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Abstract

A surface evolution model is developed for the detonation propagation dynamics of the HMX-
based conventional high explosive PBX 9501, which relates the normal surface speed Dn to its
local surface curvature κ. Such surface evolution models are important for the understanding and
modification of engineering design calculations for high explosive applications. We describe a
series of unconfined PBX 9501 slab geometry experiments of varying thickness, and detail how
the steady axial detonation speed and detonation front shape data are obtained. A merit-function
based calibration process is then described that uses both the PBX 9501 thickness effect and front
shape data to parametrize the Dn − κ propagation law. The time-dependent PBX 9501 Dn − κ
surface evolution law is then applied to detonation wave propagation in two-dimensional circular arc
geometries, systematically examining the effect of arc thickness, inner radius, relaxation dynamics
to steady-state propagation and confinement.

1. Introduction

Detonations in either gaseous or heterogeneous condensed-phase explosives are chemically driven,
supersonic shock waves. The detonation structure consists of a shock wave, supported by a region
of chemical reaction, and followed by a region of product flow. Detonations in gases typically travel
at speeds in the range of 1-2.5 km s−1. In condensed-phase explosives, detonations travel in the
range of 3-10 km s−1 depending on the energetics of the material, and can generate pressures in
the range of 10-35 GPa. At these pressures, the condensed-phase or high explosive (HE) behaves
as an inviscid fluid [1]. Unlike gases, detonations in condensed-phase explosives are also hydro-
dynamically stable, although their spatial structure often contains an imprint of the underlying
degree of material heterogeneity. Detonations in condensed-phase explosives are primarily used to
drive various confiner materials, typically metals, surrounding the HE for mining, munitions and
other applications [2]. From a modeling viewpoint, this requires prediction of both the motion of
the detonation in an HE in often complex geometries, including the influence of the specific con-
finement properties, and the energy imparted by the HE to the surrounding material, which drives
its subsequent evolution. The former is known as the timing problem, and the latter the energy
delivery problem.
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Two types of basic models exist for condensed-phase HE detonation. Reactive burn models
resolve the detonation reaction zone explicitly. However, such models provide a significant challenge
for computational modeling due to the several orders of magnitude scale disparity between the
detonation reaction zone thickness (of the order of a few 100s of microns for conventional HEs)
and the larger length scales characterizing the explosive geometry. In order to avoid the need to
resolve the fine length scales of the detonation reaction zone, a class of engineering models have
been developed which calculate the detonation propagation path via a surface evolution description.
This is then combined with various methods for calculating the energy delivery to the surrounding
confinement. The combination is known as program (or programmed) burn methods. The current
paper is concerned with advanced methods for the program burn timing component for detonation
propagation in a conventional condensed-phase explosive.

Original surface evolution descriptions for detonation propagation were based on a Huygens
construction, in which the normal speed of the surface is assumed to be constant (typically taken
to be the Chapman-Jouguet detonation speed). This would be an appropriate assumption if the
detonation reaction zone was vanishingly thin [3]. It does not account for the effects on the prop-
agation behavior of the finite reaction zone length of the detonation or the effects of the material
properties of the HE confinement. Nonetheless, this approach has been utilized in a number of
explosive problems including astrophysical supernova detonation [4, 5, 6], rock fragmentation due
to explosive detonation loading in mining [7, 8], calculation of explosively-driven air blast effects
[9, 10], and modeling of explosive shaped charges [11].

In reality, detonation motion is highly dependent on the local curvature of the detonation front
that develops both due to the geometry and confinement effects. In order to account for these effects,
the concept of Detonation Shock Dynamics (DSD) was developed [12, 13, 14, 15]. This replaces the
detonation shock front and reaction zone with an intrinsic propagated surface in which the normal
surface speed Dn is a function of the local surface curvature κ. The DSD model is motivated by an
asymptotic analysis of detonation wave motion under the assumptions of a quasi-steady evolution of
the detonation front, i.e. the characteristic particle transit time through the reaction zone is short
compared to the evolution timescale of the surface shape, and that the local curvature of the front is
small compared to the inverse of the reaction zone length scale [12]. Under these assumptions, the
normal surface velocity is then a function only of its local curvature (known also as a Dn− κ law).
In the DSD model, the effect on the surface evolution of the density and impedance properties of
the material confining the HE is incorporated by enforcing a particular surface angle (edge angle)
on the wave shape at the interface between the explosive and confining material. The specification
of the edge angle serves as the boundary condition constraint in the DSD surface wave calculation.
Some examples of the application of DSD models include [16, 17, 18, 19, 20, 21, 22, 23].

The Dn − κ relation for a particular HE is usually obtained through experimental calibration.
The calibration experiments utilize explosive charges in either unconfined, cylindrically symmetric
(rate-stick) or large-aspect-ratio rectangular cuboid (slab) geometries as illustrated in Fig. 1. The
charge is initiated at one end and the progress of the resulting detonation wave is tracked axially. For
cylinders or slabs with a sufficiently large aspect ratio, the detonation achieves a steady-state prop-
agation with a certain axial phase speed. For condensed-phase explosives, rate-stick experiments
performed for multiple charge diameters have shown that the steady phase speed monotonically
decreases with decreasing charge radius [25] (termed the diameter effect). A similar behavior holds
for the slab geometry, analogously termed the thickness effect [26]. The reason for this is that
the intense pressures (often many 10s of GPa) generated in the detonation products force a lateral
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(a) Slab (b) Rate-stick

Figure 1: Schematic of detonation front shapes in slab and rate-stick HE calibration geometries. The detonation front
surface curvature components are denoted for both geometries, i.e. the slab component κs ( ) and axisymmetric
component κa ( ), where the rate-stick test contains both components. Both curvature components vary as a
function of distance from the geometry center. These schematic figures are based on those originally shown in [24].

movement in the product flow. The resulting streamline divergence in the post-shock flow induces a
curved detonation front, which reduces the amount of energy that directly sustains the detonation
shock. Smaller charges increase the streamline divergence and detonation shock surface curvature,
yielding monotonically decreasing phase speeds. The increasing detonation shock surface curva-
ture with decreasing charge width is revealed in detonation front shape measurements. These are
usually obtained by recording the time-of-arrival of the detonation shock along a breakout surface
through high-speed streak camera imaging [25, 27]. The rate-stick or slab geometry experiments
for various charge sizes provide detonation phase speeds and shock shapes which can then be used
to fit optimal parameters for the Dn − κ surface motion relation of a given HE.

The present work describes the DSD model calibration of PBX 9501, a plastic bonded explo-
sive (PBX) composed of 95.0 weight (wt.)% cyclotetramethylene-tetranitramine (HMX) explosive
crystals, with a binder mixture of 2.5 wt.% Estane and a 2.5 wt.% eutectic mixture of bis(2,2-
dinitropropyl)acetal and bis(2,2-dinitropropyl) formal (BDNPA/BDNPF). Its properties are sim-
ilar to many other conventional HEs, and therefore our work on PBX 9501 is a surrogate for
understanding the influence of curvature on other classes of conventional HEs. The characteristic
heterogeneous grain structure of PBX 9501 is reproduced in Fig. 2 from Skidmore et al. [28, 29]. As
noted, PBX 9501 is considered to be a conventional HE and most commonly used as either a main
charge or as a booster for the initiation of insensitive high explosives [30, 26]. Detonations in PBX
9501 have a spatially small reaction zone of O(100 µm), a Chapman-Jouguet detonation speed of
≈ 8.8 mm/µs, and a rate-stick geometry failure diameter of around 1.52 mm [25]. Given that the
detonation reaction zone length is characteristic of the scale of an HMX crystal (as illustrated in
Fig. 2), significant imprinting of the heterogeneous grain structure on the detonation shock wave
shape might be expected.

