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ABSTRACT

The extreme pressures and temperatures of the gas produced
by detonating a High Explosive (HE) make it difficult to use
experimental measurements to estimate the Equation Of State
(EOS), the physics model that relates pressure, temperature, and
density of the gas. Instead of measuring pressure directly one
measures effects like the acceleration of metals driven by the
HE. Typically one fits a few free parameters in a fixed functional
form to measurements from a single experiment. The present
work uses the optimization tool F UNCLE to incorporate data
from multiple experiments into a single EOS model for the gas
produced by detonating the explosive PBX 9501. The model
is verified by comparison to an experiment from outside the set
of calibration data. The uncertainty in the EOS is also is exam-
ined to determine how each calibration experiment constrains the
model and how the uncertainty arising from all calibration exper-
iments affects predictions. This work identifies an EOS for HE
detonation products and uncertainty about the EOS.

Nomenclature
Symbols

αm Magnitude of uncertainty in the isentrope
η Deviation from the model degrees of freedom
Γ Grüneisen gamma
ρ Density
ρo Material density at initial state
σm Characteristic distance of correlation in uncertainty of

the isentrope
θ Model degrees of freedom
θµ Prior model degrees of freedom
ϒ(ρ) Optimization basis of orho-normal eigenfunctions

Variables

B(ρ) The cubic B-spline basis function matrix
b(ρ) B-spline basis function
C Intercept of linear Us - Up model
ci B-spline basis function coefficient
e Mass-specific internal energy
P Probability density function
ps(ρ) The function representing pressure as a function of den-

sity on the CJ isentrope
s Slope of linear Us - Up model
Up particle speed
Us Shock speed
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Y The set of data from all experiments
Modifiers

βs Property of β on an isentrope
β ⋆ Optimal value of β

1 Introduction
Mathematical models of physical processes are needed for

computer simulations of complex systems. Current practice is to
select a mathematical form with some small set of adjustable pa-
rameters and, typically, use a single experiment to calibrate the
parameter set. Such an approach is common when determining
Equation of State (EOS) models for High Explosive (HE) deto-
nation products. A very popular approach for modeling an HE
EOS is the JWL model [21] which is composed of two expo-
nential terms and one power law term and has six free param-
eters. These six free parameters are fit to match the observed
detonation velocity, pressure and energy as well as the velocity
history observed in a cylinder experiment [10], discussed subse-
quently in Section 4.1. JWL models calibrated in this way have
been shown to perform well when examining cylinder tests but
have challenges predicting experiments which occur at regimes
in density which was not reached in the cylinder test.

Alternatives to the JWL model have been proposed by
Davis [3] (7 degrees of freedom), Hixson [15] (13 degrees of
freedom) and Menikoff [24] (25 degrees of freedom). These
models are also restricted to a fixed functional form. A semi-
parametric approach represents the function as a weighted sum
of continuous basis-functions. In the limit of an infinite number
of basis functions, any function can be represented. In practice
when a large (≈ 75) number of basis functions are used, there
exists a function within the span of this basis which is ’close’ to
most functions. This semi-parametric approach means that the
initial ideas of how the function should look do not constrain the
possible model forms.

The semi-parametric approach still requires some procedure
to calibrate the basis function coefficients to match experimental
data. Optimization with a Bayesian objective function has been
shown to have many advantages [1]. The objective function in
the optimization is the log-posterior probability which is the sum
of the log-prior probability, reflecting the prior state of knowl-
edge about what the model should be, and the log-likelihood, re-
flecting what model is suggested by the data. Computing the like-
lihood of multiple experiments given a model provides a valid
basis to compare the effects of a model on many different exper-
iments. The total log-likelihood of all the experiments is simply
the sum of each experiment. The relative importance of each
experiment is given by the uncertainty in the experimental data
rather than by some arbitrary weighting factor. It is important
to note that not all experiments are suitable for use in such an
optimization. It is assumed that there is no systemic bias in the
experiments and that there should exist one model which can rep-

resent all experiments. Experiments in the ‘unit-tier validation
problem’ category of Oberkampf and Roy [26] are good candi-
dates for this optimization procedure since they are designed to
be simple, with a small set of interacting physics processes and
well characterized geometry and initial conditions.

