small-deflection region, then the

Southwell procedure is not adequate. Roorda (Ref. 93) discusses the

extension of this procedure into the nonlinear range.

Bimetallic beams. Burgreen and Manitt (Ref. 48) and Burgreen and

Regal (Ref. 49) discuss the analysis of bimetallic beams and point out

some of the difficulties in predicting the snap-through instability of

these beams under changes in temperature. The thermal expansion of

the support structure is an important design factor.

Rings and arches. Austin (Ref. 50) tabulates in-plane buckling coeffi-

cients for circular, parabolic, and catenary arches for pinned and fixed

ends as well as for the three-hinged case; he considers cases where the

cross section varies with the position in the span as well as the usual

case of a uniform cross section. Uniform loads, unsymmetric distrib-

uted loads, and concentrated center loads are considered, and the

stiffening effect of tying the arch to the girder with columns is also

evaluated. (The discussion referenced with the paper gives an exten-

sive bibliography of work on arch stability.)

A thin ring shrunk by cooling and inserted into a circular cavity

usually will yield before buckling unless the radius=thickness ratio is

very large and the elastic-limit stress is high. Chicurel (Ref. 51)
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derives approximate solutions to this problem when the effect of

friction is considered. He suggests a conservative expression for the

no-friction condition: Po=AE ¼ 2:67ðk=rÞ1:2, where Po is the prebuck-

ling hoop compressive force, A is the hoop cross-sectional area, E is the

modulus of elasticity, k is the radius of gyration of the cross section,

and r is the radius of the ring.

EXAMPLE

A 4-in steel pipe is to be used as a column to carry 8000 lb of transformers
centered axially on a platform 20 ft above the foundation. The factor of safety
FS is to be determined for the following conditions, based on elastic buckling of
the column.

(a) The platform is supported only by the pipe fixed at the foundation.

(b) A 3 1
2
-in steel pipe is to be slipped into the top of the 4-in pipe a distance of

4 in, welded in place, and extended 10 ft to the ceiling above, where it will
extend through a close-fitting hole in a steel plate.

(c) This condition is the same as in (b) except that the 3 1
2
-in pipe will be welded

solidly into a heavy steel girder passing 10 ft above the platform.

Solution. A 4-in steel pipe has a cross-sectional area of 3:174 in
2

and a
bending moment of inertia of 7:233 in

4
. For a 3 1

2
-in pipe these are 2:68 in

2
and

4:788 in
4
, respectively.

(a) This case is a column fixed at the bottom and free at the top with an end
load only. In Table 15.1, case la, for I2=I1 ¼ 1:00 and P2=P1 ¼ 0, K1 is given
as 0.25. Therefore,

P 0
1 ¼ 0:25

p230ð106Þð7:233Þ

2402
¼ 9295 lb

FS ¼
9295

8000
¼ 1:162

(b) This case is a column fixed at the bottom and pinned at the top with a load
at a distance of two-thirds the 30-ft length from the bottom: I1 ¼ 4:788 in

4
,

I2 ¼ 7:233 in
4
, and I2=I1 ¼ 1:511. In Table 15.1, case 2d, for E2I2=E1I1 ¼ 1:5,

P1=P2 ¼ 0, and a=l ¼ 2
3
, K2 is given as 6.58. Therefore,

P 0
2 ¼ 6:58

p230ð106Þð4:788Þ

3602
¼ 72;000 lb

FS ¼
72;000

8000
¼ 9

(c) This case is a column fixed at both ends and subjected to an upward load on
top and a downward load at the platform. The upward load depends to
some extent on the stiffness of the girder to which the top is welded, and so
we can only bracket the actual critical load. If we assume the girder is
infinitely rigid and permits no vertical deflection of the top, the elongation
of the upper 10 ft would equal the reduction in length of the lower 20 ft.
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Equating these deformations gives

P1ð10Þð12Þ

2:68ð30Þð106Þ
¼

ðP2 � P1Þð20Þð12Þ

3:174ð30Þð106Þ
or P1 ¼ 0:628P2

From Table 15.1, case 2e, for E2I2=E1I1 ¼ 1:5 and a=l ¼ 2
3
, we find the following

values of K2 for the several values of P1=P2:

P1=P2 0 0.125 0.250 0.375 0.500

K2 8.34 9.92 12.09 15.17 19.86

By extrapolation, for P1=P2 ¼ 0:628, K2 ¼ 26:5.
If we assume the girder provides no vertical load but does prevent rotation

of the top, then K2 ¼ 8:34. Therefore, the value of P2 ranges from 91,200
to 289,900 lb, and the factor of safety lies between 11.4 and 36.2. A reason-
able estimate of the rotational and vertical stiffness of the girder will allow a
good estimate to be made of the actual factor of safety from the values
calculated.

15.3 Buckling of Flat and Curved Plates

In Table 15.2, formulas are given for the critical loads and critical

stresses on plates and thin-walled members. Because of the greater

likelihood of serious geometrical irregularities and their greater rela-

tive effect, the critical stresses actually developed by such members

usually fall short of the theoretical values by a wider margin than in

the case of bars. The discrepancy is generally greater for pure

compression (thin tubes under longitudinal compression or external

pressure) than for tension and compression combined (thin tubes

under torsion or flat plates under edge shear), and increases with

the thinness of the material. The critical stress or load indicated by

any one of the theoretical formulas should therefore be regarded as an

upper limit, approached more or less closely according to the closeness

with which the actual shape of the member approximates the geo-

metrical form assumed. In Table 15.2, the approximate discrepancy to

be expected between theory and experiment is indicated wherever the

data available have made this possible.

Most of the theoretical analyses of the stability of plates and shells

require a numerical evaluation of the resulting equations. Considering

the variety of shapes and combinations of shapes as well as the

multiplicity of boundary conditions and loading combinations, it is

not possible in the limited space available to present anything like a

comprehensive coverage of plate and shell buckling. As an alternative,

Table 15.2 contains many of the simpler loadings and shapes. The

following paragraphs and the References contain some, but by no

means all, of the more easily acquired sources giving results in tabular
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or graphic form that can be applied directly to specific problems. See

also Refs. 101–104, and 109–111.

Rectangular plates. Stability coefficients for orthotropic rectangular

plates with several combinations of boundary conditions and several

ratios of the bending stiffnesses parallel to the sides of the plate are

tabulated in Shuleshko (Ref. 60); these solutions were obtained by

reducing the problem of plate buckling to that of an isotropic bar that

is in a state of vibration and under tension. Srinivas and Rao (Ref. 63)

evaluate the effect of shear deformation on the stability of simply

supported rectangular plates under edge loads parallel to one side; the

effect becomes noticeable for h=b > 0:05 and is greatest when the

loading is parallel to the short side.

Skew plates. Ashton (Ref. 61) and Durvasula (Ref. 64) consider the

buckling of skew (parallelogram) plates under combinations of edge

compression, edge tension, and edge shear. Since the loadings eval-

uated are generally parallel to orthogonal axes and not to both sets of

the plate edges, we would not expect to find the particular case desired

represented in the tables of coefficients; the general trend of results is

informative.

Circular plates. Vijayakumar and Joga Rao (Ref. 58) describe a tech-

nique for solving for the radial buckling loads on a polar orthotropic

annular plate. They give graphs of stability coefficients for a wide

range of rigidity ratios and for the several combinations of free, simply

supported, and fixed inner and outer edges for the radius ratio (outer

to inner) 2 : 1. Two loadings are presented: outer edge only under uni-

form compression and inner and outer edges under equal uniform

compression.

Amon and Widera (Ref. 59) present graphs showing the effect of an

edge beam on the stability of a circular plate of uniform thickness.

Sandwich plates. There is a great amount of literature on the subject

of sandwich construction. References 38 and 100 and the publications

listed in Ref. 39 provide initial sources of information.

15.4 Buckling of Shells

Baker, Kovalevsky, and Rish (Ref. 97) discuss the stability of unstif-

fened orthotropic composite, stiffened, and sandwich shells. They

represent data based on theory and experiment which permit the

designer to choose a loading or pressure with a 90% probability of no
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stability failure; the work is extensively referenced. For similar

collected data see Refs. 41 and 42.

Stein (Ref. 95) discusses some comparisons of theory with experi-

mentation in shell buckling. Rabinovich (Ref. 96) describes in some

detail the work in structural mechanics, including shell stability, in

the U.S.S.R. from 1917 to 1957.

In recent years, there have been increasing development and appli-

cation of the finite-element method for the numerical solution of shell

problems. Navaratna, Pian, and Witmer (Ref. 94) describe a finite-

element method of solving axisymmetric shell problems where the

element considered is either a conical frustum or a frustum with a

curved meridian; examples are presented of cylinders with uniform or

tapered walls under axial load, a truncated hemisphere under axial

tension, and a conical shell under torsion. Bushnell (Ref. 99) presents

a very general finite-element program for shell analysis and Perrone

(Ref. 98) gives a compendium of such programs. See also Refs. 101 to

108.

Cylindrical and conical shells. In general, experiments to determine

the axial loads required to buckle cylindrical shells yield results that

are between one-half and three-fourths of the classical buckling loads

predicted by theory. The primary causes of these discrepancies are the

deviations from a true cylindrical form in most manufactured vessels

and the inability to accurately define the boundary conditions. Hoff

(Refs. 67 and 68) shows that removing the in-plane shear stress at the

boundary of a simply supported cylindrical shell under axial compres-

sion can reduce the theoretical buckling load by a factor of 2 from that

predicted by the more usual boundary conditions associated with a

simply supported edge. Baruch, Harari, and Singer (Ref. 84) find

similar low-buckling loads for simply supported conical shells under

axial load but for a different modification of the boundary support.

Tani and Yamaki (Ref. 83) carry out further work on this problem,

including the effect of clamped edges.

The random nature of manufacturing deviations leads to the use of

the statistical approach, as mentioned previously (Ref. 97) and as

Hausrath and Dittoe have done for conical shells (Ref. 77). Weingar-

ten, Morgan, and Seide (Ref. 80) have developed empirical expressions

for lower bounds of stability coefficients for cylindrical and conical

shells under axial compression with references for the many data they

present.

McComb, Zender, and Mikulas (Ref. 44) discuss the effects of

internal pressure on the bending stability of very thin-walled cylind-

rical shells. Internal pressure has a stabilizing effect on axially and=or

torsionally loaded cylindrical and conical shells. This subject is
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discussed in several references: Seide (Ref. 75), Weingarten (Ref. 76),

and Weingarten, Morgan, and Seide (Ref. 82) for conical and cylind-

rical shells; Ref. 97 contains much information on this subject as well.

Axisymmetric snap-buckling of conical shells is discussed by

Newman and Reiss (Ref. 73), which leads to the concept of the

Belleville spring for the case of shallow shells. (See also Sec. 11.8.)

External pressure as a cause of buckling is examined by Singer (Ref.

72) for cones and by Newman and Reiss (Ref. 73) and Yao and Jenkins

(Ref. 69) for elliptic cylinders. External pressure caused by preten-

sioned filament winding on cylinders is analyzed by Mikulas and Stein

(Ref. 66); they point out that material compressibility in the thickness

direction is important in this problem.

The combination of external pressure and axial loads on cylindrical

and conical shells is very thoroughly examined and referenced by

Radkowski (Ref. 79) and Weingarten and Seide (Ref. 81). The

combined loading on orthotropic and stiffened conical shells is

discussed by Singer (Ref. 74).

Attempts to manufacture nearly perfect shells in order to test the

theoretical results have led to the construction of thin-walled shells by

electroforming; Sendelbeck and Singer (Ref. 85) and Arbocz and

Babcock (Ref. 91) describe the results of such tests.

A very thorough survey of buckling theory and experimentation for

conical shells of constant thickness is presented by Seide (Ref. 78).

Spherical shells. Experimental work is described by Loo and Evan-

Iwanowski on the effect of a concentrated load at the apex of a

spherical cap (Ref. 90) and the effect of multiple concentrated loads

(Ref. 89). Carlson, Sendelbeck, and Hoff (Ref. 70) report on the

experimental study of buckling of electroformed complete spherical

shells; they report experimental critical pressures of up to 86% of those

predicted by theory and the correlation of flaws with lower test

pressures.

Burns (Ref. 92) describes tests of static and dynamic buckling of thin

spherical caps due to external pressure; both elastic and plastic

buckling are considered and evaluated in these tests. Wu and Cheng

(Ref. 71) discuss in detail the buckling due to circumferential hoop

compression which is developed when a truncated spherical shell is

subjected to an axisymmetric tensile load.

Toroidal shells. Stein and McElman (Ref. 86) derive nonlinear equa-

tions of equilibrium and buckling equations for segments of toroidal

shells; segments that are symmetric with the equator are considered

for both inner and outer diameters, as well as segments centered at

the crown. Sobel and Flügge (Ref. 87) tabulate and graph the mini-
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mum buckling external pressures on full toroidal shells. Almroth,

Sobel, and Hunter (Ref. 88) compare favorably the theory in Ref. 87

with experiments they performed.

Corrugated tubes or bellows. An instability can develop when a corru-

gated tube or bellows is subjected to an internal pressure with the

ends partially or totally restrained against axial displacement. (This

instability can also occur in very long cylindrical vessels under similar

restraints.) For a discussion and an example of this effect, see Sec.

13.5.
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TABLE 15.1 Formulas for elastic stability of bars, rings, and beams
NOTATION: P0 ¼ critical load (force); p0 ¼ critical unit load (force per unit length); T 0 ¼ critical torque (force-length); M 0 ¼ critical bending moment

(force-length); E ¼ modulus of elasticity (force per unit area); and I ¼ moment of inertia of cross section about central axis perpendicular to plane of

buckling

Reference number, form of bar, and manner of loading and support

1a. Stepped straight bar under end load P1 and intermediate load P2; upper end free, lower end fixed P0
1 ¼ K1

p2E1I1

l2
where K1 is tabulated below

E2I2=E1I1 1.000 1.500 2.000

a=l
1
6

1
3

1
2

2
3

5
6

1
6

1
3

1
2

2
3

5
6

1
6

1
3

1
2

2
3

5
6

P2=P1

0.0 0.250 0.250 0.250 0.250 0.250 0.279 0.312 0.342 0.364 0.373 0.296 0.354 0.419 0.471 0.496

0.5 0.249 0.243 0.228 0.208 0.187 0.279 0.306 0.317 0.306 0.279 0.296 0.350 0.393 0.399 0.372

1.0 0.248 0.237 0.210 0.177 0.148 0.278 0.299 0.295 0.261 0.223 0.296 0.345 0.370 0.345 0.296

2.0 0.246 0.222 0.178 0.136 0.105 0.277 0.286 0.256 0.203 0.158 0.295 0.335 0.326 0.267 0.210

4.0 0.242 0.195 0.134 0.092 0.066 0.274 0.261 0.197 0.138 0.099 0.294 0.314 0.257 0.184 0.132

8.0 0.234 0.153 0.088 0.056 0.038 0.269 0.216 0.132 0.084 0.057 0.290 0.266 0.174 0.112 0.076

1b. Stepped straight bar under end load P1 and intermediate load P2; both ends pinned P 0
1 ¼ K1

p2E1I1

l2
where K1 is tabulated below

E2I2=E1I1 1.000 1.500 2.000

a=l
1
6

1
3

1
2

2
3

5
6

1
6

1
3

1
2

2
3

5
6

1
6

1
3

1
2

2
3

5
6

P2=P1

0.0 1.000 1.000 1.000 1.000 1.000 1.010 1.065 1.180 1.357 1.479 1.014 1.098 1.297 1.633 1.940

0.5 0.863 0.806 0.797 0.789 0.740 0.876 0.872 0.967 1.091 1.098 0.884 0.908 1.069 1.339 1.452

1.0 0.753 0.672 0.663 0.646 0.584 0.769 0.736 0.814 0.908 0.870 0.776 0.769 0.908 1.126 1.153

2.0 0.594 0.501 0.493 0.473 0.410 0.612 0.557 0.615 0.676 0.613 0.621 0.587 0.694 0.850 0.814

4.0 0.412 0.331 0.325 0.307 0.256 0.429 0.373 0.412 0.442 0.383 0.438 0.397 0.470 0.566 0.511

8.0 0.254 0.197 0.193 0.180 0.147 0.267 0.225 0.248 0.261 0.220 0.272 0.240 0.284 0.336 0.292

15.5 Tables 7
1
8

F
o
rm

u
la
s
fo
r
S
tre

s
s
a
n
d
S
tra

in
[C
H
A
P
.
1
5



1c. Stepped straight bar under end load P1 and intermediate load P2; upper end guided, lower end fixed P 0
1 ¼ K1

p2E1I1

l2
where K1 is tabulated below

E2I2=E1I1 1.000 1.500 2.000

a=l
1
6

1
3

1
2

2
3

5
6

1
6

1
3

1
2

2
3

5
6

1
6

1
3

1
2

2
3

5
6

P2=P1

0.0 1.000 1.000 1.000 1.000 1.000 1.113 1.208 1.237 1.241 1.309 1.184 1.367 1.452 1.461 1.565

0.5 0.986 0.904 0.792 0.711 0.672 1.105 1.117 1.000 0.897 0.885 1.177 1.288 1.192 1.063 1.063

1.0 0.972 0.817 0.650 0.549 0.507 1.094 1.026 0.830 0.697 0.669 1.171 1.206 1.000 0.832 0.805

2.0 0.937 0.671 0.472 0.377 0.339 1.073 0.872 0.612 0.482 0.449 1.156 1.047 0.745 0.578 0.542

4.0 0.865 0.480 0.304 0.231 0.204 1.024 0.642 0.397 0.297 0.270 1.126 0.794 0.486 0.358 0.327

8.0 0.714 0.299 0.176 0.130 0.114 0.910 0.406 0.232 0.169 0.151 1.042 0.511 0.284 0.203 0.182

1d. Stepped straight bar under end load P1 and intermediate load P2; upper end pinned, lower end fixed P 0
1 ¼ K1

p2E1I1

l2
where K1 is tabulated below

E2I2=E1I1 1.000 1.500 2.000

a=l
1
6

1
3

1
2

2
3

5
6

1
6

1
3

1
2

2
3

5
6

1
6

1
3

1
2

2
3

5
6

P2=P1

0.0 2.046 2.046 2.046 2.046 2.046 2.241 2.289 2.338 2.602 2.976 2.369 2.503 2.550 2.983 3.838

0.5 1.994 1.814 1.711 1.700 1.590 2.208 2.071 1.991 2.217 2.344 2.344 2.286 2.196 2.570 3.066

1.0 1.938 1.613 1.464 1.450 1.290 2.167 1.869 1.727 1.915 1.918 2.313 2.088 1.915 2.250 2.525

2.0 1.820 1.300 1.130 1.111 0.933 2.076 1.535 1.355 1.506 1.390 2.250 1.742 1.518 1.796 1.844

4.0 1.570 0.918 0.773 0.753 0.594 1.874 1.107 0.941 1.042 0.891 2.097 1.277 1.065 1.270 1.184

8.0 1.147 0.569 0.469 0.454 0.343 1.459 0.697 0.582 0.643 0.514 1.727 0.812 0.664 0.796 0.686
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TABLE 15.1 Formulas for elastic stability of bars, rings, and beams (Continued)

Reference number, form of bar, and manner of loading and support

1e. Stepped straight bar under end load P1 and intermediate load P2; both ends fixed P0
1 ¼ K1

p2E1I1

l2
where K1 is tabulated below

E2I2=E1I1 1.000 1.500 2.000

a=l
1
6

1
3

1
2

2
3

5
6

1
6

1
3

1
2

2
3

5
6

1
6

1
3

1
2

2
3

5
6

P2=P1

0.0 4.000 4.000 4.000 4.000 4.000 4.389 4.456 4.757 5.359 5.462 4.657 4.836 5.230 6.477 6.838

0.5 3.795 3.298 3.193 3.052 2.749 4.235 3.756 3.873 4.194 3.795 4.545 4.133 4.301 5.208 4.787

1.0 3.572 2.779 2.647 2.443 2.094 4.065 3.211 3.254 3.411 2.900 4.418 3.568 3.648 4.297 3.671

2.0 3.119 2.091 1.971 1.734 1.414 3.679 2.459 2.459 2.452 1.968 4.109 2.766 2.782 3.136 2.496

4.0 2.365 1.388 1.297 1.088 0.857 2.921 1.659 1.649 1.555 1.195 3.411 1.882 1.885 2.008 1.523

8.0 1.528 0.826 0.769 0.623 0.479 1.943 1.000 0.992 0.893 0.671 2.334 1.138 1.141 1.158 0.854

2a. Stepped straight bar under end load P1 and intermediate load P2; upper end free, lower end fixed P0
2 ¼ K2

p2E1I1

l2
where K2 is tabulated below

E2I2=E1I1 1.000 1.500 2.000

a=l
1
6

1
3

1
2

2
3

5
6

1
6

1
3

1
2

2
3

5
6

1
6

1
3

1
2

2
3

5
6

P1=P2

0 9.00 2.25 1.00 0.56 0.36 13.50 3.38 1.50 0.84 0.54 18.00 4.50 2.00 1.13 0.72

0.125 15.55 3.75 1.48 0.74 0.44 21.87 5.36 2.19 1.11 0.65 27.98 6.92 2.89 1.48 0.87

0.250 21.33 5.30 2.19 1.03 0.55 29.51 7.36 3.13 1.53 0.82 37.30 9.31 4.02 2.02 1.10

0.375 29.02 7.25 3.13 1.52 0.74 39.89 9.97 4.37 2.21 1.10 50.10 12.52 5.52 2.86 1.46

0.500 40.50 10.12 4.46 2.31 1.08 55.66 13.92 6.16 3.28 1.60 69.73 17.43 7.73 4.18 2.12
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2b. Stepped straight bar under tensile end load P1 and intermediate load P2; both ends pinned P0
2 ¼ K2

p2E1I1

l2
where K2 is tabulated below

E2I2=E1I1 1.000 1.500 2.000

a=l
1
6

1
3

1
2

2
3

5
6

1
6

1
3

1
2

2
3

5
6

1
6

1
3

1
2

2
3

5
6

P1=P2

0 2.60 1.94 1.89 1.73 1.36 2.77 2.24 2.47 2.54 2.04 2.86 2.41 2.89 3.30 2.72

0.125 3.51 2.49 2.43 2.14 1.62 3.81 2.93 3.26 3.18 2.43 3.98 3.21 3.89 4.19 3.24

0.250 5.03 3.41 3.32 2.77 1.99 5.63 4.15 4.64 4.15 2.99 5.99 4.65 5.75 5.52 3.98

0.375 7.71 5.16 4.96 3.76 2.55 8.98 6.61 7.26 5.63 3.82 9.80 7.67 9.45 7.50 5.09

0.500 12.87 9.13 8.00 5.36 3.48 15.72 12.55 12.00 7.96 5.18 17.71 15.45 16.00 10.54 6.87

2c. Stepped straight bar under tensile end load P1 and intermediate load P2; upper end guided, lower end fixed P0
2 ¼ K2

p2E1I1

l2
where K2 is tabulated below

E2I2=E1I1 1.000 1.500 2.000

a=l
1
6

1
3

1
2

2
3

5
6

1
6

1
3

1
2

2
3

5
6

1
6

1
3

1
2

2
3

5
6

P1=P2

0 10.40 3.08 1.67 1.19 1.03 14.92 4.23 2.21 1.55 1.37 19.43 5.37 2.73 1.88 1.65

0.125 15.57 4.03 2.03 1.40 1.18 21.87 5.57 2.71 1.82 1.57 27.98 7.07 3.36 2.21 1.90

0.250 21.33 5.37 2.54 1.67 1.38 29.52 7.40 3.42 2.20 1.84 37.32 9.34 4.26 2.68 2.24

0.375 29.02 7.26 3.31 2.08 1.67 39.90 9.97 4.50 2.76 2.24 50.13 12.53 5.61 3.39 2.73

0.500 40.51 10.12 4.53 2.72 2.10 55.69 13.91 6.21 3.66 2.84 69.76 17.43 7.76 4.52 3.47
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TABLE 15.1 Formulas for elastic stability of bars, rings, and beams (Continued)

Reference number, form of bar, and manner of loading and support

2d. Stepped straight bar under tensile end load P1 and intermediate load P2; upper end pinned, lower end fixed P 0
2 ¼ K2

p2E1I1

l2
where K2 is tabulated below

E2I2=E1I1 1.000 1.500 2.000

a=l
1
6

1
3

1
2

2
3

5
6

1
6

1
3

1
2

2
3

5
6

1
6

1
3

1
2

2
3

5
6

P1=P2

0 13.96 5.87 4.80 4.53 3.24 18.66 7.33 6.04 6.58 4.86 23.26 8.64 6.98 8.40 6.48

0.125 20.21 7.93 6.50 5.84 3.91 27.12 10.12 8.43 8.71 5.86 33.71 12.06 9.92 11.51 7.81

0.250 28.58 11.35 9.64 7.68 4.87 38.32 14.82 13.13 11.50 7.27 47.36 17.85 15.96 15.30 9.65

0.375 41.15 17.64 15.82 10.15 6.26 55.43 23.67 23.44 14.96 9.30 68.40 28.88 30.65 19.66 12.28

0.500 62.90 31.73 23.78 13.58 8.42 85.64 44.28 34.97 19.80 12.40 106.27 55.33 45.81 25.83 16.27

2e. Stepped straight bar under tensile end load P1 and intermediate load P2; both ends fixed P 0
2 ¼ K2

p2E1I1

l2
where K2 is tabulated below

E2I2=E1I1 1.000 1.500 2.000

a=l
1
6

1
3

1
2

2
3

5
6

1
6

1
3

1
2

2
3

5
6

1
6

1
3

1
2

2
3

5
6

P1=P2

0 16.19 8.11 7.54 5.79 4.34 21.06 9.93 9.89 8.34 6.09 25.75 11.44 11.55 10.87 7.78

0.125 21.83 10.37 9.62 6.86 5.00 28.74 12.93 13.03 9.92 7.05 35.28 15.06 15.55 12.96 9.01

0.250 30.02 14.09 12.86 8.34 5.91 39.81 17.99 18.36 12.09 8.35 48.88 21.25 22.98 15.79 10.69

0.375 42.72 20.99 17.62 10.47 7.19 57.14 27.66 26.02 15.17 10.20 70.23 33.29 34.36 19.79 13.11

0.500 64.94 36.57 24.02 13.70 9.16 86.23 50.39 35.09 19.86 13.07 102.53 61.71 45.87 25.86 16.85
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3a. Uniform straight bar under end load P and a uniformly distributed load p over a lower portion of the length; several end conditions. ðpaÞ0 ¼ K
p2EI

l2
where K is tabulated below (a negative value

for P=pa means the end load is tensile)

End

conditions

Upper end free,

lower end fixed
Both ends pinned

Upper end

pinned, lower

end fixed

Both ends

fixed

a=l
1
4

1
2

3
4

1 1
4

1
2

3
4

1 1
4

1
2

3
4

1 1
4

1
2

3
4

1

P=pa

� 0.25 11.31 5.18 2.38 9.03 5.32 4.25 3.30 27.9 17.4 11.3 31.3 19.4 13.4

0.00 12.74 3.185 1.413 0.795 3.52 2.53 2.22 1.88 22.2 9.46 7.13 5.32 25.3 13.0 9.78 7.56

0.25 0.974 0.825 0.614 0.449 1.97 1.59 1.46 1.30 6.83 4.70 3.98 3.30 11.2 7.50 6.25 5.20

0.50 0.494 0.454 0.383 0.311 1.34 1.15 1.08 0.98 3.76 3.03 2.71 2.37 6.75 5.18 4.54 3.94

1.00 0.249 0.238 0.218 0.192 0.81 0.73 0.70 0.66 1.97 1.75 1.64 1.51 3.69 3.17 2.91 2.65

3b. Uniform straight bar under end load P and a uniformly distributed load p over an upper portion of the length; several end conditions. ðpaÞ0 ¼ K
p2EI

l2
where K is tabulated below (a negative value

for P=pa means the end load is tensile)

End

conditions

Upper end

free, lower

end fixed

Both

ends

pinned

Upper end

pinned, lower

end fixed

Both

ends

fixed

a=l
1
4

1
2

3
4

1
4

1
2

3
4

1
4

1
2

3
4

1
4

1
2

3
4

P=pa

� 0.25 0.481 0.745 1.282 1.808 2.272 2.581 4.338 5.937 7.385 5.829 7.502 9.213

0.00 0.327 0.440 0.600 1.261 1.479 1.611 2.904 3.586 4.160 4.284 5.174 5.970

0.25 0.247 0.308 0.380 0.963 1.088 1.159 2.164 2.529 2.815 3.384 3.931 4.383

0.50 0.198 0.236 0.276 0.778 0.859 0.903 1.720 1.943 2.111 2.796 3.164 3.453

1.00 0.142 0.161 0.179 0.561 0.603 0.624 1.215 1.323 1.400 2.073 2.273 2.419
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TABLE 15.1 Formulas for elastic stability of bars, rings, and beams (Continued)

Reference number, form of bar, and manner of loading and support

3c. Stepped straight bar under end load P and a distributed load of maximum value p at the bottom linearly decreasing to zero at a distance a from the bottom. ðpaÞ0 ¼ K
p2EI

l2
where K is tabulated

below (a negative value for P=pa means the end load is tensile)

End

conditions

Upper end

free, lower

end fixed

Both

ends

pinned

Upper end

pinned, lower

end fixed

Both

ends

fixed

a=l
1
4

1
2

3
4

1 1
4

1
2

3
4

1 1
4

1
2

3
4

1 1
4

1
2

3
4

1

P=pa

�0.250 58.9 41.1 30.4

�0.125 26.7 15.5 31.9 15.7 12.0 9.41 62.1 43.8 113.0 70.2 48.7

0.000 52.4 13.1 5.80 3.26 9.66 6.31 5.32 4.72 30.3 20.6 16.1 38.9 27.8 21.9

0.125 1.98 1.85 1.58 1.29 4.65 3.66 3.29 3.03 15.2 11.7 9.73 8.50 27.3 18.9 15.6 13.4

0.250 0.995 0.961 0.887 0.787 2.98 2.54 2.35 2.22 7.90 6.92 6.18 5.66 14.9 12.1 10.6 9.53

0.500 0.499 0.490 0.471 0.441 1.72 1.56 1.49 1.43 4.02 3.77 3.54 3.36 7.73 6.95 6.43 6.00

1.000 0.250 0.248 0.243 0.235 0.93 0.88 0.86 0.84 2.03 1.96 1.90 1.85 3.93 3.73 3.57 3.44

4. Uniform straight bar under end load P; both ends hinged and bar elastically supported by lateral pressure p proportional to deflection ðp ¼ ky, where k ¼ lateral force per unit length per unit of

deflection)

P0 ¼
p2EI

l2
m2 þ

kl4

m2p4EI

� �
where m represents the number of half-waves into which the bar buckles and is equal to the lowest integer greater than

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ

4l2

p2

ffiffiffiffiffiffi
k

EI

rs
� 1

0
@

1
A

(Ref. 1)

7
2
4

F
o
rm

u
la
s
fo
r
S
tre

s
s
a
n
d
S
tra

in
[C
H
A
P
.
1
5



5. Uniform straight bar under end load P; both ends hinged and bar elastically supported by lateral pressure p proportional to deflection but where the constant of proportionality depends upon the

direction of the deflection ðp ¼ k1y for deflection toward the softer foundation; p ¼ k2y for deflection toward the harder foundation); these are also called unattached foundations

P 0 ¼
p2EI

l2
m2 þ

k2l4

m2p4EI
fa

� �
where f ¼

k1

k2

and a depends upon m as given below

m a

1 1

2 1 þ fð0:23 � 0:017l2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2=EI

p
Þ

3 0:75 � 0:56f

This is an empirical expression which closely fits numerical solutions found in Ref. 45 and is valid only over the range 04 l2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2=EI

p
4 120. Solutions for P0 are

carried out for values of m ¼ 1, 2, and 3, and the lowest one governs

6. Straight bar, middle

portion uniform, end

portions tapered and

alike; end load; I ¼

moment of inertia of

cross section of middle

portion; I0 ¼ moment

of inertia of end cross

sections; Ix ¼ moment

of inertia of section x

(For singly tapered

columns see Ref. 46.)