In the following, we describe experiments where detonation front shape data is extracted from
six PBX 9501 slab tests of varying thickness. The thickness effect and newly obtained front shape
data are then used to calibrate a new Dn − κ relation for PBX 9501. As part of this process, we
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(a) (b)

Figure 2: (a) Detail of the PBX 9501 grain structure (reproduced from [28] with permission). Note that the dominant
grain size is on the order of 100 µm. The original image has been annotated here with the characteristic dimensions
of a selection of HMX grains ranging from 100–450 µm (in red). (b) The distribution in volume percent vs. particle
diameter for HMX grains in pressed PBX 9501 (solid black line) (reproduced from [29] with permission). The main
peak of the distribution is O(100) µms.

examine the origin of the smaller length scale of explosive heterogeneity on the longer length scale of
the mean surface curvature variation. We then apply the Dn−κ relation to examine the properties
of PBX 9501 detonation in a two-dimensional circular arc geometry. In a related publication by
Short et al. [23], three validation experiments were described that explored PBX 9501 detonation
in a two-dimensional circular arc geometry with varying arc thickness and inner arc surface radius.
Detonation propagation in a circular arc has attracted significant attention recently in gaseous
explosives [31, 32, 33, 34], due to its application to rotating detonation engines, and in condensed-
phase explosives including both experimental [35, 36, 37] and simulation [21, 38, 39, 40] studies, as
it is the simplest geometry that accounts for modifications of the detonation front curvature induced
by diffraction. In the current paper, we compare solutions of our new PBX 9501 DSD model applied
to the arc geometries in [23] with those determined experimentally. Excellent agreement of both
the linear speeds on the inner and outer arc surfaces are found, as well as those of the detonation
front shapes predicted by the DSD model, for all three PBX 9501 arc geometries. This provides
validation of our DSD model. Finally, we explore PBX 9501 detonation properties for the circular
arc geometry using the newly derived DSD relation, including the effect of changes in arc thickness,
inner radius and confinement, and of the relaxation dynamics to steady-state propagation.

2. PBX 9501 Slab Geometry Experiments

The properties of steady, axially propagating PBX 9501 detonation have been calculated in
a series of unconfined large-aspect-ratio, rectangular-cuboid HE charges (slabs). The detonation
speeds have been previously reported in [26]. The slab geometry is intended to generate a region
of steady, two-dimensional planar flow around the charge centerline (Fig. 1a and Fig. 3). As the
detonation wave propagates through the slab, expansion waves originating from HE/air interfaces
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Figure 3: Slab geometry experimental schematic showing the front measurement locations and some of the time of
arrival wire locations along the charge centerline. Two-dimensional planar flow is established in the central region of
the slab in the direction represented by T .

propagate inward along the short- and long-axis directions (i.e. along the T and W directions
in Fig. 3). The waves that propagate along the short-axis direction subsequently establish the
desired 2D planar flow. Expansion waves propagating along the long-axis direction combine with
the short-axis disturbances to produce a fully 3D flow region which grows towards the centerline.
Consequently, the slab dimensions must be chosen to ensure that the 3D flow regions do not arrive
at the charge centerline prior to the arrival of the 2D planar detonation structure at the end of the
charge [26]. This is achieved by limiting the charge length (L in Fig. 3) relative to the charge-width
W . The charge length must also be sufficient to ensure a steady detonation propagation regime is
fully established. A distance of 4-5 times the charge thickness (T ) is typically required for transient
behavior resulting from the initiation of the main explosive charge (PBX 9501) to dissipate.

2.1. Detonation speed data, front shape imaging and curvature analysis

The various PBX 9501 slab dimensions, densities and steady axial detonation phase speeds (D0)
are listed in Table 1. The phase speed data is plotted in Fig. 4 as a thickness effect curve, where
the horizontal axis is the inverse slab thickness (1/T ). As expected, decreasing charge thickness
leads to a monotonically decreasing phase speed. In terms of experimental shot-to-shot variability,
the three tests conducted for T = 3.00 mm have a maximum to minimum D0 variation of 28 m/s,
with the two T = 3.00 mm tests conducted at the same reported density of 1.832 g/cm3 possessing
a D0 variation of 15 m/s. Note that the density variation within the slab geometry tests is in
the range of 1.8295–1.8334 g/cm3, a difference of 0.0039 g/cm3. Thus, given the closeness of the
manufactured slab densities, we do not attempt to isolate any potential effect of density variations
in the following analysis.

The detonation shape at the end of the charge along the centerline slab height direction (T in
Fig. 3) was measured for the 1.00, 1.98, 3.00 (test # 8-1691), 3.99, 6.00 and 8.01 mm thickness
tests. A mirror destruction technique was used to image the detonation breakout times [25, 27],
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Shot T L W ρ0 D0 ±SE(D0)
number (mm) (mm) (mm) (g/cc) (mm/µs) (mm/µs)

8-1705 1.00 130.0 150.0 1.831 8.461 0.003
8-1701 1.98 130.0 150.0 1.8311 8.687 0.001
8-1595 3.00 135.0 151.2 1.832 8.738 0.006
8-1646 3.00 135.0 151.2 1.832 8.723 0.004
8-1691 3.00 135.0 151.2 1.8334 8.751 0.002
8-1694 3.99 130.0 150.0 1.8309 8.755 0.002
8-1723 6.00 130.0 150.0 1.8297 8.766 0.001
8-1735 8.01 130.1 150.1 1.8295 8.777 0.003

Table 1: PBX 9501 slab experiment dimensions and thickness effect data. Data reproduced from Jackson and Short
[26]. Densities ranged from 1.8295–1.8334 g/cm3. SE represents the standard error of a straight line fit to the timing
diagnostics.
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Figure 4: Thickness effect curve (detonation phase speed variation D0 with 1/T ) for PBX 9501.

using a 0.6 µm aluminium coating deposited on a layer of polymethyl methacrylate (PMMA) as the
mirror, which is attached to the front of the charge (Fig. 5a). At breakout, the mirrored surface is
sequentially destroyed along a line from the charge center (represented by the coordinate location
y = 0 in Fig. 3) to the charge edges (y = ±T/2) in the T direction, i.e. along the green line shown
in Fig. 3. A high-speed streak camera records the abrupt change in surface reflectivity. The local
detonation wave breakout time across the charge thickness can then be inferred from the camera
image. Figure 5b (right) shows the breakout streak image for the 6.00 mm thick slab with time
increasing to the right. The edges of the charge are indicated by the horizontal green lines obtained
from the initial fiducial image, which provides the camera/lens spatial magnification scale (Fig. 5b
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Figure 5: (a) Schematic diagram showing the mirrored detonation breakout surface and streak camera position. (b)
Streak camera image of the detonation front breakout for the 6 mm thick charge, along with a fiducial image showing
the explosive slab and attached mirror.
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Figure 6: The original detonation front shape shown in • and its tilt-corrected analogue in • for the T = 6.00 mm
test. The coordinate y measures the distance from the centerline along the short-axis direction of each test (Fig. 3).

(left)).
The front breakout records were manually sampled for discrete pixel locations on the streak

camera image associated with the change in mirror surface reflectivity. With knowledge of the
detonation phase speed for each test, the sampled wave’s local breakout time can be transformed
to a distance, yielding the detonation wave surface shape in physical space. Figure 6 shows the
front surface shape z(y) for the 6.00 mm charge test as function of the coordinate distance from
the centerline y (Fig. 3). The front is positioned such that z(y=0)=0. The small asymmetry (tilt)
with respect to the charge center (y = 0) has various potential sources including the streak camera
film placement and variations in the spin mechanism of the camera. Linear tilt corrections can be
employed to correct for this variation, producing front data with comparable scatter with respect
to a mean symmetric curve ([41, 42]). To evaluate this tilt correction, the following function [42]
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Test Width a1 a2 η φb (∆z)SE |Ay|
# (mm) (mm) (mm) (deg) (mm)

8-1735 8.01 0.0938 —— 0.9624 30.93 0.0079 0.028
8-1723 6.00 0.0998 —— 0.9475 30.89 0.0096 0.012
8-1694 3.99 0.0985 0.0040 0.9334 29.40 0.0080 0.093
8-1691 3.00 0.1197 0.0117 0.9259 29.86 0.0162 0.112
8-1701 1.98 0.0882 —— 0.8675 29.91 0.0182 0.222
8-1705 1.00 0.1117 —— 0.7866 38.41 0.0095 0.057

Table 2: Log-form fit parameters. For 8-1735, 8-1723, 8-1701 and 8-1705, n = 1, while for tests 8-1691 and 8-1694,
n = 2 in order to obtain a similar level of fit error (∆z)SE for all tests.

was used to fit each front shape,

z(y) =
n∑
i=1

ai

[
ln
(

cos
(πη
T
y
))]i

+Ayy, (1)

where the parameters ai and η are fitting constants such that 0 < η < 1, n is the number of
terms used in the fit and Ay provides the linear tilt correction to the front shape digitization. The
result of the least-squares optimization of ai, Ay and η appear in table 2. There are a range of
tilt magnitudes represented by |Ay| = 0.012 − 0.222, with one outlier (test # 8-1701). Figure 6
also shows the tilt-corrected front shape for the 6 mm slab case, obtained by subtracting the
asymmetric contribution Ayy from the original front shape record. The tilt-corrected experimental
data for y < 0 is then reflected in the y = 0 axis, producing a complete detonation front shape
record in the range 0 ≤ y ≤ 3 mm. This procedure is carried out for all tests for which detonation
front shape records are available.