Another advantage of using a Bayesian objective function is
that the optimization of the basis function coefficients can be re-
duced to a simple quadratic problem which is easy to solve. The
procedure requires very few evaluations of the objective function
to obtain a solution, so expensive computer simulations can be
used directly in the optimization problem rather than relying on a
surrogate model. Finally, using a probabilistic objective function
provides some insight into the uncertainty in the optimization re-
sults.

Overall, the approach described in this paper has four im-
portant advantages over previous efforts. First, by using multiple
experiments, the model can be calibrated over a wider regime in
density than any single experiment could consider. Second, the
efficient formulation of the optimization problem allows expen-
sive computer simulations that include all the relevant physics
processes needed to accurately model a real experiment. Third,
by using a semi-parametric formulation, a much wider range of
possible functional forms can be considered. Finally, the pre-
dictive ability of the model to be assessed by exploiting the
Bayesian formulation to produce both a mean function and func-
tions bounding the uncertainty in the model.

Section 2 describes the optimization methods and Section 3
describes the uncertainty quantification methods. The experi-
ments used to calibrate the model are described in 4. The results
of the optimization as well as a validation and uncertainty quan-
tification study are given in Section 5. Conclusions are given in
Section 6.

2 Optimization Methods

The EOS for the HE detonation products is modeled using a
Mie Grüeneisen approach,

p(ρ ,e) = ps(ρ)+ρΓ(ρ)(e− es(ρ)). (1)

In general, two functions are needed for this EOS, a func-
tion for the reference curve ps(ρ) and for the Grüneisen gamma,
Γ(ρ). In this work, only the reference curve is treated as vari-
able. The Grüneisen gamma function is not optimized and is set
to be:

Γ(ρ) = 0.6218. (2)
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The reference curve is the isentrope passing through the
Chapman-Jouguet state, i. e. the state at which a detonation is
self-supporting. This isentrope is a convenient reference curve as
the energy along the curve is a simple integral involving pressure
function.

The HE EOS model also required a nominal density of the
reactants in order to compute properties at the CJ state. The re-
actants density was considered to be a property of the EOS and
was fixed to the nominal density of PBX 9501, 1.835gcm−3.

2.1 Representing the isentrope
The optimization seeks some function to represent the isen-

trope passing through the CJ point for the material. This continu-
ous function is represented as the weighted sum of a set of cubic
B-spline basis functions. See [9] for more details on how these
basis functions are formulated and their properties.

p(ρ) =
[

b1(ρ) b2(ρ) . . . bn(ρ)
]

︸ ︷︷ ︸

B(ρ)

·

⎡

⎢
⎢
⎣

c1

c2

. . .
cn

⎤

⎥
⎥
⎦

︸ ︷︷ ︸

c

(3)

By using a large number of basis functions, a wide range of
possible functions can be considered, with the consequence that
some may be physically implausible; Section 2.2 discusses how
the optimization procedure deals with this challenge.

The coefficients, ci of the B-spline basis are one possible
set of coordinates in which to perform the optimization. In this
work, however, a different set of coordinates are used, the co-
efficients of an ortho-normal set of eigenfunctions of a kernel
function expressed in the B-spline basis. This new basis has ad-
vantages when interpreting the results and also prevents numeri-
cal instability in the optimization. More details on why this basis
was chosen, how it was created and its advantages in the opti-
mization problem are given in [1].