6a. Ix ¼ I
x

b
for example, rectangular

section tapering uniformly

in width

6b. Ix ¼ I
x

b

� �2

for example, section of four

slender members latticed

together

P0 ¼
KEI

l2
where K depends on

I0

I
and

a

l
and may be found from the following table:

K for ends hinged K for ends fixed

I0=I

0 0.01 0.10 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8

a=l

0 5.78 5.87 6.48 7.01 7.86 8.61 9.27 20.36 26.16 31.04 35.40

0.2 7.04 7.11 7.58 7.99 8.59 9.12 9.53 22.36 27.80 32.20 36.00

0.4 8.35 8.40 8.63 8.90 9.19 9.55 9.68 23.42 28.96 32.92 36.36

0.6 9.36 9.40 9.46 9.73 9.70 9.76 9.82 25.44 30.20 33.80 36.84

0.8 9.80 9.80 9.82 9.82 9.83 9.85 9.86 29.00 33.08 35.80 37.84

(Ref. 5)

P0 ¼
KEI

l2
where K may be found from the following table:

K for ends hinged K for ends fixed

I0=I

0 0.01 0.10 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8

a=l

0 1.00 3.45 5.40 6.37 7.61 8.51 9.24 18.94 25.54 30.79 35.35

0.2 1.56 4.73 6.67 7.49 8.42 9.04 9.50 21.25 27.35 32.02 35.97

0.4 2.78 6.58 8.08 8.61 9.15 9.48 9.70 22.91 28.52 32.77 36.34

0.6 6.25 8.62 9.25 9.44 9.63 9.74 9.82 24.29 29.69 33.63 36.80

0.8 9.57 9.71 9.79 9.81 9.84 9.85 9.86 27.67 32.59 35.64 37.81

(Ref. 5)
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TABLE 15.1 Formulas for elastic stability of bars, rings, and beams (Continued)

Reference number, form of bar, and manner of loading and support

6c. Ix ¼ I
x

b

� �3

P 0 ¼
KEI

l2
where K may be found from the following table:

for example, rectangular section tapering

uniformly in thickness I0=I K for ends hinged K for ends fixed

a=l 0.01 0.10 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8

0 2.55 5.01 6.14 7.52 8.50 9.23 18.48 25.32 30.72 35.32

0.2 3.65 6.32 7.31 8.38 9.02 9.50 20.88 27.20 31.96 35.96

0.4 5.42 7.84 8.49 9.10 9.46 9.69 22.64 28.40 32.72 36.32

0.6 7.99 9.14 9.39 9.62 9.74 9.81 23.96 29.52 33.56 36.80

0.8 9.63 9.77 9.81 9.84 9.85 9.86 27.24 32.44 35.60 37.80

(Ref. 5)

6d. Ix ¼ I
x

b

� �4

P 0 ¼
KEI

l2
where K may be found from the following table:

for example, end portions pyramidal or

conical I0=I K for ends hinged K for ends fixed

a=l 0.01 0.10 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8

0 2.15 4.81 6.02 7.48 8.47 9.23 18.23 25.23 30.68 35.33

0.2 3.13 6.11 7.20 8.33 9.01 9.49 20.71 27.13 31.94 35.96

0.4 4.84 7.68 8.42 9.10 9.45 9.69 22.49 28.33 32.69 36.32

0.6 7.53 9.08 9.38 9.62 9.74 9.81 23.80 29.46 33.54 36.78

0.8 9.56 9.77 9.80 9.84 9.85 9.86 27.03 32.35 35.56 37.80

(Ref. 5)
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7. Uniform straight bar under end loads P

and end twisting couples T ; cross section of

bar has same I for all central axes; both

ends hinged

Critical combination of P and T is given by

T2

4ðEIÞ2
þ

P

EI
¼

p2

l2
(Ref. 1)

If P ¼ 0, the formula gives critical twisting moment T 0 which, acting alone, would cause buckling

If for a given value of T the formula gives a negative value for P, T > T 0 and P represents tensile load required to prevent buckling

For thin circular tube of diameter D and thickness t under torsion only, critical shear stress

t ¼
pED

lð1 � nÞ
1 �

t

D
þ

1

3

t2

D2

� �
for helical buckling only (not for shell-type buckling in the thin wall) (Ref. 2)

8. Uniform circular ring under uniform radial

pressure p lb=in; mean radius of ring r
p0 ¼

3EI

r3
(Ref. 1)

9. Uniform circular arch under uniform radial

pressure p lb=in; mean radius r; ends

hinged

p0 ¼
EI

r3

p2

a2
� 1

� �
(Ref. 1)

(For symmetrical arch of any form under central concentrated loading, see Ref. 40; for parabolic and catenary arches, see Ref. 50)

10. Uniform circular arch under uniform

radial pressure p lb=in; mean radius r;

ends fixed

p0 ¼
EI

r3
ðk2 � 1Þ (Ref. 1)

where k depends on a and is found by trial from the equation: k tan a cot ka ¼ 1 or from the following table:

a 15� 30� 45� 60� 75� 90� 120� 180�

k 17:2 8:62 5:80 4:37 3:50 3:00 2:36 2:00

(For parabolic and catenary arches, see Ref. 50)
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TABLE 15.1 Formulas for elastic stability of bars, rings, and beams (Continued )

Reference number, form of bar, and manner of loading and support

11. Straight uniform beam of narrow

rectangular section under pure

bending

For ends held vertical but not fixed in horizontal plane:

M 0 ¼

pb3d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EG 1 � 0:63

b

d

� �s

6l

For ends held vertical and fixed in horizontal plane

M 0 ¼

2pb3d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EG 1 � 0:63

b

d

� �s

6l
(Refs. 1, 3, 4)

12. Straight uniform cantilever beam of

narrow rectangular section under

end load applied at a point a distance

a above (a positive) or below

(a negative) centroid of section

P 0 ¼

0:669b3d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � 0:63

b

d

� �
EG

s

l2
1 �

a

2l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E

G 1 � 0:63
b

d

� �
vuuut

2
6664

3
7775

For a load W uniformly distributed along the beam the critical load, W 0 ¼ 3P0 (approximately)

(For tapered and stepped beams, see Ref. 54)

(Refs. 1, 3, 4)

13. Straight uniform beam of narrow

rectangular section under center

load applied at a point a distance a

above (a positive) or below

(a negative) centroid of section: ends

of beam simply supported and

constrained against twisting

P 0 ¼

2:82b3d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � 0:63

b

d

� �
EG

s

l2
1 �

1:74a

l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E

G 1 � 0:63
b

d

� �
vuuut

2
6664

3
7775

For a uniformly distributed load, the critical load W 0 ¼ 1:67P 0 (approximately)

If P is applied at an intermediate point, a distance C from one end, its critical value is practically the same as for central loading if 0:4l < C < 0:5l:

if C < 0:4l, the critical load is given approximately by multiplying the P 0 for central loading by 0:36 þ 0:28
l

C
If the ends of the beam are fixed and the load P is applied at the centroid of the middle cross section,

P 0 ¼
4:43b3d

l2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � 0:63

b

d

� �
EG

s

(Refs. 1, 3, 4)
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14. Straight uniform I-beam under pure

bending; d ¼ depth center to center

of flange; ends constrained against

twisting

M 0 ¼
p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EIyKG

q
l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ p2

If Ed2

2KGl2

s

where Iy is the moment of inertia of the cross section about its vertical axis of symmetry, If is the moment of inertia of one flange about this axis,

and KG is the torsional rigidity of the section (see Table 10.1, case 26)

(For tapered I-beams, see Ref. 47.)

(Refs. 1, 3)

15. Straight uniform cantilever beam of

I-section under end load applied at

centroid of cross section; d ¼ depth

center to center of flanges

P 0 ¼
m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EIyKG

q
l2

where m is approximately equal to 4:01 þ 11:7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
If Ed2

2KGl2

r
and Iy , If , and KG have the same significance as in case 14

(For unsymmetric I-beams, see Refs. 52 and 56; for tapered I-beams, see Ref. 55.)

(Refs. 1, 3)

16. Straight uniform I-beam loaded at

centroid of middle section; ends

simply supported and constrained

against twisting

P 0 ¼
m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EIyKG

q
l2

where m is approximately equal to 16:93 þ 45
If Ed2

2KGl2

� �0:8

and Iy, If , and KG have same significance as in case 14.

(For unsymmetric I-beams, see Refs. 52 and 56; for tapered I-beams, see Ref. 55.)

(Refs. 1, 3)

S
E
C
.
1
5
.5
]

E
la
s
tic

S
ta
b
ility

7
2
9

TABLE 15.1 Formulas for elastic stability of bars, rings, and beams (Continued)



TABLE 15.2 Formulas for elastic stability of plates and shells
NOTATION: E ¼ modulus of elasticity; n ¼ Poisson’s ratio; and t ¼ thickness for all plates and shells. All angles are in radians. Compression is positive; tension is negative. For the plates, the smaller

width should be greater than 10 times the thickness unless otherwise specified.

Form of plate or shell and

manner of loading

Manner of support Formulas for critical unit compressive stress s0, unit shear stress t0, load P 0, bending moment M 0, or unit

external pressure q0 at which elastic buckling occurs

1. Rectangular plate under equal uniform

compression on two opposite edges b

1a. All edges simply

supported
s0 ¼ K

E

1 � n2

t

b

� �2

Here K depends on ratio
a

b
and may be found from the following table:

a

b
0:2 0:3 0:4 0:6 0:8 1:0 1:2 1:4 1:6 1:8 2:0 2:2 2:4 2:7 3:0 1

K 22:2 10:9 6:92 4:23 3:45 3:29 3:40 3:68 3:45 3:32 3:29 3:32 3:40 3:32 3:29 3:29

(For unequal end compressions, see Ref. 33) (Refs. 1, 6)

1b. All edges clamped
s0 ¼ K

E

1 � n2

t

b

� �2

a

b
1 2 3 1

K 7:7 6:7 6:4 5:73 (Refs. 1, 6, 7)

1c. Edges b simply supported,

edges a clamped
s0 ¼ K

E

1 � n2

t

b

� �2

a

b
0:4 0:5 0:6 0:7 0:8 1:0 1:2 1:4 1:6 1:8 2:1 1

K 7:76 6:32 5:80 5:76 6:00 6:32 5:80 5:76 6:00 5:80 5:76 5:73 (Refs. 1, 6)

1d. Edges b simply supported,

one edge a simply supported,

other edge a free

s0 ¼ K
E

1 � n2

t

b

� �2

a

b
0:5 1:0 1:2 1:4 1:6 1:8 2:0 2:5 3:0 4:0 5:0

K 3:62 1:18 0:934 0:784 0:687 0:622 0:574 0:502 0:464 0:425 0:416 (Ref. 1)

1e. Edges b simply supported,

one edge a clamped, other

edge a free

s0 ¼ K
E

1 � n2

t

b

� �2

a

b
1 1:1 1:2 1:3 1:4 1:5 1:6 1:7 1:8 1:9 2:0 2:2 2:4

K 1:40 1:28 1:21 1:16 1:12 1:10 1:09 1:09 1:10 1:12 1:14 1:19 1:21 (Ref. 1)
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1f. Edges b clamped, edges a

simply supported
s0 ¼ K

E

1 � n2

t

b

� �2

a

b
0:6 0:8 1:0 1:2 1:4 1:6 1:7 1:8 2:0 2:5 3:0

K 11:0 7:18 5:54 4:80 4:48 4:39 4:39 4:26 3:99 3:72 3:63
(Ref. 1)

2. Rectangular plate under uniform

compression (or tension) sx on edges

b and uniform compression (or tension)

sy on edges a

2a. All edges simply

supported
s0x

m2

a2
þ s0y

n2

b2
¼ 0:823

E

1 � n2
t2 m2

a2
þ

n2

b2

� �2

Here m and n signify the number of half-waves in the buckled plate in the x and y directions, respectively. To

find s0y for a given sx , take m ¼ 1, n ¼ 1 if C 1 � 4
a4

b4

� �
< sx < C 5 þ 2

a2

b2

� �
, where C ¼

0:823Et2

ð1 � n2Þa2
.

If sx is too large to satisfy this inequality, take n ¼ 1 and m to satisfy:

C 2m2 � 2m þ 1 þ 2
a2

b2

� �
< sx < C 2m2 þ 2m þ 1 þ 2

a2

b2

� �
. If sx is too small to satisy the first inequality, take

m ¼ 1 and n to satisfy:

C 1 � n2ðn � 1Þ2
a4

b4

� �
> sx > C 1 � n2ðn þ 1Þ2

a4

b4

� �
(Refs. 1, 6)

2b. All edges clamped s0x þ
a2

b2
s0y ¼ 1:1

Et2a2

1 � n2

3

a4
þ

3

b4
þ

2

a2b2

� �

(This equation is approximate and is most accurate when the plate is nearly square and sx and sy nearly

equal (Ref. 1)

3. Rectangular plate under linearly

varying stress on edges b (bending

or bending combined with tension or

compression)

3a. All edges simply

supported
s0o ¼ K

E

1 � n2

t

b

� �2

Here K depends on
a

b
and on a ¼

so

so � sv

and may be found from the following table:

a

b
¼ 0:4 0:5 0:6 0:667 0:75 0:8 0:9 1:0 1:5

a ¼ 0:5 K ¼ 23:9 21:1 19:8 19:7 19:8 20:1 21:1 21:1 19:8
0:75 15:4 10:6 9:5 9:2 9:1 9:5
1:00 12:4 8:0 6:9 6:7 6:4 6:9
1:25 10:95 6:8 5:8 5:7 5:4 5:8
1:50 8:9 5:3 5:0 4:9 4:8 5:0
1 ðpure compressionÞ 6:92 4:23 3:45 3:29 3:57

(Refs. 1, 6)
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TABLE 15.2 Formulas for elastic stability of plates and shells (Continued)

Form of plate or shell and

manner of loading

Manner of support Formulas for critical unit compressive stress s0, unit shear stress t0, load P 0, bending moment M 0, or unit

external pressure q0 at which elastic buckling occurs

4. Rectangular plate under uniform

shear on all edges

4a. All edges simply

supported
t0 ¼ K

E

1 � n2

t

b

� �2

a

b
1:0 1:2 1:4 1:5 1:6 1:8 2:0 2:5 3:0 1

K 7:75 6:58 6:00 5:84 5:76 5:59 5:43 5:18 5:02 4:40 (Refs. 1, 6, 8, 22)

4b. All edges clamped
t0 ¼ K

E

1 � n2

t

b

� �2

a

b
1 2 1

K 12:7 9:5 7:38

Test results indicate a value for K of about 4.1 for very large values of
a

b
(Ref. 9)

(For continuous panels, see Ref. 30)

5. Rectangular plate under uniform

shear on all edges; compression (or

tension) sx on edges b; compression

(or tension) sy on edges a; a=b very

large

5a. All edges simply

supported t0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 �

sy

C

r
þ 2 �

sx

C

� �
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 �

sy

C

r
þ 6 �

sx

C

� �s

where C ¼
0:823

1 � n2

t

b

� �2

E (Refs. 1, 6, 23, and 31)

5b. All edges clamped
t0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2 2:31

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 �

sy

C

r
þ

4

3
�
sx

C

� �
2:31

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 �

sy

C

r
þ 8 �

sx

C

� �s

where C ¼
0:823

1 � n2

t

b

� �2

E

(sx and sy are negative when tensile) (Ref. 6)

6. Rectangular plate under uniform

shear on all edges and bending

stresses on edges b

6a. All edges simply

supported
s0 ¼ K

E

1 � n2

t

b

� �2

Here K depends on
t
t0

(ratio of actual shear stress to shear stress that, acting alone, would be critical) and on

a

b
. K varies less than 10% for values

a

b
from 0.5 to 1, and for

a

b
¼ 1 is approximately as follows:

t
t0

0 0:2 0:3 0:4 0:5 0:6 0:7 0:8 0:9 1:0

K 21:1 20:4 19:6 18:5 17:7 16:0 14:0 11:9 8:20 0 (Refs. 1, 10)
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7. Rectangular plate under

concentrated center loads on two

opposite edges

7a. All edges simply

supported
P 0 ¼

p
3

Et3

ð1 � n2Þb
for

a

b
> 2

� �
(Ref. 1)

7b. Edges b simply supported,

edges a clamped
P 0 ¼

2p
3

Et3

ð1 � n2Þb
for

a

b
> 2

� �
(Ref. 1)

8. Rhombic plate under uniform

compression on all edges

8a. All edges simply supported s0 ¼ K
Et2

a2ð1 � n2Þ

a 0� 9� 18� 27� 36� 45�

K 1:645 1:678 1:783 1:983 2:338 2:898 Ref. 65)

9. Polygon plate under uniform

compression on all edges

9a. All edges simply supported s0 ¼ K
Et2

a2ð1 � n2Þ

N 3 4 5 6 7 8

K 4:393 1:645 0:916 0:597 0:422 0:312 (Ref. 65)

N ¼ number of sides

10. Parabolic and semielliptic plates

under uniform compression on

all edges

10a. All edges simply supported s0 ¼ K
Et2

a2ð1 � n2Þ

where K is tabulated below for the several shapes and boundary conditions for n ¼ 1
3
:

10b. All edges fixed

Square Semiellipse Parabola Triangle

Simply supported 1:65 1:86 2:50 3:82

Fixed 4:36 5:57 7:22 10:60 (Ref. 62)
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TABLE 15.2 Formulas for elastic stability of plates and shells (Continued )

Form of plate or shell and manner of

loading

Manner of support Formulas for critical unit compressive stress s0, unit shear stress t0, load P 0, bending moment M 0, or unit

external pressure q0 at which elastic buckling occurs

11. Isotropic circular plate under uniform

radial edge compression

11a. Edges simply supported

s0 ¼ K
E

1 � n2

t

a

� �2
n 0 0:1 0:2 0:3 0:4

K 0:282 0:306 0:328 0:350 0:370 (Ref. 1)

11b. Edges clamped
s0 ¼ 1:22

E

1 � n2

t

a

� �2

(Ref. 1)

For elliptical plate with major semiaxis a, minor semiaxis b, s0 ¼ K
E

1 � n2

t

b

� �2

, where K has values as

follows:

a

b
1:0 1:1 1:2 1:3 2:0 5:0

K 1:22 1:13 1:06 1:01 0:92 0:94 (Ref. 21)

12. Circular plate with concentric hole

under uniform radial compression

on outer edge

12a. Outer edge simply

supported, inner edge free
s0 ¼ K

E

1 � n2

t

a

� �2

Here K depends on
b

a
and is given approximately by following table:

b

a
0 0:1 0:2 0:3 0:4 0:5 0:6 0:7 0:8 0:9

K 0:35 0:33 0:30 0:27 0:23 0:21 0:19 0:18 0:17 0:16 (Ref. 1)

12b. Outer edge clamped, inner

edge free
s0 ¼ K

E

1 � n2

t

a

� �2

a

t
> 10 Here K depends on

b

a
and is given approximately by following table:

b

a
0 0:1 0:2 0:3 0:4 0:5

K 1:22 1:17 1:11 1:21 1:48 2:07 (Ref. 1)

13. Curved panel under uniform

compression on curved edges b

(b ¼ width of panel measured on arc;

r ¼ radius of curvature)

13a. All edges simply supported
s0 ¼

1

6

E

1 � n2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12ð1 � n2Þ

t

r

� �2

þ
pt

b

� �4
s

þ
pt

b

� �2
2
4

3
5

(Note: With a > b, the solution does not depend upon a)

or s0 ¼ 0:6E
t

r
if

b

r
(central angle of curve) is less than 1

2
and b and a are nearly equal (Refs. 1 and 6)

(For compression combined with shear, see Refs. 28 and 34.)

b

t
> 10
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14. Curved panel under uniform shear on

all edges

14a. All edges simply supported
t0 ¼ 0:1E

t

r
þ 5E

t

b

� �2

(Refs. 6, 27, 29)

14b. All edges clamped
t0 ¼ 0:1E

t

r
þ 7:5E

t

b

� �2

(Ref. 6)

Tests show t0 ¼ 0:075E
t

r
for panels curved to form quadrant of a circle (Ref. 11)

b=t > 10. See case 13 for b and r.

(See also Refs. 27, 29)

15. Thin-walled circular tube under

uniform longitudinal compression

(radius of tube ¼ r)

15a. Ends not constrained s0 ¼
1ffiffiffi
3

p
Effiffiffiffiffiffiffiffiffiffiffiffiffi

1 � n2
p

t

r
(Refs. 6, 12, 13, 24)

Most accurate for very long tubes, but applicable if length is several times as great as 1:72
ffiffiffiffi
rt

p
, which is the

length of a half-wave of buckling. Tests indicate an actual buckling strength of 40–60% of this theoretical

value, or s0 ¼ 0:3Et=r approximately

r

t
> 10

16. Thin-walled circular tube under a

transverse bending moment M

(radius of tube ¼ r)

16a. No constraint M 0 ¼ K
E

1 � n2
rt2

Here the theoretical value of K for pure bending and long tubes is 0.99. The average value of K determined by

tests is 1.14, and the minimum value is 0.72. Except for very short tubes, length effect is negligible and a

small transverse shear produces no appreciable reduction in M 0. A very short cylinder under transverse

(beam) shear may fail by buckling at neutral axis when shear stress there reaches a value of about 1:25t0 for

case 17a (Refs. 6, 14, 15)
r

t
> 10

17. Thin-walled circular tube under a

twisting moment T that produces a

uniform circumferential shear stress:

17a. Ends hinged, i.e., wall free

to change angle with cross

section, but circular section

maintained

t0 ¼
E

1 � n2

t

l

� �2

ð1:27 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9:64 þ 0:466H1:5

p
Þ

t ¼
T

2pr2t

where H ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � n2

p l2

tr

(length of tube ¼ l; radius of

tube ¼ r)

Tests indicate that the actual buckling stress is 60–75% of this theoretical value, with the majority of the data

points nearer 75% (Refs. 6, 16, 18, 25)

17b. Ends clamped, i.e., wall

held perpendicular to cross

section and circular section

maintained

t0
E

1 � n2

t

l

� �2

ð�2:39 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
96:9 þ 0:605H1:5

p
Þ

where H is given in part 17a.

r

t
> 10

The statement in part a regarding actual buckling stress applies here as well (Refs. 6, 16, 18, 25)
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TABLE 15.2 Formulas for elastic stability of plates and shells (Continued)

Form of plate or shell and manner of

loading

Manner of support Formulas for critical unit compressive stress s0, unit shear stress t0, load P 0, bending moment M 0, or unit

external pressure q0 at which elastic buckling occurs

18. Thin-walled circular tube under

uniform longitudinal compression s
and uniform circumferential shear t
due to torsion (case 15 combined with

case 17)

18a. Edges hinged as in case

17a.

18b. Edges clamped as in case

17b.

The equation 1 �
s0

s0o
¼

t0

t0o

� �n

holds, where s0 and t0 are the critical compressive and shear stresses for the

combined loading, s0o is the critical compressive stress for the cylinder under compression alone (case 15), and

t0o is the critical shear stress for the cylinder under torsion alone (case 17a or 17b according to end conditions).

Tests indicate that n is approximately 3. If s is tensile, then s0 should be considered negative. (Ref. 6)

(See also Ref. 26. For square tube, see Ref. 32)

r

t
> 10

19. Thin tube under uniform lateral

external pressure (radius of tube ¼ r)

19a. Very long tube with free

ends; length l
q0 ¼

1

4

E

1 � n2

t3

r3

Applicable when l > 4:90r

ffiffiffi
r

t

r
(Ref. 19)

19b. Short tube, of length l, ends

held circular, but not other-

wise constrained, or long

tube held circular at inter-

vals l

q0 ¼ 0:807
Et2

lr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

1 � n2

� �3
t2

r2

4

s
approximate formula (Ref. 19)

r

t
> 10

20. Thin tube with closed ends under

uniform external pressure, lateral

and longitudinal (length of tube ¼ l;

radius of tube ¼ r)

20a. Ends held circular

q0 ¼

E
t

r

1 þ
1

2

pr

nl

� �2

1

n2 1 þ
nl

pr

� �2
" #2

þ
n2t2

12r2ð1 � n2Þ
1 þ

pr

nl

� �2
� �2

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

(Refs. 19, 20)

where n ¼ number of lobes formed by the tube in buckling. To determine q0 for tubes of a given t=r, plot a

group of curves, one curve for each integral value of n of 2 or more, with l=r as ordinates and q0 as abscissa;

that curve of the group which gives the least value of q0 is then used to find the q0 corresponding to a given

l=r. If 60 <
l

r

� �2
r

t

� �
< 2:5

r

t

� �2

, the critical pressure can be approximated by q0 ¼
0:92E

l

r

� �
r

t

� �2:5
(Ref. 81)

r

t
> 10 For other approximations see ref. 109

Values of experimentally determined critical pressures range 20% above and below the theoretical values

given by the expressions above. A recommended probable minimum critical pressure is 0.80q’.
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21. Curved panel under uniform radial

pressure (radius of curvature r,

central angle 2a, when

2a ¼ arc AB=rÞ

21a. Curved edges free, straight

edges at A and B simply

supported (i.e., hinged)
q0 ¼

Et3 p2

a2
� 1

� �
12r3ð1 � n2Þ

(Ref. 1)

21b. Curved edges free, straight

edges at A and B clamped

Here k is found from the equation k tan a cot ka ¼ 1 and has the following values:

q0 ¼
Et3ðk2 � 1Þ

12r3ð1 � n2Þ

a 15� 30� 60� 90� 120� 150� 180�

k 17:2 8:62 4:37 3:0 2:36 2:07 2:0
(Ref. 1)

22. Thin sphere under uniform external

pressure (radius of sphere ¼ r)

22a. No constraint
q0 ¼

2Et2

r2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð1 � n2Þ

p (for ideal case) ðRefs: 1; 37Þ

q0 ¼
0:365Et2

r2
(probable actual minimum q0 Þ

For spherical cap, half-central angle f between 20 and 60� , R=t between 400 and 2000,

q0 ¼ ½1 � 0:00875ðf�
� 20�Þ� 1 � 0:000175

R

t

� �
ð0:3EÞ

t

R

� �2

(Empirical formula, Ref. 43)r=t > 10

23. Thin truncated conical shell with

closed ends under external pressure

(both lateral and longitudinal

pressure)

23a. Ends held circular q0 can be found from the formula of case 20a if the slant length of the cone is substituted for the length of the

cylinder and if the average radius of curvature of the wall of the cone normal to the meridian

ðRA þ RBÞ=ð2 cos aÞ is substituted for the radius of the cylinder. The same recommendation of a probable

minimum critical pressure of 0:8q0 is made from the examination of experimental data for cones.

(Refs. 78, 81)

RB=t > 10

24. Thin truncated conical shell under

axial load

24a. Ends held circular
P 0 ¼

2pEt2 cos2 affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð1 � n2Þ

p (theoretical)

Tests indicate an actual buckling strength of from 40 to 60% of the above theoretical value, or

P 0 ¼ 0:3ð2pEt2 cos2 aÞ approximately. (Ref. 78)

In Ref. 77 it is stated that P 0 ¼ 0:277ð2pEt2 cos2 aÞ will give 95% confidence in at least 90% of the cones

carrying more than this critical load. This is based on 170 tests.

RB=t > 10
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TABLE 15.2 Formulas for elastic stability of plates and shells (Continued)

Form of plate or shell and manner of

loading

Manner of support Formulas for critical unit compressive stress s0, unit shear stress t0, load P0, bending moment M 0, or unit

external pressure q0 at which elastic buckling occurs

25. Thin truncated conical shell under

combined axial load and internal

pressure

25a. Ends held circular P 0 � qpR2
B ¼ KA2pEt2 cos2 a

The probable minimum values of KA are tabulated for several values of KP ¼
q

E

RB

t cos a

� �2

.

kB ¼ 2
12ð1 � n2ÞR2

B

t2 tan2 a sin
2 a

� �1=4

Kp 0:00 0:25 0:50 1:00 1:50 2:00 3:00

for kB 4 150 0:30 0:52 0:60 0:68 0:73 0:76 0:80

for kB > 150 0:20 0:36 0:48 0:60 0:64 0:66 0:69 (Ref. 78)Þ

26. Thin truncated conical shell under

combined axial load and external

pressure

26a. Ends held circular The following conservative interaction formula may be used for design. It is applicable equally to theoretical

values or to minimum probable values of critical load and pressure.

P0

P 0
case 24

þ
q0

q0
case 23

¼ 1

This expression can be used for cylinders if the angle a is set equal to zero or use is made of cases 15 and 20.

For small values of P 0=P0
case 24 the external pressure required to collapse the shell is greater than that

required to initiate buckling. See Ref. 78.

27. Thin truncated conical shell under

torsion

27a. Ends held circular
Let T ¼ t02pr2

e t and for t0 use the formulas for thin-walled circular tubes, case 17, substituting for the radius r

of the tube the equivalent radius re, where re ¼ RB cos a 1 þ
1

2
1 þ

RA

RB

� �� �1=2

�
1

2
1 þ

RA

RB

� �� ��1=2
( )

. l and t

remain the axial length and wall thickness, respectively.

(Ref.17)
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Chapter

16
Dynamic and

Temperature Stresses

16.1 Dynamic Loadings; General Conditions

Dynamic loading was defined in Chap. 3 as any loading during which

the parts of the body cannot be considered to be in static equilibrium.

It was further pointed out that two kinds of dynamic loading can be

distinguished: (1) that in which the body has imposed upon it a

particular kind of motion involving known accelerations, and (2)

impact, of which sudden loading may be considered a special case.

In the following sections, specific cases of each kind of dynamic loading

will be considered.

16.2 Body in a Known State of Motion

The acceleration a of each particle of mass dm being known, the

effective force on each particle is dm � a, directed like a. If to each

particle a force equal and opposite to the effective force were applied,

equilibrium would result. If then such reversed effective forces are

assumed to be applied to all the constituent particles of the body, the

body may be regarded as being in equilibrium under these forces and

the actual forces (loads and reactions) that act upon it, and the

resulting stresses can be found exactly as for a body at rest. The

reversed effective forces are imaginary forces exerted on the particles

but are equal to and directed like the actual reactions the particles

exert on whatever gives them their acceleration, i.e., in general, on the

rest of the body. Since these reactions are due to the inertia of the

particles, they are called inertia forces, and the body may be thought of

as loaded by these inertia forces. Similarly, any attached mass will

exert on a body inertia forces equal and opposite to the forces which

the body has to exert on the attached mass to accelerate it.



The results of applying this method of analysis to a number of more

or less typical problems are given below. In all cases, in finding the

accelerations of the particles, it has been assumed that the effect of

deformation could be ignored; i.e., the acceleration of each particle has

been found as though the body were rigid. For convenience, stresses,

bending moments, and shears due to inertia forces only are called

inertia stresses, moments, and shears; they are calculated as though

the body were outside the field of gravitation. Stresses, moments, and

shears due to balanced forces (including gravity) may be superimposed

thereon. The gravitational acceleration constant g depends upon the

units used for the imposed acceleration.

1. A slender uniform rod of weight W , length L, section area A, and

modulus of elasticity E is given a motion of translation with an

acceleration of a parallel to its axis by a pull (push) applied at one

end. The maximum tensile (compressive) stress occurs at the

loaded end and is s ¼ Wa=gA. The elongation (shortening) due to

the inertia stresses is

e ¼
1

2

W

g

aL

AE

2. The rod described in problem 1 is given a motion of translation

with an acceleration of a normal to its axis by forces applied at

each end. The maximum inertia bending moment occurs at the

middle of the bar and is M ¼ 1
8
WaL=g. The maximum inertia

vertical (transverse) shear occurs at the ends and is V ¼ 1
2
Wa=g.

3. The rod described in problem 1 is made to rotate about an axis

through one end normal to its length at a uniform angular velocity

of o rad=s. The maximum tensile inertia stress occurs at the

pinned end and is

s ¼
1

2

W

g

Lo2

A

The elongation due to inertia stress is

e ¼
1

3

W

g

L2o2

AE

4. The rod described in problem 1 is pinned at the lower end and

allowed to swing down under the action of gravity from an initially

vertical position. When the rod reaches a position where it makes

with the vertical the angle y, it is subjected to a positive bending

moment (owing to its weight and the inertia forces) which has its
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maximum value at a section a distance 1
3
L from the pinned end.

This maximum value is M ¼ 1
27

WL sin y. The maximum positive

inertia shear occurs at the pinned end and is V ¼ 1
4
W sin y. The

maximum negative inertia shear occurs at a section a distance 2
3
L

from the pinned end and is V ¼ � 1
12

W sin y. The axial force at any

section x in from the pinned end is given by

H ¼
3W

2
1 �

x2

L2

� �
�

W cos y
2

5 � 2
x

L
� 3

x2

L2

� �

and becomes tensile near the free end when y exceeds 41:4�. (This

case represents approximately the conditions existing when a

chimney or other slender structure topples over, and the bending

moment M explains the tendency of such a structure to break near

the one-third point while falling.)

5. The rod described in problem 1 is pinned at the lower end and,

while in the vertical position, has imposed upon its lower end a

horizontal acceleration of a. The maximum inertia bending

moment occurs at a section a distance 1
3
L from the lower end

and is M ¼ 1
27

Wla=g. The maximum inertia shear is in the direc-

tion of the acceleration, is at the lower end, and is V ¼ 1
4
Wa=g. The

maximum inertia shear in the opposite direction occurs at a

section a distance 2
3
L from the lower end and is V ¼ 1

12
Wa=g.

(This case represents approximately the conditions existing

when a chimney or other slender structure without anchorage is

subjected to an earthquake shock.)