Figure 7a compares the digitized tilt-corrected front shapes to the log-form fitted curves (1) for
all the imaged slab cases. Figure 7b shows the fit error residuals on a normalized axis. It shows
an even distribution of variation from the mean across each charge thickness. The standard errors
((∆z)SE) that appear in table 2 were calculated as

(∆z)SE =

√√√√ 1

Ny

Ny∑
i=1

∆z2i , (2)

where ∆zi is the i-th difference between the fitted curve and the experimental data points, and Ny

is the number of sampled points. Standard errors range between 0.0079− 0.0182 mm.
The characteristic size of the scatter relative to the mean front shape in Fig. 7, as determined

from the residuals of the log-form fits, is around 11.2 µm in standard error, but around 40 µm in
terms of the amplitude of the variations. In comparison, the characteristic length scale of HMX
grain diameters for pressed PBX 9501 has a peak (6% by volume) near 147 µm with a smaller
counterpart at around 20 µm (Fig. 2b). The observed scatter is therefore characteristic of the
heterogeneous grain structure of PBX 9501, in which the detonation will simultaneously pass over
neighboring regions of HMX crystals and binder materials along the breakout surface (Fig. 2a).
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Figure 7: (a) Front shapes obtained from the slab tests (dots) along with the log-form fits (solid lines). (b) Fit
error plotted with distance from the center, scaled with the half-charge thickness. In (a) and (b), the tilt-corrected
experimental data to the left of y = 0 has been reflected across the centerline and combined with the corresponding
data on the right-hand side of y = 0.

2.2. Parametric Dn − κ data

In addition to providing a measure of experimental tilt and scatter, the log-form fits (1) also
provide a measure of the mean detonation shock curvature (κ) and normal speed (Dn). Given a
steady axial velocity D0 and front shape z(y), Dn and κ can are calculated from

Dn =
D0√

1 + (z′)2
, κ = − z′′

[1 + (z′)2]3/2
, (3)

where z′ = dz/dy, z′′ = d2z/dy2. The log-form fit function (1) for z(y) yields smooth variations of
the first and second derivatives (z′(y) and z′′(y)). The resulting Dn and κ variation for each slab
case as a function of distance from the center of the slab scaled with the charge half-thickness is
shown in Fig. 8. It is apparent that the most rapid variations in Dn and κ occur in a boundary
layer near the charge edge, except for the thinnest slab (T = 1.00 mm), which shows a broad
variation in curvature across the charge width. Parametrically plotting Dn versus κ shows the Dn–
κ relationship derived from each test (Fig. 9). The individual Dn−κ curves are closely grouped for
most of the range in curvature, diverging toward the edge of the charge. An underlying property
for the suitability of the DSD model for a given explosive is that the Dn − κ data for each front
shape should group close to a single curve [43].

2.3. Calculated edge angles

The angle φ = φb between the normal to the detonation shock surface at the edge of the
explosive charge and the axial propagation direction is an important quantity in DSD theory. It is
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Figure 8: (a) Normal speed Dn and (b) curvature κ as a function of the distance from the charge center normalized
by T/2. Data within the outer 10% and 1% of each front shape are indicated by an open circle placed at y = 0.9(T/2)
and an open triangle placed at y = 0.99(T/2), respectively.

used as a boundary condition, setting the degree of confinement felt by the detonation wave in the
HE, and therefore affecting the surface speed and shape in the DSD calculations. For the present
calibration experiments, the HE slab charges were unconfined. Therefore, in a frame riding with
the HE detonation shock at the HE charge edge, the flow immediately behind the detonation shock
should be sonic at the HE charge edge [44]. For the slab experiments, the fitted log-form curves
also provide an estimate for the sonic flow edge angle (φb = φs),

φs = tan−1(dz/dy)|y=T/2. (4)

These range between 29.40◦–38.41◦ across the various tests (see table 2). Note that without the
smallest test (T = 1.00 mm with φb = 38.41◦), the range is considerably smaller, i.e. 29.40◦–30.93◦.

3. Two-dimensionality of the centerline flow

As noted in §2, the slab geometry experiments are designed to produce a region of steady 2D
planar flow along the centerline of the charge (Fig. 3). The angle at which the 3D flow region moves
toward the slab centerline can be estimated by previous experiments measuring the penetration
distance of waves originating at the unconfined surface of an HE. For example, for Composition B
and PBX 9502, the penetration angles were estimated to be 14◦ [45], and 15◦ [46], respectively. In
order to ensure a 2D planar flow region is established in the PBX 9501 slab geometry, a long-axis
front shape measurement was taken for a 3 mm thick slab (test 8-1595, table 1). The long-axis
measurement line is indicated schematically in Fig. 3 by the blue line. The front shape was sampled
from the breakout streak image in a similar fashion to that described in §2.1. The result appears
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Figure 9: The Dn vs. κ variation for each slab case.

in Fig. 10a and shows a clear change in surface height amplitude as one moves from the long-axis
charge edge into the interior, with a total deflection of around 0.4 mm relative to z = 0. The
asymmetry observed in the surface heights between the two edge regions is conjectured to be due
to variations in the linewave initiation dynamics at the charge edges. Figure 10b shows a bounded
stochastic variation in surface height from z = 0 of size ≈ 40 µm for a section of the front near the
charge center (of length ≈ 40 mm), indicating the existence of a 2D planar flow region near the
charge center. If we assume the 2D flow region to be (at least) contained within w ∈ [−20, 20] mm,
based on the charge length of 135 mm, the penetration angle of the 3D flow region is ≈ 22◦.

The heterogeneous grain structure of PBX 9501 makes some variation likely in the measurement
of the detonation front shape. If these observed variations are indeed due to heterogenity, we might
expect that the variations in front shape around z = 0 observed in the central 2D flow region of the
long-axis test will be comparable to those observed in the short-axis cases (§2.1). Figure 11 compares
the measured deviations from z = 0 for the long-axis front shape (folded across the centerline) in
the region −20 mm < w < 20 mm to the short-axis mean wave shape variations calculated in §2.1.
Figure 11a shows this scatter as a function of a normalized distance axis. The maximal deviation
magnitudes are similar. Statistically, the standard error value was 0.0152 mm for a distance of 20
mm from the center for the long-axis case, with an overall mean of 0.002 mm. For comparison, the
standard error values for the short-axis cases ranged between 0.095–0.0182 mm for individual tests
(see table 2), whereas the combined standard error across all the data sets was 0.0112 mm with a
mean of −0.0005 mm. In Fig. 11b, histograms compare the distribution of the deviations from the
mean between the long-axis and (combined) short-axis tests. The two distributions were clustered
near zero with the vertical lines indicating the standard deviation values. Thus the variations from
the mean surface shapes for the long- and short axis cases are comparable, pointing toward the
PBX 9501 heterogeneous grain structure as the origin of the surface roughness.
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Figure 10: (a) Sampled front shape variation with long-axis coordinate (w) for the PBX 9501 (T = 3.00 mm) long-axis
test. (b) Detail of the central region for w ∈ (−20, 20) mm.
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Figure 11: (a) The scatter from z = 0 for the region w ∈ [−20.0, 20.0] for the long-axis front shape record (blue dots)
and the scatter between all the short-axis front shapes and their respective log-form fits (red dots). (b) Histogram of
the scatter showing similar distributions and standard deviations (indicated by the vertical lines) for the long- ( )
and short-axis ( ) cases respectively.
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Figure 12: The 2D planar slab coordinate system and geometry for the DSD calibration.