The kernel function is of a ‘squared exponential’ form [31]
which has two free hyper-parameters. One parameter, αm, de-
scribes the uncertainty in the pressure on the isentrope across all
densities. The other parameter σm describes the characteristic
distance, in log-density, across which the uncertainty in pressure
is correlated. Additional details are given in [1]

The final expression for the isentrope functions is:

p(ρ) = ϒ(ρ)
(

θ +θµ
)

, (4)

where ϒ(ρ) is the basis of ortho-normal eigenfunctions, θ are
the model degrees of freedom and θµ is a vector of constants

representing a ‘prior’ function. In the process of constructing the
basis ϒ(ρ), the model was constructed as a deviation about some
mean function. The coefficients θµ are obtained by projecting
this function into the span of the basis. The mean function used
in the present analysis will be discussed in Section 5.1.

2.2 Optimization
The isentrope function p(ρ) has degrees-of-freedom θ . The

optimal model degrees of freedom are calibrated to a set of data,
Y by solving an optimization problem with a Bayesian objective
function, as in [1].

θ ⋆ = argmax
θ

(log(P(θ |Y )) . (5)

Taking a Taylor series expansion of the log-posterior proba-
bility about an initial point, θ :

log(P(θ +η |Y )) = log(P(θ |Y ))+η
∂ log(P(θ |Y ))

∂η

+
η2

2

∂ 2 log(P(θ |Y ))

∂η2
+O(η3)m (6)

and ignoring terms of O(η3) and greater in the posterior, the
optimization problem becomes:

η⋆ = argmax
η

(log(P(θ +η |Y ))) , (7)

θ ⋆ = θ +η⋆. (8)

The log-posterior probability is the sum of the log-prior proba-
bility and the log-likelihood. If both the prior and posterior are
chosen to be Gaussian, then (6) is reduced to a quadratic function
in η . This quadratic function has a simple analytic solution if η
is unconstrained. Since the optimization coordinates given by
(4) can admit physically implausible functions, some constraints
must be applied to the problem.

The isentrope represents a function of pressure with respect
to density. Since the HE products are a gas, they cannot be in
tension so the function is constrained to be positive. The slope
of the isentrope is equal to the square of the sound speed [25].
Since imaginary sound speeds are not physically meaningful, the
slope must be positive. Finally, the isentrope must be convex
in specific volume, (the reciprocal of density), unless there is a
phase change occurring in the bulk material [16], which is not
the case for HE detonation products. As an approximation to
this final constraint, the isentrope is constrained to be convex in
density.
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All these constraints can be expressed as linear inequality
constraints in the basis ϒ(ρ). Further details of how these con-
straints are formulated are given in [1].

The final optimization problem is:

max P(θ +η |Y )

with respect to η (9)

such that Wη ≼ ℓ

The solution to this constrained quadratic optimization problem
give an optimal step η⋆ from the initial set of model degrees
of freedom, θ , which maximizes the log-posterior probability of
the model given the data, subject to the approximations inherent
in (6). The true log-posterior probability, obtained from evaluat-
ing the log-prior probability and log-likelihood directly, is used
to search along the line connecting θ to θ ⋆ in order to deter-
mine if a local minimum exists in the true probability distribution
within these bounds. A naive parallel line search is used which
divides this space into twelve equal steps and evaluates the poste-
rior probability at each step. The point with the highest posterior
probability is chosen as the starting point θ for the next step in
this iterative optimization process. This process is described in
more detail in [1].

3 Uncertainty Quantification
The Bayesian formulation of the objective function has sev-

eral advantages when examining the uncertainty in the optimal
model. Since the prior probability and likelihood are both Gaus-
sian, the posterior covariance is well represented by the Laplace
approximation, where the inverse of the posterior covariance is
assumed to be equal to the Hessian of the log-posterior probabil-
ity [1].