6. A uniform circular ring of mean radius R and weight per unit

volume d, having a thickness in the plane of curvature that is very

small compared with R, rotates about its own axis with a uniform

angular velocity of o rad=s. The ring is subjected to a uniform

tangential inertial stress

s ¼
dR2o2

g

7. A solid homogeneous circular disk of uniform thickness (or a solid

cylinder) of radius R, Poisson’s ratio n, and weight per unit volume

d rotates about its own axis with a uniform angular velocity of

o rad=s. At any point a distance r from the center there is a radial

tensile inertial stress

sr ¼
1

8

do2

g
½ð3 þ nÞðR2 � r2Þ	 ð16:2-1Þ
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and a tangential tensile inertia stress

st ¼
1

8

do2

g
½ð3 þ nÞR2 � ð1 þ 3nÞr2	 ð16:2-2Þ

The maximum radial stress and maximum tangential stress are

equal, occur at the center, and are

ðsrÞmax ¼ ðstÞmax ¼
1

8

do2

g
ð3 þ nÞR2 ð16:2-3Þ

8. A homogeneous annular disk of uniform thickness outer radius R,

and weight per unit volume d, with a central hole of radius R0,

rotates about its own axis with a uniform angular velocity of

o rad=s. At any point a distance r from the center there is a

radial tensile inertia stress

sr ¼
3 þ n

8

do2

g
R2 þ R2

0 �
R2R2

0

r2
� r2

� �
ð16:2-4Þ

and a tangential tensile inertia stress

st ¼
1

8

do2

g
ð3 þ nÞ R2 þ R2

0 þ
R2R2

0

r2

� �
� ð1 þ 3nÞr2

� �
ð16:2-5Þ

The maximum radial stress occurs at r ¼
ffiffiffiffiffiffiffiffiffiffi
RR0

p
and is

ðsrÞmax ¼
3 þ n

8

do2

g
ðR � R0Þ

2
ð16:2-6Þ

and the maximum tangential stress occurs at the perimeter of the

hole and is

ðstÞmax ¼
1

4

do2

g
½ð3 þ nÞR2 þ ð1 � nÞR2

0	 ð16:2-7Þ

The change in the outer radius is

DR ¼
1

4

do2

g

R

E
½ð1 � nÞR2 þ ð3 þ nÞR2

0	 ð16:2-8Þ

and the change in the inner radius is

DR0 ¼
1

4

do2

g

R0

E
½ð3 þ nÞR2 þ ð1 � nÞR2

0	 ð16:2-9Þ

If there are radial pressures or pulls distributed uniformly along

either the inner or outer perimeter of the disk, such as a radial
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pressure from the shaft or a centrifugal pull from parts attached to

the rim, the stresses due thereto can be found by the formula for

thick cylinders (Table 13.5) and superimposed upon the inertia

stresses given by the preceding formulas.

9. A homogeneous circular disk of conical section (Fig. 16.1) of

density d lb=in3
rotates about its own axis with a uniform angular

velocity of N rpm. At any point a distance r from the center, the

tensile inertia stresses sr and st are given, in lb=in2, by

sr ¼ TKr þ Ap1 þ Bp2 ð16:2-10Þ

st ¼ TKt þ Aq1 þ Bq2 ð16:2-11Þ

Figure 16.1

Tabulated values of coefficients

r=R Kr Kt p1 q1 p2 q2

0.00 0.1655 0.1655 1.435 1.435 1 1

0.05 0.1709 0.1695 1.475 1.497 �273.400 288.600

0.10 0.1753 0.1725 1.559 1.518 �66.620 77.280

0.15 0.1782 0.1749 1.627 1.565 �28.680 36.550

0.20 0.1794 0.1763 1.707 1.617 �15.540 21.910

0.25 0.1784 0.1773 1.796 1.674 �9.553 14.880

0.30 0.1761 0.1767 1.898 1.738 �6.371 10.890

0.35 0.1734 0.1757 2.015 1.809 �4.387 8.531

0.40 0.1694 0.1739 2.151 1.890 �3.158 6.915

0.45 0.1635 0.1712 2.311 1.983 �2.328 5.788

0.50 0.1560 0.1675 2.501 2.090 �1.743 4.944

0.55 0.1465 0.1633 2.733 2.217 �1.309 4.301

0.60 0.1355 0.1579 3.021 2.369 �0.9988 3.816

0.65 0.1229 0.1525 3.390 2.556 �0.7523 3.419

0.70 0.1094 0.1445 3.860 2.794 �0.5670 3.102

0.75 0.0956 0.1370 4.559 3.111 �0.4161 2.835

0.80 0.0805 0.1286 5.563 3.557 �0.2971 2.614

0.85 0.0634 0.1193 7.263 4.276 �0.1995 2.421

0.90 0.0442 0.1100 10.620 5.554 �0.1203 2.263

0.95 0.0231 0.0976 20.645 8.890 �0.0555 2.140

1.00 0.0000 0.0840 1 1 �0.0000 2.051
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where T ¼ 0:0000282R2N2d (or for steel, T ¼ 0:000008R2N2Þ; Kr,

Kt, p1, p2, q1, and q2 are given by the preceding table; and A and B

are constants which may be found by setting sr equal to its known

or assumed values at the outer perimeter and solving the resulting

equations simultaneously for A and B, as in the example on pages

750 and 751. [See papers by Hodkinson and Rushing (Refs. 1 and

2) from which Eqs. (16.2-8) and (16.2-9) and the tabulated coeffi-

cients are taken.]

10. A homogeneous circular disk of hyperbolic section (Fig. 16.2) of

density d lb=in3
rotates about its own axis with uniform angular

velocity o rad=s. The equation t ¼ cra defines the section, where if

t1 ¼ thickness at radius r1 and t2 at radius r2,

a ¼
lnðt1=t2Þ

lnðr1=r2Þ

and

ln c ¼ ln t1 � a ln r1 ¼ ln t2 � a ln r2

(For taper toward the rim, a is negative; and for uniform t, a ¼ 0.)

At any point a distance r in from the center the tensile inertia

stresses sr and st; in lb=in2, are

sr ¼
E

1 � n2
½ð3 þ nÞFr2 þ ðm1 þ nÞArm1�1 þ ðm2 þ nÞBrm2�1	

ð16:2-12Þ

st ¼
E

1 � n2
½ð1 þ 3nÞFr2 þ ð1 þ m1nÞArm1�1 þ ð1 þ m2nÞBrm2�1	

ð16:2-13Þ

where F ¼
�ð1 � n2Þdo2=386:4

E½8 þ ð3 þ nÞa	

m1 ¼ �
a

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

4
� anþ 1

r

m2 ¼ �
a

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

4
� anþ 1

r

Figure 16.2
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A and B are constants, found by setting sr equal to its known or

assumed values at the inner and outer perimeters and solving the

two resulting equations simultaneously for A and B. [Equations

(16.2-12) and (16.2-13) are taken from Stodola (Ref. 3) with some

changes in notation.]

11. A homogeneous circular disk with section bounded by curves and

straight lines (Fig. 16.3) rotates about its own axis with a uniform

angular velocity N rpm. The disk is imagined divided into annular

rings of such width that each ring can be regarded as having a

section with hyperbolic outline, as in problem 10. For each ring, a

is calculated by the formulas of problem 10, using the inner and

outer radii and the corresponding thicknesses. Then, if r1 and r2

represent, respectively, the inner and outer radii of any ring, the

tangential stresses st1
and st2

at the inner and outer boundaries of

the ring are related to the corresponding radial stresses sr1
and

sr2
; in lb=in2, as follows:

st1
¼ Ar2

2 � Bsr1
þ Csr2

ð16:2-14Þ

st2
¼ Dr2

2 � Esr1
þ Fsr2

ð16:2-15Þ

where B ¼
m2Km1�1 � m1Km2�1

Km2�1 � Km1�1

K ¼
r1

r2

E ¼ �
m2 � m1

Km2�1 � Km1�1

C ¼
E

Kaþ2

F ¼ B þ a

A ¼ �
7:956ðN=1000Þ2

8 þ 3:3a
½1:9K2 þ 3:3ðK2B � CÞ	

D ¼ �
7:956ðN=1000Þ2

8 þ 3:3a
½1:9 þ 3:3ðK2E � FÞ	

m1 ¼ �
a

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

4
� 0:3a þ 1

r

m2 ¼ �
a

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

4
� 0:3a þ 1

r

The preceding formulas, which are given by Loewenstein (Ref. 4),

are directly applicable to steel, for which the values n ¼ 0:3 and

d ¼ 0:28 lb=in3
have been assumed.
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Two values of sr are known or can be assumed, viz. the values at the

inner and outer perimeters of the disk. Then, by setting the tangential

stress at the outer boundary of each ring equal to the tangential stress

at the inner boundary of the adjacent larger ring, one equation in sr

will be obtained for each common ring boundary. In this case, the

modulus of elasticity is the same for adjacent rings and the radial

stress sr at the boundary is common to both rings, and so the

tangential stresses can be equated instead of the tangential strains

[Eq. (16.2-15) for the smaller ring equals Eq. (16.2-14) for the larger

ring]. Therefore there are as many equations as there are unknown

boundary radial stresses, and hence the radial stress at each boundary

can be found. The tangential stresses can then be found by Eqs. (16.2-

14) and (16.2-15), and then the stresses at any point in a ring can be

found by using, in Eq. (16.2-14), the known values of st1
and sr1

and

substituting for sr2
the unknown radial stress sr, and for r2 the

corresponding radius r.

A fact of importance with reference to turbine disks or other rotating

bodies is that geometrically similar disks of different sizes will be

equally stressed at corresponding points when running at the same

peripheral velocity. Furthermore, for any given peripheral velocity, the

axial and radial dimensions of a rotating body may be changed

independently of each other and in any ratio without affecting the

stresses at similarly situated points.

EXAMPLE

The conical steel disk shown in section in Fig. 16.4 rotates at 2500 rpm. To
its rim it has attached buckets whose aggregate mass amounts to
w ¼ 0:75 lb=linear in of rim; this mass may be considered to be centered
30 in from the axis. it is desired to determine the stresses at a point 7 in
from the axis.

Solution. From the dimensions of the section, R is found to be 28 in. The
values of r=R for the inner and outer perimeters and for the circumference
r ¼ 7 are calculated, and the corresponding coefficients Kr, Kt, etc., are
determined from the table on page 747 by graphic interpolation. The results
are tabulated here for convenience:

Figure 16.3
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r=R Kr Kt p1 q1 p2 q2

Inner rim 0.143 0.1780 0.1747 1.616 1.558 �32.5 40.5

Outer rim 0.714 0.1055 0.1425 4.056 2.883 �0.534 3.027

r ¼ 7 in 0.25 0.1784 0.1773 1.796 1.674 �9.553 14.88

The attached mass exerts on the rim outward inertia forces which will
be assumed to be uniformly distributed; the amount of force per linear inch
is

p ¼
w

g
o2r ¼

0:75

386:4
ð261:52Þð30Þ ¼ 3980 lb=linear in

Therefore at the outer rim sr ¼ 7960 lb=in2
.

It is usual to design the shrink fit so that in operation the hub pres-
sure is a few hundred pounds per square inch; it will be assumed that the
radial stress at the inner rim sr ¼ �700 lb=in2

. The value of T ¼

0:000008ð282Þð25002Þ ¼ 39;200. Having two values of sr, Eq. (16.2-10) can
now be written

�700 ¼ ð39;200Þð0:1780Þ þ Að1:616Þ þ Bð�32:5Þ ðinner rimÞ

7960 ¼ ð39;200Þð0:1055Þ þ Að4:056Þ þ Bð�0:534Þ ðouter rimÞ

The solution gives

A ¼ 973; B ¼ 285

The stresses at r ¼ 7 are now found by Eqs. (16.2-10) and (16.2-11) to be

sr ¼ ð39;200Þð0:1784Þ þ ð973Þð1:796Þ þ ð285Þð�9:553Þ ¼ 6020 lb=in2

st ¼ ð39;200Þð0:1773Þ þ ð973Þð1:674Þ þ ð285Þð14:88Þ ¼ 12;825 lb=in2

Bursting speed. The formulas given above for stresses in rotating

disks presuppose elastic conditions; when the elastic limit is exceeded,

plastic yielding tends to equalize the stress intensity along a diametral

plane. Because of this, the average stress sa on such a plane is perhaps

Figure 16.4
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a better criterion of margin of safety against bursting than is the

maximum stress computed for elastic conditions. For a solid disk of

uniform thickness (case 7),

sa ¼
do2R2

3g

For a pierced disk (case 8),

sa ¼
do2ðR3 � R3

0Þ

3gðR � R0Þ

Tests (Refs. 12 and 13) have shown that for some materials, rupture

occurs in both solid and pierced disks when sa, computed for the

original dimensions, becomes equal to the ultimate tensile strength of

the material as determined by a conventional test. On the other hand,

some materials fail at values of sa as low as 61.5% of the ultimate

strength, and the lowest values have been observed in tests of solid

disks. The ratio of sa at failure to the ultimate strength does not

appear to be related in any consistent way to the ductility of the

material; it seems probable that it depends on the form of the stress-

strain diagram. In none of the tests reported did the weakening effect

of a central hole prove to be nearly as great as the formulas for elastic

stress would seem to indicate.

16.3 Impact and Sudden Loading

When a force is suddenly applied to an elastic body (as by a blow), a

wave of stress is propagated, which travels through the body with a

velocity

V ¼

ffiffiffiffiffiffiffi
gE

d

r
ð16:3-1Þ

where E is the modulus of elasticity of the material and d is the weight

of the material per unit volume.

Bar with free ends. When one end of an unsupported uniform elastic

bar is subjected to longitudinal impact from a rigid body moving with

velocity v, a wave of compressive stress of intensity

s ¼
v

V
E ¼ v

ffiffiffiffiffiffi
dE

g

s
ð16:3-2Þ

is propagated. The intensity of stress is seen to be independent of the

mass of the moving body, but the length of the stressed zone, or volume
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of material simultaneously subjected to this stress, does depend on the

mass of the moving body. If this mass is infinite (or very large

compared with that of the bar), the wave of compression is reflected

back from the free end of the bar as a wave of tension and returns to

the struck end after a period t1 ¼ 2L=V s, where L is the length of the

bar and the period t1 is the duration of contact between bar and body.

If the impinging body is very large compared with the bar (so that its

mass may be considered infinite), the bar, after breaking contact,

moves with a velocity 2v in the direction of the impact and is free of

stress. If the mass of the impinging body is m times the mass of the bar,

the average velocity of the bar after contact is broken is

mvð1 � e�2=mÞ

and it is left vibrating with a stress of intensity

s ¼
v

V
Ee�bt1

where b ¼ A
ffiffiffiffiffiffiffiffiffi
dEg

p
=W , A being the section area of the bar and W the

weight of the moving body.

Bar with one end fixed. If one end of a bar is fixed, the wave of

compressive stress resulting from impact on the free end is reflected

back unchanged from the fixed end and combines with advancing

waves to produce a maximum stress very nearly equal to

smax ¼
v

V
E 1 þ

ffiffiffiffiffiffiffiffiffiffiffiffi
mþ

2

3

r !
ð16:3-3Þ

where, as before, m denotes the ratio of the mass of the moving body to

the mass of the bar. The total time of contact is approximately

t1 ¼
L

V
p

ffiffiffiffiffiffiffiffiffiffiffiffi
mþ

1

2

r
�

1

2

" #
s

[The above formulas are taken from the paper by Donnell (Ref. 5); see

also Ref. 17.]

Sudden loading. If a dead load is suddenly transferred to the free end

of a bar, the other end being fixed, the resulting state of stress is

characterized by waves, as in the case of impact. The space-average

value of the pull exerted by the bar on the load is not half the

maximum tension, as is usually assumed, but is somewhat greater

than that, and therefore the maximum stress that results from sudden
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loading is somewhat less than twice that which results from static

loading. Love (Ref. 6) shows that if m (the ratio of the mass of the load

to that of the bar) is 1, sudden loading causes 1.63 times as much

stress as static loading; for m ¼ 2, the ratio is 1.68; for m ¼ 4, it is 1.84;

and it approaches 2 as a limit as m increases. It can be seen that the

ordinary assumption that sudden loading causes twice as much stress

and deflection as static loading is always a safe one to make.

Moving load on beam. If a constant force moves at uniform speed

across a beam with simply supported ends, the maximum deflection

produced exceeds the static deflection that the same force would

produce. If v represents the velocity of the force, l the span, and o
the lowest natural vibration frequency of the (unloaded) beam, then

theoretically the maximum value of the ratio of dynamic to static

deflection is 1.74; it occurs for v ¼ ol=1:64p and at the instant when

the force has progressed at a distance 0:757l along the span (Refs. 15

and 16).

If a constant mass W moves across a simple beam of relatively

negligible mass, then the maximum ratio of dynamic to static deflec-

tion is ½1 þ ðv2=gÞðWl=3EIÞ	 (see Ref. 30). (Note that consistent units

must be used in the preceding equations.)

Vibration. A very important type of dynamic loading occurs when an

elastic body vibrates under the influence of a periodic impulse. This

occurs whenever a rotating or reciprocating mass is unbalanced and

also under certain conditions of fluid flow. The most serious situation

arises when the impulse synchronizes (or nearly synchronizes) with

the natural period of vibration, and it is of the utmost importance to

guard against this condition of resonance (or near resonance). There is

always some resistance to vibration, whether natural or introduced;

this is called damping and tends to prevent vibrations of excessive

amplitude. In the absence of effective damping, the amplitude y for

near-resonance vibration will much exceed the deflection ys that would

be produced by the same force under static conditions. The ratio y=ys,

called the relative amplification factor, in the absence of damping, is

1=½1 � ð f=fnÞ
2
	, where f is the frequency of the forcing impulse and fn is

the natural frequency of the elastic system. Obviously, it is necessary

to know at least approximately the natural period of vibration of a

member in order to guard against resonance.

Thomson and Dahleh (Ref. 19) describes in detail analytical and

numerical techniques for determining resonant frequencies for

systems with single and multiple degrees of freedom; they also

describe methods and gives numerous examples for torsional and

lateral vibrations of rods and beams. Huang (Ref. 22) has tabulated
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the first five resonant frequencies as well as deflections, slopes,

bending moments, and shearing forces for each frequency at intervals

of 0.02l for uniform beams; these are available for six combinations of

boundary conditions. He has also included the first five resonant

frequencies for all combinations of 7 different amounts of correction

for rotary inertia and 10 different amounts of correction for lateral

shear deflection; many mode shapes for these corrections are also

included. In Table 16.1, the resonant frequencies and nodal locations

are listed for several boundary conditions with no corrections for

rotary inertia or shear deflection. (Corrections for rotary inertia and

shear deflection have a relatively small effect on the fundamental

frequency but a proportionally greater effect on the higher modes.)

Leissa (Ref. 20) has compiled, compared, and in some cases extended

most of the known work on the vibration of plates; where possible,

mode shapes are given in addition to the many resonant frequencies.

Table 16.1 lists only a very few simple cases. Similarly, Leissa (Ref. 21)

has done an excellent job of reporting the known work on the vibration

of shells. Since, in general, this work must involve three additional

variables—the thickness=radius ratio, length=radius ratio, and Pois-

son’s ratio—no results are included here. Blevins, in Ref. 24, gives

excellent coverage, by both formulas and tables, of resonant frequen-

cies and mode shapes for cables, straight and curved beams, rings,

plates, and shells.

A simple but close approximation for the fundamental frequency of a

uniform thin plate of arbitrary shape having any combination of fixed,

partially fixed, or simply supported boundaries is given by Jones in

Ref. 23. The equation

f ¼
1:2769

2p

ffiffiffiffiffiffiffiffiffiffi
g

dmax

r

is based on his work where dmax is the maximum static deflection

produced by the weight of the plate and any uniformly distributed

mass attached to the plate and vibrating with it. It is based on the

expression for the fundamental frequency of a clamped elliptical plate

but, as Jones points out with several examples of triangular, rectan-

gular, and circular plates having various combinations of boundary

conditions, it should hold equally well for all uniform plates having no

free boundaries. In the 16 examples he presents, the maximum error

in frequency is about 3%.

16.4 Impact and Sudden Loading; Approximate
Formulas

If it is assumed that the stresses due to impact are distributed

throughout any elastic body exactly as in the case of static loading,
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then it can be shown that the vertical deformation di and stress si

produced in any such body (bar, beam, truss, etc.) by the vertical

impact of a body falling from a height of h are greater than the

deformation d and stress s produced by the weight of the same body

applied as a static load in the ratio

di

d
¼

si

s
¼ 1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ 2

h

d

r
ð16:4-1Þ

If h ¼ 0, we have the case of sudden loading, and di=d ¼ si=s ¼ 2, as is

usually assumed.

If the impact is horizontal instead of vertical, the impact deforma-

tion and stress are given by

di

d
¼

si

s
¼

ffiffiffiffiffiffi
v2

gd

s
ð16:4-2Þ

where, as before, d is the deformation the weight of the moving body

would produce if applied as a static load in the direction of the velocity

and v is the velocity of impact.

Energy losses. The above approximate formulas are derived on the

assumptions that impact strains the elastic body in the same way

(though not in the same degree) as static loading and that all the

kinetic energy of the moving body is expended in producing this strain.

Actually, on impact, some kinetic energy is dissipated; and this loss,

which can be found by equating the momentum of the entire system

before and after impact, is most conveniently taken into account by

multiplying the available energy (measured by h or by v2) by a factor

K , the value of which is as follows for a number of simple cases

involving members of uniform section:

1. A moving body of mass M strikes axially one end of a bar of mass

M1, the other end of which is fixed. Then

K ¼

1 þ
1

3

M1

M

1 þ
1

2

M1

M

� �2

If there is a body of mass M2 attached to the struck end of the bar,

then

K ¼

1 þ
1

3

M1

M
þ

M2

M

1 þ
1

2

M1

M
þ

M2

M

� �2
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2. A moving body of mass M strikes transversely the center of a

simple beam of mass M1. Then

K ¼

1 þ
17

25

M1

M

1 þ
5

8

M1

M

� �2

If there is a body of mass M2 attached to the beam at its center,

then

K ¼

1 þ
17

35

M1

M
þ

M2

M

1 þ
5

8

M1

M
þ

M2

M

� �2

3. A moving body of mass M strikes transversely the end of a

cantilever beam of mass M1. Then

K ¼

1 þ
33

140

M1

M

1 þ
3

8

M1

M

� �2

If there is a body of mass M2 attached to the beam at the struck

end, then

K ¼

1 þ
33

140

M1

M
þ

M2

M

1 þ
3

8

M1

M
þ

M2

M

� �2

4. A moving body of mass M strikes transversely the center of a beam

with fixed ends and of mass M1. Then

K ¼

1 þ
13

35

M1

M

1 þ
1

2

M1

M

� �2

If there is a body of mass M2 attached to the beam at the center,

then

K ¼

1 þ
13

35

M1

M
þ

M2

M

1 þ
1

2

M1

M
þ

M2

M

� �2
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16.5 Remarks on Stress due to Impact

It is improbable that in any actual case of impact the stresses can be

calculated accurately by any of the methods or formulas given above.

Equation (16.3-3), for instance, is supposedly very nearly precise if the

conditions assumed are realized, but those conditions—perfect elasti-

city of the bar, rigidity of the moving body, and simultaneous contact of

the moving body with all points on the end of the rod—are obviously

unattainable. On the one hand, the damping of the initial stress wave

by elastic hysteresis in the bar and the diminution of the intensity of

that stress wave by the cushioning effect of the actually nonrigid

moving body would serve to make the actual maximum stress less

than the theoretical value; on the other hand, uneven contact between

the moving body and the bar would tend to make the stress conditions

nonuniform across the section and would probably increase the maxi-

mum stress.

The formulas given in Sec. 16.4 are based upon an admittedly false

assumption, viz. that the distribution of stress and strain under

impact loading is the same as under static loading. It is known, for

instance, that the elastic curve of a beam under impact is different

from that under static loading. Such a difference exists in any case,

but it is less marked for low than for high velocities of impact, and Eqs.

(16.4-1) and (16.4-2) probably give reasonably accurate values for the

deformation and stress (especially the deformation) resulting from the

impact of a relatively heavy body moving at low velocity. The lenitive

effect of the inertia of the body struck and of attached bodies, as

expressed by K, is greatest when the masses of these parts are large

compared with that of the moving body. When this is the case, impact

can be serious only if the velocity is relatively high, and under such

circumstances the formulas probably give only a rough indication of

the actual stresses and deformations to be expected. (See Ref. 18.)

16.6 Temperature Stresses

Whenever the expansion or contraction that would normally result

from the heating or cooling of a body is prevented, stresses are

developed that are called thermal, or temperature, stresses. It is

convenient to distinguish two different sets of circumstances under

which thermal stresses occur: (1) The form of the body and the

temperature conditions are such that there would be no stresses

except for the constraint of external forces; in any such case, the

stresses may be found by determining the shape and dimensions the

body would assume if unconstrained and then calculating the stresses

produced by forcing it back to its original shape and dimensions (see

Sec. 7.2, Example 2). (2) The form of the body and the temperature
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conditions are such that stresses are produced in the absence of

external constraint solely because of the incompatibility of the natural

expansions or contractions of the different parts of the body.

A number of representative examples of each type of thermal stress

will now be considered.* In all instances the modulus of elasticity E

and the coefficient of thermal expansion g are assumed to be constant

for the temperature range involved and the increment or difference in

temperature DT is assumed to be positive; when DT is negative, the

stress produced is of the opposite kind. Also, it is assumed that the

compressive stresses produced do not produce buckling and that

yielding does not occur; if either buckling or yielding is indicated by

the stress levels found, then the solution must be modified by appro-

priate methods discussed in previous chapters.

Stresses due to external constraint

1. A uniform straight bar is subjected to a temperature change DT

throughout while held at the ends; the resulting unit stress is

DTgE (compression). (For other conditions of end restraint see

Table 8.2 cases 1q–12q.)

2. A uniform flat plate is subjected to a temperature change DT

throughout while held at the edges; the resulting unit stress is

DTgE=ð1 � nÞ (compression).

3. A solid body of any form is subjected to a temperature change DT

throughout while held to the same form and volume; the resulting

stress is DTgE=ð1 � 2nÞ (compression).

4. A uniform bar of rectangular section has one face at a uniform

temperature T and the opposite face at a uniform temperature

T þ DT , the temperature gradient between these faces being

linear. The bar would normally curve in the arc of the circle of

radius d=DTg, where d is the distance between the hot and cold

faces. If the ends are fixed, the bar will be held straight by end

couples EIDTg=d, and the maximum resulting bending stress will

be 1
2
DTgE (compression on the hot face; tension on the cold face).

(For many other conditions of end restraint and partial heating,

see Table 8.1, cases 6a–6f; Table 8.2, cases 1r–12r; Table 8.5, case

7; Table 8.6, case 7; Table 8.8, cases 6a–6f; and Table 8.9 cases

6a–6f.)

5. A flat plate of uniform thickness t and of any shape has one face at

a uniform temperature T and the other face at a uniform tempera-

*Most of the formulas given here are taken from the papers by Goodier (Refs. 7 and
14), Maulbetsch (Ref. 8). and Kent (Ref. 9).
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ture T þ DT , the temperature gradient between the faces being

linear. The plate would normally assume a spherical curvature

with radius t=ðDTgÞ. If the edges are fixed, the plate will be held

flat by uniform edge moments and the maximum resulting bend-

ing stress will be 1
2
DTgE=ð1 � nÞ (compression on the hot face;

tension on the cold face). (For many other conditions of edge

restraint and axisymmetric partial heating, see Table 11.2, cases

8a–8h; a more general treatment of the solid circular plate is given

in Table 11.2, case 15.)

6. If the plate described in case 5 is circular, no stress is produced by

supporting the edges in a direction normal to the plane of the

plate.

7. If the plate described in case 5 has the shape of an equilateral

triangle of altitude a (sides 2a=
ffiffiffi
3

p
) and the edges are rigidly

supported so as to be held in a plane, the supporting reactions

will consist of a uniform load 1
8
DTgEt2=a per unit length along

each edge against the hot face and a concentrated loadffiffiffi
3

p
DTgEt2=12 at each corner against the cold face. The maximum

resulting bending stress is 3
4
DTgE at the corners (compression on

the hot face; tension on the cold face). There are also high shear

stresses near the corners (Ref. 8).

8. If the plate described in case 5 is square, no simple formula is

available for the reactions necessary to hold the edges in their

original plane. The maximum bending stress occurs near the

edges, and its value approaches 1
2
DTgE. There are also high

shear stresses near the corners (Ref. 8).

Stresses due to internal constraint

9. Part or all of the surface of a solid body is suddenly subjected to a

temperature change DT ; a compressive stress DTgE=ð1 � nÞ is

developed in the surface layer of the heated part (Ref. 7).

10. A thin circular disk at uniform temperature has the temperature

changed DT throughout a comparatively small central circular

portion of radius a. Within the heated part there are radial and

tangential compressive stresses sr ¼ st ¼
1
2
DTgE. At points

outside the heated part a distance r from the center of the disk

but still close to the central portion, the stresses are

sr ¼
1
2
DTgEa2=r2 (compression) and st ¼

1
2
DTgEa2=r2 (tension);

at the edge of the heated portion, there is a maximum shear

stress 1
2
DTgE (Ref. 7).

11. If the disk of case 10 is heated uniformly throughout a small

central portion of elliptical instead of circular outline, the maxi-
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mum stress is the tangential stress at the ends of the ellipse and is

st ¼ DTgE=½1 þ ðb=aÞ	, where a is the major and b the minor semi-

axis of the ellipse (Ref. 7).

12. If the disk of case 10 is heated symmetrically about its center and

uniformly throughout its thickness so that the temperature is a

function of the distance r from the center only, the radial and

tangential stresses at any point a distance r1 from the center are

sr1
¼ gE

1

R2

ðR

0

Tr dr �
1

r2
1

ðr1

0

Tr dr

 !

st1
¼ gE �T þ

1

R2

ðR

0

Tr dr þ
1

r2
1

ðr1

0

Tr dr

 !

where R is the radius of the disk and T is the temperature at any

point a distance r from the center minus the temperature of the

coldest part of the disk. [In the preceding expressions, the negative

sign denotes compressive stress (Ref. 7).]

13. A rectangular plate or strip ABCD (Fig. 16.5) is heated along a

transverse line FG uniformly throughout the thickness and across

the width so that the temperature varies only along the length

with x. At FG the temperature is T1; the minimum temperature in

the plate is T0. At any point along the edges of the strip where the

temperature is T, a tensile stress sx ¼ EgðT � T0Þ is developed;

this stress has its maximum value at F and G, where it becomes

EgðT1 � T0Þ. Halfway between F and G, a compressive stress sy of

equal intensity is developed along line FG (Ref. 7).

14. The plate of case 13 is heated as described except that the lower

face of the plate is cooler than the upper face, the maximum

temperature there being T2 and the temperature gradient through

the thickness being linear. The maximum tensile stress at F and G

is (see Ref. 7)

sx ¼
1

2
Eg T1 þ T2 � 2T0 þ

1 � n
3 þ n

ðT1 � T2Þ

� �

15. A long hollow cylinder with thin walls has the outer surface at the

uniform temperature T and the inner surface at the uniform

Figure 16.5
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temperature T þ DT . The temperature gradient through the

thickness is linear. At points remote from the ends, the maximum

circumferential stress is 1
2
DTgE=ð1 � nÞ (compression at the inner

surface; tension at the outer surface) and the longitudinal stress is
1
2
DTgE=ð1 � nÞ (compression at the inside; tension at the outside).

(These formulas apply to a thin tube of any cross section.) At the

ends, if these are free, the maximum tensile stress in a tube of

circular section is about 25% greater than the value given by the

formula (Ref. 7).

16. A hollow cylinder with thick walls of inner radius b and outer

radius c has the outer surface at the uniform temperature T and

the inner surface at the uniform temperature T þ DT . After

steady-state heat flow is established the temperature decreases

logarithmically with r and then the maximum stresses, which are

circumferential and which occur at the inner and outer surfaces,

are

(Outer surface)

st ¼
DTgE

2ð1 � nÞ lnðc=bÞ
1 �

2b2

c2 � b2
ln

c

b

� �
tension

(Inner surface)

st ¼
DTgE

2ð1 � nÞ lnðc=bÞ
1 �

2c2

c2 � b2
ln

c

b

� �
compression

At the inner and outer surfaces, the longitudinal stresses are

equal to the tangential stresses (Ref. 7).

17. If the thick tube of case 16 has the temperature of the outer

surface raised at the uniform rate of m�=s then, after a steady rate

of temperature rise has been reached throughout, the maximum

tangential stresses are

(Outer surface)

st ¼
Egm

8Að1 � nÞ
3b2 � c2 �

4b4

c2 � b2
ln

c

b

� �
compression

(Inner surface)

st ¼
Egm

8Að1 � nÞ
b2 þ c2 �

4b2c2

c2 � b2
ln

c

b

� �
tension

where A is the coefficient of thermal diffusivity equal to the

coefficient of thermal conductivity divided by the product of

density of the material and its specific heat. (For steel, A may be
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taken as 0:027 in
2=s at moderate temperatures.) [At the inner and

outer surfaces, the longitudinal stresses are equal to the tangen-

tial stresses (Ref. 9).] The stated conditions in this case 17 as well

as those in cases 19 to 21 are difficult to create in a short time

except for small parts heated or cooled in liquids.

18. A solid rod of circular section is heated or cooled symmetrically

with respect to its axis, the condition being uniform along the

length, so that the temperature is a function of r (the distance

from the axis) only. The stresses are equal to those given by the

formulas for case 12 divided by 1 � n (Ref. 7).