4. DSD calibration

4.1. 2D Planar Slab Geometry DSD equations

To calibrate a specific Dn(κ) function to the PBX 9501 thickness effect and front shape data
shown in tables 1 and 2, the surface curvature is first related to a coordinate system representing
the steady-state propagating DSD surface. Figure 12 shows the relevant slab geometry coordinate
system, where, as in §2, y is distance from the slab centerline, z is the surface deflection, while φ
represents the angle between the axial propagation direction and the normal to the DSD surface at
any point on the surface. The resulting ordinary differential equations describing the steady DSD
surface shape can be written as a function of either y or φ through geometrical arguments as

dz

dy
= − tanφ,

dφ

dy
=

κs

cosφ
;

dz

dφ
= − sinφ

κs
,

dy

dφ
=

cosφ

κs
; (5)

where κs = dφ/dξ, and ξ is the arc length coordinate on the surface. For the 2D slab geometry,
the total surface curvature κ = κs. The normal surface speed is

Dn = Dn(κ) = D0 cosφ, (6)

where D0 is the steady axial propagation speed. Front shape symmetry is imposed at the slab
centerline y = 0, i.e.

z(y = 0) = 0, φ(y = 0) = 0, (7)

while at the charge edge the surface angle φ is set to φb,

φ(y = T/2) = φb. (8)

The Dn − κ propagation law we adopt is given by [47]

Dn

DCJ
=

(
1− α1κ

1 + α2κ+ α3κ
2

1 + α4κ+ α5κ2

)
, (9)
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where α1, α2, α3, α4, and α5 are constant parameters to be calibrated. The Chapman-Jouguet
speed DCJ and surface edge angle φb are also not specified at this point.

The experimental slab thickness was considered a fixed quantity for comparing and fitting the
DSD calculations to data. Consequently, a method was required for calculating D0 given the charge
thickness (T exp), DCJ , φb, and the DSD calibration parameters (α1, α2, . . . α5), wherein we define
the charge thickness as a function of D0 = DDSD

0 via integration of (5),

T (D0) = 2

∫ φe

0

dy

dφ
dφ = 2

∫ φe

0

cosφ

κs
dφ, (10)

and iterate on D0 until T (DDSD
0 ) = T exp. Additionally, a method was required for comparing the

predicted DSD front shapes to the experimentally measured front shapes, where the experimental
data are given as measurements of the surface shape height (zexp) with distance from the center
(yexp) in vector form. In the following, the components of these vectors are denoted with subscripts,
i.e. yexpj , zexpj for j = 1, . . . , Ny, where Ny is the number of sampled points in the experimental

record. The corresponding DSD surface shape height (zDSDj ) is then calculated at each experimental
coordinate yexpj via

zDSDj =

∫ yexp
j

0

dz

dy
dy, (11)

where dz/dy is given by (5), and evaluated using the specified Dn(κ) relation with D0 calculated
in (10) for a given T exp, DCJ and φb.

4.2. Merit function

With regard to the optimization of the parameters DCJ and φb, we have two choices. First,
they could be explicitly included in the DSD parameter optimization method described below along
with the parameters αi. However, with no constraints, our experience with this approach is that
in driving the optimization to one with the lowest fitting error, often DCJ and φb are driven to
unphysically low or high values. Consequently, our approach is to fix both DCJ and φb, optimize
the DSD model fit based only on the αi parameters, and then subsequently explore the variation of
fits with both DCJ and φb changed discretely within a range centered on experimentally informed
knowledge of DCJ and φb. The solution with the least fitting error is then selected within the range
of DCJ and φb explored. In order to quantify the fit quality of a particular DSD calculated set of
surface shapes and speeds to the experimental data, a merit function was defined that incorporates
both the error in the DSD calculated detonation thickness effect curve and the front shapes. It is
given by

M = wTE
∑

i=1,NTE

1

NTE

(
Fi(D

DSD
0,i −Dexp

0,i )

)2

+wFS
∑

i=1,NFS

∑
j=1,N i

t

1

NT
t

(
Ei(z

i,DSD
j −zi,expj )

)2

, (12)

where zi,DSDj and zi,expj represent the DSD calculated and experimental j-th surface shape z-

coordinate for the i-th test respectively, DDSD
0,i and Dexp

0,i are the DSD calculated and experimental
detonation speed for the i-th test respectively, NTE = 8 (the number of thickness effect points),
N i
t is the number of surface shape coordinates for the i-th test, NT

t =
∑

i=1..NFS
N i
t = 2597 is the
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DCJ α1 α2 α3 α4 α5 φb
(mm/µs) (mm) (mm) (mm2) (mm) (mm2) (radians)

8.79 0.049654 0.059285 0.158482 0.005573 6.57673×10−5 π/6

Table 3: DSD slab geometry calibrated Dn − κ parameters for PBX 9501.

total number of front shape coordinate points across all tests and NFS = 6 (the number of tests
for which front shape data was obtained). The merit function definition in (12) is based on the
approach of Bdzil et al. [47] and is constructed with separate thickness effect and surface shape
error component sums. The factors Ei and Fi serve to weight the contribution of each error to the
merit function and were defined as

Fi = (f)i/D
exp
0,i , Ei = 1/(T expi /2) (13)

where T expi was the charge-thickness for the i-th test and f is an additional weight vector for the
thickness effect data. It was defined such that the multiple tests at T = 3 mm were given equivalent
weights of 1/3 to avoid bias in the fit to that specific charge thickness calculation, i.e.

f =
(
1 1 1 1/3 1/3 1/3 1 1

)T
. (14)

The relative contribution between the two sets of errors is largely determined by wTE and wFS . In
the calibrations described below, wFS = 0.256 and wTE = 1.0, again a choice based on experience
of the authors with the DSD model calibration technique across a range of explosives. It ensures
that fitting of the front shape data plays a significant role in the calibration of the Dn − κ model.
Finally, the optimized parameters of the Dn − κ relation were obtained by numerically minimizing
the multivariable merit function via a Levenberg-Marquardt least-squares algorithm [48]. Given
the inherent flexibility in the merit function parameter choices, it is essential that validation tests
be conducted on any derived PBX 9501 Dn − κ model, as conducted in [23].

4.3. DSD Model for PBX 9501

Following the procedure described in §4.1 and 4.2, the resulting Dn − κ calibration parameters
are shown in table 3. The explicit Dn−κ variation is shown in Fig. 13. Figure 14a shows the DSD
thickness effect variation resulting from the calibration to slab geometry experiments. The difference
between the DSD model and experimental speed for each slab thickness is shown in Fig. 14b,
where the DSD fit has a standard deviation error of 7.5 m/s relative to the experimental data (in
comparison, for the three tests performed at T = 3.0 mm, the experimental speed measurements
varied by 28 m/s from the lowest to highest speed). Figure 14c shows the calibrated DSD surface
shapes and the corresponding experimental detonation front shapes. The standard error across all
DSD front shapes was 0.015 mm (Fig. 14d).

Accurately detailing the uncertainty in the Dn − κ model is complex. The log-form fitting-
function derived Dn and κ variation for each specific slab case, as shown in Fig. 9, can provide some
useful estimate of the uncertainty in our global DSD Dn − κ model shown in Fig. 13. However,
the log-form specification (1) does not possess the surface based propagation physics contained
within the DSD Dn − κ formulation. In order to address this, we can instead apply the DSD
model parameterization approach described in §4.1 and §4.2 to each individual slab geometry case
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Figure 13: Variation of Dn with κ for the slab geometry calibrated DSD model for PBX 9501 (current work). Also
shown is that derived in [49].

separately rather than globally, ensuring an appropriate balance between the errors in the axial
detonation speed and front shape. Effectively, we derive a separate Dn − κ relation for each slab
case to estimate model uncertainty. These curves are shown in Fig. 15 along with the global or
base DSD Dn − κ relation. For small to moderate curvatures, the individual Dn variations for
each slab case are tightly grouped, with the Dn variations increasing in magnitude as κ increases.
At κ = 2 mm−1 (approximately the maximum curvature accessed in the slab DSD calculations),
the two bounding curves for Dn for the T = 3.00 mm and T = 8.01 mm slabs deviate from the
global DSD Dn − κ relation by O(100) m/s. While limited, the above analysis is indicative of
the level of shot-to-shot uncertainty in the Dn − κ behavior. That said, in §5, we show that the
slab-geometry calibrated DSD relation (9), populated by the PBX 9501 parameters in table 3, gives
excellent predictions of the detonation propagation behavior in PBX 9501 2D circular arc geometry
validation tests.