The expected value of the second derivative of the log-
likelihood of an experiment with respect to the model de-
grees freedom is referred to as the Fisher information matrix.
This quantity is easily calculated from the optimization results
(See [1]). The Fisher information shows how each experiment
contributed to the uncertainty in the final result. Since the basis
ϒ(ρ) is ortho-normal, the eigenvalues of the Fisher information
matrix are the coefficients of eigenfunctions, i. e. a set of orthog-
onal functions showing the directions in function-space where
the experiment constrains the result. Where the eigenfunctions
are large in magnitude, the experiment is constraining, where
they are small or zero, the experiment does not constrain the
model. In this way, the influence of each experiment on the opti-
mal solution can be better understood.

In the Laplace approximation, the inverse of the posterior
covariance matrix is the sum of the Fisher information matrix
for each experiment and the inverse of the prior covariance ma-
trix. This posterior distribution, however, is not constrained to be

feasible. Representing the function as a B-spline allows physi-
cally implausible functions to exist in the posterior distribution.
To examine only feasible functions, random samples are drawn
from the posterior and are accepted only if they are feasible with
respect to the constraints applied in (9). This population of fea-
sible samples can be projected into a direction of interest to get a
univariate probability distribution which characterizes the uncer-
tainty in the constrained posterior distribution in that direction.

This measure of uncertainty encompasses model-form un-
certainty, parametric uncertainty and experimental uncertainty.
The flexible B-spline basis can admit almost any feasible func-
tion to represent the model. Compared to a parametric model,
almost all the uncertainty in the function is in the choice of B-
spline coefficients, rather than the suitability of the functional
form of the model. Additionally, since the uncertainty in the ex-
perimental data is reflected in the log-likelihood, the uncertainty
bounds created by this method also include the experimental un-
certainty. This procedure is applied to obtain the uncertainty in
several quantities of interest in Section 5.5.

4 Experiments and Simulations
The optimization procedure requires data from multiple ex-

periments to infer the EOS across a wide regime. Both a set
of experimental data and a simulation which can use the EOS
model to predict the experiment are needed. In several of the
experiments, the thermodynamic properties of the EOS are not
observed directly but are inferred from the observation of some
more easily measured property of the experiment. In these cases,
models are needed for the other physics processes involved in
the experiment, which will have an influence on the optimal EOS
model. However, these physics processes are much better under-
stood than the EOS of HE detonation products and the model pa-
rameters are known with a greater degree of certainty. The EOS
models obtained in this paper should have wider applicability to
problems that involve different physics processes and materials.
The three additional physics models were used in this analysis
were: EOS for both HE reactants and copper, material strength
for the copper, and HE burn. The details of these models and
parameter choices are given in Appendix A.

4.1 Cylinder tests
A cylinder test is a standard experiment used to calibrate

EOS models [7]. A one inch inner diameter copper cylinder1

with a 0.1 inch thick wall is filled with one inch outer diame-
ter pellets of high explosives. The cylinder is detonated at one
end and after several diameters the detonation becomes a steady
traveling wave. The radial motion of the cylinder wall is mea-
sured using Photon Doppler Velocimirty (PDV) probes, see Fig-
ure 1a. A set of experiments performed by Pemberton et al. [28]

1dead-soft C101
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(a) Cylinder test

Copper 
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(b) Sandwich test

(c) Gas gun [29]

Plane wave lens

Booster

SS Flyer plate

Al Base plate

PBX 9501

(d) Explosively driven flyer plates

FIGURE 1: Different experiments used to examine equation of state

are used for model calibration. Five different cylinder tests were
performed using nominally identical samples of HE. Two shots
were were used as calibration data, the mean initial density of
the HE reactants for both shots was 1.835 gcm−3. Each test was
instrumented with two linear arrays of PDV probes, aligned with
the long axis of the cylinder and installed at two different an-
gles. The PDV probes recorded the velocity history of the outer
surface of the cylinder. The axial location of the first probe was
placed far enough from the detonator that the detonation wave
was believed to have obtained a steady traveling profile. It was
non-trivial to account for the uncertainty in the PDV measure-
ments given notable shot-to-shot and probe-to-probe variations
in measurements of what were nominally identical conditions.