19. If the solid rod of case 18 has the temperature of its convex surface

raised at the uniform rate of m�=s, then, after a steady rate of

temperature rise has been reached throughout, the radial, tangen-

tial, and longitudinal stresses at any point a distance r from the

center are

sr ¼
Egm
1 � n

c2 � r2

16A

st ¼
Egm
1 � n

c2 � 3r2

16A

sx ¼
Egm
1 � n

c2 � 2r2

8A

Here A has the same meaning as in case 17 and c is the radius of

the shaft, [A negative result indicates compression, a positive

result tension (Ref. 9).]

20. A solid sphere of radius c is considered instead of a solid cylinder

but with all other conditions kept the same as in case 19. The

radial and tangential stresses produced at any point a distance r

from the center are

sr ¼
Egm

15Að1 � nÞ
ðc2 � r2Þ

st ¼
Egm

15Að1 � nÞ
ðc2 � 2r2Þ

[A negative result indicates compression, a positive result tension

(Ref. 9).]

21. If the sphere is hollow, with outer radius c and inner radius b, and

with all other conditions kept as stated in case 17, the stresses at
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any point are

sr ¼
Egm

15Að1 � nÞ
�r2 �

5b3

r
þ f� c

� �

st ¼
Egm

15Að1 � nÞ
�2r2 �

5b3

2r
þ fþ

c
2

� �

where f ¼
c5 þ 5c2b3 � 6b5

c3 � b3

c ¼
c5b3 � 6c3b5 þ 5c2b6

r3ðc3 � b3Þ

[A negative result indicates compression, a positive result tension

(Ref. 9).]

Other problems involving thermal stress, the solutions of which

cannot be expressed by simple formulas, are considered in the refer-

ences cited above and in Refs. 3, 10 and 25 to 29; charts for the solution

of thermal stresses in tubes are given in Ref. 11. Derivations for many

of the thermal loadings shown above along with thermal loadings on

many other examples of bars, rings, plates, and cylindrical and

spherical shells are given in Ref. 28.
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TABLE 16.1 Natural frequencies of vibration for continuous members
NOTATION: f ¼ natural frequency (cycles per second); Kn ¼ constant where n refers to the mode of vibration; g ¼ gravitational acceleration (units consistent with length dimension); E ¼ modulus of

elasticity; I ¼ area moment of inertia; D ¼ Et3=12ð1 � n2Þ

Case no. and description Natural frequencies

1. Uniform beam; both ends

simply supported

1a. Center load W , beam weight

negligible
f1 ¼

6:93

2p

ffiffiffiffiffiffiffiffiffi
EIg

Wl3

r

1b. Uniform load w per unit

length including beam weight

fn ¼
Kn

2p

ffiffiffiffiffiffiffiffiffi
EIg

wl4

r Mode Kn Nodal position=l

1 9:87 0:0 1:00

2 39:5 0:0 0:50 1:00

3 88:8 0:0 0:33 0:67 1:00

4 158 0:0 0:25 0:50 0:75 1:00

5 247 0:0 0:20 0:40 0:60 0:80 1:00

1c. Uniform load w per unit length

plus a center load W
f1 ¼

6:93

2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EIg

Wl3 þ 0:486wl4

r
approximately

2. Uniform beam; both ends

fixed

2a. Center load W , beam weight

negligible
f1 ¼

13:86

2p

ffiffiffiffiffiffiffiffiffi
EIg

Wl3

r

2b. Uniform load w per unit

length including beam weight
fn ¼

Kn

2p

ffiffiffiffiffiffiffiffiffi
EIg

wl4

r
Mode Kn Nodal position=l

1 22:4 0:0 1:00

2 61:7 0:0 0:50 1:00

3 121 0:0 0:36 0:64 1:00

4 200 0:0 0:28 0:50 0:72 1:00

5 299 0:0 0:23 0:41 0:59 0:77 1:00

2c. Uniform load w per unit length

plus a center load W
f1 ¼

13:86

2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EIg

Wl3 þ 0:383wl4

r
approximately

3. Uniform beam; left end fixed,

right end free (cantilever)

3a. Right end load W , beam

weight negligible
f1 ¼

1:732

2p

ffiffiffiffiffiffiffiffiffi
EIg

Wl3

r

3b. Uniform load w per unit

length including beam weight
fn ¼

Kn

2p

ffiffiffiffiffiffiffiffiffi
EIg

wl4

r
Mode Kn Nodal position=l

1 3:52 0:0
2 22:0 0:0 0:783

3 61:7 0:0 0:504 0:868

4 121 0:0 0:358 0:644 0:905

5 200 0:0 0:279 0:500 0:723 0:926

Ref: 22

Ref: 22

Ref: 22
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TABLE 16.1 Natural frequencies of vibration for continuous members (Continued)

Case no. and description Natural frequencies

3c. Uniform load w per unit length

plus an end load W
f1 ¼

1:732

2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EIg

Wl3 þ 0:236wl4

r
approximately

4. Uniform beam; both ends

free

4a. Uniform load w per unit

length including beam weight
fn ¼

Kn

2p

ffiffiffiffiffiffiffiffiffi
EIg

wl4

r
Mode Kn Nodal position=l

1 22:4 0:224 0:776

2 61:7 0:132 0:500 0:868

3 121 0:095 0:356 0:644 0:905

4 200 0:074 0:277 0:500 0:723 0:926

5 299 0:060 0:226 0:409 0:591 0:774 0:940

5. Uniform beam; left end fixed,

right end hinged

5a. Uniform load w per unit

length including beam weight
fn ¼

Kn

2p

ffiffiffiffiffiffiffiffiffi
EIg

wl4

r
Mode Kn Nodal position=l

1 15:4 0:0 1:000

2 50:0 0:0 0:557 1:000

3 104 0:0 0:386 0:692 1:000

4 178 0:0 0:295 0:529 0:765 1:000

5 272 0:0 0:239 0:428 0:619 0:810 1:000

6. Uniform beam; left end

hinged, right end free

6a. Uniform load w per unit

length including beam weight
fn ¼

Kn

2p

ffiffiffiffiffiffiffiffiffi
EIg

wl4

r
Mode Kn Nodal position=l

1 15:4 0:0 0:736

2 50:0 0:0 0:446 0:853

3 104 0:0 0:308 0:617 0:898

4 178 0:0 0:235 0:471 0:707 0:922

5 272 0:0 0:190 0:381 0:571 0:763 0:937

7. Uniform bar or spring

vibrating along its

longitudinal axis; upper end

fixed, lower end free

7a. Weight W at lower end, bar

weight negligible
f1 ¼

1

2p

ffiffiffiffiffiffi
kg

W

r
for a spring where k is the spring constant

f1 ¼
1

2p

ffiffiffiffiffiffiffiffiffiffi
AEg

Wl

r
for a bar where A is the area; l the length; and E the modulus

7b. Uniform load w per unit

length including bar weight
fn ¼

Kn

2p

ffiffiffiffiffiffiffiffiffiffi
AEg

wl2

r
where K1 ¼ 1:57 K2 ¼ 4:71 K3 ¼ 7:85

7c. Uniform load w per unit length

plus a load W at the lower end f1 ¼
1

2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kg

W þ wl=3

s
approximately for a spring where k is the spring constant

f1 ¼
1

2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AEg

Wl þ wl2=3

s
approximately for a bar where A is the area

Ref: 22

Ref: 22

Ref: 22
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8. Uniform shaft or bar in

torsional vibration; one

end fixed, the other end

free

8a. Concentrated end mass

of J mass moment of inertia,

shaft weight negligible

f1 ¼
1

2p

ffiffiffiffiffiffiffiffi
GK

Jl

r
G is the shear modulus of elasticity and K is the torsional stiffness constant (see Chap. 10)

8b. Uniform distribution of mass

moment of inertia along

shaft; Js ¼ total distributed

mass moment of inertia

fn ¼
Kn

2p

ffiffiffiffiffiffiffiffi
GK

Jsl

s
where K1 ¼ 1:57 K2 ¼ 4:71 K3 ¼ 7:85

8c. Uniformly distributed inertia

plus a concentrated end mass f1 ¼
1

2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GK

ðJ þ Js=3Þl

s
approximately

9. String vibrating laterally

under a tension T with both

ends fixed

9a. Uniform load w per unit

length including own weight
f ¼

Kn

2p

ffiffiffiffiffiffiffiffi
Tg

wl2

r
where K1 ¼ p K2 ¼ 2p K3 ¼ 3p

10. Circular flat plate of

uniform thickness t and

radius r; edge fixed

10a. Uniform load w per unit area

including own weight f ¼
Kn

2p

ffiffiffiffiffiffiffiffiffi
Dg

wr4

r where K1 ¼ 10:2 fundamental

K2 ¼ 21:3 one nodal diameter

K3 ¼ 34:9 two nodal diameters

K4 ¼ 39:8 one nodal circle

11. Circular flat plate of

uniform thickness t and

radius r; edge simply

supported

11a. Uniform load w per unit area

including own weight; n ¼ 0:3 f ¼
Kn

2p

ffiffiffiffiffiffiffiffiffi
Dg

wr4

r where K1 ¼ 4:99 fundamental

K2 ¼ 13:9 one nodal diameter

K3 ¼ 25:7 two nodal diameters

K4 ¼ 29:8 one nodal circle

12. Circular flat plate of

uniform thickness t and

radius r; edge free

12a. Uniform load w per unit area

including own weight;

n ¼ 0:33
f ¼

Kn

2p

ffiffiffiffiffiffiffiffiffi
Dg

wr4

r where K1 ¼ 5:25 two nodal diameters

K2 ¼ 9:08 one nodal circle

K3 ¼ 12:2 three nodal diameters

K4 ¼ 20:5 one nodal diameter and one nodal circle

Ref: 20

Ref: 20

Ref: 20
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TABLE 16.1 Natural frequencies of vibration for continuous members (Continued)

Case no. and description Natural frequencies

13. Circular flat plate of

uniform thickness t and

radius r; edge simply

supported with an

additional edge

constraining moment

M ¼ bc per unit

circumference where c is

the edge rotation

13a. Uniform load w per unit area

including own weight; n ¼ 0:3
f ¼

Kn

2p

ffiffiffiffiffiffiffiffiffi
Dg

wr4

r
where Knis tabulated for various degrees of edge stiffness in the form of br=D:

br=D
Kn

Fundamental 1 nodal diameter 2 nodal diameters 1 nodal circle

1 10:2 21:2 34:8 39:7

1 10:2 21:2 34:8 39:7

0:1 10:0 20:9 34:2 39:1

0:01 8:76 18:6 30:8 35:2

0:001 6:05 15:0 26:7 30:8

0 4:93 13:9 25:6 29:7

14. Elliptical flat plate of major

radius, a, minor radius b,

and thickness t; edge fixed

14a. Uniform load w per unit area

including own weight
f ¼

K1

2p

ffiffiffiffiffiffiffiffiffi
Dg

wa4

r
where K1 is tabulated for various ratios of a=b

a=b 1:0 1:1 1:2 1:5 2:0 3:0

K1 10:2 11:3 12:6 17:0 27:8 57:0

15. Rectangular flat plate with

short edge a, long edge, b,

and thickness, t; all edges

fixed

15a. Uniform load w per unit area

including own weight
f ¼

K1

2p

ffiffiffiffiffiffiffiffiffi
Dg

wa2

r
where K1 is tabulated for various ratios of a=b

a=b 1 0:9 0:8 0:6 0:4 0:2 0

K1 36:0 32:7 29:9 25:9 23:6 22:6 22:4

16. Rectangular flat plate with

short edge a, long edge b,

and thickness t; all edges

simply supported

16a. Uniform load w per unit area

including own weight
f ¼

Kn

2p

ffiffiffiffiffiffiffiffiffi
Dg

wa4

r
where Kn ¼ p2 m2

a þ
a

b

� �2

m2
b

� �

ðma ¼ 1;mb ¼ 1Þ

ðma ¼ 1;mb ¼ 2Þ

ðma ¼ 2;mb ¼ 1Þ

ðma ¼ 1;mb ¼ 3Þ

a=b 1:0 0:8 0:6 0:4 0:2 0:0

K1 19:7 16:2 13:4 11:5 10:3 9:87

K2 49:3 35:1 24:1 16:2 11:5
K3 49:3 45:8
K3 41:9 24:1 13:4

17. Rectangular flat plate with

two edges a fixed, one edge b

fixed, and one edge b simply

supported

17a. Uniform load w per unit area

including own weight
f ¼

K1

2p

ffiffiffiffiffiffiffiffiffi
Dg

wa4

r
where K1 is tabulated for various ratios of

a

b

a=b 3:0 2:0 1:6 1:2 1:0 0:8 0:6 0:4 :2 0

K1 213 99 67 42:4 33:1 25:9 20:8 17:8 16:2 15:8

Ref: 20

Ref: 20

Ref: 20

Ref: 20

Ref: 22

7
6
8

F
o
rm
u
la
s
fo
r
S
tre
s
s
a
n
d
S
tra
in

[C
H
A
P
.
1
6



16.8 References

1. Hodkinson, B.: Rotating Discs of Conical Profile, Engineering, vol. 115, p. 1, 1923.
2. Rushing, F. C.: Determination of Stresses in Rotating Disks of Conical Profile, Trans.

ASME, vol. 53, p. 91, 1931.
3. Stodola, A.: ‘‘Steam and Gas Turbines,’’ 6th ed., McGraw-Hill, 1927 (transl. by L. C.

Loewenstein).
4. Loewenstein, L. C,: ‘‘Marks’ Mechanical Engineers’ Handbook,’’ McGraw-Hill, 1930.
5. Donnell, L. H.: Longitudinal Wave Transmission and Impact, Trans. ASME, vol. 52,

no. 1, p. 153, 1930.
6. Love, A. E. H.: ‘‘Mathematical Theory of Elasticity,’’ 2nd ed., Cambridge University

Press, 1906.
7. Goodier, J. N.: Thermal Stress, ASME J. Appl. Mech., vol. 4, no. 1, 1937.
8. Maulbetsch, J. L: Thermal Stresses in Plates, ASME J. Appl. Mech., vol. 2, no. 4,

1935.
9. Kent, C. H.: Thermal Stresses in Spheres and Cylinders Produced by Temperatures

Varying with Time, Trans. ASME, vol. 54, no. 18, p. 185, 1932.
10. Timoshenko, S.: ‘‘Theory of Elasticity,’’ McGraw-Hill, 1934.
11. Barker, L. H.: The Calculation of Temperature Stresses in Tubes, Engineering, vol.

124, p. 443, 1927.
12. Robinson, E. L.: Bursting Tests of Steam-turbine Disk Wheels, Trans. ASME, vol 66,

no. 5, p. 373, 1944.
13. Holms, A. G., and J. E. Jenkins: Effect of Strength and Ductility on Burst Char-

acteristics of Rotating Disks, Natl. Adv. Comm. Aeron., Tech. Note 1667, 1948.
14. Goodier, J. N.: Thermal Stress and Deformation, ASME J. Appl. Mech., vol. 24, no. 3,

1957.
15. Eichmann, E. S.: Note on the Maximum Effect of a Moving Force on a Simple Beam,

ASME J. Appl. Mech., vol. 20, no. 4, 1953.
16. Ayre, R. S., L. S. Jacobsen, and C. S. Hsu: Transverse Vibration of 1 and 2-span

Beams under Moving Mass-Load, Proc. 1st U.S. Nail. Congr. Appl. Mech., 1952.
17. Burr, Arthur H.: Longitudinal and Torsional Impact in a Uniform Bar with a Rigid

Body at One End, ASME J. Appl. Mech., vol. 17, no. 2, 1950.
18. Schwieger, Horst: A Simple Calculation of the Transverse Impact on Beams and Its

Experimental Verification, J. Soc. Exp. Mech., vol. 5, no. 11, 1965.
19. Thomson, W. T., and M. D. Dahleh: ‘‘Theory of Vibrations with Applications,’’ 5th ed.,

Prentice-Hall, 1998.
20. Leissa, A. W.: Vibration of Plates, NASA SP-160, National Aeronautics and Space

Administration, 1969.
21. Leissa, A. W.: Vibration of Shells, NASA SP-288, National Aeronautics and Space

Administration, 1973.
22. Huang, T. C.: Eigenvalues and Modifying Quotients of Vibration of Beams, and

Eigenfunctions of Vibration of Beams, Univ. Wis. Eng. Exp. Sta. Repts. Nos. 25 and
26, 1964.

23. Jones, R.: An Approximate Expression for the Fundamental Frequency of Vibration
of Elastic Plates, J. Sound Vib., vol. 38, no. 4, 1975.

24. Blevins, R. D.: ‘‘Formulas for Natural Frequency and Mode Shape,’’ Van Nostrand
Reinhold, 1979.

25. Fridman, Y. B. (ed.): ‘‘Strength and Deformation in Nonuniform Temperature Fields,’’
transl. from the Russian, Consultants Bureau, 1964.

26. Johns, D. J.: ‘‘Thermal Stress Analyses,’’ Pergamon Press, 1965.
27. Boley, B. A., and J. H. Weiner: ‘‘Theory of Thermal Stresses,’’ John Wiley & Sons,

1960.
28. Burgreen, D.: ‘‘Elements of Thermal Stress Analysis,’’ C. P. Press, 1971.
29. Nowacki, W.: ‘‘Thermoelasticity,’’ 2nd ed., English transl. by H. Zorski, Pergamon

Press, 1986.
30. Timoshenko, S.: ‘‘Vibration Problems in Engineering,’’ Van Nostrand, 1955.

SEC. 16.8] Dynamic and Temperature Stresses 769



771

Chapter

17
Stress Concentration

When a large stress gradient occurs in a small, localized area of a

structure, the high stress is referred to as a stress concentration. Near

changes in geometry of a loaded structure, the flow of stress is

interfered with, causing high stress gradients where the maximum

stress and strain may greatly exceed the average or nominal values

based on simple calculations. Contact stresses, as discussed in Chap-

ter 14, also exhibit high stress gradients near the point of contact,

which subside quickly as one moves away from the contact area. Thus,

the two most common occurrences of stress concentrations are due to

(1) discontinuities in continuum and (2) contact forces. Discontinuities

in continuum include changes in geometry and material properties.

This chapter is devoted to geometric changes.

Rapid geometry changes disrupt the smooth flow of stresses through

the structure between load application areas. Plates in tension or

bending with holes, notches, steps, etc. are simple examples involving

direct normal stresses. Shafts in tension, bending, and torsion, with

holes, notches, steps, keyways, etc., are simple examples involving

direct and bending normal stresses and torsional shear stresses. More

complicated geometries must be analyzed either by experimental or

numerical techniques such as the finite element method. Other, less

obvious, geometry changes include rough surface finishes and external

and internal cracks.

Changes in material properties are discussed in Chap. 7, and

demonstrated in an example where a change in modulus of elasticity

drastically changed the stress distribution. Changes in material

properties can occur both at macroscopic and microscopic levels

which include alloy formulation, grain size and orientation, foreign

materials, etc.



17.1 Static Stress and Strain Concentration Factors

Consider the plate shown in Fig. 17.1, loaded in tension by a force per

unit area, s. Although not drawn to scale, consider that the outer

dimensions of the plate are infinite compared with the diameter of the

hole, 2a. It can be shown, from linear elasticity, that the tangential

stress throughout the plate is given by (see Ref. 60)

sy ¼
s
2

1 þ
a2

r2
� 1 þ 3

a4

r4

� �
cos 2y

� �
ð17:1-1Þ

The maximum stress is sy ¼ 3s at r ¼ a and y ¼ �90�. Figure 17.2

shows how the tangential stress varies along the x and y axes of the

plate. For the top (and bottom) of the hole, we see the stress gradient is

extremely large compared with the nominal stress, and hence the term

stress concentratiom applies. Along the surface of the hole, the

tangential stress is �s at y ¼ 0� and 180�, and increases, as y
increases, to 3s at y ¼ 90� and 270�.

Figure 17.1 Circular hole in a plate loaded in tension.

Figure 17.2 Tangential stress distribution for y ¼ 0� and 90�.
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The static stress concentration factor in the elastic range, Kt, is

defined as the ratio of the maximum stress, smax, to the nominal stress,

snom. That is,

Kt ¼
smax

snom

ð17:1-2Þ

For the infinite plate containing a hole and loaded in tension, snom ¼ s,

smax ¼ 3s, and thus Kt ¼ 3.*

The analysis of the plate in tension with a hole just given is for a

very wide plate (infinite in the limit). As the width of the plate

decreases, the maximum stress becomes less than three times the

nominal stress at the zone containing the hole. Figure 17.3(a) shows a

plate of thickness t ¼ 0:125 in, width D ¼ 1:50 in, with a hole of

diameter 2r ¼ 0:50 in, and an applied uniform stress of s0 ¼ 320 psi.

Figure 17.3 Stress distribution for a plate in tension containing a centrally located hole.

*See Case 7a of Table 17.1. As 2a=D ! 0, Kt ! 3:00.
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A photoelastic* model is shown in Fig. 17.3(b). From a photoelastic

analysis, the stresses at points a, b, and c are found to be

zone A A: sa ¼ 320 psi

zone B B: sb ¼ 280 psi; sc ¼ 1130 psi

The nominal stress in zone B B is

snom ¼
D

D � 2r
s0 ¼

1:50

1:50 � 0:5
320 ¼ 480 psi

If the stress was uniform from b to c, the stress would be 480 psi.

However, the photoelastic analysis shows the stress to be nonuniform,

ranging from 280 psi at b to a maximum stress at c of 1130 psi. Thus,

for this example, the stress concentration factor is found to be

Kt ¼
smax

snom

¼
1130

480
¼ 2:35

The static stress concentration factor for a plate containing a

centrally located hole in which the plate is loaded in tension depends

on the ratio 2r=D as given for case 7a of Table 17.1. For our example

here, 2r=D ¼ 0:5=1:5 ¼ 1
3
. The equation for Kt from Table 17.1 gives

Kt ¼ 3:00 � 3:13ð1
3
Þ þ 3:66ð1

3
Þ
2
� 1:53ð1

3
Þ
3
¼ 2:31

which is within 2% of the results from the photoelastic model.

Table 17.1 provides the means to evaluate the static stress concen-

tration factors in the elastic range for many cases that apply to

fundamental forms of geometry and loading conditions.

Neuber’s Formula for Nonlinear Material Behavior. If the load on a

structure exceeds the value for which the maximum stress at a

stress concentration equals the elastic limit of the material, the

stress distribution changes from that within the elastic range.

Neuber (Ref. 61) presented a formula which includes stress and

strain. Defining an effective stress concentration factor, Ks ¼ smax=
snom, and an effective strain concentration factor, Ke ¼ emax=enom,

Neuber established that Kt is the geometric means of the stress and

strain factors. That is, Kt ¼ ðKsKeÞ
1=2, or

Ks ¼
K2

t

Ke
ð17:1-3Þ

*Photoelasticity is discussed at some length in Ref. 60.
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In terms of the stresses and strains, Eq. (17.1-3) can be written as

smaxemax ¼ K2
t snomenom ð17:1-4Þ

Kt and snom are obtained exactly the same as when the max stress is

within the elastic range. The determination of enom is found from the

material’s elastic stress-strain curve using the nominal stress.

EXAMPLE

A circular shaft with a square shoulder and fillet is undergoing bending (case
17b of Table 17.1). A bending moment of 500 N-m is being transmitted at the
fillet section. For the shaft, D ¼ 50 mm, h ¼ 9 mm, and r ¼ 3 mm. The stress–
strain data for the shaft material is tabulated below and plotted in Fig. 17.4.
Determine the maximum stress in the shaft.

e;10�5 0 25 50 75 100 125 150 175 200 225 250 275 300 325 350 375 400

s; ðMPaÞ 0 50 100 150 200 235 252 263 267 272 276 279 282 285 287 289 290

Solution. From the given dimensions, h=r ¼ 9=3 ¼ 3. From case 17b of Table
17.1,

C1 ¼ 1:225 þ 0:831
ffiffiffi
3

p
� 0:010ð3Þ ¼ 2:634

C2 ¼ �3:790 þ 0:958
ffiffiffi
3

p
� 0:257ð3Þ ¼ �2:902

C3 ¼ 7:374 � 4:834
ffiffiffi
3

p
þ 0:862ð3Þ ¼ 1:587

C4 ¼ �3:809 þ 3:046 � 0:595ð3Þ ¼ �0:3182

With 2h=D ¼ 18=50 ¼ 0:36,

Kt ¼ 2:634 � 2:902ð0:36Þ þ 1:587ð0:36Þ2 � 0:3182ð0:36Þ3 ¼ 1:780

Figure 17.4
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The nominal stress at the minor radius of the step shaft is

snom ¼
32M

pðD � 2hÞ3
¼

32ð500Þ

p½50 � 2ð9Þ�3ð10�3Þ
3
¼ 155:4ð106Þ N=m2

¼ 155:4 MPa

If smax is in the elastic range, then

smax ¼ Ktsnom ¼ 1:780ð155:4Þ ¼ 276:6 MPa

However, as one can see from the stress–strain plot that this exceeds the
elastic limit of 200 MPa. Thus, smax must be determined from Neuber’s
equation.

The modulus of elasticity in the elastic range of the material is E ¼ 20 GPa.
Thus, the nominal strain is found to be enom ¼ snom=E ¼ 155:4 ð106Þ=20ð109Þ ¼

77:7 ð10�5Þ. Thus,

K2
t snomenom ¼ ð1:780Þ2ð155:4Þð77:7Þð10�5Þ ¼ 0:3826 MPa

From the tabulated data, the product s e can be tabulated as a function of s.
This results in the following:

s ðMPaÞ 0 50 100 150 200 235 252 263 267

s e ðMPaÞ 0 0.0125 0.05 0.1125 0.2 0.29375 0.378 0.46025 0.534

s ðMPaÞ 272 276 279 282 285 287 289 290

se ðMPaÞ 0.612 0.69 0.76725 0.846 0.92625 1.0045 1.08375 1.16

Since, based on Eq. (17.4), we are looking for the value of smax emax ¼ 0:3826,
we will interpolate s e between 0.378 and 0.46025. Thus,

smax � 252

0:3826 � 0:378
¼

263 � 252

0:46025 � 0:378

This yields smax ¼ 252:6 MPa.

For dynamic problems where loading is cycling, the fatigue stress

concentration factor is more appropriate to use. See Sec. 3.20 for a

discussion of this.

17.2 Stress Concentration Reduction Methods

Intuitive methods such as the flow analogy are sometimes helpful to

the analyst faced with the task of reducing stress concentrations.

When dealing with a situation where it is necessary to reduce the cross

section abruptly, the resulting stress concentration can often be mini-
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mized by a further reduction of material. This is contrary to the

common advice ‘‘if it is not strong enough, make it bigger.’’ This can

be explained by examining the flow analogy.

The governing field equations for ideal irrotational fluid flow are

quite similar to those for stress. Thus, there exists an analogy between

fluid flow lines, velocity, and pressure gradients on the one hand, and

stress trajectories, magnitudes, and principal stresses on the other.

The flow analogy for the plate in Fig. 17.3 is shown in Fig. 17.5(a),

where stress-free surface boundaries are replaced by solid-channel

boundaries for the fluid (wherever stress cannot exist, fluid flow

cannot exist). The uniformly applied loads are replaced by a uniform

Figure 17.5 Stress–flow analogy.
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fluid flow field. Along the entrance section A A of Fig. 17.5(a), the flow

is uniform, and, owing to symmetry, the flow is uniform at the exit of

the channel. However, as the fluid particles approach section B B, the

streamlines need to adjust to move around the circular obstacle. In

order to accomplish this, particles close to streamline 1 must make the

greatest adjustment and must accelerate until they reach section B B,

where they reach maximum velocity, and then decelerate to their

original uniform velocity some distance from B B. Thus, the velocity

at point c is the maximum. The compaction of the streamlines at c will

lead to the development of a pressure gradient, which will actually

cause the velocity of point b to be less than that of the incoming

velocity of streamline 6 at A A. Note also that when a particle on

streamline 1 reaches point d, the particle theoretically takes on a

velocity perpendicular to the net flow. This analogy agrees with that of

the plate loaded in tension with a centrally located hole. The stress is a

maximum at the edge of the hole corresponding to point c in Fig.

17.5(a). The stress in the plate corresponding to point b is lower than

the applied stress, and for point d the stress in the plate is compressive

perpendicular to the axial direction.

This analogy can be used to suggest improvements to reduce stress

concentrations. For example, for the plate with the hole, the hole can

be elongated to an ellipse as shown in Fig. 17.5(b), which will improve

the flow transition into section B B (note that this is a reduction of

material). An ellipse, however, is not a practical solution, but it can

effectively be approximated by drilling two smaller relief holes in line

Figure 17.6
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and in close proximity to the original hole as shown in Fig. 17.5(c). The

material between the holes, provided the holes are close, will be a

stagnation area where the flow (stresses) will be low. Consequently,

the configuration acts much like that of an elliptical hole.

At first, this might not seem to make sense, since this is a reduction

of more material—and if one hole weakens the part, obviously more

Figure 17.6 (continued ) Stress concentration reductions.
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holes will make things worse. One must keep in mind that the first

hole increased the stress in two ways: (1) by reducing the cross-

sectional area and (2) by changing the shape of the stress distribution.

The two additional holes in Fig. 17.5(c) do not change the area

reduction unless they are larger than the original hole. However, as

stated, the additional holes will improve the flow transition, and

consequently reduce the stress concentration. Another way of improv-

ing the plate with the hole is to elongate the hole in the axial direction

to a slot.

Some other examples of situations where stress concentrations

occur and possible methods of improvements are given in Fig. 17.6.

Note that in each case, improvement is made by reducing material.

This is not a hard and fast rule, however; most reductions in high

stress concentrations are made by removing material from adjacent

low-stressed areas. This ‘‘draws’’ the high stresses away from the

stress concentration area towards the low-stressed area, which

decreases the stress in the high-stressed areas.
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TABLE 17.1 Stress concentration factors for elastic stress (Kt )
The elastic stress concentration factor Kt is the ratio of the maximum stress in the stress raiser to the nominal stress computed by the ordinary mechanics-of-materials formulas, using the

dimensions of the net cross section unless defined otherwise in specific cases.

For those data presented in the form of equations, the equations have been developed to fit as closely as possible the many data points given in the literature referenced in each case. Over the

majority of the ranges specified for the variables, the curves fit the data points with much less than a 5% error.

It is not possible to tabulate all the available values of stress concentration factors found in the literature, but the following list of topics and sources of data will be helpful. All the following

references have extensive bibliographies.

Fatigue stress concentration factors ðKf Þ; see the 4th edition of this book, Ref. 23.

Stress concentration factors for rupture ðKrÞ; see the 4th edition of this book, Ref. 23.

Stress concentration factors pertaining to odd-shaped holes in plates, multiple holes arranged in various patterns, and reinforced holes under multiple loads; see Refs. 1 and 24.

Stress concentration around holes in pressure vessels; see Ref. 1.

For a discussion of the effect of stress concentration on the response of machine elements and structures, see Ref. 25.