4.3.1. Prediction of the rate-stick geometry diameter effect curve

The DSD model is a coordinate-free surface propagation concept. This implies that once a
DSD model is parametrized using data solely from one geometry, it should be able to capture
detonation motion in other geometries [26]. Figure 14a shows the diameter effect curve obtained
from the slab-geometry calibrated DSD model compared with previously obtained experimental,
unconfined, diameter effect data points [26]. The DSD prediction for the diameter effect curve
overpredicts the experimental diameter effect data, with the difference growing as the rate-stick
radius decreases (between data points at radii of R = 2.505 and R = 1.415 mm, the error grows
from O(15) to O(50) m/s). With regard to the experimental data, we note that the thickness and
diameter effect curves almost overlay when plotted as the variation of D0 vs. 1/T or 1/R (Fig. 14a).
In principle, this can only occur if the two components of curvature in the rate-stick geometry, i.e.
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Figure 14: Results of the DSD model parameter fitting procedure for the relation (9) with PBX 9501 parameters
shown in table 3. (a) Thickness effect variation (DSD TE) calibrated to slab geometry data (exp. TE). Also shown
is the DSD predicted diameter effect curve (DSD DE) compared against rate-stick geometry experiments (exp. DE).
(b) Difference between the slab geometry calibrated DSD model and experimental speed for each experimental slab
thickness or rate stick radius. (c) Comparison between the DSD surface front shapes and slab geometry experiment
detonation shock shapes, with relative differences shown in (d).
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the slab and axisymmetric components, were equal, i.e. the front was a spherical cap [24, 26]. This
would correspond to a detonation with an infinitely thin reaction zone. However, Jackson & Short
[26] showed that the axisymmetric component of curvature in a rate-stick geometry must be less
than the slab component at each point across the charge. Thus, when the detonation speed data
are plotted against 1/T and 1/R for the slab and rate stick geometry respectively, the diameter
effect curve must lie above that of the thickness effect curve, as demonstrated by the DSD model
behavior.

This points to a potential inconsistency in the make-up of the PBX 9501 explosive used for
the slab and rate-stick tests. We note that the rate-stick test data was obtained approximately 20
years prior to the slab geometry data mostly using a different lot of PBX 9501 molding powder
[26]. Also, for the rate stick data, two shots with the same radius 20.65 mm and with the same
reported density (1.838 g cm−3) show a speed difference of 17 m/s [26]. This data gives some
indication of the inherent experimental variability in speed measurements. However, the data is
too sparse to be used to provide a statistically relevant analysis. In contrast, as noted above,
in §5 we show that the slab-geometry calibrated DSD relation gives excellent predictions of the
detonation propagation behavior in PBX 9501 2D circular arc geometries, experiments that used
the same lot of PBX 9501 molding powder and pressed to a similar density as the current slab
tests. Nevertheless, the DSD approximation for the rate-stick geometry is significantly improved
over a Huygens approximation, where, for example, for R = 1.415 mm the difference between the
experimental detonation propagation speed and a Huygens approximation is 178 m/s, while for
R = 1.005 mm, it is 303 m/s.

A Dn(κ) relation for PBX 9501 based solely on rate-stick cylindrical geometry experiments has
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DCJ α1 α2 α3 α4 α5 A D1 e1 φb
(mm/µs) (mm) (mm) (mm2) (mm) (mm2) (mme1) (mm−1) (rad.)

8.795 0.03655 0.05693 0 4.313 0 1.406 2.443 0.0778 0.6301

Table 4: DSD rate stick-geometry calibrated Dn − κ parameters [49].

been derived previously [49] using the Dn − κ functional form,

Dn

DCJ
=

(
1 +A((D1 − κ)e1 −De1

1 )− α1κ
1 + α2κ+ α3κ

2

1 + α4κ+ α5κ2

)
. (15)

The parameters of this Dn − κ calibration appear in Table 4. Although this Dn − κ relation fits
the rate stick diameter effect data well since it is calibrated to that data (Fig. 16a), the more
rapid decrease of Dn with κ seen in Fig. 13, based on the relation (15), results in smaller phase
velocities in the slab geometry than observed experimentally. Significantly, the associated DSD
surface shapes poorly capture the slab geometry detonation shock shapes (Fig. 16b), generally
possessing too much curvature across the charge width. We demonstrate below that the PBX
9501 DSD relation [49] also does not effectively predict the 2D circular arc geometry detonation
propagation behavior. Yet another PBX 9501 Dn − κ model form was used for so-called wave
passover validation experiments as described in [17]. However, the parameters for the PBX 9501
DSD model used in [17] were not explicitly stated, and therefore could not be compared with our
current results.

5. Application to the Two-Dimensional PBX 9501 Circular Arc Geometry

For use in engineering problems, the DSD propagation law (9), populated by the PBX 9501
parameters in table 3, is combined with a surface evolution construction. Assuming a set of level
curves given by f(x(t), t) = c, where c is a constant, with the unit normal to each surface given by
n = ∇f/|∇f |, the level set evolution equation can then be written as

∂f

∂t
+Dn|∇f | = 0, Dn = n · dx

dt
, (16)

where Dn(x, t) is the surface normal speed and related to curvature κ by

Dn = Dn(κ), κ = ∇ · n, (17)

where κ is the total surface curvature. The zero level set represents the required evolution of the
DSD surface motion.

In Short et al. [23], three validation experiments were described that explored some of the
properties of PBX 9501 detonation in a two-dimensional circular arc geometry of varying thickness
and inner radius. The circular arc configuration is the simplest geometry that accounts for modifi-
cations of the detonation front curvature induced by diffraction. The three PBX 9501 arc sections
had dimensions: 65.35 mm (Ri) x 67.35 mm (Re) x 200 mm (width); 65.47 mm (Ri) x 69.97 mm
(Re) x 200 mm (width); and 100.35 mm (Ri) x 120.35 mm (Re) x 200 mm (width) [Fig. 17a].
Here Ri represents the interior (inner) radius dimension, while Re is the exterior (outer) radius.
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Figure 16: (a) Diameter effect variation (DSD DE) calibrated to rate-stick geometry data (exp. TE) from [49]. Also
shown is the DSD predicted thickness effect curve (DSD TE) compared against slab geometry experiments (exp.
TE). (b) Prediction of the slab geometry surface front shapes based on the rate-stick geometry calibrated DSD model
with with slab geometry experiment detonation shock shapes.
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along the inner and outer surface centerlines remains two-dimensional for the arc section. Both images are taken
from [23].
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The angular extent of each of the arc sections was ≈ 3π/4 radians. The large (200 mm) width of
the arc sections ensured that the flow along the arc centerline remained two-dimensional, as shown
schematically in Fig. 17b and described in [23], in a similar manner to that for the slab geometry
experiments (§2). The detonation is initiated uniformly along the width of each arc section with
a line wave generator (LWG) placed in direct contact with the PBX 9501 arc [23] (see Fig. 17a).
Time-of-arrival (ToA) diagnostics were located along the centerline of both the inner and outer arc
surfaces, and were used to determine the linear detonation speed on the inner and outer surface cen-
terlines once the detonation wave had reached steady state propagation, and thereby rotating with
a constant angular speed. The shape of the detonation surface at the end of the arc (Fig. 17a,b)
was also measured as described in [23].

We now explore the physics of PBX 9501 detonation propagation for the circular arc geometry
through the DSD model, including model validation based on the arc experiments [23], the effect
of arc thickness, inner radius, relaxation dynamics to steady-state propagation and confinement
effects. A polar coordinate (r, θ) representation of the evolution equation (16) specialized to the
zero level set is employed, i.e. with f = θ − θs(r, t) = 0,

θs,t =
Dn

r
(r2θ2s,r + 1)

1
2 , κ = − r

(r2θ2s,r + 1)
3
2

(
θs,rr + θs,r

(
rθ2s,r +

2

r

))
, (18)

where θ is the polar angle, r is the radial coordinate and θs(r, t) represents the motion of the DSD
surface in the arc geometry under varying curvature. Note that the surface curvature κ can be split
into two components,

κ = −(rθs,rr + θs,r)

(r2θ2s,r + 1)
3
2

− θs,r

(r2θ2s,r + 1)
1
2

, (19)

where the first term on the right hand side represents the change in surface normal angle with
surface arclength along the DSD surface, while the second term represents the rate-of-change of
polar angle with arclength moving along the surface [21]. On the inner arc surface r = Ri,

θs,r = − 1

Ri
tanφi, (20)

while on the outer arc surface r = Re,

θs,r = − 1

Re
tanφe, φ ≤ φs, (21)

with a quadratic extrapolation condition for φ > φs. The latter mimics supersonic outflow that is
observed in the reactive burn solutions, as detailed in [21, 39]. Here φi is the surface normal angle
on the inner arc boundary, while φe is that on the outer arc boundary. For all the configurations
considered below, except for Fig. 22b, we consider unconfined arcs for which φi = −φs and φe = φs,
with φs = π/6. Confinement effects with φe = −φi < φs are explored in Fig. 22b. Equations (18)
are solved on a mesh Ri ≤ r ≤ Re, with 0 ≤ max(θs) ≤ 3π/4. Second order upwinding is used
for the derivative θs,r and combined with central differencing for θs,rr. Time integration is via a
second-order Heun’s method. At t = 0, the DSD surface θs(r, 0) = 0 for Ri ≤ r ≤ Re is assigned
a normal speed of Dn = DCJ and subsequently evolved in time. For the purposes of transitioning
smoothly from the initial surface state where θs,r = 0 on r = Ri and r = Re, we linearly increase
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Table 5: Linear speeds of the steady detonation motion along the inner (r = Ri) and outer (r = Re) arc surfaces
for the 3 arc tests described in [23], showing a comparison between experimental (Exp.) measurements, a surface
evolution simulation using (18)–(21) with the DSD model (9) populated by PBX 9501 parameters in table 3 (DSD),
and with the DSD model from [49] (DSD [49]).