Appendix B describes the procedure which was developed to ob-
tain an estimate of the covariance matrix for one of the cylinder
velocity histories.

The detonation wave proceeded along the cylinder at near
the CJ state. Downstream of the detonation wave the expanding
products of detonation drove the cylinder wall outwards, leading
to pressures below the CJ state. Therefore, the cylinder experi-
ments only examined states less than CJ and provided no infor-
mation at pressures above this state.

4.1.1 Simulation The cylinder test was simulated in
the Lagrangian hydrodynamic simulation code FLAG [6]. The
experiment was modeled in two-dimensional axi-symmetric co-
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ordinates. Three other physics models were used in the simu-
lation. The solid EOS for the copper was modeled using lin-
ear a Us-Up EOS model, as described in Appendix A.1. The
material strength of the copper was modeled using the PTW
model [30] for the deviatoric stress in the solid, as described
in Appendix A.2. Additionally, the propagation of the detona-
tion along the cylinder was modeled using a ‘programmed burn’
method, using Detonation Shock Dynamics (DSD) to compute
the lighting times for the HE, as described in Appendix A.3.

4.2 Explosively driven flyer plates
The explosively driven flyer plate experiments conducted by

Fritz et al. [14] used an explosive lens to accelerate a plate of
stainless steel into a 6061 aluminum base-plate on which the HE
samples were mounted, see Figure 1d. The initial density of the
HE samples for all experiments was 1.836± 0.002gcm−3. The
time history of the light emitted from the interface of the HE
samples and a thin layer of a noble gas allowed measurements
of both the shock speed and particle speed in the HE detonation
products and the sound speed in these gases. The experimental
data were given as pairs of shock speed Us and associated particle
speed Up on the Hugoniot. Sound speed data on the Hugoniot
were also given for a range of detonation product densities.

The explosively driven flyer plates induced pressures much
greater than the CJ pressure in the HE and these experiments
examined overdriven states of the EOS.

4.2.1 Simulation The equation of state model could be
used directly to evaluate the data obtained by Fritz et al. with-
out using expensive numerical simulations. The thermodynamic
relationships given by Fickett and Davis [12] provided the shock
speed and particle speed on the Hugoniot. Similarly, the EOS
model could be manipulated to yield sound speed on the Hugo-
niot analytically (see [11]).

4.3 Gas-gun experiments
4.3.1 Experiment Similar to the explosively driven

flyer plates, gas-gun tests [29] used compressed air rather than
high explosives to accelerate a copper impactor into a copper
base plate on which the HE samples were mounted, see Fig-
ure 1c. A Lithium Fluoride (LiF) window was mounted to the
back the the HE sample and a PDV probe measured the veloc-
ity of the HE LiF interface. The experimental data are provided
as time histories of this interface. After the initial shock from
the accelerated plate reached the interface, the velocity reached a
plateau for a few tenths of a microsecond. This velocity plateau
can be determined through an impedance match between the HE
EOS and the EOS for the two solids, copper and LiF.

The gas gun induced pressures greater than the CJ state in
the HE detonation products so this experiment also gave infor-

TABLE 1: Flyer plate velocities for gas gun shots [29]

Shot ID Velocity / cmµs−1 Initial HE density / gcm−3

2S-799 0.3032 1.834± 0.003

2S-800 0.3316 1.835± 0.003

2S-812 0.3184 1.835± 0.003

2S-832 0.3466 1.834± 0.003

mation at densities and pressures greater than CJ. Since only the
velocity plateau in the time history was analyzed, each shot only
gives information about a small range of densities. Four different
shots were considered, each shot fired was fired with a different
velocity for the flyer plate, shown in Table 1.