Type of form irregularity

or stress raiser

Stress condition and

manner of loading Stress concentration factor Kt for various dimensions

1. Two U-notches in a member

of rectangular section

1a. Elastic stress, axial

tension
Kt ¼ C1 þ C2

2h

D

� �
þ C3

2h

D

� �2

þC4

2h

D

� �3

where

0:14h=r4 2:0 2:04h=r450:0

C1 0:850 þ 2:628
ffiffiffiffiffiffiffiffi
h=r

p
� 0:413h=r 0:833 þ 2:069

ffiffiffiffiffiffiffiffi
h=r

p
� 0:009h=r

C2 �1:119 � 4:826
ffiffiffiffiffiffiffiffi
h=r

p
þ 2:575h=r 2:732 � 4:157

ffiffiffiffiffiffiffiffi
h=r

p
þ 0:176h=r

C3 3:563 � 0:514
ffiffiffiffiffiffiffiffi
h=r

p
� 2:402h=r �8:859 þ 5:327

ffiffiffiffiffiffiffiffi
h=r

p
� 0:320h=r

C4 �2:294 þ 2:713
ffiffiffiffiffiffiffiffi
h=r

p
þ 0:240h=r 6:294 � 3:239

ffiffiffiffiffiffiffiffi
h=r

p
þ 0:154h=r

(Refs. 1–10)

For the semicircular notch ðh=r ¼ 1Þ

Kt ¼ 3:065 � 3:370
2h

D

� �
þ 0:647

2h

D

� �2

þ 0:658
2h

D

� �3
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TABLE 17.1 Stress concentration factors for elastic stress (Kt ) (Continued)

Type of form irregularity

or stress raiser

Stress condition and

manner of loading Stress concentration factor Kt for various dimensions

1b. Elastic stress, in-plane

bending
Kt ¼ C1 þ C2

2h

D

� �
þ C3

2h

D

� �2

þC4

2h

D

� �3

where

0:254h=r4 2:0 2:04h=r4 50:0

C1 0:723 þ 2:845
ffiffiffiffiffiffiffiffi
h=r

p
� 0:504h=r 0:833 þ 2:069

ffiffiffiffiffiffiffiffi
h=r

p
� 0:009h=r

C2 �1:836 � 5:746
ffiffiffiffiffiffiffiffi
h=r

p
þ 1:314h=r 0:024 � 5:383

ffiffiffiffiffiffiffiffi
h=r

p
þ 0:126h=r

C3 7:254 � 1:885
ffiffiffiffiffiffiffiffi
h=r

p
þ 1:646h=r �0:856 þ 6:460

ffiffiffiffiffiffiffiffi
h=r

p
� 0:199h=r

C4 �5:140 þ 4:785
ffiffiffiffiffiffiffiffi
h=r

p
� 2:456h=r 0:999 � 3:146

ffiffiffiffiffiffiffiffi
h=r

p
þ 0:082h=r

(Refs. 1, 3, 8, 11, and 12)

For the semicircular notch ðh=r ¼ 1Þ

Kt ¼ 3:065 � 6:269
2h

D

� �
þ 7:015

2h

D

� �2

�2:812
2h

D

� �3

1c. Elastic stress, out-of-plane

bending
Kt ¼ C1 þ C2

2h

D

� �
þ C3

2h

D

� �2

þC4

2h

D

� �3

where for 0:254h=r4 4:0 and h=t is large

C1 ¼ 1:031 þ 0:831
ffiffiffiffiffiffiffiffi
h=r

p
þ 0:014h=r

C2 ¼ �1:227 � 1:646
ffiffiffiffiffiffiffiffi
h=r

p
þ 0:117h=r

C3 ¼ 3:337 � 0:750
ffiffiffiffiffiffiffiffi
h=r

p
þ 0:469h=r

C4 ¼ �2:141 þ 1:566
ffiffiffiffiffiffiffiffi
h=r

p
� 0:600h=r

(Refs. 1, 9, 13, and 14)

For the semicircular notch ðh=r ¼ 1Þ

Kt ¼ 1:876 � 2:756
2h

D

� �
þ 3:056

2h

D

� �2

�1:175
2h

D

� �3

2. Two V-notches in a member

of rectangular section

2a. Elastic stress, axial tension The stress concentration factor for the V-notch, Ky, is the smaller of the values

Kty ¼ Ktu

or

Kty ¼ 1:11Ktu � 0:0275 þ 0:000145yþ 0:0164
y

120

� �8
" #

K2
tu for

2h

D
¼ 0:40 and y4 120�

or

Kty ¼ 1:11Ktu � 0:0275 þ 0:00042yþ 0:0075
y

120

� �8
" #

K2
tu for

2h

D
¼ 0:667 and y4 120�

where Ktu is the stress concentration factor for a U-notch, case 1a, when the dimensions h; r, and D are the same as for

the V-notch and y is the notch angle in degrees.

(Refs. 1 and 15)
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3. One U-notch in a member of

rectangular section

3a. Elastic stress, axial

tension
Kt ¼ C1 þ C2

h

D

� �
þ C3

h

D

� �2

þC4

h

D

� �3

where for 0:54h=r4 4:0

C1 ¼ 0:721 þ 2:394
ffiffiffiffiffiffiffiffi
h=r

p
� 0:127h=r

C2 ¼ 1:978 � 11:489
ffiffiffiffiffiffiffiffi
h=r

p
þ 2:211h=r

C3 ¼ �4:413 þ 18:751
ffiffiffiffiffiffiffiffi
h=r

p
� 4:596h=r

C4 ¼ 2:714 � 9:655
ffiffiffiffiffiffiffiffi
h=r

p
þ 2:512h=r

(Refs. 16 and 17)

For the semicircular notch ðh=r ¼ 1Þ

Kt ¼ 2:988 � 7:300
h

D

� �
þ 9:742

h

D

� �2

�4:429
h

D

� �3

3b. Elastic stress, in-plane

bending
Kt ¼ C1 þ C2

h

D

� �
þ C3

h

D

� �2

þC4

h

D

� �3

where for 0:54h=r4 4:0

C1 ¼ 0:721 þ 2:394
ffiffiffiffiffiffiffiffi
h=r

p
� 0:127h=r

C2 ¼ �0:426 � 8:827
ffiffiffiffiffiffiffiffi
h=r

p
þ 1:518h=r

C3 ¼ 2:161 þ 10:968
ffiffiffiffiffiffiffiffi
h=r

p
� 2:455h=r

C4 ¼ �1:456 � 4:535
ffiffiffiffiffiffiffiffi
h=r

p
þ 1:064h=r

(Refs. 17 and 18)

For the semicircular notch ðh=r ¼ 1Þ

Kt ¼ 2:988 � 7:735
h

D

� �
þ 10:674

h

D

� �2

�4:927
h

D

� �3

4. One V-notch in a member

of rectangular section

4b. Elastic stress, in-plane

bending

The stress concentration factor for the V-notch, Kty, is the smaller of the values

Kty ¼ Ktu

or

Kty ¼ 1:11Ktu � 0:0275 þ 0:1125
y

150

� �4
" #

K2
tu for y4 150�

where Ktu is the stress concentration factor for a U-notch, case 3b, when the dimensions h; r and D are the same as for

the V-notch and y is the notch angle in degrees.

(Ref. 18)
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TABLE 17.1 Stress concentration factors for elastic stress (Kt ) (Continued)



TABLE 17.1 Stress concentration factors for elastic stress (Kt ) (Continued)

Type of form irregularity

or stress raiser

Stress condition and

manner of loading Stress concentration factor Kt for various dimensions

5. Square shoulder with fillet

in a member of rectangular

section

5a. Elastic stress, axial tension
Kt ¼ C1 þ C2

2h

D

� �
þ C3

2h

D

� �2

þC4

2h

D

� �3

where
L

D
>

3

½r=ðD � 2hÞ�1=4
and where

0:14h=r4 2:0 2:04h=r4 20:0

C1 1:007 þ 1:000
ffiffiffiffiffiffiffiffi
h=r

p
� 0:031h=r 1:042 þ 0:982

ffiffiffiffiffiffiffiffi
h=r

p
� 0:036h=r

C2 �0:114 � 0:585
ffiffiffiffiffiffiffiffi
h=r

p
þ 0:314h=r �0:074 � 0:156

ffiffiffiffiffiffiffiffi
h=r

p
� 0:010h=r

C3 0:241 � 0:992
ffiffiffiffiffiffiffiffi
h=r

p
� 0:271h=r �3:418 þ 1:220

ffiffiffiffiffiffiffiffi
h=r

p
� 0:005h=r

C4 �0:134 þ 0:577
ffiffiffiffiffiffiffiffi
h=r

p
� 0:012h=r 3:450 � 2:046

ffiffiffiffiffiffiffiffi
h=r

p
þ 0:051h=r

(Refs. 1, 8, 11, and 19)

For cases where
L

D
<

3

½r=ðD � 2hÞ�1=4
see Refs: 1;21;and 22:

5b. Elastic stress, in-plane

bending
Kt ¼ C1 þ C2

2h

D

� �
þ C3

2h

D

� �2

þC4

2h

D

� �3

where
L

D
>

0:8

½r=ðD � 2hÞ�1=4
and where

0:14h=r4 2:0 2:04h=r4 20:0

C1 1:007 þ 1:000
ffiffiffiffiffiffiffiffi
h=r

p
� 0:031h=r 1:042 þ 0:982

ffiffiffiffiffiffiffiffi
h=r

p
� 0:036h=r

C2 �0:270 � 2:404
ffiffiffiffiffiffiffiffi
h=r

p
þ 0:749h=r �3:599 þ 1:619

ffiffiffiffiffiffiffiffi
h=r

p
� 0:431h=r

C3 0:677 þ 1:133
ffiffiffiffiffiffiffiffi
h=r

p
� 0:904h=r 6:084 � 5:607

ffiffiffiffiffiffiffiffi
h=r

p
þ 1:158h=r

C4 �0:414 þ 0:271
ffiffiffiffiffiffiffiffi
h=r

p
þ 0:186h=r �2:527 þ 3:006

ffiffiffiffiffiffiffiffi
h=r

p
� 0:691h=r

(Refs. 1, 11, and 20)

For cases where
L

D
<

0:8

½r=ðD � 2hÞ�1=4
see Refs: 1 and 20:
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6. Circular hole in an infinite

plate

6a. Elastic stress, in-plane normal

stress

ða1Þ Uniaxial stress;s2 ¼ 0

sA ¼ 3s1 sB ¼ �s1

ða2Þ Biaxial stress; s2 ¼ s1

sA ¼ sB ¼ 2s1

ða3Þ Biaxial stress; s2 ¼ �s1 ðpure shearÞ

sA ¼ �sB ¼ 4s1

6b. Elastic stress, out-of-plane

bending

ðb1Þ Simple bending;M2 ¼ 0

sA ¼ Kt

6M1

t2

where Kt ¼ 1:79 þ
0:25

0:39 þ ð2r=tÞ
þ

0:81

1 þ ð2r=tÞ2
�

0:26

1 þ ð2r=tÞ3

ðb2Þ Cylindrical bending, M2 ¼ nM1

sA ¼ Kt

6M1

t2

where Kt ¼ 1:85 þ
0:509

0:70 þ ð2r=tÞ
�

0:214

1 þ ð2r=tÞ2
þ

0:335

1 þ ð2r=tÞ3
for n ¼ 0:3

Note: M1 and M2 are unit

moments. See Table 24.

ðb3Þ Isotropic bending, M2 ¼ M1

sA ¼ Kt

6M1

t2

where Kt ¼ 2 ðindependent of r=tÞ

(Refs. 1 and 26–30)

7. Central circular hole in a

member of rectangular cross

section

7a. Elastic stress, axial tension smax ¼ sA ¼ Ktsnom

where snom ¼
P

tðD � 2rÞ

Kt ¼ 3:00 � 3:13
2r

D

� �
þ 3:66

2r

D

� �2

�1:53
2r

D

� �3

(Refs. 5 and 25)
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TABLE 17.1 Stress concentration factors for elastic stress (Kt ) (Continued)



TABLE 17.1 Stress concentration factors for elastic stress (Kt ) (Continued)

Type of form irregularity

or stress raiser

Stress condition and

manner of loading Stress concentration factor Kt for various dimensions

7b. Elastic stress, in-plane

bending

The maximum stress at the edge of the hole is sA ¼ Ktsnom

where snom ¼
12Mr

t½D3 � ð2rÞ3�
ðat the edge of the holeÞ

Kt ¼ 2 ðindependent of r=DÞ

The maximum stress at the edge of the plate is not directly above the hole but is found a short distance away in either

side, points X .

sX ¼ snom

where snom ¼
6MD

t½D3 � ð2rÞ3�
ðat the edge of the plateÞ

(Refs. 1, 25, and 31)

7c. Elastic stress, out-of-plane

bending

(c1) Simple bending, M2 ¼ 0

smax ¼ sA ¼ Kt

6M1

t2ðD � 2rÞ

where Kt ¼ 1:79 þ
0:25

0:39 þ ð2r=tÞ
þ

0:81

1 þ ð2r=tÞ2
�

0:26

1 þ ð2r=tÞ3

� �
1 � 1:04

2r

D

� �
þ 1:22

2r

D

� �2
" #

for
2r

D
< 0:3

ðc2Þ Cylindrical bending ðplate actionÞ, M2 ¼ nM1

smax ¼ sA ¼ Kt

6M1

t2ðD � 2rÞ

where Kt ¼ 1:85 þ
0:509

0:70 þ ð2r=tÞ
�

0:214

1 þ ð2r=tÞ2
þ

0:335

1 þ ð2r=tÞ3

� �

� 1 � 1:04
2r

D

� �
þ 1:22

2r

D

� �2
" #

for
2r

D
< 0:3 and n ¼ 0:3

Note: see case 6b for

interpretation of M2. (Refs. 1 and 27 to 29)
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8. Off-center circular hole in

a member of rectangular

cross section

8a. Elastic stress, axial tension smax ¼ sA ¼ Ktsnom

where snom ¼
P

Dt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � ðr=cÞ2

q
1 � ðr=cÞ

1 � ðc=DÞ

1 � ðc=DÞ½2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � ðr=cÞ2 �

q

Kt ¼ 3:00 � 3:13
r

c


 �
þ 3:66

r

c


 �2

�1:53
r

c


 �3

(Refs. 1 and 32)

8b. Elastic stress, in-plane

bending

smax ¼ sA ¼ Ktsnom

where snom ¼
12M

tD3

D

2
� c þ r

� �
and Kt ¼ 3:0 if r=c < 0:05

or Kt ¼ C1 þ C2

2c

D

� �
þ C3

2c

D

� �2

þC4

2c

D

� �3

where for 0:054 r=c4 0:5

C1 ¼ 3:022 � 0:422r=c þ 3:556ðr=cÞ2

C2 ¼ �0:569 þ 2:664r=c � 4:397ðr=cÞ2

C3 ¼ 3:138 � 18:367r=c þ 28:093ðr=cÞ2

C4 ¼ �3:591 þ 16:125r=c � 27:252ðr=cÞ2 (Ref. 31)

9. Elliptical hole in an infinite

plate

rA ¼
b2

a

9a. Elastic stress, in-plane

normal stress
ða1Þ Uniaxial stress; s2 ¼ 0

sA ¼ 1 þ
2a

b

� �
s1 or sA ¼ 1 þ 2

ffiffiffiffiffi
a

rA

r� �
s1

sB ¼ �s1

ða2Þ Biaxial stress;s2 ¼ s1

sA ¼ 2
a

b
s1

sB ¼ 2
b

a
s1

ða3Þ Biaxial stress;s2 ¼ �s1

sA ¼ 2 1 þ
a

b


 �
s1

sB ¼ �2 1 þ
b

a

� �
s1

This stress condition would also be created by pure shear inclined at 45� to the axes of the ellipse.
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TABLE 17.1 Stress concentration factors for elastic stress (Kt ) (Continued)

Type of form irregularity

or stress raiser

Stress condition and

manner of loading Stress concentration factor Kt for various dimensions

10. Central elliptical hole in a

member of rectangular cross

section

rA ¼
b2

a

10a. Elastic stress, axial tension smax ¼ sA ¼ Ktsnom

where snom ¼
P

tðD � 2aÞ

Kt ¼ C1 þ C2

2a

D

� �
þ C3

2a

D

� �2

þC4

2a

D

� �3

where for 0:54a=b4 10:0

C1 ¼ 1:000 þ 0:000
ffiffiffiffiffiffiffiffi
a=b

p
þ 2:000a=b

C2 ¼ �0:351 � 0:021
ffiffiffiffiffiffiffiffi
a=b

p
� 2:483a=b

C3 ¼ 3:621 � 5:183
ffiffiffiffiffiffiffiffi
a=b

p
þ 4:494a=b

C4 ¼ �2:270 þ 5:204
ffiffiffiffiffiffiffiffi
a=b

p
� 4:011a=b

(Refs. 33–37)

10b. Elastic stress, in-plane

bending

The maximum stress at the edge of the hole is sA ¼ Ktsnom

where snom ¼
12Ma

t½D3 � ð2aÞ3 �
ðat the edge of the holeÞ

Kt ¼ C1 þ C2

2a

D

� �
þ C3

2a

D

� �2

where for 1:04a=b4 2:0 and 0:44 2a=D4 1:0

C1 ¼ 3:465 � 3:739
ffiffiffiffiffiffiffiffi
a=b

p
þ 2:274a=b

C2 ¼ �3:841 þ 5:582
ffiffiffiffiffiffiffiffi
a=b

p
� 1:741a=b

C3 ¼ 2:376 � 1:843
ffiffiffiffiffiffiffiffi
a=b

p
� 0:534a=b (Refs. 1, 36, and 37)

11. Off-center elliptical hole

in a member of rectangular

cross section

11a. Elastic stress, axial tension smax ¼ sA ¼ Ktsnom

The expression for snom from case 8a can be used by substituting a=c for r=c. Use the expression for Kt from case 10a by

substituting a=c for 2a=D.
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12. Rectangular hole with round

corners in an infinite plate

12a. Elastic stress, axial tension
smax ¼ Kts1 and Kt ¼ C1 þ C2

b

a

� �
þ C3

b

a

� �2

þ C4

b

a

� �3

where for40:24 r=b4 1:0 and 0:34 b=a41:0

C1 ¼ 14:815 � 15:774
ffiffiffiffiffiffiffiffi
r=b

p
þ 8:149r=b

C2 ¼ �11:201 � 9:750
ffiffiffiffiffiffiffiffi
r=b

p
þ 9:600r=b

C3 ¼ 0:202 þ 38:622
ffiffiffiffiffiffiffiffi
r=b

p
� 27:374r=b

C4 ¼ 3:232 � 23:002
ffiffiffiffiffiffiffiffi
r=b

p
þ 15:482r=b

(Refs. 38–40)

13. Lateral slot with circular

ends in a member of

rectangular section

13a. Elastic stress, axial tension A very close approximation to the maximum stress sA can be obtained by using the maximum stress for the given

loading with the actual slot replaced by an ellipse having the same overall dimension normal to the loading direction, 2a,

and the same end radius rA. See cases 9a, 10a, and 11a.

13b. Elastic stress, in-plane

bending

As above, but see case 10b.

The equivalent ellipse

has a width 2beq where

beq ¼
ffiffiffiffiffiffiffiffi
rAa

p

14. Reinforced circular hole

in a wide plate

14a. Elastic stress, axial tension smax ¼ Kts1 where for rf 5 0:6t and w5 3t

Kt ¼ 1:0 þ
1:66

1 þ A
�

2:182

ð1 þ AÞ
2
þ

2:521

ð1 þ AÞ
3

A is the ratio of the transverse area of the added reinforcement to the transverse area of the hole:

A ¼
ðrb � rÞðw � tÞ þ 0:429r2

f

rt

(Ref. 41)
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TABLE 17.1 Stress concentration factors for elastic stress (Kt ) (Continued)

Type of form irregularity

or stress raiser

Stress condition and

manner of loading Stress concentration factor Kt for various dimensions

15. U-notch in a circular shaft 15a. Elastic stress, axial tension
smax ¼ Kt

4P

pðD � 2hÞ2
where Kt ¼ C1 þ C2

2h

D

� �
þ C3

2h

D

� �2

þC4

2h

D

� �3

where

0:254h=r42:0 2:04h=r4 50:0

C1 0:455 þ 3:354
ffiffiffiffiffiffiffiffi
h=r

p
� 0:769h=r 0:935 þ 1:922

ffiffiffiffiffiffiffiffi
h=r

p
þ 0:004h=r

C2 3:129 � 15:955
ffiffiffiffiffiffiffiffi
h=r

p
þ 7:404h=r 0:537 � 3:708

ffiffiffiffiffiffiffiffi
h=r

p
þ 0:040h=r

C3 �6:909 þ 29:286
ffiffiffiffiffiffiffiffi
h=r

p
� 16:104h=r �2:538 þ 3:438

ffiffiffiffiffiffiffiffi
h=r

p
� 0:012h=r

C4 4:325 � 16:685
ffiffiffiffiffiffiffiffi
h=r

p
þ 9:469h=r 2:066 � 1:652

ffiffiffiffiffiffiffiffi
h=r

p
� 0:031h=r

(Refs. 1, 9, and 42)

For the semicircular notch ðh=r ¼ 1Þ

Kt ¼ 3:04 � 5:42
2h

D

� �
þ 6:27

2h

D

� �2

�2:89
2h

D

� �3

15b. Elastic stress, bending
smax ¼ Kt

32M

pðD � 2hÞ3
where Kt ¼ C1 þ C2

2h

D

� �
þ C3

2h

D

� �2

þ C4

2h

D

� �3

where

0:254h=r42:0 2:04h=r4 50:0

C1 0:455 þ 3:354
ffiffiffiffiffiffiffiffi
h=r

p
� 0:769h=r 0:935 þ 1:922

ffiffiffiffiffiffiffiffi
h=r

p
þ 0:004h=r

C2 0:891 � 12:721
ffiffiffiffiffiffiffiffi
h=r

p
þ 4:593h=r �0:552 � 5:327

ffiffiffiffiffiffiffiffi
h=r

p
þ 0:086h=r

C3 0:286 þ 15:481
ffiffiffiffiffiffiffiffi
h=r

p
� 6:392h=r 0:754 þ 6:281

ffiffiffiffiffiffiffiffi
h=r

p
� 0:121h=r

C4 �0:632 � 6:115
ffiffiffiffiffiffiffiffi
h=r

p
þ 2:568h=r �0:138 � 2:876

ffiffiffiffiffiffiffiffi
h=r

p
þ 0:031h=r

(Refs. 1 and 9)

For the semicircular notch ðh=r ¼ 1Þ

Kt ¼ 3:04 � 7:236
2h

D

� �
þ 9:375

2h

D

� �2

�4:179
2h

D

� �3

15c. Elastic stress, torsion
smax ¼ Kt

16T

pðD � 2hÞ3
where Kt ¼ C1 þ C2

2h

D

� �
þ C3

2h

D

� �2

þC4

2h

D

� �3

where

0:254h=r42:0 2:04h=r4 50:0

C1 1:245 þ 0:264
ffiffiffiffiffiffiffiffi
h=r

p
þ 0:491h=r 1:651 þ 0:614

ffiffiffiffiffiffiffiffi
h=r

p
þ 0:040h=r

C2 �3:030 þ 3:269
ffiffiffiffiffiffiffiffi
h=r

p
� 3:633h=r �4:794 � 0:314

ffiffiffiffiffiffiffiffi
h=r

p
� 0:217h=r

C3 7:199 � 11:286
ffiffiffiffiffiffiffiffi
h=r

p
þ 8:318h=r 8:457 � 0:962

ffiffiffiffiffiffiffiffi
h=r

p
þ 0:389h=r

C4 �4:414 þ 7:753
ffiffiffiffiffiffiffiffi
h=r

p
� 5:176h=r �4:314 þ 0:662

ffiffiffiffiffiffiffiffi
h=r

p
� 0:212h=r

(Refs. 1, 9, and 43–46)

For the semicircular notch ðh=r ¼ 1Þ

Kt ¼ 2:000 � 3:394
2h

D

� �
þ 4:231

2h

D

� �2

�1:837
2h

D

� �3
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16. V-notch in a circular shaft 16c. Elastic stress, torsion The stress concentration factor for the V-notch, Kty , is the smaller of the values

Kty ¼ Ktu or Kty ¼ 1:065Ktu � 0:022 þ 0:137
y

135

� �2
" #

ðKtu � 1ÞKtu

for
r

D � 2h
4 0:01 and y4135� where Ktu is the stress concentration factor for a U-notch, case 15c, when the dimensions

h; r, and D are the same as for the V-notch and y is the notch angle in degrees.

(Refs. 1 and 44)

17. Square shoulder with

fillet in circular shaft

17a. Elastic stress, axial

tension
smax ¼ Kt

4P

pðD � 2hÞ2
where Kt ¼ C1 þ C2

2h

D

� �
þ C3

2h

D

� �2

þC4

2h

D

� �3

where

0:254h=r42:0 2:04h=r4 20:0

C1 0:927 þ 1:149
ffiffiffiffiffiffiffiffi
h=r

p
� 0:086h=r 1:225 þ 0:831

ffiffiffiffiffiffiffiffi
h=r

p
� 0:010h=r

C2 0:011 � 3:029
ffiffiffiffiffiffiffiffi
h=r

p
þ 0:948h=r �1:831 � 0:318

ffiffiffiffiffiffiffiffi
h=r

p
� 0:049h=r

C3 �0:304 þ 3:979
ffiffiffiffiffiffiffiffi
h=r

p
� 1:737h=r 2:236 � 0:522

ffiffiffiffiffiffiffiffi
h=r

p
þ 0:176h=r

C4 0:366 � 2:098
ffiffiffiffiffiffiffiffi
h=r

p
þ 0:875h=r �0:630 þ 0:009

ffiffiffiffiffiffiffiffi
h=r

p
� 0:117h=r

(Refs. 1, 19, and 47)

17b. Elastic stress, bending
smax ¼ Kt

32M

pðD � 2hÞ3
where Kt ¼ C1 þ C2

2h

D

� �
þ C3

2h

D

� �2

þC4

2h

D

� �3

where

0:254h=r42:0 2:04h=r4 20:0

C1 0:927 þ 1:149
ffiffiffiffiffiffiffiffi
h=r

p
� 0:086h=r 1:225 þ 0:831

ffiffiffiffiffiffiffiffi
h=r

p
� 0:010h=r

C2 0:015 � 3:281
ffiffiffiffiffiffiffiffi
h=r

p
þ 0:837h=r �3:790 þ 0:958

ffiffiffiffiffiffiffiffi
h=r

p
� 0:257h=r

C3 0:847 þ 1:716
ffiffiffiffiffiffiffiffi
h=r

p
� 0:506h=r 7:374 � 4:834

ffiffiffiffiffiffiffiffi
h=r

p
þ 0:862h=r

C4 �0:790 þ 0:417
ffiffiffiffiffiffiffiffi
h=r

p
� 0:246h=r �3:809 þ 3:046

ffiffiffiffiffiffiffiffi
h=r

p
� 0:595h=r

(Refs. 1, 20, and 48)

17c. Elastic stress, torsion
smax ¼ Kt

16T

pðD � 2hÞ3
where Kt ¼ C1 þ C2

2h

D

� �
þ C3

2h

D

� �2

þC4

2h

D

� �3

where for 0:254h=r4 4:0

C1 ¼ 0:953 þ 0:680
ffiffiffiffiffiffiffiffi
h=r

p
� 0:053h=r

C2 ¼ �0:493 � 1:820
ffiffiffiffiffiffiffiffi
h=r

p
þ 0:517h=r

C3 ¼ 1:621 þ 0:908
ffiffiffiffiffiffiffiffi
h=r

p
� 0:529h=r

C4 ¼ �1:081 þ 0:232
ffiffiffiffiffiffiffiffi
h=r

p
þ 0:065h=r

(Refs. 1, 19, 46, 49, and 50)
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TABLE 17.1 Stress concentration factors for elastic stress (Kt ) (Continued)

Type of form irregularity

or stress raiser

Stress condition and

manner of loading Stress concentration factor Kt for various dimensions

18. Radial hole in a hollow or

solid circular shaft

for a solid shaft d¼ 0

18a. Elastic stress, axial

tension
smax ¼ Kt

4P

pðD2 � d2Þ
where Kt ¼ C1 þ C2

2r

D

� �
þ C3

2r

D

� �2

þC4

2r

D

� �3

and where for d=D4 0:9 and 2r=D4 0:45

C1 ¼ 3:000

C2 ¼ 2:773 þ 1:529d=D � 4:379ðd=DÞ
2

C3 ¼ �0:421 � 12:782d=D þ 22:781ðd=DÞ
2

C4 ¼ 16:841 þ 16:678d=D � 40:007ðd=DÞ
2

(Refs. 1, 43, 51, and 52)

18b. Elastic stress, bending

when hole is farthest from

bending axis

smax ¼ Kt

32MD

pðD4 � d4Þ
where Kt ¼ C1 þ C2

2r

D

� �
þ C3

2r

D

� �2

þC4

2r

D

� �3

and where for d=D4 0:9 and 2r=D4 0:3

C1 ¼ 3:000

C2 ¼ �6:690 � 1:620d=D þ 4:432ðd=DÞ
2

C3 ¼ 44:739 þ 10:724d=D � 19:927ðd=DÞ
2

C4 ¼ �53:307 � 25:998d=D þ 43:258ðd=DÞ
2

(Refs. 1 and 51 to 54)

18c. Elastic stress, torsional

loading
smax ¼ Kt

16TD

pðD4 � d4Þ
where Kt ¼ C1 þ C2

2r

D

� �
þ C3

2r

D

� �2

þ C4

2r

D

� �3

and where for d=D4 0:9 and 2r=D4 0:4

C1 ¼ 4:000

C2 ¼ �6:793 þ 1:133d=D � 0:126ðd=DÞ
2

C3 ¼ 38:382 � 7:242d=D þ 6:495ðd=DÞ
2

C4 ¼ �44:576 � 7:428d=D þ 58:656ðd=DÞ
2

(Refs. 1 and 51 to 53)

19. Multiple U-notches in a

member of rectangular

section

19a. Elastic stress, axial tension,

semicircular notches only,

i.e., h ¼ r

The stress concentration factor for the multiple semicircular U-notches, Ktm, is the smaller of the values

Ktm ¼ Ktu

or

Ktm ¼ 1:1 � 0:88 � 1:68
2r

D

� �� �
2r

L
þ 1:3 0:5 �

2r

D

� �2
" #

2r

L

� �3
( )

Ktu for
2r

L
< 1

where Ktu is the stress concentration factor for a single pair of semicircular U-notches, case 1a.

(Refs. 1, 55, and 56)
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20. Infinite row of circular

holes in an infinite plate

20a. Elastic stress, axial tension

parallel to the row of holes

smax ¼ Kts1; s2 ¼ 0

where Kt ¼ 3:0 � 1:061
2r

L

� �
� 2:136

2r

L

� �2

þ1:877
2r

L

� �3

(Refs. 1 and 57)

20b. Elastic stress, axial tension

normal to the row of holes

smax ¼ Kts2; s1 ¼ 0

where Kt ¼ 3:0 � 3:057
2r

L

� �
þ 0:214

2r

L

� �2

þ0:843
2r

L

� �3

(Refs. 1 and 57)

21. Gear tooth Elastic stress, bending plus some

compression
For 14:5� pressure angle: Kt ¼ 0:22 þ

t

r

� �0:2
t

h

� �0:4

For 20� pressure angle: Kt ¼ 0:18 þ
t

r

� �0:15
t

h

� �0:45

Kt ¼ ½ðstÞmax by photoelastic analysis�= calculated ðstÞmax ¼
6Ph

bt2
�

P tanf
bt

� �

A and C are points of tan-

gency of the inscribed parabola

ABC with tooth profile,

b ¼ tooth width normal to plane

of figure, r ¼ minimum radius

of tooth fillet.

(Alternatively, the maximum stress can be found by the formula for a short cantilever, pages 168 and 169.)

(Ref. 58)

22. Square or filleted corner in

tension

Elastic stress D

d
¼ 5:5

r

d
0:125 0:15 0:20 0:25 0:30 0:40 0:50 0:70 1:00

Kt 2:50 2:30 2:03 1:88 1:70 1:53 1:40 1:26 1:20 (Ref. 17)
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TABLE 17.1 Stress concentration factors for elastic stress (Kt ) (Continued)

Type of form irregularity

or stress raiser

Stress condition and

manner of loading Stress concentration factor Kt for various dimensions

23. U-shaped member Elastic stress, as shown Kt1 is the ratio of actual to nominal bending stress at point 1, and Kt2 is this ratio at point 2. Nominal bending

stress ¼ Pey=I at point 1 and PLy=I at point 2, where I=y ¼ section modulus at the section in question

Dimension ratios and values of Kt

Outer corners
e

ri

¼
e

w
¼

e

d
Kt1

Kt2

4.5 1.24 1.24

3.5 1.20 1.24
Square

2.5 1.30 1.20

1.5 1.24 1.61

e

2ri

¼
e

2w
¼

e

d

2.5 1.50 1.29

2.0 1.52 1.33
Square

1.5 1.53 1.22

1.0 1.46 1.75

d

ri

¼
d

w
h ¼

3

4
D h ¼

1

4
D

Kt1 Kt2 Kt1 Kt2

2.0 1.50 1.29 1.53 1.22

1.5 1.34 1.10 1.37 1.40

1.25 1.29 1.23 1.33 1.41

Square

1.0 1.24 1.24 1.30 1.20

0.75 1.21 1.10 1.24 1.22

r0

ri

¼
r0

d
¼

r0

w

2.75 1.24 1.24 1.30 1.20

2.37 1.18 1.21 1.18 1.22
Rounded to radius r0

2.12 1.16 1.22 1.21 1.31

2.0 1.27 1.42 1.31 1.56

d

ri

¼
w

ri

7.0 2.29 1.93 2.38 2.38

3.0 1.72 1.59 1.76 1.62
Square

1.67 1.49 1.37 1.41 1.52

1.0 1.24 1.24 1.30 1.20

d

ri

d

w

5 1.67 2.33 1.73 2.32 2.00Square

3 1.80 1.82 1.30 1.75 1.56

2 2.0 1.50 1.29 1.53 1.22 (Ref. 59)
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Appendix

A
Properties of a Plane Area

Because of their importance in connection with the analysis of bending

and torsion, certain relations for the second-area moments, commonly

referred to as moments of inertia, are indicated in the following

paragraphs. The equations given are in reference to Fig. A.1, and

the notation is as follows:

A area of the section

X ;Y rectangular axes in the plane of the section at arbitrary point

O

x; y rectangular axes in the plane of the section parallel to X ;Y ;
respectively with origin at the centroid, C, of the section

Figure A.1 Plane area.



z polar axis through C

x0; y0 rectangular axes in the plane of the section, with origin at C,

inclined at a counterclockwise angle y from x; y

1, 2 principal axes at C inclined at a counterclockwise angle yp

from x; y

r the distance from C to the dA element, r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
By definition,

Moments of inertia: Ix ¼
Ð
A

y2 dA; Iy ¼
Ð
A

x2 dA

Polar moment of inertia:

Iz ¼ J ¼
Ð
A

r2 dA ¼ Ix þ Iy ¼ Ix0 þ Iy0 ¼ I1 þ I2

Product of inertia: Ixy ¼
Ð
A

xy dA

Radii of gyration: kx ¼
ffiffiffiffiffiffiffiffiffiffi
Ix=A

p
; ky ¼

ffiffiffiffiffiffiffiffiffiffi
Iy=A

p
Parallel axis theorem:

IX ¼ Ix þ Ay2
c ; IY ¼ Iy þ Ax2

c ; IXY ¼ Ixy þ Axcyc

Transformation equations:

Ix0 ¼ Ix cos2 yþ Iy sin
2 y� Ixy sin 2y

Iy0 ¼ Ix sin
2 yþ Iy cos2 yþ Ixy sin 2y

Ix0y0 ¼
1
2
ðIx � IyÞ sin 2yþ Ixy cos 2y

Principal moments of inertia and directions:

I1;2 ¼ 1
2

ðIx þ IyÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðIy � IxÞ

2
þ 4I2

xy

q� �
; I12 ¼ 0;

yp ¼ 1
2
tan�1

2Ixy

Iy � Ix

 !