Ri-Re Speed (Ri) Speed (Ri) Speed (Ri) Speed (Re) Speed (Re) Speed (Re)
(mm) (mm µs−1) (mm µs−1) (mm µs−1) (mm µs−1) (mm µs−1) (mm µs−1)
Exp. Exp. DSD DSD [49] Exp. DSD DSD [49]

65.35-67.35 8.582(±0.013) 8.583 8.536 8.831(±0.003) 8.846 8.797
65.47-69.97 – 8.593 8.558 9.186(±0.006) 9.183 9.146

100.35-120.35 8.664(±0.021) 8.640 8.612 10.411(±0.018) 10.362 10.328
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Figure 18: Evolution of the DSD surface in a circular arc with dimensions 100.35 mm (Ri) x 120.35 mm (Re).

the surface angles on r = Ri and r = Re from zero to φi or φe in time over a time period of 0.1 µs.
Note that we can not provide absolute timing comparisons between the DSD calculations shown
below and the experiments described in [23] as an experimental diagnostic to determine an absolute
time-of-arrival of the detonation wave from the LWG at the initiating (θ = 0) PBX 9501 arc surface
was not deployed.

Table 5 shows the linear speeds on the inner (r = Ri) and outer (r = Re) arc surfaces for the
unconfined arc geometries described in [23] (65.35 mm (Ri) x 67.35 mm (Re); 65.47 mm (Ri) x
69.97 mm (Re); and 100.35 mm (Ri) x 120.35 mm (Re)) when max(θs(r, t)) equals 3π/4, calculated
using the above numerical formulation of (18)–(21) with the DSD model (9) populated by the newly
calibrated PBX 9501 parameters in table 3. Here, φi = −φs = −π/6 and φe = φs, as the arcs
are unconfined. For each arc geometry, there is a transient evolution, before the wave relaxes to a
steady state propagation mode rotating with a constant angular speed, which we denote hereafter
as ω0 (radians/µs). Figure 18 shows an example of the motion of the PBX 9501 DSD surface for
the unconfined 100.35 mm (Ri) x 120.35 mm (Re) arc geometry, remapped to a Cartesian space. In
each case, the DSD surface motion obtained from the time-dependent DSD formulation (18)–(21),
after the surface had propagated through the range 0 ≤ max(θs) ≤ 3π/4, is observed to be in
steady-state. In fact, as further described below, in each arc case, the DSD surface wave relaxes to
a steady state propagation mode significantly before the point where max(θs) = 3π/4.
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Figure 19: Relative breakout times tb from the end of the arc surface for each point on the detonation shock as a
function of radial coordinate for (a) 65.35 mm (Ri) x 67.35 mm (Re), (b) 65.47 mm (Ri) x 69.97 mm (Re) and (c)
100.35 mm (Ri) x 120.35 mm (Re) arcs, comparing experimental results with the DSD model predictions.

As shown in table 5, the comparisons between our DSD model predictions and the experimental
results for the linear speeds on r = Ri and r = Re of the steady detonation motion are excellent.
For the 65.35 mm x 67.35 mm and 65.47 mm x 69.97 mm arcs, the differences are at most 0.015
mm/µs or 15 m/s (note that for the inner arc surface on the 65.47 mm x 69.97 mm arc, a steady
speed was not calculated due to the presence of jetting observed between the inner arc surface and a
plastic support [23], which we hypothesized affected the ToA diagnostic triggering). For the 100.35
mm x 120.35 mm arc, the difference was observed to be 24 m/s on the inner surface and 49 m/s
on the outer, representing errors of 0.28% and 0.47% respectively. For comparison, as described in
[23], a Huygens model construction would have a steady wave speed of DCJ = 8.79 mm/µs on the
inner arc surface for all three arcs, and ReDCJ/Ri = 9.059, 9.394 and 10.542 mm/µs on the outer
surfaces. Clearly, curvature effects are important even for a conventional high explosive like PBX
9501. We also note that the PBX 9501 DSD model from [49] has significantly higher errors than
the present slab-geometry calibrated PBX 9501 DSD model. For the 65.35 mm x 67.35 mm and
65.47 mm x 69.97 mm arcs, the speed errors are in the range O(30−50) m/s, with errors of 52 m/s
on r = Ri and 83 m/s on r = Re for the 100.35 mm x 120.35 mm arc (table 5). Figure 19 shows a
comparison of the relative breakout time shapes from the arc end surface for the DSD model and
the experiment for each arc geometry. The breakout shapes for the DSD calculations are obtained
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Figure 20: Variation of the steady linear speed Riω0 along the inner arc surface due to changes in the outer radius
Re for (a) Ri = 65.35 mm and (b) Ri = 100.35 mm. The circles represent the specific values of Re for which the
calculations were conducted.
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Figure 21: Variation of Dn across the DSD surface as a function of the scaled radial coordinate (r − Ri)/(Re − Ri)
for (a) Ri = 65.35 mm and (b) Ri = 100.35 mm for several of the Re values in Fig. 20, showing that the DSD surface
senses the outer arc confinement (sonic) angle even after the angular speed has limited to a constant value.

through the relation tb(r, t) = (max[θs(r, t)] − θs(r, t))/ω0 [23], recognizing that the motion is in
steady-state at the breakout surface. In all cases, the agreement is again excellent.

5.1. Effect of varying arc thickness

It was shown in [21, 39, 40] that the scaled arc thickness (Re −Ri)/Ri has a complex influence
on detonation propagation in the arc geometry. Figure 20a shows the linear detonation speed
Riω0 of the DSD surface along r = Ri, at the time when max(θs) = 3π/4, as a function of
varying outer radius Re for Ri = 65.35 mm and Ri = 100.35 mm (for all values of Re shown,
the surface propagation becomes steady significantly before the time when max(θs) = 3π/4). For
Ri = 65.35 mm, Riω0 limits to a constant when Re ' 68 mm. Consequently, for an arc thickness
larger than approximately 2.65 mm, the angular speed ω0 at which the surface sweeps around the
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arc, after reaching steady-state propagation, does not depend on the arc thickness. The surface
structure, however, still senses the presence of the angle (sonic) confinement condition on r = Re
until Re > 77.1 mm, whereupon the extrapolation condition contained within (21) is engaged. This
effect can be seen in Fig. 21a, which shows the variation of surface normal speed Dn across the DSD
surface for several of the Re values in Fig. 20a. For Re = 70 and 74 mm, there is an adjustment layer
in Dn near the outer arc boundary to meet the confinement (sonic) angle condition, even though
ω0 is almost identical in both cases. Only for Re > 77.1 mm, does the (supersonic) extrapolation
condition become active, as seen in Fig. 21a for Re = 78 mm. The effect of having ω0 the same
while changes in the surface structure are observed for increasing Re has been explained in [21].
For sufficiently wide arcs, ω0 is determined by the surface curvature variations in a boundary layer
attached to the inner arc surface, so that ω0 depends on the inner arc radius Ri, confinement
angle φi and the form of the Dn(κ) variation defined by the DSD model. Outside of this inner arc
boundary layer, the DSD surface propagates with Dn close to DCJ , while a third layer is present
near the outer arc surface to meet the confinement conditions on r = Re [21]. Neither of the two
outer layers influence the determination of ω0 to the order calculated. When the extrapolation
conditions engage, the third layer is absent. For the present study, we are able to provide the above
quantitative values on Re for when these effects occur for PBX 9501 detonation.