4.3.2 Simulation The approach described in
Cooper [8] is used to calculate the interface velocity be-
tween the HE detonation products and the LiF window. It is
a assumed that the solid PBX 9501 used in the experiment is
instantaneously converted into gaseous products on contact
with the flyer. This assumption is reasonable given the small
reaction zone size of this HE formulation. First, the compatible
state between the moving flyer and the stationary HE products
is obtained. The pressure, internal energy and velocity of the
gasses in this state are used to find the compatible state between
the shocked HE products and the stationary LiF window.

The impedance matching procedure requires an EOS for
both the HE and the solids. A linear Us-Up EOS model was used
to model both copper and lithium fluoride. The constants used in
this model are given in Appendix A.1

4.4 Sandwich tests
The sandwich test is an experiment which is very similar

to a cylinder test but uses planar rather than cylindrical geome-
try [19, 34]. The experiment was conducted using a PBX 9501
charge that was 130 mm along the direction of detonation propa-
gation, and 150mm in the direction normal to propagation. The
density of the charge was 1.8327 gcm−3, measured by water im-
mersion. The thickness of the charge was 10.03 mm, measured at
10 evenly spaced locations along the centerline, each PDV probe
measurement location, and each of the corners. Angstrom Bond
AB9320 was used to bond copper plates to the PBX 9501 charge.
The thickness of the annealed, C101 copper confining plates and
the final thickness of the assembly were measured at the same
locations so that the thickness of the glue layer could be inferred.
The plates were each found to be 1.02 mm thick and the final as-
sembly thickness was 12.11-12.12 mm, indicating a glue layer
thickness of approximately 0.020-0.035 mm on each side.
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Four PDV probes were used to measure confiner velocity
profiles at 2/3 of the run distance. In the direction normal to det-
onation propagation, the probe position varied, with two located
at the centerline (one probe on each side of the assembly), one
10 mm offset from centerline, and the final probe 20 mm offset
from centerline. The velocity profile from a single probe located
on the centerline of the experiment was used as validation data
for the model.

4.4.1 Simulation The sandwich test was modeled in a
similar manner to the cylinder test, except it used Cartesian rather
than axi-symmetric coordinates. The simulation used the same
additional physics models as the cylinder experiment.

5 Optimization results
5.1 Problem definition

The EOS model spanned a regime in density of 0.1gcm−3

to 4gcm−3. The B-spline basis consisted of 75 knots equi-log
spaced across the range in densities. The fractional uncertainty
in the pressure function for the prior was αm = 3.24% and the
characteristic correlation distance was σm = 2.4 times the dis-
tance between the knots in log-density. These choices of how
to construct the B-spline basis and the kernel used to create the
optimization basis ϒ(ρ) were based on the results of a previous
study, [1], which found that these choices allowed the flexibility
to represent a large space of possible functions while allowing a
sufficiently large fraction of feasible samples to be drawn from
the posterior distribution.

The mean function was chosen to be a power law,

p(ρ) = 2.56GPacm9 g−3ρ3. (10)

This functional form is the simplest EOS model described
by [21]. The two coefficients in the model, the leading constant
and the power, were chosen to be similar those used for the HE
formulations in [21]. The prior function is intentionally chosen
to be a coarse approximation to show the ability of the algorithm
to improve the model so it is in agreement with multiple experi-
ments.

There were four different kinds of experiments in the set of
all data, Y .

1. Pemberton et al. cylinder tests [28]. Shot 1 and 2 probes 1 -
7

2. Fritz et al. overdriven Hugoniot data. All points from Table
1 in [14]

3. Fritz et al. overdriven sound speed measurements. All
points from Table 3 in [14]

4. Pittman et al. [29] gas gun experiments. Shots 2S-799,
2S-800, 2S-8112 and 2S-813

FIGURE 2: Deviation of the optimal equation of state model ob-
tained from the optimization procedure from the prior. The ver-
tical axis is the pressure on the optimal isentrope divided by the
pressure on the prior model for the isentrope

5.2 Results

The optimization was performed using twenty nodes of the
LANL HPC cluster ‘snow’. Each node consisted of two 18 core
2.1 GHz Intel Xenon Broadwell processors for a total of 720
processors. Three iterations of the optimization procedure were
required for the problem to converge, taking approximately 36
hours.