Upon the determination of the two principal moments of inertia, I1

and I2, two angles, 90� apart, can be solved for from the equation for yp.

It may be obvious which angle corresponds to which principal moment

of inertia. If not, one of the angles must be substituted into the

equations Ix0 and Iy0 which will again yield the principal moments of

inertia but also their orientation.

Note, if either one of the xy axes is an axis of symmetry, Ixy ¼ 0; with

Ix and Iy being the principal moments of inertia of the section.

If I1 ¼ I2 for a set of principal axes through a point, it follows that

the moments of inertia for all x0y0 axes through that point, in the same

plane, are equal and Ix0y0 ¼ 0 regardless of y: Thus the moment of

inertia of a square, an equilateral triangle, or any section having
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two or more axes of identical symmetry is the same for any central

axis.

The moment of inertia and radius of gyration of a section with

respect to a centroidal axis are less than for any other axis parallel

thereto.

The moment of inertia of a composite section (one regarded as made

up of rectangles, triangles, circular segments, etc.) about an axis is

equal to the sum of the moments of inertia of each component part

about that axis. Voids are taken into account by subtracting the

moment of inertia of the void area.

Expressions for the area, distances of centroids from edges,

moments of inertia, and radii of gyration are given in Table A.1 for a

number of representative sections. The moments of products of inertia

for composite areas can be found by addition; the centroids of compo-

site areas can be found by using the relation that the statical moment

about any line of the entire area is equal to the sum of the statical

moments of its component parts.

Although properties of structural sections—wide-flange beams,

channels, angles, etc.—are given in structural handbooks, formulas

are included in Table A.1 for similar sections. These are applicable to

sections having a wider range of web and flange thicknesses than

normally found in the rolled or extruded sections included in the

handbooks.

Plastic or ultimate strength design is discussed in Secs. 8.15 and

8.16, and the use of this technique requires the value of the fully

plastic bending moment—the product of the yield strength of a ductile

material and the plastic section modulus Z. The last column in Table

A.1 gives for many of the sections the value or an expression for Z and

the location of the neutral axis under fully plastic pure bending. This

neutral axis does not, in general, pass through the centroid,

but instead divides the section into equal areas in tension and

compression.
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TABLE A.1 Properties of sections
NOTATION: A ¼ area ðlengthÞ

2
; y ¼ distance to extreme fiber (length); I ¼ moment of inertia ðlength

4
Þ; r ¼ radius of gyration (length); Z ¼ plastic section modulus ðlength

3
Þ; SF ¼ shape factor. See

Sec. 8.15 for applications of Z and SF

Form of section

Area and distances from

centroid to extremities

Moments and products of inertia

and radii of gyration about central axes

Plastic section moduli,

shape factors, and locations

of plastic neutral axes

1. Square A ¼ a2

yc ¼ xc ¼
a

2

y0c ¼ 0:707a cos
p
4
� a

	 

Ix ¼ Iy ¼ I 0x ¼ 1

12
a4

rx ¼ ry ¼ r0x ¼ 0:2887a

Zx ¼ Zy ¼ 0:25a3

SFx ¼ SFy ¼ 1:5

2. Rectangle A ¼ bd

yc ¼
d

2

xc ¼
b

2

Ix ¼ 1
12

bd3

Iy ¼ 1
12

db3

Ix > Iy if d > b

rx ¼ 0:2887d

ry ¼ 0:2887b

Zx ¼ 0:25bd2

Zy ¼ 0:25db2

SFx ¼ SFy ¼ 1:5

3. Hollow rectangle A ¼ bd � bidi

yc ¼
d

2

xc ¼
b

2

Ix ¼
bd3 � bid

3
i

12

Iy ¼
db3 � dib

3
i

12

rx ¼
Ix

A

� �1=2

ry ¼
Iy

A

� �1=2

Zx ¼
bd2 � bid

2
i

4

SFx ¼
Zxd

2Ix

Zx ¼
db2 � dib

2
i

4

SFy ¼
Zyb

2Iy

8
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4. Tee section A ¼ tb þ twd

yc ¼
bt2 þ twdð2t þ dÞ

2ðtb þ twdÞ

xc ¼
b

2

Ix ¼
b

3
ðd þ tÞ3 �

d3

3
ðb � twÞ � Aðd þ t � ycÞ

2

Iy ¼
tb3

12
þ

dt3
w

12

rx ¼
Ix

A

� �1=2

ry ¼
Iy

A

� �1=2

If twd5 bt, then

Zx ¼
d2tw

4
�

b2t2

4tw

þ
btðd þ tÞ

2

Neutral axis x is located a distance ðbt=tw þ dÞ=2

from the bottom.

If twd4 bt, then

Zx ¼
t2b

4
þ

twdðt þ d � twd=2bÞ

2

Neutral axis x is located a distance ðtwd=b þ tÞ=2

from the top.

SFx ¼
Zxðd þ t � ycÞ

I1

Zy ¼
b2t þ t2

wd

4

SFy ¼
Zyb

2Iy

5. Channel section A ¼ tb þ 2twd

yc ¼
bt2 þ 2twdð2t þ dÞ

2ðtb þ 2twdÞ

xc ¼
b

2

Ix ¼
b

3
ðd þ tÞ3 �

d3

3
ðb � 2twÞ � Aðd þ t � ycÞ

2

Iy ¼
ðd þ tÞb3

12
�

dðb � 2twÞ
3

12

rx ¼
Ix

A

� �1=2

ry ¼
Iy

A

� �1=2

If 2twd5 bt, then

Zx ¼
d2tw

2
�

b2t2

8tw

þ
btðd þ tÞ

2

Neutral axis x is located a distance

ðbt=2tw þ dÞ=2 from the bottom.

If 2twd4 bt, then

Zx ¼
t2b

4
þ twd t þ d �

twd

b

� �

Neutral axis x is located a distance twd=b þ t=2

from the top.

SFx ¼
Zxðd þ t � ycÞ

Ix

Zy ¼
b2t

4
þ twdðb � twÞ

SFy ¼
Zyb

2Iy
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TABLE A.1 Properties of sections (Continued)

Form of section

Area and distances from

centroid to extremities

Moments and products of inertia

and radii of gyration about central axes

Plastic section moduli,

shape factors, and locations

of plastic neutral axes

6. Wide-flange beam with

equal flanges

A ¼ 2bt þ twd

yc ¼
d

2
þ t

xc ¼
b

2

Ix ¼
bðd þ 2tÞ3

12
�
ðb � twÞd

3

12

Iy ¼
b3t

6
þ

t3
wd

12

rx ¼
Ix

A

� �1=2

ry ¼
Iy

A

� �1=2

Zx ¼
twd2

4
þ btðd þ tÞ

SFx ¼
Zx yc

Ix

Zy ¼
b2t

2
þ

t2
wd

4

SFy ¼
Zyxc

Iy

7. Equal-legged angle A ¼ tð2a � tÞ

yc1 ¼
0:7071ða2 þ at � t2Þ

2a � t

yc2 ¼
0:7071a2

2a � t

xc ¼ 0:7071a

Ix ¼
a4 � b4

12
�

0:5ta2b2

a þ b

Iy ¼
a4 � b4

12
where b ¼ a � t

rx ¼
Ix

A

� �1=2

ry ¼
Iy

A

� �1=2

Let yp be the vertical distance from the top corner to

the plastic neutral axis. If t=a5 0:40, then

yp ¼ a
t

a
�
ðt=aÞ2

2

" #1=2

Zx ¼ Aðyc1 � 0:6667ypÞ

If t=a4 0:4, then

yp ¼ 0:3536ða þ 1:5tÞ

Zx ¼ Ayc1 � 2:8284y2
pt þ 1:8856t3

8. Unequal-legged angle A ¼ tðb þ d � tÞ

xc ¼
b2 þ dt � t2

2ðb þ d � tÞ

yc ¼
d2 þ bt � t2

2ðb þ d � tÞ

Ix ¼ 1
3
½bd3 � ðb � tÞðd � tÞ3
 � Aðd � ycÞ

2

Iy ¼ 1
3
½db3 � ðd � tÞðb � tÞ3
 � Aðb � xcÞ

2

Ixy ¼ 1
4
½b2d2 � ðb � tÞ2ðd � tÞ2 
 � Aðb � xcÞðd � ycÞ

rx ¼
Ix

A

� �1=2

ry ¼
Iy

A

� �1=2
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9. Equilateral triangle A ¼ 0:4330a2

yc ¼ 0:5774a

xc ¼ 0:5000a

y0c ¼ 0:5774a cos a

Ix ¼ Iy ¼ Ix0 ¼ 0:01804a4

rx ¼ ry ¼ rx0 ¼ 0:2041a

Zx ¼ 0:0732a3; Zy ¼ 0:0722a3

SFx ¼ 2:343; SFy ¼ 2:000

Neutral axis x is 0:2537a from the base.

10. Isosceles triangle A ¼
bd

2

yc ¼
2
3
d

xc ¼
b

2

Ix ¼ 1
36

bd3

Iy ¼ 1
48

db3

Ix > Iy if d > 0:866b

rx ¼ 0:2357d

ry ¼ 0:2041b

Zx ¼ 0:097bd2; Zy ¼ 0:0833db2

SFx ¼ 2:343; SFy ¼ 2:000

Neutral axis x is 0:2929d from the base.

11. Triangle A ¼
bd

2

yc ¼
2
3
d

xc ¼
2
3
b � 1

3
a

Ix ¼ 1
36

bd3

Iy ¼ 1
36

bdðb2 � ab þ a2Þ

Ixy ¼ 1
72

bd2ðb � 2aÞ

yx ¼
1

2
tan�1 dðb � 2aÞ

b2 � ab þ a2 � d2

rx ¼ 0:2357d

ry ¼ 0:2357
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � ab þ a2

p

12. Parallelogram A ¼ bd

yc ¼
d

2

xc ¼
1
2
ðb þ aÞ

Ix ¼ 1
12

bd3

Iy ¼ 1
12

bdðb2 þ a2Þ

Ixy ¼ � 1
12

abd2

yx ¼
1

2
tan�1 �2ad

b2 þ a2 � d2

rx ¼ 0:2887d

ry ¼ 0:2887
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ a2

p
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TABLE A.1 Properties of sections (Continued)

Form of section

Area and distances from

centroid to extremities

Moments and products of inertia

and radii of gyration about central axes

Plastic section moduli,

shape factors, and locations

of plastic neutral axes

13. Diamond A ¼
bd

2

yc ¼
d

2

xc ¼
b

2

Ix ¼ 1
48

bd3

Iy ¼ 1
48

db3

rx ¼ 0:2041d

ry ¼ 0:2041b

Zx ¼ 0:0833bd2; Zy ¼ 0:0833db2

SFx ¼ SFy ¼ 2:000

14. Trapezoid A ¼
d

2
ðb þ cÞ

yc ¼
d

3

2b þ c

b þ c

xc ¼
2b2 þ 2bc � ab � 2ac � c2

3ðb þ cÞ

Ix ¼
d3

36

b2 þ 4bc þ c2

b þ c

Iy ¼
d

36ðb þ cÞ
½b4 þ c4 þ 2bcðb2 þ c2Þ

� aðb3 þ 3b2c � 3bc2 � c3Þ

þ a2ðb2 þ 4bc þ c2Þ


Ixy ¼
d2

72ðb þ cÞ
½cð3b2 � 3bc � c2Þ

þ b3 � að2b2 þ 8bc þ 2c2Þ


15. Solid circle A ¼ pR2

yc ¼ R

Ix ¼ Iy ¼
p
4

R4

rx ¼ ry ¼
R

2

Zx ¼ Zy ¼ 1:333R3

SFx ¼ 1:698
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16. Hollow circle A ¼ pðR2 � R2
i Þ

yc ¼ R

Ix ¼ Iy ¼
p
4
ðR4 � R4

i Þ

rx ¼ ry ¼ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ R2

i

q
Zx ¼ Zy ¼ 1:333ðR3 � R3

i Þ

SFx ¼ 1:698
R4 � R3

i R

R4 � R4
i

17. Very thin annulus A ¼ 2pRt

yc ¼ R

Ix ¼ Iy ¼ pR3t

rx ¼ ry ¼ 0:707R

Zx ¼ Zy ¼ 4R2t

SFx ¼ SFy ¼
4

p

18. Sector of solid circle A ¼ aR2

yc1 ¼ R 1 �
2 sin a

3a

� �

yc2 ¼
2R sin a

3a

xc ¼ R sin a

Ix ¼
R4

4
aþ sin a cos a�

16 sin
2 a

9a

 !

Iy ¼
R4

4
ða� sin a cos aÞ

ðNote: If a is small; a� sin a cos a ¼ 2
3
a3 � 2

15
a5Þ

rx ¼
R

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ

sin a cos a
a

�
16 sin

2 a
9a2

s

ry ¼
R

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 �

sin a cos a
a

r

If a4 54:3�, then

Zx ¼ 0:6667R3 sin a�
a3

2 tan a

� �1=2
" #

Neutral axis x is located a distance

Rð0:5a= tan aÞ1=2 from the vertex.

If a5 54:3�, then

Zx ¼ 0:6667R3ð2 sin
3 a1 � sin aÞ where the

expression 2a1 � sin 2a1 ¼ a is solved for the value

of a1.

Neutral axis x is located a distance R cos a1 from

the vertex.

If a4 73:09�, then SFx ¼
Zxyc2

Ix

If 73:09� 4a4 90�, then SFx ¼
Zxyc1

Ix

Zy ¼ 0:6667R3ð1 � cos aÞ
If a4 90� , then

SFy ¼ 2:6667 sin a
1 � cos a

a� sin a cos a
If a5 90� , then

SFy ¼ 2:6667
1 � cos a

a� sin a cos a
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TABLE A.1 Properties of sections (Continued)

Form of section

Area and distances from

centroid to extremities

Moments and products of inertia

and radii of gyration about central axes

Plastic section moduli,

shape factors, and locations

of plastic neutral axes

19. Segment of solid circle

(Note: If a4p=4, use

expressions from case 20)

A ¼ R2ða� sin a cos aÞ

yc1 ¼ R 1 �
2 sin

3 a
3ða� sin a cos aÞ

" #

yc2 ¼ R
2 sin

3 a
3ða� sin a cos aÞ

� cos a

" #

xc ¼ R sin a

Ix ¼
R4

4
a� sin a cos aþ 2 sin

3 a cos a�
16 sin

6 a
9ða� sin a cos aÞ

" #

Iy ¼
R4

12
ð3a� 3 sin a cos a� 2 sin

3 a cos aÞ

rx ¼
R

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ

2 sin
3 a cos a

a� sin a cos a
�

16 sin
6 a

9ða� sin a cos aÞ2

s

ry ¼
R

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 �

2 sin
3 a cos a

3ða� sin a cos aÞ

s

20. Segment of solid circle

(Note: Do not use if

a > p=4Þ

A ¼ 2
3
R2a3ð1 � 0:2a2 þ 0:019a4Þ

yc1 ¼ 0:3Ra2ð1 � 0:0976a2 þ 0:0028a4Þ

yc2 ¼ 0:2Ra2ð1 � 0:0619a2 þ 0:0027a4Þ

xc ¼ Rað1 � 0:1667a2 þ 0:0083a4Þ

Ix ¼ 0:01143R4a7ð1 � 0:3491a2 þ 0:0450a4Þ

Iy ¼ 0:1333R4a5ð1 � 0:4762a2 þ 0:1111a4Þ

rx ¼ 0:1309Ra2ð1 � 0:0745a2Þ

ry ¼ 0:4472Rað1 � 0:1381a2 þ 0:0184a4Þ

21. Sector of hollow circle A ¼ atð2R � tÞ

yc1 ¼ R 1 �
2 sin a

3a
1 �

t

R
þ

1

2 � t=R

� �� �

yc2 ¼ R
2 sin a

3að2 � t=RÞ
þ 1 �

t

R

� �
2 sin a� 3a cos a

3a

� �

xc ¼ R sin a

Ix ¼ R3t 1 �
3t

2R
þ

t2

R2
�

t3

4R3

� ��

� aþ sin a cos a�
2 sin

2 a
a

 !

þ
t2 sin

2 a
3R2að2 � t=RÞ

1 �
t

R
þ

t2

6R2

� �#

Iy ¼ R3t 1 �
3t

2R
þ

t2

R2
�

t3

4R3

� �
ða� sin a cos aÞ

rx ¼

ffiffiffiffiffi
Ix

A

r
; ry ¼

ffiffiffiffiffi
Iy

A

r
(Note: If t=R is small, a can

exceed p to form an

overlapped annulus)
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Note: If a is small:

sin a
a

¼ 1 �
a2

6
þ

a4

120
; a� sin a cos a ¼

2

3
a3 1 �

a2

5
þ

2a4

105

� �
;

sin
2 a
a

¼ a 1 �
a2

3
þ

2a4

45

� �

cos ¼ 1 �
a2

2
þ

a4

24
; aþ sin a cos a�

2 sin
2 a

a
¼

2a5

45
1 �

a2

7
þ

a4

105

� �

22. Solid semicircle A ¼
p
2

R2

yc1 ¼ 0:5756R

yc2 ¼ 0:4244R

xc ¼ R

Ix ¼ 0:1098R4

Iy ¼
p
8

R4

rx ¼ 0:2643R

ry ¼
R

2

Zx ¼ 0:3540R3; Zy ¼ 0:6667R3

SFx ¼ 1:856; SFy ¼ 1:698

Plastic neutral axis x is located a distance 0:4040R

from the base.

23. Hollow semicircle

Note: b ¼
R þ Ri

2

t ¼ R � Ri

A ¼
p
2
ðR2 � R2

i Þ

yc2 ¼
4

3p
R3 � R2

i

R2 � R2
i

or

yc2 ¼
2b

p
1 þ

ðt=bÞ2

12

" #

yc1 ¼ R � yc2

xc ¼ R

Ix ¼
p
8
ðR4 � R4

i Þ �
8

9p
ðR3 � R3

i Þ
2

R2 � R2
i

or

Ix ¼ 0:2976tb3 þ 0:1805bt3 �
0:00884t5

b

Iy ¼
p
8
ðR4 � R4

i Þ

or

Iy ¼ 1:5708b3t þ 0:3927bt3

Let yp be the vertical distance from the bottom to the

plastic neutral axis.

yp ¼ ð0:7071 � 0:2716C � 0:4299C2 þ 0:3983C3ÞR

Zx ¼ ð0:8284 � 0:9140C þ 0:7245C2

� 0:2850C3ÞR2t

where C ¼ t=R

Zy ¼ 0:6667ðR3 � R3
i Þ

24. Solid ellipse A ¼ pab

yc ¼ a

xc ¼ b

Ix ¼
p
4

ba3

Iy ¼
p
4

ab3

rx ¼
a

2

ry ¼
b

2

Zx ¼ 1:333a2b; Zy ¼ 1:333b2a

SFx ¼ SFy ¼ 1:698
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TABLE A.1 Properties of sections (Continued)

Form of section

Area and distances from

centroid to extremities

Moments and products of inertia

and radii of gyration about central axes

Plastic section moduli,

shape factors, and locations

of plastic neutral axes

25. Hollow ellipse A ¼ pðab � aibiÞ

yc ¼ a

xc ¼ b

Ix ¼
p
4
ðba3 � bia

3
i Þ

Iy ¼
p
4
ðab3 � aib

3
i Þ

rx ¼
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ba3 � bia

3
i

ab � aibi

s

ry ¼
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ab3 � aib

3
i

ab � aibi

s

Zx ¼ 1:333ða2b � a2
i biÞ

Zy ¼ 1:333ðb2a � b2
i aiÞ

SFx ¼ 1:698
a3b � a2

i bia

a3b � a3
i bi

SFy ¼ 1:698
b3a � b2

i aib

b3a � b3
i ai

Note: For this case the inner and outer perimeters are both ellipses and the wall

thickness is not constant. For a cross section with a constant wall thickness see

case 26.

26. Hollow ellipse with

constant wall thickness t.

The midthickness

perimeter is an ellipse

(shown dashed).

0:2 < a=b < 5

A ¼ ptða þ bÞ 1 þ K1

a � b

a þ b

� �2
" #

where

K1 ¼ 0:2464 þ 0:002222
a

b
þ

b

a

� �

yc ¼ a þ
t

2

xc ¼ b þ
t

2

Ix ¼
p
4

ta2ða þ 3bÞ 1 þ K2

a � b

a þ b

� �2
" #

þ
p
16

t3ð3a þ bÞ 1 þ K3

a � b

a þ b

� �2
" #

where

K2 ¼ 0:1349 þ 0:1279
a

b
� 0:01284

a

b

	 
2

K3 ¼ 0:1349 þ 0:1279
b

a
� 0:01284

b

a

� �2

For Iy interchange a and b in the expressions

for Ix;K2, and K3

Zx ¼ 1:3333taða þ 2bÞ 1 þ K4

a � b

a þ b

� �2
" #

þ
t3

3

where

K4 ¼ 0:1835 þ 0:895
a

b
� 0:00978

a

b

	 
2

For Zy interchange a and b in the expression for Zx

and K4.

See the note on maximum

wall thickness in case 27.
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27. Hollow semiellipse with

constant wall thickness t.

The midthickness

perimeter is an ellipse

(shown dashed).

0:2 < a=b < 5

Note: There is a limit on the

maximum wall thickness

allowed in this case. Cusps

will form in the perimeter at

the ends of the major axis

if this maximum is exceeded.

If
a

b
4 1; then tmax ¼

2a2

b

If
a

b
5 1; then tmax ¼

2b2

a

A ¼
p
2

tða þ bÞ 1 þ K1

a � b

a þ b

� �2
" #

where

K1 ¼ 0:2464 þ 0:002222
a

b
þ

b

a

� �

yc2 ¼
2a

p
K2 þ

t2

6pa
K3

where

K2 ¼ 1 � 0:3314C þ 0:0136C2 þ 0:1097C3

K3 ¼ 1 þ 0:9929C � 0:2287C2 � 0:2193C3

Using C ¼
a � b

a þ b

yc1 ¼ a þ
t

2
� yc2

xc ¼ b þ
t

2

IX ¼
p
8

ta2ða þ 3bÞ 1 þ K4

a � b

a þ b

� �2
" #

þ
p
32

t3ð3a þ bÞ 1 þ K5

a � b

a þ b

� �2
" #

where

K4 ¼ 0:1349 þ 0:1279
a

b
� 0:01284

a

b

	 
2

K5 ¼ 0:1349 þ 0:1279
b

a
� 0:01284

b

a

� �2

Ix ¼ IX � Ay2
c2

For Iy use one-half the value for Iy in case 26.

Let yp be the vertical distance from the bottom to the

plastic neutral axis.

yp ¼ C1 þ
C2

a=b
þ

C3

ða=bÞ2
þ

C4

ða=bÞ3

� �
a

where if 0:25 < a=b4 1, then

C1 ¼ 0:5067 � 0:5588D þ 1:3820D2

C2 ¼ 0:3731 þ 0:1938D � 1:4078D2

C3 ¼ �0:1400 þ 0:0179D þ 0:4885D2

C4 ¼ 0:0170 � 0:0079D � 0:0565D2

or if 14a=b < 4, then

C1 ¼ 0:4829 þ 0:0725D � 0:1815D2

C2 ¼ 0:1957 � 0:6608D þ 1:4222D2

C3 ¼ 0:0203 þ 1:8999D � 3:4356D2

C4 ¼ 0:0578 � 1:6666D þ 2:6012D2

where D ¼ t=tmax and where 0:2 < D4 1

Zx ¼ C5 þ
C6

a=b
þ

C7

ða=bÞ2
þ

C8

ða=bÞ3

� �
4a2t

where if 0:25 < a=b4 1, then

C5 ¼ �0:0292 þ 0:3749D1=2 þ 0:0578D

C6 ¼ 0:3674 � 0:8531D1=2 þ 0:3882D

C7 ¼ �0:1218 þ 0:3563D1=2 � 0:1803D

C8 ¼ 0:0154 � 0:0448D1=2 þ 0:0233D

or if 14a=b < 4, then

C5 ¼ 0:2241 � 0:3922D1=2 þ 0:2960D

C6 ¼ �0:6637 þ 2:7357D1=2 � 2:0482D

C7 ¼ 1:5211 � 5:3864D1=2 þ 3:9286D

C8 ¼ �0:8498 þ 2:8763D1=2 � 1:8874D

For Zy use one-half the value for Zy in case 26.
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TABLE A.1 Properties of sections Continued)

Form of section

Area and distances from

centroid to extremities

Moments and products of inertia

and radii of gyration about central axes

Plastic section moduli,

shape factors, and locations

of plastic neutral axes
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Appendix

B
Glossary: Definitions

The definitions given here apply to the terminology used throughout

this book. Some of the terms may be defined differently by other

authors; when this is the case, alternative terminology is noted. When

two or more terms with identical or similar meaning are in general

acceptance, they are given in the order of preference of the current

writers.

Allowable stress (working stress): If a member is so designed

that the maximum stress as calculated for the expected conditions of

service is less than some limiting value, the member will have a proper

margin of security against damage or failure. This limiting value is the

allowable stress subject to the material and condition of service in

question. The allowable stress is made less than the damaging stress

because of uncertainty as to the conditions of service, nonuniformity of

material, and inaccuracy of the stress analysis (see Ref. 1). The margin

between the allowable stress and the damaging stress may be reduced

in proportion to the certainty with which the conditions of the service

are known, the intrinsic reliability of the material, the accuracy with

which the stress produced by the loading can be calculated, and the

degree to which failure is unattended by danger or loss. (Compare with

Damaging stress; Factor of safety; Factor of utilization; Margin of

safety. See Refs. l–3.)

Apparent elastic limit (useful limit point): The stress at which

the rate of change of strain with respect to stress is 50% greater than

at zero stress. It is more definitely determinable from the stress–strain

diagram than is the proportional limit, and is useful for comparing

materials of the same general class. (Compare with Elastic limit;

Proportional limit; Yield point, Yield strength.)

Apparent stress: The stress corresponding to a given unit strain on

the assumption of uniaxial elastic stress. It is calculated by multi-



plying the unit strain by the modulus of elasticity, and may differ from

the true stress because the effect of the transverse stresses is not

taken into account.

Bending moment: Reference is to a simple straight beam, assumed

for convenience to be horizontal and loaded and supported by forces,

all of which lie in a vertical plane. The bending moment at any section

of the beam is the moment of all forces that act on the beam to the left

(or right) of that section, taken about the horizontal axis in the plane

of the section. When considering the moment at the section due to the

forces to the left of the section, the bending moment is positive when

counterclockwise and negative when clockwise. The reverse is true

when considering the moment due to forces to the right of the section.

Thus, a positive bending moment bends the beam such that the beam

deforms concave upward, and a negative bending moment bends it

concave downward. The bending moment equation is an expression for

the bending moment at any section in terms of x, the distance along

the longitudinal axis of the beam to the section measured from an

origin, usually taken to be the left end of the beam.

Bending moments as applied to straight beams in two-plane

symmetric or unsymmetric bending, curved beams, or plates are a

bit more involved, and are discussed in the appropriate sections of this

book.

Bending stress (flexural stress): The tensile and compressive

stress transmitted in a beam or plate that arises from the bending

moment. (See Flexure equation.)

Boundary conditions: As used in structural analysis, the term

usually refers to the condition of stress, displacement, or slope at the

ends or edges of a member, where these conditions are apparent from

the circumstances of the problem. For example, given a beam with

fixed ends, the zero displacement and slope at each end are boundary

conditions. For a plate with a freely supported edge, the zero-stress

state is a boundary condition.

Brittle fracture: The tensile failure of a material with negligible

plastic deformation. The material can inherently be a brittle material

in its normal state such as glass, masonry, ceramic, cast iron, or high

strength high-carbon steel (see Sec. 3.7); or can be a material normally

considered ductile which contains imperfections exceeding specific

limits, or in a low-temperature environment, or undergoing high

strain rates, or any combination thereof.

Bulk modulus of elasticity: The ratio of a tensile or compressive

stress, triaxial and equal in all directions (e.g., hydrostatic pressure) to

the relative change it produces in volume.
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Central axis (centroidal axis): A central axis of a line, area, or

volume is one that passes through the centroid; in the case of an area,

it is understood to lie in the plane of the area unless stated otherwise.

When taken normal to the plane of the area, it is called the central

polar axis.

Centroid of an area: That point in the plane of an area where the

moment of the area is zero about any axis. The centroid coincides with

the center of gravity in the plane of an infinitely thin homogeneous

uniform plate.

Corrosion fatigue: Fatigue aggravated by corrosion, as in parts

repeatedly stressed while exposed to a corrosive environment.

Creep: Continuous increase in deformation under constant or

decreasing stress. The term is ordinarily used with reference to the

behavior of metals under tension at elevated temperatures. The

similar yielding of a material under compressive stress is called plastic

flow, or flow. Creep at atmospheric temperature due to sustained

elastic stress is sometimes called drift, or elastic drift. (See also

Relaxation.)

Damaging stress: The least unit stress of a given kind and for a

given material and condition of service that will render a member

unfit for service before the end of its useful life. It may do this by

excessive deformation, by excessive yielding or creep, or through

fatigue cracking, excessive strain hardening, or rupture.

Damping capacity: The amount of energy dissipated into heat per

unit of total strain energy present at maximum strain for a complete

cycle. (See Ref. 4.)

Deformation: Change in the shape or dimensions of a body

produced by stress. Elongation is often used for tensile deformation,

compression or shortening for compressive deformation, and distortion

for shear deformation. Elastic deformation is deformation that invari-

ably disappears upon removal of stress, whereas permanent deforma-

tion is that which remains after the removal of stress. (Compare with

Set.)

Eccentricity: A load or component of a load normal to a given cross

section of a member is eccentric with respect to that section if it does

not act through the centroid. The perpendicular distance from the line

of action of the load to the central polar axis is the eccentricity with

respect to that axis.

Elastic: Capable of sustaining stress without permanent deforma-

tion; the term is also used to denote conformity to the law of stress–
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strain proportionality (Hooke’s law). An elastic stress or strain is a

stress or strain within the elastic limit.

Elastic axis: The elastic axis of a beam is the line, lengthwise of the

beam, along which transverse loads must be applied to avoid torsion of

the beam at any section. Strictly speaking, no such line exists except

for a few conditions of loading. Usually the elastic axis is assumed to

be the line through the elastic center of every section. The term is most

often used with reference to an airplane wing of either the shell or

multiple spar type. (Compare with Torsional center; Flexural center;

Elastic center. See Ref. 5.)

Elastic center: The elastic center of a given section of a beam is that

point in the plane of the section lying midway between the shear

center and center of twist of that section. The three points may be

identical—which is the normal assumption. (Compare with Shear

center; Torsional center; Elastic axis. See Refs. 5 and 6.)

Elastic curve: The curve assumed by the longitudinal axis of an

initially straight beam or column in bending where the stress is within

the elastic limit.

Elastic instability (buckling): Unstable local or global elastic

deformations caused by compressive stresses in members with large

length to lateral dimensions. (See Slenderness ratio.)

Elastic, perfectly plastic material: A model that represents the

stress–strain curve of a material as linear from zero stress and strain

to the elastic limit. Beyond the elastic limit, the stress remains

constant with strain.

Elastic limit: The least stress that will cause permanent set.

(Compare with Proportional limit; Apparent elastic limit, Yield point;

Yield strength. See Sec. 3.2 and Ref. 7.)

Elastic ratio: The ratio of the elastic limit to the ultimate strength.

Ellipsoid of strain: An ellipsoid that represents the state of strain

at any given point in a body. It has the shape assumed under stress by

a sphere centered at the point in question (Ref 8).

Ellipsoid of stress: An ellipsoid that represents the state of stress

at any given point in a body; its semi-axes are vectors representing the

principal stresses at the point, and any radius vector represents the

resultant stress on a particular plane through the point. For a

condition of plane stress, where one of the principal stresses is zero,

the ellipsoid becomes the ellipse of stress (see Ref. 9).

Endurance limit (fatigue strength): The maximum stress ampli-

tude of a purely reversing stress that can be applied to a material an
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indefinitely large number of cycles without producing fracture (see

Sec. 3.8).

Endurance ratio: Ratio of the endurance limit to the ultimate

static tensile strength.

Endurance strength: The maximum stress amplitude of a purely

reversing stress that can be applied to a material for a specific number

of cycles without producing fracture. (Compare with Endurance limit.)