For Ri = 65.35 mm and Re / 68 mm, Riω0 decreases monotonically, with a progressively larger
drop for decreasing Re (Fig. 20a). For instance, Riω0 = 8.043 mm/µs for Re = 66.0 mm, while
for Re = 65.9 mm, Riω0 = 7.754 mm/µs. The angular speed ω0 at which the surface wave sweeps
around the arc, after reaching the steady state propagation mode, therefore also drops. Figure 21a
shows the Dn variation across the DSD surface for Re = 66.5 mm and Re = 67.35 mm. The
drop in Dn globally across the arc is significant relative to the larger Re cases. We know from the
analysis of rate stick and slab geometries [25, 26] that if the propagation speed of the detonation
becomes too small the detonation fails, likely due to insufficient chemical energy being released
within the detonation driving zone structure for the wave to propagate [2]. However, the exact
physical mechanisms are not well understood. In previous work, a PBX 9501 rate stick with 0.79
mm radius detonated with an axial propagation speed of 8.259 mm/µs [25, 26], while a PBX 9501
slab with a thickness of 1 mm detonated with speed 8.461 mm/µs. A slab with thickness 0.8 mm
also detonated, but due to the initiation being non-uniform, an axial propagation speed was not
evaluated [26]. Thus the failure radius for a PBX 9501 rate stick is less than 0.79 mm, while for a
PBX 9501 slab it is less than 0.8 mm [26]. Given the rapid decline in Riω0, and thus ω0, between
Re = 66.0 mm and 65.9 mm for the arc configuration with Ri = 65.35 mm, we predict on the basis
of the DSD model that the arc thickness for which a PBX 9501 detonation will fail to propagate
lies somewhere in range of 0.55− 0.65 mm.

Similar behavior to that for Ri = 65.35 mm is observed for Ri = 100.35 mm (Fig. 20b and 21b).
Again, for all values of Re shown, the surface propagation is steady at the point max(θs) = 3π/4.
For Ri = 100.35 mm, ω0 is constant when Re ' 103.5 mm (Fig. 20b). The surface structure
senses the presence of the angle (sonic) confinement condition on r = Re until Re > 117.79 mm
(Fig. 21b). Also, Riω0 = 8.057 mm/µs for Re = 101.0 mm, while for Re = 100.9 mm, Riω0 = 7.766
mm/µs. Thus, again, we predict that the PBX 9501 arc thickness for which a detonation will fail
to propagate lies somewhere in range of 0.55− 0.65 mm for Ri = 100.35 mm.
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Figure 22: (a) Variation of the steady linear speed Riω0 along the inner arc surface r = Ri with changes in the inner
radius Ri for Re − Ri = 5 mm. (b) Variation of the steady linear surface speed Riω0 along r = Ri with changing
confinement angle φi on r = Ri and with φe = −φi on r = Re for the two arc geometries 65.35 mm x 67.35 mm and
100.35 mm x 120.35 mm.

5.2. Effect of varying inner radius Ri

The effect of varying Ri on the linear detonation speed Riω0 along the inner arc surface at the
time when max(θs) = 3π/4 is explored in Fig. 22a. Here, the arc thickness is fixed at Re −Ri = 5
mm, with comparable variations found for Re − Ri = 10 mm. As before, for all values of Ri
shown, the surface propagation is steady at the point max(θs) = 3π/4. For decreasing Ri, i.e. as
the curvature of the inner arc surface increases, the role of the second term on the right hand
side of the DSD surface curvature term (19), i.e. the rate of change of polar angle with arclength
moving along the DSD surface, becomes more significant. The speed Riω0 drops monotonically
with decreasing Ri, but even for Ri = 15 mm, the linear speed of the PBX 9501 detonation on
r = Ri has a value 8.284 mm/µs. We conjecture that an arc of PBX 9501 will therefore detonate
for small inner radius values, for which there is a large degree of diffraction.

5.3. Effect of varying confinement

For all cases studied thus far, both the inner and outer surfaces of the PBX 9501 arcs have
been unconfined, i.e. φi = −φs and φe = φs in (20) and (21). If the surfaces of the arc were now
confined, e.g. with metals [2], the magnitude of φi and φe will drop below φs. In the arc geometry,
confinement restricts the degree of curvature that can develop, especially at the inner arc surface.
For actual specific confinement materials, the confinement angle can be calculated using shock polar
analysis for a given linear phase speed as described in the reviews [43, 2]. Figure 22b shows how
the steady linear DSD surface speed on r = Ri is affected by decreasing the magnitude of φi, with
φe = −φi on r = Re for the two arc geometries 65.35 mm x 67.35 mm and 100.35 mm x 120.35
mm. For the 65.35 mm x 67.35 mm arc, Riω0 increases by 67 m/s increasing φi from −π/6 to −0.1
radians. Similarly, for the 100.35 mm x 120.35 mm arc, Riω0 increases by 42 m/s over the same φi
range change.
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Figure 23: Relaxation dynamics of the DSD surface to a steady-state evolution for the 65.35 mm (Ri) vs. 67.35 mm
(Re) arc. Sub-figure (a) shows the surface height variation relative to the inner arc surface in terms of rθs(r, t). The
parameter θi (= θs(Ri, ti)) indicates the polar angle of the DSD surface point on the inner arc surface at the time the
surface shape was extracted. For comparison purposes, all surface shapes have then been shifted such that the point
on the inner arc surface is set to a polar angle of zero. For reference purposes, ti = 0.0824 at θi = 0.01, ti = 0.163
at θi = 0.02, ti = 0.240 at θi = 0.03, ti = 0.393 at θi = 0.05, ti = 0.773 at θi = 0.1, ti = 1.535 at θi = 0.2 and
ti = 2.296 at θi = 0.3. Units of ti are µs and θi are radians. Sub-figures (b) and (c) show the variations in Dn(r, ti)
and κ(r, ti) respectively corresponding to each surface shown in (a). Sub-figure (d) shows the variation in linear speed
Ridθs(Ri, t)/dt as a function of polar angle θi = θs(Ri, t) along r = Ri and Redθs(Re, t)/dt as a function of polar
angle θe = θs(Re, t) along r = Re.

5.4. Relaxation dynamics

Finally, we discuss some of the basic elements of the relaxation dynamics to steady-state prop-
agation using as a basis the three PBX 9501 arc geometries described in [23]. In particular, we
describe how the relaxation is influenced by the inner arc radius Ri and thickness Re−Ri. Various
aspects of the detonation relaxation dynamics in an arc configuration for other explosives have also
been explored recently in [38, 39] using reactive burn modeling. Figure 23 shows the relaxation
dynamics of the DSD surface to a steady-state evolution for the thinnest 65.35 mm x 67.35 mm
arc. Figure 23a shows the variation in the DSD surface height rθs(r, t) at each r relative to the
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Figure 24: As for Fig. 23, but for the 65.47 mm (Ri) vs. 69.97 mm (Re) arc. For reference purposes, ti = 0.394 at
θi = 0.05, ti = 0.775 at θi = 0.1, ti = 1.536 at θi = 0.2, ti = 2.297 at θi = 0.3, ti = 3.059 at θi = 0.4 and ti = 3.821
at θi = 0.5.

DSD surface position on r = Ri. The polar angle of the DSD surface position on r = Ri at the
times the profiles are extracted during the evolution is indicated by θi = θs(Ri, ti), where ti is
the extraction time. Figures 23b,c show the corresponding Dn(r, ti) and κ(r, ti) profiles. Starting
from the flat surface θs(r, 0) = 0, the influence of the DSD surface boundary angle on r = Ri
and r = Re propagates into the interior, along with changes that arise due to the wave diffraction
process in the arc geometry. We observe the development of layers containing significant changes
in Dn and κ along the inner and outer arc boundaries. However, in the small angular segment,
0 < θs(Ri, t) ≤ 0.03, for 0 < t ≤ 0.240 µs, the segment of the DSD surface near r = Ri has already
relaxed close to its steady state value. Time-dependent evolution in the outer sections of the arc
progress, and these continue to weakly influence the propagation speed of the DSD surface. By
θi = 0.3, the surface evolution has fully relaxed to steady-state propagation, with the wave sub-
sequently sweeping around the arc with an angular speed of ω0 = 0.1313 radians/µs. Figure 23d
shows the variation in linear speed Ridθs(Ri, t)/dt as a function of polar angle θi = θs(Ri, t) along
r = Ri and Redθs(Re, t)/dt as a function of polar angle θe = θs(Re, t) along r = Re. The relaxation
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Figure 25: As for Fig. 23, but for the 100.35 mm (Ri) vs. 120.35 mm (Re) arc. For reference purposes, ti = 1.175 at
θi = 0.1, ti = 2.336 at θi = 0.2, ti = 3.497 at θi = 0.3, ti = 4.659 at θi = 0.4, ti = 5.820 at θi = 0.5, ti = 8.143 at
θi = 0.7, and ti = 10.466 at θi = 0.9.

times to steady-state propagation along r = Ri and r = Re are comparable, with the evolution
along r = Ri relaxing slightly faster than for r = Re, corresponding to the observed relaxation
processes in Fig. 23a-c.