The optimal model is shown in Figure 2. The model is un-
changed at low densities but at higher densities the optimal model
differed from the prior. The effects of the prior and the optimal
model on the simulations is shown in Figure 3. In all four ex-
periments, the prior model did a poor job at predicting the ex-
perimental data. The optimal model brought the simulations into
good agreement with the experimental data. More insight into
which regime in density was influenced by each experiment can
be obtained by examining the Fisher information for each exper-
iment.

5.3 Fisher information

The influence of each experiment on the optimal solution
can be better understood by considering the Fisher information
for each experiment. The eigenfunctions of the Fisher informa-
tion matrix corresponding to large eigenvalues show where the
experiment was most constraining. Figure 4b shows that the
cylinder experiment was very influential near the CJ state and
continued to provide some information at lower densities. Fig-
ure 4d shows the eigenfunctions of the Fisher information for
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(a) Cylinder Shot 1 PDV 1 (b) Gas Gun Shot 2S832

(c) Overdriven Hugoniot (d) Overdriven Sound Speed

FIGURE 3: Comparison of four characteristic simulations using the prior and optimal isentrope models

a gas-gun shot, this experiment provided information at over-
driven densities but provided very little information at densities
below CJ. Since only the overdriven state was examined in the
gas-gun shots, this result is expected. Examining the Fisher in-
formation can help show why a certain optimal function was ob-
tained and can also guide the design of future experiments by
understanding how each experiment constrained on the result.

5.4 Validation

The predictive ability of the EOS model was examined by
simulating a sandwich experiment, which was not included in the
data used for model calibration. The simulation using the optimal
EOS, Figure 5, showed good agreement with the experiments.
The poor agreement in the early cycles of the ringing was likely
due to the temporal resolution of the PDV probes. The velocity
history also slightly under-predicted the velocity of the copper
plates at late times.
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(a) Cylinder Shot 1 PDV 1 eigenvalues (b) Cylinder Shot 1 PDV 1 eigenfunction

(c) Gas Gun Shot 2S832 eigenvalues (d) Gas Gun Shot 2S832 eigenfunction

FIGURE 4: Comparison of the eigenvalues and eigenfunctions from two different experiments.

5.5 Uncertainty quantification

The uncertainty quantification methods described in Sec-
tion 3 converted the multivariate probability distribution for the
model degrees of freedom into a univariate distribution by pro-
jecting feasible samples in a specified direction. This univariate
distribution could be used to obtain samples which represented
the ±95% confidence interval of the distribution in that direction.
The choice of direction had a significant effect on the uncertainty
bounds given by this method. Several directions were consid-
ered, including the directions which diagonalized the posterior

covariance matrix. The set of directions, however, which gave
the most realistic confidence intervals was the direction of great-
est sensitivity to each Quantity Of Interest (QOI). These direc-
tions were obtained using a finite difference approach and each
direction was specific to a given QOI. Two QOI’s for the EOS
model are shown in the first two rows of Table 2, the uncertainty
bounds on these two quantities bracket experimentally measured
values not used directly in the calibration. A more complicated
quantity of interest involved the ability of the sandwich experi-
ment to do work on the confining material. The quantity of in-
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FIGURE 5: Time history of PDV probe from a sandwich
test [19, 34], compared to a FLAG simulation performed using
the optimal HE EOS model

terest for this experiment was the velocity of the metal casing
after it had been displaced outwards by 4 mm. The cumulative
distribution of the feasible samples in the direction of greatest
sensitivity for this QOI is shown in Figure 6a. Simulations run
with three samples from this CDF representing the mean, upper
and lower 95% confidence interval are shown Figure 6b. Though
the differences between the three simulated velocity histories is
almost imperceptible in this Figure, they led to a 0.4% difference
in the QOI, shown in the last row of Table 2.