Energy of rupture (modulus of toughness): The work done per

unit volume in producing fracture. It is not practicable to establish a

specific energy of rupture value for a given material, because the

result obtained depends upon the form and proportions of the test

specimen and the manner of loading. As determined by similar tests

on similar specimens, the energy of rupture affords a criterion for

comparing the toughness of different materials.

Equivalent bending moment: A bending moment that, acting

alone, would produce in a circular shaft a normal (tensile or compres-

sive) stress of the same magnitude as the maximum normal stress

produced by a given bending moment and a given twisting moment

acting simultaneously.

Equivalent twisting moment: A twisting moment that, acting

alone, would produce in a circular shaft a shear stress of the same

magnitude as the maximum shear stress produced by a given twisting

moment and a given bending moment acting simultaneously.

Factor of safety: The intent of the factor of safety is to provide a

safeguard to failure. The term usually refers to the ratio of the load

that would cause failure of a member or structure to the load that is

imposed upon it in service. The term may also be used to represent the

ratio of the failure to service value of speed, deflection, temperature

variation, or other stress-producing quantities. (Compare with Allow-

able stress; Margin of safety.)

Fatigue: The fracture of a material under many repetitions of a

stress at a level considerably less than the ultimate strength of the

material.

Fatigue strength: See Endurance limit.

Fixed (clamped): A support condition at the end of a beam or

column or at the edge of a plate or shell that prevents rotation and

transverse displacement of the edge of the neutral surface but permits

longitudinal displacement. (Compare Guided; Held; Simply-

supported.)

Flexural center: See Shear center.
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Flexure equation: The equation for tensile and compressive

stresses in beams undergoing bending, given by s ¼ Mc=I.

Flexural rigidity (beam, plate): A measure of the resistance of the

bending deformation of a beam or plate. For a beam, the flexural

rigidity is given by EI; whereas for a plate of thickness t, it is given by

Et3=½12ð1 � nÞ�.

Form factor: The term is applied to several situations pertaining to

beams:

(1) Given a beam section of a given shape, the form factor is the ratio

of the modulus of rupture of a beam having that particular section

to the modulus of rupture of a beam otherwise similar but having a

section adopted as a standard. This standard section is usually

taken as rectangular or square; for wood it is a 2 in by 2 in square

with edges horizontal and vertical (see Secs. 3.11 and 8.15).

(2) For the shear deflection of a beam due to transverse loading, the

form factor is a correction factor that is the ratio of the actual

shear deflection to the shear deflection calculated on the assump-

tion of a uniform shear stress across the section (see Sec. 8.10).

(3) For a given maximum fiber stress within the elastic limit, the form

factor is the ratio of the actual resisting moment of a wide-flanged

beam to the resisting moment the beam would develop if the fiber

stress were uniformly distributed across the entire width of the

flanges. So used, the term expresses the strength-reducing effort of

shear lag.

Fretting fatigue (chafing fatigue): Fatigue aggravated by surface

rubbing, as in shafts with press-fitted collars.

Guided: A support condition at the end of a beam or column or at

the edge of a plate or shell that prevents rotation of the edge of the

neutral surface in the plane of bending but permits longitudinal and

transverse displacement. (Compare with Fixed; Held; Simply-

supported.)

Held: A support condition at the end of a beam or column or at the

edge of a plate or shell that prevents longitudinal and transverse

displacement of the edge of the neutral surface but permits rotation in

the plane of bending. (Compare with Fixed; Guided; Simply-

supported.)

Hertzian Stress (contact stress): Stress caused by the pressure

between elastic bodies in contact.

Hysteresis: The dissipation of energy as heat during a stress cycle

of a member.
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Influence line: Usually pertaining to a particular section of a beam,

an influence line is a curve drawn so that its ordinate at any point

represents the value of the reaction, vertical shear, bending moment,

or deflection produced at the particular section by a unit load applied

at the point where the ordinate is measured. An influence line may be

used to show the effect of load position on any quantity dependent

thereon, such as the stress in a given truss member, the deflection of a

truss, or the twisting moment in a shaft.

Isoclinic: A line (in a stressed body) at all points on which the

corresponding principal stresses have the same direction.

Isotropic: Having the same properties in all directions. In discus-

sions pertaining to strength of materials, isotropic usually means

having the same strength and elastic properties (modulus of elasticity,

modulus of rigidity, and Poisson’s ratio) in all directions.

Kern (kernal): Reference is to some particular section of a member.

The kern is that area in the plane of a section through which the line of

action of a force must pass if that force is to produce, at all points in the

given section, the same kind of normal stress, i.e., tension throughout

or compression throughout.

Limit load: The fictitious theoretical load that the cross section of a

member made of an elastic, perfectly plastic material reaches when

the entire section goes into the plastic range.

Lüder’s lines: See Slip lines.

Margin of Safety: As used in aeronautical design, margin of safety

is the percentage by which the ultimate strength of a member exceeds

the design load. The design load is the applied load, or maximum

probable load, multiplied by a specified factor of safety. [The use of the

terms margin of safety and design load in this sense is practically

restricted to aeronautical engineering (see Ref. 11).]

Member: Any single part or element of a machine or structure, such

as a beam, column, shaft, etc.

Modulus of elasticity, E (Young’s modulus): The rate of change

of normal stress, s, to normal strain, e, for the condition of uniaxial

stress within the proportional limit of a given material. For most,

but not all materials, the modulus of elasticity is the same for tension

and compression. For nonisotropic materials such as wood, it is

necessary to distinguish between the moduli of elasticity in different

directions.
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Modulus of resilience: The strain energy per unit volume

absorbed up to the elastic limit under conditions of uniform uniaxial

stress.

Modulus of rigidity, G (modulus of elasticity in shear): The

rate of change of shear stress, t, with respect to shear strain, g, within

the proportional limit of a given material. For nonisotropic materials

such as wood, it is necessary to distinguish between the moduli of

rigidity in different directions.

Modulus of rupture in bending (computed ultimate bending

strength): The fictitious normal stress in the extreme fiber of a

beam computed by the flexure equation s ¼ MRc=I , where MR is the

bending moment that causes rupture.

Modulus of rupture in torsion (computed ultimate torsional

strength): The fictitious shear stress at the outer radius of a

circular shaft computed by the torsion equation t ¼ TRr=J , where TR

is the torsional moment that causes rupture.

Moment of an area (first moment of an area): With respect to an

axis within the plane of an area, the sum of the products obtained by

multiplying each element of the area dA by its distance, y, from the

axis: it is therefore the quantity
Ð

y dA.

Moment of inertia of an area (second moment of an area): With

respect to an axis x within the xy plane of an area, the sum of the

products obtained by multiplying each element of the area dA by the

square of the distance y from the x axis: it is thus the quantity

Ix ¼
Ð

y2 dA (see Appendix A).

Neutral axis: The line of zero fiber stress in any given section of a

member subject to bending; it is the line formed by the intersection of

the neutral surface and the section.

Neutral surface: The longitudinal surface of zero fiber stress in a

member subject to bending; it contains the neutral axis of every

section.

Notch-sensitivity factor: Used to compare the stress concentration

factor Kt and fatigue-strength reduction factor Kf. The notch-sensi-

tivity factor q is commonly defined as the ratio ðKf � 1Þ=ðKt � 1Þ, and

varies from 0, for some soft ductile materials, to 1, for some hard

brittle materials.

Plane strain: A condition where the normal and shear strains in a

particular direction are zero; e.g., ez ¼ gzx ¼ gzy ¼ 0.

Plane stress: A condition where the normal and shear stresses in a

particular direction are zero; e.g., sz ¼ tzx ¼ tzy ¼ 0.
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Plastic moment; plastic hinge; plastic section modulus: The

maximum hypothetical bending moment for which the stresses in all

fibers of a section of a ductile member in bending reach the lower yield

point sy is called the plastic moment, Mp. Under this condition the

section cannot accommodate any additional load, and a plastic hinge is

said to form. The section modulus Zp is defined as Mp=sy.

Plasticity: The property of sustaining appreciable permanent defor-

mation without rupture. The term is also used to denote the property

of yielding or flowing under steady load (Ref. 13).

Poisson’s ratio, n: The ratio of lateral to longitudinal strain under

the condition of uniform and uniaxial longitudinal stress within the

proportional limit.

Polar moment of inertia: With respect to an axis normal to the

plane of an area, the sum of the products obtained by multiplying each

element of the area dA by the square of the distance r from the axis; it

is thus the quantity
Ð

r2 dA (see Appendix A).

Principal axes of inertia: The two mutually perpendicular axes in

the plane of an area, centered at the centroid of the area, with mo-

ments of inertia that are maximum and minimum (see Appendix A).

Principal axes of stress: The three mutually perpendicular axes at

a specific point within a solid where the state of stress on each surface

normal to the axes contains a tensile or compressive stress and zero

shear stress.

Principal moment of inertia: The moment of inertia of an area

about a principal axis of inertia (see Appendix A).

Principal stresses: The tensile or compressive stresses acting

along the principal axes of stress.

Product of inertia of an area: With respect to a pair of xy

rectangular axes in the plane of an area, the sum of the products

obtained by multiplying each element of area dA by the coordinates

with respect to these axes; that is,
Ð

xy dA (see Appendix A). The

product of inertia relative to the principal axes of inertia is zero.

Proof stress: Pertaining to acceptance tests of metals, a specified

tensile stress that must be sustained without deformation in excess of

a specified amount.

Proportional limit: The greatest stress that a material can sustain

without deviating from the law of stress–strain proportionality

(Hookes’ law.) (Compare Elastic limit; Apparent elastic limit; Yield

point; Yield strength. See Sec. 3.2 and Ref. 8.)

APP. B] Glossary: Definitions 821



Radius of gyration, k: The radius of gyration of an area with

respect to a given axis is the square root of the quantity obtained by

dividing the moment of inertia of the area I with respect to that axis

by the area A; that is, k ¼
ffiffiffiffiffiffiffiffiffi
I=A

p
(see Appendix A)

Reduction of area: The difference between the cross-sectional

areas of a tensile specimen at the section of rupture before loading

and after rupture.

Relaxation: The reduction in stress when the deformation is main-

tained constant. (Compare Creep.)

Rupture factor: Used in reference to brittle materials, i.e., mate-

rials in which failure occurs through tensile rupture rather than

excessive deformation. For a member of given form, size and material,

loaded and supported in a given manner, the rupture factor is the ratio

of the fictitious maximum tensile stress at failure, as calculated by the

appropriate formula for elastic stress, to the ultimate tensile strength

of the material, as determined by a conventional tension test (Sec.

3.11.)

Saint-Venant’s principle: If a load distribution is replaced by a

statically equivalent force system, the distribution of stress through-

out the body is possibly altered only near the regions of load applica-

tion.

Section modulus (section factor), S: Pertaining to the cross

section of a beam, the section modulus with respect to either principal

axis of inertia is the moment of inertia with respect to that axis, I ,

divided by the distance from that axis to the most remote point of the

section, c; that is, S ¼ I=c. (Compare Plastic section modulus.)

Set (permanent deformation): Strain remaining after the

removal of the applied loading.

Shakedown load (stabilizing load): The maximum load that can

be applied to a beam or rigid frame and upon removal leave residual

moments such that subsequent applications of the same or a smaller

load will cause only elastic stresses.

Shape factor: The ratio of the plastic section modulus to the elastic

section modulus.

Shear center (flexural center): With reference to a beam, the

shear center of any section is that point in the plane of the section

through which a transverse load, applied at the section, must act to

produce bending deflection only and no twist of the section. (Compare

with Torsional center; Elastic center; Elastic axis. See Refs. 5 and 10.)
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Shear lag: Because of shear strain, the longitudinal tensile or

compressive bending stresses in wide beam flanges decrease with

the distance from the web(s), and this stress reduction is called

shear lag.

Simply-supported: A support condition at the end of a beam or

column or at the edge of a plate or shell that prevents transverse

displacement of the edge of the neutral surface but permits rotation

and longitudinal displacement. (Compare Fixed, Guided; Held.)

Singularity functions: A class of mathematical functions that can

be used to describe discontinuous behavior using one equation. Singu-

larity functions are commonly employed to represent shear forces,

bending moments, slopes, and deformations as functions of position for

discontinuous loading of beams, plates, and shells. The functions are

written using bracket notation as Fn ¼ hx � ain, where Fn ¼ 0 for

x4a, and Fn ¼ ðx � aÞn for x > a. (See Ref. 12.)

Slenderness ratio: The ratio of length of a uniform column to the

minimum radius of gyration of the cross-section.

Slip lines (Lüder’s lines): Lines that appear on the polished

surface of a crystal or crystalline body that has been stressed beyond

the elastic limit. They represent the intersection of the surface by

planes on which shear stress has produced plastic slip (see Sec. 3.5 and

Ref. 13).

Strain: Any forced change in the dimensions and=or shape of an

elastic element. A stretch is a tensile strain; a shortening is a

compressive strain; and an angular distortion is a shear strain.

Strain concentration factor: Localized peak strains develop in

the presence of stress raisers. The strain concentration factor is the

ratio of the localized maximum strain at a given location to the

nominal average strain at that location. The nominal average strain

is computed from the average stress and a knowledge of the stress–

strain behavior of the material. In a situation where all stresses and

strains are elastic, the stress and strain concentration factors are

equal. (Compare with Stress concentration factor.)

Strain energy: Mechanical energy stored in a stressed material.

Stress within the elastic limit is implied where the strain energy is

equal to the work done by the external forces in producing the stress

and is recoverable.

Strain rosette: At any point on the surface of a stressed body,

strains measured along each of three intersecting gage lines make

the calculation of the principal stresses possible. The gage lines and

the corresponding strains are called strain rosettes.
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Strength: Typically refers to a particular limiting value of stress for

which a material ceases to behave according to some prescribed

function. [Compare Endurance limit (Fatigue strength); Endurance

strength; Ultimate strength; Yield strength.]

Stress: Internal force per unit area exerted on a specified surface.

When the force is tangential to the surface, the stress is called a shear

stress; when the force is normal to the surface, the stress is called a

normal stress; when the normal stress is directed toward the surface,

it is called a compressive stress; and when the normal stress is directed

away from the surface, it is called a tensile stress.

Stress concentration factor, Kt: Irregularities of form such as

holes, screw threads, notches, and sharp shoulders, when present in a

beam, shaft, or other member subject to loading, may produce high

localized stresses. This phenomenon is called a stress concentration,

and the form irregularities that cause it are called stress raisers. For

the particular type of stress raiser in question, the ratio of the true

maximum stress to the nominal stress calculated by the ordinary

formulas of mechanics (P=A, Mc=I, Tc=J, etc.) is the stress concentra-

tion factor. The nominal stress calculation is based on the net section

properties at the location of the stress raiser ignoring the redistribu-

tion of stress caused by the form irregularity. (See Sec. 3.10.)

Stress intensity factor: A term employed in fracture mechanics to

describe the elastic stress field surrounding a crack tip.

Stress trajectory (isostatic): A line (in a stressed body) tangent to

the direction of one of the principal stresses at every point through

which it passes.

Superposition, principle of: With certain exceptions, the effect of

a given combined loading on a structure may be resolved by determin-

ing the effects of each load separately and adding the results alge-

braically. The principle may be applied provided: (1) each effect is

linearly related to the load that produces it, (2) a load does not create a

condition which affects the result of another load, and (3) the deforma-

tions resulting from any specific load are not large enough to appre-

ciably alter the geometric relations of the parts of the structural

system. (See Sec. 4.2.)

Torsional center (center of twist): If a twisting couple is applied

at a given section of a straight member, that section rotates about

some point in its plane. This point, which does not move when the

member twists, is the torsional center of that section. (See Refs. 5

and 6.)
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Torsional moment (torque, twisting moment): At any section of

a member, the moment of all forces that act on the member to the left

(or right) of that section, taken about a polar axis through the flexural

center of that section. For sections that are symmetrical about each

principal axis, the flexural center coincides with the centroid (see Refs.

6 and 10).

Transformations of stress or strain: Conversions of stress or

strain at a point from one three-dimensional coordinate system to

another. (See Secs. 2.3 and 2.4)

Transverse shear force (vertical shear): Reference is to a simple

straight beam, assumed for convenience to be horizontal and loaded

and supported by forces, all of which lie in a vertical plane. The

transverse shear force at any section of the beam is the vertical

component of all forces that act on the beam to the left (or right) of

that section. The shear force equation is an expression for the trans-

verse shear at any section in terms of x, the distance to that section

measured from a chosen origin, usually taken from the left of the

beam.

Tresca stress: Based on the failure mode of a ductile material being

due to shear stress, the Tresca stress is a single shear stress value,

which is equivalent to an actual combined state of stress.

True strain: The summation (integral) of each infinitesimal elonga-

tion DL of successive values of a specific gage length L divided by that

length. It is equal to
Ð L

L0
ðdL=LÞ ¼ loge ðL=L0Þ ¼ loge ð1 þ eÞ, where L0 is

the original gage length and e is the normal strain as ordinarily

defined (Ref. 14).

True stress: For an axially loaded bar, the force divided by the

actual cross-sectional area undergoing loading. It differs from the

engineering stress defined in terms of the original area.

Ultimate elongation: The percentage of permanent deformation

remaining after tensile rupture (measured over an arbitrary length

including the section of rupture).

Ultimate strength: The ultimate strength of a material in uniaxial

tension or compression, or pure shear, respectively, is the maximum

tensile, compressive, or shear stress that the material can sustain

calculated on the basis of the greatest load achieved prior to fracture

and the original unstrained dimensions.

von Mises stress: Based on the failure mode of a ductile material

being due to distortional energy caused by a stress state, the von Mises

APP. B] Glossary: Definitions 825



stress is a single normal stress value, which is equivalent to an actual

combined state of stress.

Yield point: The stress at which the strain increases without an

increase in stress. For some purposes, it is important to distinguish

between upper and lower yield points. When they occur, the upper

yield point is reached first and is a maxima that is followed by the

lower yield point, a minima. Only a few materials exhibit a true yield

point. For other materials the term is sometimes used synonymously

with yield strength. (Compare Yield strength; Elastic limit; Apparent

elastic limit; Proportional limit. See Ref. 7.)

Yield strength: The stress at which a material exhibits a specified

permanent deformation or set. This stress is usually determined by

the offset method, where the strain departs from the linear portion of

the actual stress–strain diagram by an offset unit strain of 0.002. (See

Ref. 7.)
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Composite members, as discussed in Secs. 8.3 and 8.8, are composed of

more than one material where each material is of a continuous and

homogeneous cross-section. The equivalent stiffnesses of these

members are determined by a simple technique using an equivalent

width. Composite materials, on the other hand, are made up of more

than one material continuously dispersed at the macroscopic level at

various angular orientations, and obtaining the combined material

properties is much more complex. To this end, computer software is

available. Once the material properties have been obtained from the

software, the equations and tables provided in this book can be

utilized. The following discussion is only intended to provide some

introductory insight into the analysis of structures composed of

* Analysis of composites is simplified if you have access to software specifically
developed for this purpose. A free version of software for a limited number of composite
materials is available from UTS at the web site, www.uts.com=composites=.



composite materials. Certainly, much more exposure is necessary

before one can become proficient in this important topic.

C.1 Composite Materials

Composites are formed from two or more dissimilar materials, each of

which contributes to the final properties. Unlike metallic alloys, the

materials in a composite remain distinct from each other at the

macroscopic level.

Most engineering composites consist of two materials: a reinforce-

ment and a matrix. The reinforcement provides stiffness and strength;

the matrix holds the material together and serves to transfer load

among the discontinuous reinforcements. The most common reinforce-

ments, illustrated in Figure C.1, are continuous fibers, either straight

or woven, short chopped fibers, and particulates. The most common

matrices are various plastic resins.

Metals and other traditional engineering materials are uniform, or

isotropic, in nature. This means that material properties, such as

strength, stiffness, and thermal conductivity, are independent of both

position within the material and the choice of coordinate system. The

discontinuous nature of composite reinforcements, though, means that

material properties can vary with both position and direction. For

example, an epoxy resin reinforced with continuous graphite fibers

will have very high strength and stiffness in the direction of the fibers,

but very low properties normal or transverse to the fibers.

This directionality increases the complexity of structural analyses.

Isotropic materials are fully defined by two engineering constants:

Young’s modulus E and Poisson’s ratio n. A single ply of a composite

material, however, requires four constants, defined with respect to the

ply coordinate system shown in Figure C.2. The constants are two

Young’s moduli (the longitudinal modulus in the direction of the fibers,

E1, and the transverse modulus normal to the fibers, E2, one Poisson’s

ratio n12, called the major Poisson’s ratio, and one shear modulus G12).

Figure C.1 Composites categorized by reinforcement type
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A fifth constant, the minor Poisson’s ratio n21, is determined from the

other properties through the reciprocity relation

n12

E1

¼
n21

E2

ðC:1Þ

Table C.1 shows typical properties for a variety of composite systems.

Each of the composites listed is a unidirectional composite, consisting of

parallel fibers running in a single direction. The longitudinal modulus

is largely a function of the fiber modulus, whereas the transverse and

shear moduli are largely functions of the resin modulus. Thus, higher-

modulus fibers will raise the longitudinal modulus of the composite,

but will have a negligible effect on the other properties. The table also

shows typical strengths for each material. As with the elastic proper-

ties, the strength is significantly greater in the longitudinal than in

the transverse direction. Also note that compressive strengths are

significantly lower than tensile strengths. This difference must be

accounted for when analyzing composite structures for failure.

C.2 Laminated Composite Materials

The properties in Table C.1 are for a single ply or lamina of a

composite. Because the transverse properties are so low, practical

composite structures consist of laminates built up from a stack of

laminae. To improve the transverse properties of the laminate, the

plies are stacked so the fibers are rotated at various angles y, defined

relative to a convenient laminate coordinate system, as shown in

Figure C.3. In the case of a beam, for example, the x-axis of the

Figure C.2 Ply coordinate system
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laminate coordinate system might be chosen to coincide with the axis

of the beam.

Rotating the plies increases the properties in the laminate y-direc-

tion, but this comes at the expense of a decrease in properties in the

laminate x-direction. The greater the rotation angle, the greater the

decrease in x-direction properties. Figure C.4, for example, shows how

the modulus in the laminate x-direction decreases as the ply is rotated

off-axis. The key to lightweight laminate design is to provide just

enough off-axis stiffness or strength to handle the secondary loads,

while orienting as many fibers as possible in the direction of the

primary load.

TABLE C.1 Composite Material Systems

T300=976 IM7=3501- 6 IM6=APC2 E=Epoxy S2=381 K49=Epoxy B=5505

Type Low-mod. Int.-mod. Int.-mod. E-Glass= S-Glass= Kevlar= Boron=
Gr=Epoxy Gr=Epoxy Gr=PEEK Epoxy Epoxy Epoxy Epoxy

Property

E1 (Msi) 19.6 20.2 21.6 5.7 6.93 12.6 29.2

E2 (Msi) 1.34 1 1.28 1.24 1.84 0.8 3.15

G12 (Msi) 0.91 0.8 0.78 0.54 0.681 0.31 0.78

n12 0.318 0.33 0.342 0.28 0.27* 0.34 0.17

F1t (ksi) 211 350 350 157 255 185 200

F1c (ksi) 188 234 167 90 172 49 232

F2t (ksi) 5.66 8.1 9.41 5.7 8.7 4.2 8.1

F2c (ksi) 30 35.7 25.8* 18.6 28.1* 22.9 18

F12 (ksi) 11.1 13.8 23.9 12.9 19.7 7.1 0.78

Ref. 6 7 6 1 6 1 1

Key: F1t ¼ longitudinal tensile strength; F1c ¼ longitudinal compressive strength; F2t ¼ transverse tensile
strength; F2c ¼ transverse compressive strength; F12 ¼ shear strength
* Estimated

Figure C.3 Laminate coordinate system
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Composite laminates are analyzed by determining the properties of

the individual laminae and then calculating the effective properties of

the laminate. Ply properties must be expressed in terms of the

laminate coordinate system; this transformation is accomplished

using a method similar to stress and strain transformations (e.g.,

Mohr’s circle).

This analytical process is called Classical Laminated Plate Theory

(CLPT). CLPT requires all lamina and laminate stiffness equations to

be expressed in matrix form. Because of the large amount of matrix

mathematics involved, CLPT solutions are usually handled by a

computer software program. Users input the laminate stacking

sequence, ply properties, and loads; the program outputs the stiffness

matrix, engineering properties, and stresses and strains.

A list of shareware and commercial programs is available on the

Internet (Ref. 5). Some of the more popular programs used for

laminate analysis include:

j CompositePro

j ESAComp

j HyperSizer

j Laminator

j V-Lab

Although the programs handle all of the mathematics, it is important

to at least understand the basic stress–strain relation for a laminate.

The following discussion presents an overview of laminate theory;

Figure C.4 Laminate modulus as a function of ply angle
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more complete coverage can be found in any textbook on composite

analysis, such as Daniel and Ishai (Ref. 1).

A general laminate can be subjected to both membrane (in-plane)

and bending loads. CLPT assumes that the resulting strains and

curvatures are uniform throughout the laminate. Because the plies

are oriented in various directions, though, stresses are continuous

only within the individual plies. Figure C.5 shows the variation in

strain, modulus, and stress for a laminate subjected to a bending load.

The strain variation is linear, as with any isotropic material. Because

the ply moduli are discontinuous, however, ply stresses are also

discontinuous. Stresses vary linearly within each ply, but are discon-

tinuous at the ply boundaries.

Because the stresses are discontinuous, it is easier to define applied

loads in terms of averaged stresses, or stress resultants. An element of

a laminate can have up to six applied stress resultants, as shown in

Figure C.6: three in-plane resultants Ni, and three bending resultants

Mi. For an isotropic material, the resultants are simply the applied

Figure C.5 Variation of strain, modulus, and stress in a laminate subjected to bending

Figure C.6 Force and moment resultants
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stress or stress couple multiplied by the thickness. For laminated

composites, the resultants are found by integrating the ply stresses

through the thickness of the laminate. As with the stiffness properties,

the CLPT computer programs handle the necessary integrations.

Although software makes it unnecessary to work directly with the

stiffness matrices, it is important to understand what the different

values mean. The general form of the laminate stress–strain relation

is given by

Nx

Ny

Nxy

Mx

My

Mxy

2
666666664

3
777777775
¼

A11 A12 A16 B11 B12 B16

A12 A22 A26 B12 B22 B26

A16 A26 A66 B16 B26 B66

B11 B12 B16 D11 D12 D16

B12 B22 B26 D12 D22 D26

B16 B26 B66 D16 D26 D66

2
666666664

3
777777775

e0
x

e0
y

g0
xy

kx

ky

kxy

2
666666664

3
777777775

ðC:2Þ

which can be written more succinctly as

½N � ¼ ½A�½e0� þ ½B�½k�

½M � ¼ ½B�½e0� þ ½D�½k�
ðC:3Þ

The matrices [N] and [M ] are the applied membrane and bending

loads, expressed as stress resultants. [e0] are the in-plane strains; the

supercript 0 indicates the strains are referenced to the laminate

midplane. [k] are the laminate curvatures. [A], [B], and [D] are the

matrix forms of the laminate stiffnesses. The matrix [A] relates in-

plane loads to in-plane strains, and the matrix [D] relates bending

loads to curvatures.

[B] is known as the membrane-bending coupling matrix. It shows

that, under the right conditions, a purely in-plane load can cause the

laminate to warp, or a pure bending moment can cause the laminate to

stretch. This can be seen by looking at one of the six stress–strain

equations:

Nx ¼ A11e
0
x þ A12e

0
y þ A16g

0
xy þ B11kx þ B12ky þ B16kxy ðC:4Þ

If B11 is non-zero, then pulling on the laminate in the x-direction also

causes it to warp about the y-axis. This is the same effect that causes

bimetallic beams (Sec. 8.2) to warp, and in fact the laminate stress–

strain relation will reduce to the bimetallic beam solution if all of the

plies are made from isotropic materials. Such coupling between in-

plane and bending behavior is often undesirable. Fortunately, it is a

simple matter to design a laminate where all [B] terms are equal to

zero.
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Laminates are described by their stacking sequence. This lists the

orientations of each ply in the stack, beginning with the top ply. If all

plies are of the same material and thickness, then no further notation

is needed. Numerical subscripts refer to the number of times a ply

orientation is repeated. Superscripts may be used to denote different

materials and thicknesses. For example, a [02=90] laminate consists of

three plies: two 0� plies, followed by one 90� ply. Often, the subscript

‘‘T ’’ is used to denote ‘‘total.’’ Thus, the previous laminate might be

written as [02=90]T .

A laminate is called symmetric if, for each ply on one side of the

laminate midplane, there is a corresponding ply on the other side of

the midplane at the same distance and of the same material, thickness

and orientation. The subscript ‘‘S’’ is used to denote symmetry. The

laminate in Figure C.7 can be written as [0=90=30=30=90=0], or more

succinctly as [0=90=30]S.

The matrix [B] is identically zero for all symmetric laminates. This

greatly reduces the stress–strain relations by uncoupling the

membrane and bending terms:

½N � ¼ ½A�½e0�

½M � ¼ ½D�½k�
ðC:5Þ

In a general symmetric laminate, the A12, A26, D16, and D26 terms

are nonzero. This means that there is coupling between extensional

stresses and shear strains, and between bending and twisting. Once

again, the Nx equation is

Nx ¼ A11e
0
x þ A12e

0
y þ A16g

0
xy ðC:6Þ

where the A16 term shows that an extensional load is related to shear

strain.

The A16 shear coupling terms can be made to vanish by requiring

that the laminate consist only of plies oriented at 0� and 90�, or that all

0

90

30

30

90

0

Figure C.7 General symmetric laminate with a stacking sequence for a [0=90=30]S

laminate
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angle plies be balanced. Angle plies are balanced when, for each ply at

þy�, there is a corresponding ply at �y�. If the laminate is both

balanced and symmetric, then all coupling terms are zero, and the

stress–strain relation reduces to

Nx

Ny

Nxy

2
64

3
75 ¼

A11 A12 0

A12 A22 0

0 0 A66

2
64

3
75

e0
x

e0
y

g0
xy

2
64

3
75

Mx

My

Mxy

2
64

3
75 ¼

D11 D12 0

D12 D22 0

0 0 D66

2
64

3
75

kx

ky

kxy

2
64

3
75

ðC:7Þ

Figure C.8 shows the stacking sequence for a ½0=	 30=90=	 45�T
balanced laminate; Figure C.9 shows the stacking sequence for a

½0=	 30�S balanced-symmetric laminate.

For balanced-symmetric laminates, it is also possible to calculate

effective engineering properties. They are

Ex ¼
1

h
A11 �

A2
12

A22

� �

Ey ¼
1

h
A22 �

A2
12

A11

� �

nxy ¼
A12

A22

Gxy ¼
A66

h

ðC:8Þ

where h is the total laminate thickness.

There are several other types of special laminates, but the one of

most interest is the quasi-isotropic laminate. Quasi-isotropic lami-

nates are balanced-symmetric, and the ply angles are such that the

laminate stiffness properties are independent of direction. In other

0

30

�30

90

45

�45

Figure C.8 ½0=	 30=90=	 45�T balanced laminate
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words, the laminate behaves like an isotropic material. (Strength and

bending stiffness however, still vary with direction – hence the term

quasi-isotropic.)

Quasi-isotropic laminates are of the form (angles are in radians)

0
p
n

2p
n


 
 

ðn � 1Þp

n

� �
S

or

p
n

2p
n


 
 
 p
� �

S

where n is any integer greater than 2. The two simplest and most

common quasi-isotropic laminates are ½0=	 60�S and ½0=	 45=90�S,

illustrated in Figure C.10(a) and (b), respectively.

0

60

�60

�60

60

0

ðaÞ

0

45

�45

90

90

�45

45

0

ðbÞ

Figure C.10 Stacking sequences for the two simplest quasi- isotropic laminates

0

30

�30

�30

30

0

Figure C.9 ½0=	 30�S balanced-symmetric laminate
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C.3 Laminated Composite Structures

Classical Laminate Plate Theory describes the behavior of laminated

plate elements under in-plane and bending loads. The solution applies

only to plate elements that are in load equilibrium – it does not

account for the geometry of the plate or the boundary conditions.

In general, analytical solutions for composite structures are much

more difficult to derive than for isotropic structures. Solutions for

beams (Refs. 2 and 3), plates (Refs. 2 and 4), and shells (Ref. 2) can be

found if the loads, geometry and boundary conditions remain simple.

Beam solutions are the simplest and are illustrated in the two

examples below.

Bending of Composite Beams

If a composite plate meets the geometric definition of a beam,

namely that the width and height are much smaller than the length,

then the assumptions of standard beam theory can be used. An

equivalent modulus E* is derived for composite beams under pure

bending. The equivalent modulus is then used in conjunction with

Table 8.1 of Chap. 8 to provide an approximate solution for the

bending of laminated rectangular beams. The solution ignores trans-

verse shear deformation, which could be significant, so results should

be used for initial sizing only.

In addition to the standard beam theory assumptions, the following

requirements also apply:

1. The beam is of rectangular cross-section with width b and height h.

2. Plies lie in the x–z or 1–2 plane.

3. The shear coupling terms ( )16 and ( )26 of the matrices [A], [B], and

[D] are zero.