The relaxation process for the 65.47 x 69.97 mm arc geometry is shown in Fig. 24. The inner arc
region again relaxes rapidly, so that at the polar angle θi = 0.05 on r = Ri, the DSD surface near
the inner arc surface has already relaxed close to its steady-state evolution profile (Fig 24a). At
θi = 0.1, the linear speed Ridθs(Ri, t)/dt on r = Ri has reached its steady-state value (Fig. 24d),
and a boundary layer characterized by rapid variations in Dn and κ at the inner surface have
fully formed (Fig. 24b,c). Due to the thicker arc dimension, with Re − Ri = 4.5 mm, the outer
section of the arc has a significantly longer relaxation period, and only by θe = 0.6 has the linear
speed Redθs(Re, t)/dt on r = Re has reached its steady-state value (Fig. 24d). A second boundary
layer characterized by rapid variations in Dn and κ has also formed near the outer arc boundary
r = Re (Fig. 24b,c). The relaxation process for the 100.35 x 120.35 mm arc geometry is shown in
Fig. 25. Similar evolutionary dynamics are observed to the 65.47 x 69.97 mm arc geometry. The
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slow relaxation period of the outer section of the 20 mm thick arc is clearly evident (Fig. 25d),
and only by θe = 0.9 has the linear speed Redθs(Re, t)/dt on r = Re reached its steady-state value
(Fig. 25d). The boundary layer structure near r = Ri described in [21] is prominent (Fig. 25b,c),
with Dn ≈ DCJ and κ small in the central section of the arc. For steady-state propagation,
the surface continuation condition in (21) is activated, and the boundary layer in Dn and κ near
r = Re, observed at earlier times during the relaxation process, disappears as steady-state evolution
is approached.

6. Summary

We have developed a surface evolution model for the detonation propagation dynamics of the
conventional high explosive PBX 9501, a plastic bonded explosive composed of 95.0 weight (wt.)%
HMX explosive crystals with a binder mixture of 2.5 wt.% Estane and a 2.5 wt.% eutectic mixture
of BDNPA/BDNPF. The evolution model is based on the concept of detonation shock dynamics,
which relates the normal surface speed Dn to its local surface curvature κ. The detonation properties
of PBX 9501 are broadly similar to many other conventional high explosives, and therefore our work
on PBX 9501 is a surrogate for understanding the influence of curvature on propagation in these
types of explosives. Surface evolution models are important for the understanding and modification
of engineering design calculations for high explosive applications.

In the current article, we have described a series of unconfined PBX 9501 slab geometry experi-
ments of varying thickness (T ), and detailed how the steady axial detonation speed and detonation
front shape data are obtained as a function of T. A merit-function based calibration process is then
described that uses the PBX 9501 thickness effect variation and the front-shape data to parametrize
the Dn − κ propagation law, as well as to obtain the surface normal angle that is applied at the
HE boundary for unconfined charges. Our calibration process ensures a balance between fitting
the front-shape data and steady axial detonation speeds, both of which are important to the per-
formance of a Dn−κ model when applied to different geometries. As a by-product of the analysis,
we showed that the inherent noise in the front-shape data can be related to the degree of crystal-
binder heterogeneity in the explosive. Application of the newly derived PBX 9501 Dn − κ surface
propagation law to existing diameter effect data on PBX 9501, based on a cylindrical rate-stick
geometry, was shown to predict speeds higher than those obtained experimentally, although we
noted concerns about differences in material lots between the slab and rate stick test series, as well
as inherent variability in experimental measurements of propagation speed for charges at nominally
the same density and radii.

We then described the application of the time-dependent PBX 9501 Dn − κ surface evolution
law to detonation wave propagation in two-dimensional circular arc geometries, based on experi-
ments described in [23]. The circular arc configuration is the simplest geometry that accounts for
modifications of the detonation front curvature induced by diffraction, and provides a stringent
test for Dn − κ based modeling. The arc experiments in [23] used the same lot of PBX 9501 as
the slab geometry experiments described here. Solutions of the PBX 9501 DSD model developed
here were then compared with those determined experimentally. Excellent agreement of both the
linear speeds on the inner and outer arc surfaces were found, as well as those of the detonation
front shapes predicted by the DSD model, for all three PBX 9501 arc geometries.

In the current article, we have also systematically examined the effect of arc thickness, inner
radius, confinement effects and relaxation dynamics to steady-state propagation for PBX 9501 arc
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geometries. For a fixed inner radius Ri and for an arc thickness larger than only a few millimeters,
the angular speed ω0 at which the surface sweeps around the arc, after reaching steady-state
propagation, does not depend on the arc thickness. The surface structure, however, still senses
the presence of the angle (sonic) confinement condition on the outer arc surface r = Re for much
thicker arcs. For example, for Ri = 65.35 mm, ω0 becomes constant when Re ' 68 mm, while the
surface structure senses the presence of the angle condition on r = Re until Re > 77.1 mm. Thus
PBX 9501 detonations follow the general theory developed in [21], where for sufficiently wide arcs,
ω0 is determined by the surface curvature variations in a boundary layer attached to the inner arc
surface, characterized by rapid variations in Dn(r, t) and κ(r, t) near r = Ri. For arcs thinner than a
couple of millimeters, the detonation speed drops off rapidly. We predicted that for the Ri = 65.35
mm and Ri = 100.35 inner radius arcs [23], a detonation would not propagate for arc thicknesses
smaller than 0.55− 0.65 mm.

We also demonstrated that PBX 9501 will, in principle, detonate in charges with small Ri,
where the curvature of the inner arc surface is large. Confinement effects, obtained by varying
the surface normal angle along r = Ri and r = Re, are also shown to be significant in the arc
geometry. Finally, we showed that the relaxation dynamics of PBX 9501 detonation to steady-
state propagation are significantly affected by the arc thickness, with the inner layers of the DSD
surface near r = Ri relaxing rapidly, and outer layers of the surface relaxing on a larger time scale.
In all cases, our DSD surface evolution model provides a significant improvement over a Huygens
surface wave propagation model, where Dn = DCJ , as commonly used for engineering applications
of a number of conventional high explosives.

In future studies, we will combine the surface evolution model developed here for PBX 9501
detonation with the pseudo-reaction-zone (PRZ) model for energy delivery dynamics. The calibra-
tion procedure for the PRZ model that would sync the energy release to the PBX 9501 surface
evolution model is described in [50]. Higher-order DSD models that incorporate acceleration [17]
and transverse flow effects [47, 26] could also be examined, given the large values of κ reached in
the boundary layer structures. However, comparisons of the base Dn − κ model with experiments
for arc geometries described in [23] show that these effects are likely to be of secondary importance,
at least for the arc geometry. We also envision additional experiments to measure shot-to-shot
variability with PBX 9501 detonation using charges with the same density and lot specification,
particularly focusing on potential heterogeneous effects when the charge size becomes comparable
to the HMX crystal size.
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[48] J. J. Moré, The Levenberg-Marquardt algorithm: implementation and theory, in: Numerical
analysis, Springer, 1978, pp. 105–116.

[49] T. D. Aslam, Detonation shock dynamics calibration of PBX 9501, in: AIP Conference
Proceedings, volume 955, 2007, pp. 813–816.

[50] C. Chiquete, M. Short, C. Meyer, J. Quirk, Calibration of the pseudo-reaction-zone model for
detonation wave propagation, Combust. Theory Modell. 22 (2018) 744–776.

34


	Introduction
	PBX 9501 Slab Geometry Experiments
	Detonation speed data, front shape imaging and curvature analysis
	Parametric Dn- data
	Calculated edge angles

	Two-dimensionality of the centerline flow
	DSD calibration
	2D Planar Slab Geometry DSD equations
	Merit function
	DSD Model for PBX 9501
	Prediction of the rate-stick geometry diameter effect curve


	Application to the Two-Dimensional PBX 9501 Circular Arc Geometry
	Effect of varying arc thickness
	Effect of varying inner radius Ri
	Effect of varying confinement
	Relaxation dynamics

	Summary