6 Conclusion

The procedure described in this paper identified an equa-
tion of state model for the detonation products of high explosives
which was a best fit to multiple experiments which probed a wide
range of densities at states both above and below the CJ point.
The semi-parametric model formulation allowed a wide range of
possible functional forms to be examined and the Bayesian for-
mulation of the optimization used for model calibration provided
some insight into the uncertainty in the model and its predictive
capability.

The model was validated, and showed good agreement with
an experiment outside the set of calibration data. Uncertainty
bounds on several predicted quantities of interest were calcu-
lated. The relative magnitude of the uncertainty depended on the
quantity of interest, so the predictive ability of the model must
be assessed with respect the the application of interest.
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A Other physics models
A.1 Solid equation of state

The solid equation of state was modelled as a Mie
Grüeneisen form using a reference curve derived from a linear
relationship between Us and Up. The formulation of such an EOS
is described in [8] and [13]. Sets of coefficients for this model
for various solids are given in Table 3.

A.2 Material strength
The material strength of highly deformed metals was mod-

eled using the PTW formula for flow stress as a function of strain
rate and temperature [30]. Model coefficients for copper are
given in [30]. Additionally, a model is needed for how the melt
temperature and cold shear modulus vary with density. These
effects are modeled by interpolation onto SESAME tables [22].

A.3 Detonation Shock Dynamics (DSD)
The FLAG simulations could not directly model the propa-

gation of a detonation wave through the HE. The detonation wave
was modelled using a DSD approach [4] when the arrival time of
the detonation wave throughout the computational domain was
pre-computed. The DSD approach must be calibrated to the spe-
cific HE formulation of interest. These calibration parameters for
PBX 9501 are given in [2].

B Uncertainty in Cylinder tests
There were known non-uniformities in the thickness of the

cylinder wall in the data from Pemberton et al. [28]. A model
for the correlated errors in the cylinder test data was needed to
accurately represent the uncertainty in the experimental data.

There were nshot time histories, yi(ti). Each time history was
sampled using different non-uniform time-steps. The data are
modeled as a mean function plus a zero-mean deviation function
and IID noise.

yi(ti) = µ(ti)+ δ (ti)+ ε (11)

Project each time history into a basis of nbasis cubic B-spline
functions. The number of basis functions is chosen a priori to
minimize the MSE error between a single time history and its
representation is the basis.

ci = ⟨B(ti),B(ti)⟩
−1 ⟨B(ti),yi⟩ (12)

Calculate the mean squared error between the spline function and
the data

MSEi =
1

nt
∑(yi(ti)−B(ti)ci)

2 (13)
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TABLE 3: Linear Us - Up coefficients for solids

Material C (cmµs−1) s Cv (100MJ/kg) ρo (gcm−3) Γ

Copper 0.397 [32] 1.479 [32] 0.385× 10−5 [18] 8.93 [32] 2.02 [35]

Lithium fluoride 0.5148 [33] 1.353 [33] 2.640 [33] 0.0

PBX9501 reactants 0.290 [23] 1.44 [23] 10.88× 10−6 [5] 1.835 0.0

Since B-splines are linear in their coefficients, the mean of the
basis function coefficients is the mean function.

c̄ =
1

nshot

nshot

∑
i=1

ci (14)

µ(t) = B(t)c̄ (15)

The mean function by definition has no covariance. The devi-
ation function has zero-mean. The covariance of the deviation
function is:

E
(

δ (t)2
)

= kδ = cov(c− c̄), (16)

and the IID noise is,

E
(

ε2
)

=
1

nshot

nshot

∑
i=1

MSEi. (17)

Thus the covariance matrix for a specific shot is:

E(yi(ti)− µ(ti)) = B(ti)kδ B(ti)
T +E

(

ε2
)

I (18)
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