The equivalent modulus is found by applying the beam theory assump-

tions to the constitutive equations, Eq. (C.2), which gives a simple

expression for the moment resultant Mx in terms of the curvature kx

(Refs. 2 and 3). This expression can then be substituted into the

standard beam bending expression, ðEIÞkx ¼ M to find

E* ¼ D11 �
B2

11

A11

	 

12

h3
ðC:9Þ

If the lay-up is symmetric about the mid-plane, then B11 ¼ 0, and

the equivalent modulus reduces to

E* ¼ D11

12

h3
ðC:10Þ

APP. C] Composite Materials 837



Stresses are calculated on a ply-by-ply basis. In general, only the

stresses along the beam axis will be of interest. The stress in ply k is

given by

½sx�k ¼ z½Q11�kkx ðC:11Þ

where

kx ¼ M D11 �
B2

11

A11

	 

b

� ��1

ðC:12Þ

and Q is the transformed stiffness matrix of ply k. The components of

Q are a function of the ply material properties and the orientation

angle. Q is found while calculating the matrices [A], [B], and [D], and

is usually output by whatever software package is being used.

EXAMPLE

A composite beam is made from T300=976 graphite epoxy with a ½03=	 45�4T

layup. It is 10 in. long, 0.5 in wide, cantilevered at the right end, and subjected
to a concentrated load of 5 lb at the left end. It is desired to find the maximum
deflection and the stresses at the mid-plane of the top five plies.

Solution
From Table C.1, the ply properties are E1 ¼ 19:6 Msi, E2 ¼ 1:34 Msi,

G12 ¼ 0:91 Msi, and n12 ¼ 0:318. Normalized ply thickness is 0.005 in, for a
total laminate thickness of 0.100 in.

Using a standard software package, the constitutive properties are found to
be A11 ¼ 1:440 � 106 lb=in, B11 ¼ �4:002 � 103 lb and D11 ¼ 1:193 � 103 lb-in.
These values give an equivalent modulus of E*I ¼ 590:94 lb-in2. Table 8.1 of
Chap. 8, Case 1a, then gives �0:705 in as the tip deflection and �50 in-lb as the
moment.

The transformed stiffness properties, again from a standard software
package, are ½Q11�

0
¼ 1:974 � 107 psi and ½Q11�

	45
¼ 6:396 � 106 psi. The curva-

ture is kx ¼ �0:085 in�1, giving the following for the ply stresses:

Ply z (in) s11 (ksi)

1 70.0475 79.34

2 70.0425 70.98

3 70.0375 62.63

4 70.0325 17.59

5 70.0275 14.88

The stresses s11 are in the laminate coordinate system. Because plies 4 and
5 are oriented at þ45� and �45�, the s11 stresses in the ply coordinate system
have a shear component. Because the shear strength of composites is much
lower than the tensile strength, this laminate would have to be checked for
failure by comparing the resulting value of s11 in plies 4 and 5 with the
ultimate shear strength of T300=976.
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Axial Tension or Compression of Composite Beams

The solution for beams under pure axial load is similar to beams under

bending. Instead of an equivalent bending stiffness E*I , an equivalent

axial stiffness ðEAÞ* is found. Again, the standard beam assumptions

apply, with the following additional restrictions:

1. Plies lie in the x–z or 1–2 plane.

2. The shear coupling terms ( )16 and ( )26¼ 0.

3. The laminate is balanced-symmetric (½B� ¼ ½0�).

The requirement for a rectangular cross-section has been relaxed, but

the laminate is now restricted to balanced symmetric lay-ups. Without

that assumption, the membrane-bending coupling matrix [B] is

nonzero, and pure axial loads cause bending in the beam.

The process for calculating the equivalent beam stiffness is similar

to the process for calculating beam bending stiffness (Refs. 3 and 4).

The constitutive equations (C.2) are again simplified using the beam

theory assumptions, and the standard beam equation ðEAÞe0
x ¼ P is

solved using the laminate properties:

ðEAÞ* ¼ b*A11 ðC:13Þ

where b* is the equivalent width of the cross-section. For a rectan-

gular beam, b* ¼ b, the width of the cross-section. For a thin-walled

circular cross section, b* ¼ pD, the circumference of the cross section.

If the beam is built up from a series of uniform cross sections (such as a

box beam or an I-beam), then

ðEAÞ* ¼
P

b*A11 ðC:14Þ

where the product b*A11 is summed over each cross-section.

Ply stresses are calculated from

½sx�k ¼ ½Q11�ke
0
x ðC:15Þ

where

e0
x ¼

P

ðEAÞ*
ðC:16Þ

EXAMPLE

A composite I-beam is made from T300=976 graphite epoxy with a ½0=	 30�nS

lay-up (where n ¼ 5 for each flange and n ¼ 3 for the web). The flanges are 1 in
wide and 0.15 in thick; the web is 2 in tall and 0.09 in thick. The length of the
beam is 20 in. An axial tensile load of 1000 lb is applied to the beam. It is
desired to find the axial deflection and the stresses in the plies.
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Ply properties are the same as in the previous example. The constitutive
properties are calculated using a standard software package, and are found to
be

½A11�flange ¼ 2:190 � 106 lb=in

½A11�web ¼ 1:314 � 106 lb=in

The equivalent stiffness is

ðEAÞ* ¼
P

bA11 ¼ 2½bA11�flange þ ½bA11�web ¼ 2½ð1Þð2:190 � 106Þ�

þ ½ð2Þð1:314Þ � 106Þ�

¼ 7:008 � 106 lb

Equation (7.1-3) of Chap. 7 then gives the total beam elongation as

d ¼ Pl=ðEAÞ* ¼ ð1000Þð20Þ=ð7:008 � 106Þ ¼ 2:854 � 10�3 in

The transformed stiffness properties, once again from the software package,
are ½Q11�

0
¼ 1:974 � 107 psi and ½Q11�

	30
¼ 1:203 � 107 psi. The strain in the

beam is simply e0
x ¼ d=l ¼ 1:427 � 10�4, giving

½sx�
0
¼ 2817 psi

½sx�
30

¼ 1717 psi
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Index

Allowable stress, 813

Alternating stress, 49

Aluminum alloys, buckling strength of,

in columns, 541

Analogies, 100, 101

electrical, for isopachic lines, 101

membrane, for torsion, 100

Analysis:

dimensional, 67

photoelastic, 84–86

Analytical methods and principles, 63–71

Apparent elastic limit, 813

Apparent stress, 813

Arches (see Circular arches; Circular

rings)

Area:

centroid of, 815

properties of, 799–801

table,802–812

Autofrettage, 587

Axial strain, 109

Axial stress, 110

Axis:

central, 815

elastic, 815

neutral (see Neutral axis)

principal, 821

Ball bearings, 689, 690

Barrel vaults, 555

Bars:

buckling of, 710

table, 718–727

lacing, 534, 535

lattice, buckling of, 535–537

Bars (Cont.):

rotating, 744, 745

torsion:

of circular, 381, 382

of noncircular , 382–389

table, 401–412

Bauschinger effect, 48

Beams, 125–263

bending moment in, 125, 814

tables, 189–201, 213–224, 229–244

bimetallic, 137–139

buckling of, 711

buckling of, 710

table, 728, 729

buckling of flange in, 182

buckling of web in, 181

change in length of, 130

composite, 137

continuous, 140

curved (see Curved beams)

deflection of:

due to bending, 125, 127

table, 189–201

due to shear, 166, 167

diagonal tension and compression in,

176, 181

on elastic foundations, 147, 148

table, 211–224

flexural center of, 177

table, 258, 259

form factors of, 181

of great depth, 166–169

of great width, 169–173

concentrated load on, 171

under impact, 752, 756–758



Beams (Cont.):

under loads not in plane of symmetry

177

neutral axis of, 177

with longitudinal slots, 165

moving loads on, 754

plastic design of, 184–188

table of collapse loads and plastic

hinge locations, 260–263

radius of curvature of, 127

resonant frequencies of, 754, 755

table, 765–768

restrained against horizontal

displacement at the ends, 155

table, 245

shear in, 129, 130, 165–167

under simultaneous axial and

transverse loading, 153–158

tables, 225–244

strain energy of, 127

stresses in, 125–130

ultimate strength of, 179

of variable section, 158–165

continuous variation, 158, 159

table, 246–257

stepped variation, 163

vertical shear in, 127

with very thin webs (Wagner beam),

175–177

with wide flanges, 173–175

Bearing stress, 689

Belleville springs, 443

Bellows:

buckling:

due to axial load, 586

due to internal pressure, 585, 717

stresses in, 634, 635

Bending:

due to torsion, 389

ultimate strength in, 179

(See also Beams; Flat plates; Shells)

Bending moment:

in beams, 814, 125

tables, 189–201, 213–224, 229–244

equivalent, 817

Bimetallic beams, 137–140

buckling of, 711

Bimetallic circular plates, 436–439

Bolts, 698

Boundary conditions, 814

Boundary element method (BEM), 73, 77

Brittle coatings, 83, 100

Brittle fracture, 814, 51

Buckling:

of arches, 711, 727

Buckling (Cont.):

of bars, 710

table, 718–727

of beam flanges, 182

of beam webs, 181

of beams, 710

table, 728, 729

of bellows, 585, 586, 717

of bimetallic beams, 711

of column flanges, 531

of column plates and webs, 533

determination of, 709

by Southwell plot, 711

due to torsion, 727

of lattice bars, 535–537

local (see Local buckling)

of plates and shells, 713

table, 730–738

of rings, 711, 727

of sandwich plates, 714

of thin plates with stiffeners, 542–544

of tubular columns, 534

Bulk modulus of elasticity, 814

formula for, 122

Bursting pressure for vessels, 588

Bursting speed of rotating disks, 751

Cable, flexible, 245

Capacitance strain gage, 84

Cassinian shells, 554

Cast iron:

general properties of, 33, 38

Castigliano’s second theorem, 66

Center:

elastic, 816

of flexure, 817

table, 802–812

of shear, 822

table, 413–416

of torsion, 824

of twist, 824

Centroid of an area, 815

table, 802–812

Centroidal axis, 815

Chafing fatigue, 818

Circular arches, 290–295

bending moments, axial and shear

forces, and deformations, table,

333–349

elastic stability of, 711

table, 727

Circular plates, 428–443, 448–450, 455–

501

bending moments, shears and

deformations, table, 333–499
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Circular plates (Cont.):

bimetallic, 436–439

bursting speeds, 751

concentrated loads on, 428, 439

deformations due to shear, 433

table, 500, 501

dynamic stress due to rotation, 745–750

on elastic foundations, 439

elastic stability of, 714

table, 734

large deflections, effect of, 448, 449

table, 449, 450

nonuniform loading of, 439

of variable thickness, 441

vibration of, 755

resonant frequencies and mode

shapes, table, 767, 768

Circular rings, 285–290, 313–332

bending moments, axial and shear

forces, and deformations, table,

313–332

under distributed twisting couples, 444

dynamic stress due to rotation, 332, 745

elastic stability of, 711, 727

loaded normal to the plane of curvature,

297

Circumference in shells, 553

Classical laminated plate theory (CLPT),

831

Coatings, brittle, 83, 100

Collapsing pressure for tubes, 585

table, 736

Columns, 525–552

coefficient of constraint, 526

under eccentric loading, 537–540

short prisms, 544–547

table, 548–551

formulas for, 526–529

with initial curvature, 537

interaction formulas for combined

compression and bending, 540

latticed, 535

local buckling of, 529–535

in flanges, 531

in lattice bars, 535–537

in thin cylindrical tubes, 534

in thin webs, 533

long, 526

short, 527

stresses in, 529

transverse shear in, 535

Combined stresses, 121

Composite materials, 827–840

laminated, 829

material properties, table, 830

Composite members, 114, 137

Concentrated loads:

on flat plates, 428, 439

tables, 491–493, 502, 517–519

on thin shells, 610, 611, 636, 637

on wide beams, 171

Concrete:

general properties, 33, 38

under sustained stress, 40

Conical-disk spring, 443

Conical shells, 566

buckling, 715

table, 737, 738

table, 611–633

Consistent deformations, method of, 64

Contact stress, 689–707

under dynamic conditions, 693

in gear teeth, 699

in pins and bolts, 698

table, 702–704

Coordinate transformations, 17

Corrections, strain gages, 95

tables, 104, 105

Corrosion fatigue, 48, 815

Corrugated tubes, 634, 635

buckling of, 585, 717

Coulomb-Mohr theory of failure, 45

Crack initiation, 47

Crack propagation, 47

Creep, 40, 815

Criteria of failure, 41–46

Critical slenderness ratio, 526

Curve, elastic, 127, 816

Curved beams, 267–380

helical springs, 398

loaded normal to the plane of curvature:

closed circular rings, 297, 298

compact cross sections, 297

moments and deformations of,

table, 350–378

flanged sections, 302

loaded in the plane of curvature, 267–

296

circular arches, 348–350

moments and deformations of,

table, 333–349

circular rings, 285–290

moments and deformations of,

table, 313–332

deflection of, 275–285

with large radius of curvature, 275

with small radius of curvature, 278

with variable cross section, 283

with variable radius, 283

distortion of tubular sections, 277
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Curved beams (Cont.):

elliptical rings, 295

neutral axis of, table, 304–312

normal stress, 267

radial stress, 271

shear stress, 270

U-shaped members, 275, 794

with wide flanges, 273

Cyclic plastic flow, 47

Cylinder:

hollow, temperature stresses in, 761,

762

thin-walled, concentrated load on,

636, 637

solid, temperature stresses in, 763

Cylindrical rollers:

allowable loads on, 691

deformations and stresses, table, 703

tests on, 691

Cylindrical vessels:

thick, stresses in, 587–589

table, 683–685

thin:

bending stresses in, 557–564

table,601–607

under external pressure, 585, 716

table, 736

membrane stresses in, 554

table, 592, 593

on supports at intervals, 589–591

Damage law, linear, 51

Damaging stress, 815

Damping capacity, 815

in vibrations, 754

Deep beams, 166–169

deflections of, 167

stresses in, 168

Deflections:

of beams (see Beams, deflection of)

of diaphragms, 448, 450

of plates (see Circular plates; Flat

plates)

of trusses, 116–119

Deformation, 815

lateral, 110

torsional, table, 401–412

Diagonal tension:

field beam, 176

in thin webs, 175–177

Diaphragm, flexible, 448, 450

Diaphragm stresses (see Membrane

stresses)

Differential transformer, linear, 84

Diffraction grating strain gage, 84

Dimensional analysis, 67

Directional cosines, 17

Discontinuity stresses in shells, 572

table, 638–682

Disk:

bimetallic, 436

dynamic stresses in rotating, 745–750

temperature stresses in, 760

Disk spring, 443, 444

Dynamic loading, 36, 743–758

Dynamic stress, 744–758

Eccentric loading:

on columns, 537–540

defined, 815

on prisms, 544–547

on riveted joints, 697

Eccentric ratio for columns, 527

Effective length of columns, 526

Effective width:

of thin curved plates in compression,

543

of thin flat plates in compression,

542

of wide beams, 170

of wide flanges, 173

Elastic axis, 816

Elastic center, 816

Elastic curve, 127, 816

Elastic deformation, 815

Elastic failure, 41–46

Elastic foundations:

beams on, 147, 148

table, 211–224

plates on, 439

Elastic limit, 816

apparent, 813

Elastic ratio, 816

Elastic stability, 58, 709–742

tables, 718–738

Elastic strain energy, 823

Elastic stress, factors of stress

concentration for, table, 781–794

Elasticity, 37

modulus of, 819

Electrical analogy for isopachic lines, 101

Electrical resistance strain gage, 83, 87–

100

Electrical strain gages, 83

Ellipsoid:

of strain, 816

of stress, 816

Elliptic cylinders, 555
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Elliptical plates:

large deflections for, 451

table, 499

Elliptical rings, 295

Elliptical section in torsion, table, 401, 404

Embedded photoelastic model, 85

Endurance limit, 47, 816

Endurance ratio, 817

Endurance strength, 817

Energy:

losses in impact, 756

of rupture, 817

strain (see Strain energy)

Equation of three moments, 140

Equations of motion and equilibrium,

63

Equivalent bending moment, 817

Equivalent eccentricity for columns, 527

Equivalent radius for concentrated loads

on plates, 428

Equivalent twisting moment, 817

Euler’s column formula, 526

Experimental methods of stress

determination, 81–106

Extensometers, 82

Factor:

form, 54, 166, 181, 818

of safety, 817

of strain concentration, 823

of strength reduction, 53

of stress concentration, 53, 824

elastic, table, 781–794

at rupture, 53

Failure:

criteria of, 41–46

of wood, 45

Fatigue, 36, 46–51, 817

chafing (fretting), 818

corrosion, 48

life gage, 51

limit, 29, 817

strength, 817

Fiber stress, 126

Fillet welds, 700

Finite difference method (FDM), 73

Finite element method (FEM), 73–77

Fixed supports, 817

deformations due to the elasticity of, 152

Flange:

in beams, buckling of, 182, 710

table, 729

in columns, 531

effective width of, 173

Flat plates, 427–524

circular, 428–443, 448–450, 455–501

bimetallic, 436–439

coefficients and formulas for, 428, 429

table, 455–499

under concentrated loading, 428, 439

table, 491–493, 502, 517–519

deflection due to shear of, 433

table, 500, 501

on elastic foundations, 439

with large deflections, 448, 449

table, 449, 450

membrane (diaphragm) stresses in,

448

under nonuniform loading, 439

perforated, 443

stability of, 713

table, 734

thermal stresses in, 484–487, 491

trunnion loading on, 493, 494

ultimate strength of, 453

of variable thickness, 441

elliptical, table, 499

large deflection for, 451

with straight edges, 446

coefficients for, 447

table, 502–520

with large deflections, 451

table, 452

membrane stresses in, 451

plastic analysis of, 451, 453

stability of, 713, 714

table, 730–733

ultimate strength of, 453, 454

of variable thickness, 447

Flexural center, 177–179, 817

table, 258, 259

Flow, 40, 815

Flow analogy, 776

Forces, inertia, 743

Form, effect on strength of, 54

Form factor, 54, 166, 181, 818

Formulas, use of, 69, 70

Fracture, brittle, 51, 52

Frames (see Rigid frames)

Fretting fatigue, 818

Gear teeth, 168, 169, 699

contact stresses in, 699

Goodman diagram, 49

Guided boundaries, 818

Gyration, radius of, 800, 801, 822

table, 802–812
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Haigh diagram, 50

Held boundaries, 818

Helical springs, 398

Hemispherical shells, 565

table, 608–611

Hollow cylinders:

thick-walled, 699

temperature stresses in, 762, 763

thin-walled (see Cylindrical vessels,

thin)

Hollow pins, 699

Hollow rollers, 699

Hollow sphere, temperature stresses in,

763

Holographic interferometry, 86

Hooke’s law, 37

Hoop, rotating, stresses in, 332, 745

Hoop stresses (see Shells)

Hyperbolic paraboloid, 555

Hysteresis, mechanical, 818

Impact loading, 36, 752–758

Impact stresses, remarks on, 758

Inductance strain gage, 84

Inertia:

moment of (see Moment, of inertia)

product of, 800, 821

table, 802–812

rotary, 755

Inertia forces, 743

Influence line, 819

Initial curvature of columns, 537

Initial stress, 56–58

Interferometric strain gage, 84

Interferometry, 84–87

holographic, 86

laser speckle, 86

moire, 86

shadow optical method of caustics, 87

Isoclinic lines, 819

Isopachic lines, electrical analogy for,

101

Isostatic, 824

Isotropic, 819

Joints:

riveted, 695–698

welded, 700

Kern, 8, 505

shape of, table, 548–551

Keys, shear in, 700

Lacing bars, 534, 535

Laminated composite materials, 829

properties, table, 830

Laminated composite structures, 837

axially loaded, 839

in bending, 837

Large deflection of plates, 448–451

circular, 448

table, 449, 450

elliptical, 451

parallelogram, 451

rectangular, 451

table, 452

Lateral buckling of beams, 710

table, 728, 729

Lateral deformation, 110

Latticed columns, 534–537

local buckling of, 535–537

Least work, principle of, 66, 117

Limit:

elastic, 816

endurance, 47, 816

proportional, 821

Linear damage law, 51

Linear differential transformer, 84

Loading:

dynamic, 36, 743–758

eccentric (see Eccentric loading)

impact, 36, 752–758

methods of, 35

Loads:

concentrated (see Concentrated loads)

unit, method of, 65, 116

Local buckling, 529–535

of attached plates, 534

of lacing bars, 534

of latticed columns, 534

of outstanding flanges, 531

of thin cylindrical tubes, 534

of thin plates with stiffeners, 542–544

of thin webs, 181, 533

Longitudinal stress:

due to torsion, 389

and strain, 110

Lüders lines (slip lines), 823

Margin of safety, 819

Material properties, table, 33

Maximum-distortional-energy theory, 42,

43

Maximum-octahedral-shear-stress theory,

42–43

Maximum-principal-strain theory, 42

Maximum-principal-stress theory, 42
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Maximum-shear-stress theory, 42, 44

Mean stress, 49

Measurement of strain, 62–87

Mechanical hysteresis, 9

Mechanical lever extensometer, 82

Membrane analogy for torsion, 100

Membrane stresses:

in flat plates, 448

in pressure vessels, 554, 555, 557

table, 592–600

Meridian in shells, 553

Methods:

analytical, 63–71

experimental, 81–106

numerical, 73–79

Mode shapes:

in vibrating beams, 754

table, 765, 766

in vibrating plates, 755

table, 767, 768

Modulus:

bulk, 814

formula for, 122

of elasticity, 15, 819

of resilience, 820

of rigidity (shear modulus), 16, 820

of rupture:

in bending, 179, 820

in torsion, 398, 820

section, 129, 822

Moire techniques, 86

Moment:

of area, 820

bending (see Bending moment)

of inertia:

of an area, 799–801, 820

table, 802–812

of composite sections, 137

polar, 381, 800, 821

equivalent constant, 383

tables, 401–416

principal, 800, 821

Motion, equations of, 63

Moving loads on beam, 754

Multielement shells of revolution,

572–585

stresses and deformations, table,

638–682

Multilayer vessel, 587

Narrow ring under distributed torque, 444

Neuber’s formula, 774

Neutral axis, 127, 820

Neutral axis (Cont.):

of beams loaded in plane of symmetry

(centroidal axis), table, 802–812

of beams not loaded in plane of

symmetry, 177

of curved beams, table, 304–312

of prisms eccentrically loaded, table,

548–551

Neutral surface, 125, 820

Notch sensitivity, 53

Notch-sensitivity ratio, 820

Numerical methods, 73–79

the boundary element method, 77

the finite difference method, 73

the finite element method, 74

Ogival shells, 554

Omega joint, 634

Optical-lever extensometer, 82

Optical remote sensing, 82

Orthotropic plates, 453

Parabolic formula for columns, 528

Parallel-axes theorem, 800

Parallelogram plates:

bending of, 447

table, 518, 519

buckling of, 714, 733

large deflection of, 451

Perforated plates, 443

Photoelastic analysis:

three-dimensional, 85

scattered light, 85

by stress freezing, 85

two-dimensional, 84

Photoelastic coatings, 85, 86

Pins, 698

hollow, 699

Pipes, 553

circumferential bending in, table, 327,

331

supported at intervals, 589–591

Plane area, properties of, 799–801

table, 802–812

Plastic analysis:

beams, 184–188

section modulus for, 180, 185, 801, 821

shape factor for, 181

table of collapse loads and plastic

hinge locations, 260–263

plates, 451, 453

Plastic flow, 40, 815

Plastic moment, 180, 821

Plasticity, 39, 821
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Plastics:

creep of, 40

used in photoelasticity, 85

Plate girders, stiffeners for, 182

Plates (see Flat plates; Large deflection of

plates)

Poisson’s ratio, 15, 121, 821

Polar moment of inertia, 381, 800, 821

equivalent constant, 383

tables, 401–416

Pressure, collapsing, for tubes, 585

table, 736

Pressure vessels (see Shells)

Prestressing, 56–58

Principal axes of inertia, 800, 821

Principal axes of stress, 25, 28, 821

Principal moments of inertia, 800, 821

Principal stresses, 24–29, 821

table, 34

Principle:

of least work, 66, 117

of reciprocal deflections, 64

of superposition, 64, 154

Principles and analytical methods,

63–71

Prisms under eccentric loading, 544–547

table, 548–551

Product of inertia, 800, 821

table, 802–812

Proof stress, 821

Proportional limit, 38, 821

Proportionality of stress and strain, 37

Pure shear, 119

Quasi-static loading, 36

Quick static loading, 36

Radius:

of curvature of beams, 127

of gyration, 800, 801, 822

table, 802–812

Range of stress, 48

Rankine’s column formula, 527

Ratio, elastic, 816

Reciprocal deflections, principle of, 64

Rectangular plates (see Flat plates)

Reducing stress concentrations, 776

Reduction of area, 822

Redundant members, 117

Relative amplification factor, 754

Relaxation, 40, 815

Repeated loading, 36

Repeated stress (see Fatigue)

Residual stress, 50

Resilience (see Strain energy)

Resonant frequencies, 755

table, 765–768

Rigid frames:

circular (see Circular arches)

rectangular, 141–147

table, 202–210

Rigidity, modulus of, 16, 121, 820

Rings:

circular (see Circular rings)

elliptical, 295

Riveted joints, 695–698

eccentrically loaded, 697

Rivets, shear in, 695

Rollers:

hollow, 699

solid, 689

table, 703

Rotary inertia, 755

Rotating bar, 744, 745

Rotating disk, 745–750

Rotating hoop, 332, 745

Rupture:

criterion for, 41–46

energy of, 817

modulus of (see Modulus, of rupture)

Rupture factor, 45, 54, 822

Safety:

factor of, 817

margin of, 819

Sandwich plates, buckling of, 714

Scattered light photoelasticity, 85

Scratch strain gage, 83

Screw threads, 168, 701

Secant column formula, 529

Secondary principal stress differences, 85

Section modulus:

elastic, 129, 822

plastic, 180, 185, 801, 821

table, 802–812

Set, 822

Shadow moire, 86

Shafts (see Torsion)

Shakedown load, 822

Shape factor, 822

table, 802–812

Shear:

in beams, 129, 130, 165–167

in columns, 535

in flat plates, 433

deflection due to, table, 500, 501

in keys, 700

on oblique section, 21, 24

848 Index



Shear (Cont.):

pure, 119

in rivets, 695

in shafts (see Torsion)

Shear center (see Flexural center)

Shear lag, 173, 175, 823

effect of, on compression flange

instability, 175

Shear stresses, maximum, 29

Shells, 553–688

conical (see Conical shells)

spherical (see Spherical vessels)

thick-walled, 587–589

stresses and deformations, table,

683–685

thin-walled, 553–587

bending stresses in, cylindrical, table,

601–607

of revolution, table, 608–637

under external pressure, 585, 586

membrane stresses in, table, 592–600

stability of, table, 734–738

toroidal, 567, 600, 634, 635

Simply supported (condition of support),

823

Singularity function, 131, 429, 823

Skew plate (see Parallelogram plates)

Slenderness ratio, 526, 823

Slip lines, 100, 823

Slotted beams, 165

S-N curve, 47

S-N fatigue life gage, 51

Soap-film analogy, 100

Southwell plot, 711

Sphere:

hollow, temperature, stresses in, 763

solid, temperature stresses in, 763

Spherical vessels:

thick, stresses in, 587, 685

bursting pressure for, 588

thin:

bending stresses in, 565

table, 608–611

membrane stresses in, 554

table, 597, 598

stability of, 716, 737

Springs:

disk, 443, 444

helical, 398

Squirming instability of bellows and

cylinders, 585, 717

Stability, elastic, 58, 709–742

tables, 718–738

Static loading:

Static loading (Cont.):

short time, 35

long time, 36

Steel, fatigue properties, 47

Step function, 131

Stiffeners:

for plate girders, 182

for thin plates in compression, 542–544

Straight beams (see Beams)

Straight-line column formula, 528

Strain, 823

axial, 109

compatibility, 64

due to weight, 112

ellipsoid of, 816

lateral, 109

measurement of, 82–87

normal:

plane, 15

three-dimensional, 15

proportionality of, 37

shear, 16,120

transformations, 32

Strain concentration factor, 823

Strain energy, 823

of bar axially stressed, 110

of flexure, 127

methods involving, 65–67

of torsion, 382

Strain gage configurations, 90

Strain gage corrections, 95

tables, 104, 105

Strain gage factor, 88

Strain gage rosettes, 90–94

tables, 102–105

Strain gages, 83, 84, 87–100

Strain rosette, 823

Strength:

effect of form on, 54

ultimate (see Ultimate strength)

Stress, 824

allowable, 813

alternating, 49

apparent, 813

axial, 110

behavior of bodies under, 35–61

combined, 121

damaging, 815

due to pressure between elastic bodies,

689–695

due to weight, 112

dynamic, 743–758

ellipsoid of, 816

fiber, 125, 126
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Stress (Cont.):

impact, remarks on, 758

longitudinal, 110

due to torsion, 389

membrane (see Membrane stresses)

on oblique section:

plane, 24

three-dimensional, 21

principal, 24–29, 821

table, 34

proportionality of, 37

repeated (see Fatigue)

temperature, 758–764

torsional deformation and, table, 401–

412

transformations, 17–32

working, 813

Stress concentration, 52–54, 771–797

factors of, 52, 53, 773, 824

in fatigue, 35, 54

table, 781–794

reduction methods, 776

Stress determination, experimental

methods of, 81–105

Stress freezing, 85

Stress history, 50

Stress raisers, 52, 771, 824

Stress trajectory, 824

Stress-transmission velocity, 752

Struts (see Columns)

Sudden loading, 37, 753, 755

Superposition, principle of, 64, 154

Surface, neutral, 125, 820

Surface conditions, effect on fatigue, 48

Temperature effect on metals, 49, 51

Temperature stresses, 758–764

due to external constraint, 759

due to internal constraint, 760

Theorem:

of least work, 66, 117

of minimum energy, 66

of minimum resilience, 66

of three moments, 140

Theories of failure:

Coulomb-Mohr, 45

maximum-distortion-energy, 42, 43

maximum-octahedral-shear-stress,

42–43

maximum-principal-strain, 42

maximum-principal-stress, 42

maximum-shear-stress, 42, 44

Thick-walled cylinder, 587

table, 683–685

Thick-walled sphere, table, 685

Thin plates (see Flat plates)

Thin-walled open cross section, torsion of,

389

tables, 413–425

Thin-walled shells (see Shells, thin-

walled)

Thin webs, 175–177

local buckling of, 182

Thread-load concentration factor, 701

Three-moment equation, 140

Toroidal shells, 567, 600, 634, 635

buckling of, 716

Torsion, 381–426

analogies for, 100

bending due to, 389

buckling due to, 727

of circular bars, 381

of curved bars, 398

effect on:

of end constraint, 389

of initial twist of thin strip, 397

of longitudinal stresses, 396, 397

of multicelled structures, 384

of noncircular uniform section, 382–389

table, 401–412

strain energy of, 382

of thin-walled open cross section, 389

tables, 413–425

ultimate strength in, 397

warping restraint, 389

constants for, table, 413–416

Torsional center, 824

Torsional deformation, table, 401–412

Torus, stresses in, table, 600, 634

Transformation equations, 17–32

table, 34

Transformation matrices, 18

table, 33

Transformations:

strain, 32

stress, 17–32

Transition temperature, 51

Trapezoidal plates, 447, 451, 518

Triangular plates:

buckling of, table, 733

stresses and deformations, 447

table, 519, 520

Triaxial stress, 121

effect on brittle fracture, 52

True strain, 825

True stress, 825

Trusses:

deflection of, 116
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Trusses (Cont.):

statically indeterminate, 117

Tubes:

collapsing pressure for, 585

table, 736

as columns, 534

corrugated, 634

instability under internal pressure of,

585, 717

distortion under bending of, 277

elastic stability of, table, 735, 736

Turbine disks, 747–750

Twisting moment, 825

Ultimate elongation, 825

Ultimate strength, 825

in bending, 179

design, plastic, 184–188

of flat plates, 453

in torsion, 397

Understressing, effect on steel, 51

Unit loads, method of, 65, 116

Units, 3

conversions, 5

prefixes, 5

used in structural analysis, 4

Unsymmetrical bending, 177

Useful limit point, 813

Velocity of stress transmission, 752

Vertical shear, 127

Vessels:

conical (see Conical shells)

cylindrical (see Cylindrical vessels)

pressure (see Shells)

spherical (see Spherical vessels)

toroidal (see Toroidal shells)

Vibration, 754

frequency of, table, 765–768

Viscous creep, 40, 815

Wagner beam, 176

Web, buckling of:

in beams, 181

in columns, 533

Weight, stress and strain due to, 112

Welded joints, 700

Wide beams, 169

Wood:

bearing strength of, at angle to grain,

698, 699

elastic properties of, effect of moisture

on, 38

failure of, 45, 46

under sustained stress, 41

Working stress, 813

X-ray diffraction, 87

Yield point, 826

Yield strength, 826

Young’s modulus, 15, 819
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