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1 Introduction

There has been significant recent work on understanding the variation of high explosive detonation phase

velocity (D0) in a two-dimensional slab geometric relative to that in an axisymmetric cylindrical (rate-

stick) geometry having the same confinement as the slab. The ratio R(D0)/T (D0) has been termed

the steady propagation scale factor by Jackson and Short [8], where R is the radius of a rate-stick that

results in a given detonation phase velocity D0, while T is the corresponding thickness of a slab that

result in the same detonation phase velocity. The ratio R(D0)/T (D0) varies as a function of D0. In the

cylindrical rate-stick geometry, the detonation shock has two curvature components; the slab compo-

nent which is the two-dimensional curvature along a diameter of the rate-stick, and the corresponding

axisymmetric component. Petel et. al [9], Silvestrov et al. [10] and Higgins [6] have found a propaga-

tion scale factor R(D0)/T (D0) > 1 for the explosives studied. In contrast, Jackson and Short [7, 8]

found R(D0)/T (D0) < 1 for three explosives nominally characteristic of ideal (PBX 9501), insensitive

(PBX 9502) and non-ideal (ANFO) explosives. The purpose of the current work is to use a Detonation

Shock Dynamics (DSD) model to give detailed insight into the dynamics behind the variation in the

propagation scale factor R/T when the detonation phase velocity D0 approaches the Chapman-Jouguet

velocity DCJ for different degrees of confinement. In particular, we will extend the analysis in Jackson

and Short [8] for larger variations in the difference between D0 and DCJ .

Detonation Shock Dynamics is an intrinsic surface propagation concept that replaces the detonation

shock and reaction zone with a surface that evolves according to a prescribed instrinsic surface evolution

law. Developed by Bdzil and Stewart [2–4,11], it provides an advanced capability to describe detonation

wave sweep through an arbitrarily complex geometry. At leading-order, the motion of the DSD surface

relates the normal velocity of the surface (Dn) to the local surface curvature (κ), or

Dn = f(κ). (1)

The curvature κ represents the sum of the principal curvatures for any three-dimensional surface. For a

given DSD form, determination of the detonation phase velocities in the slab and rate-stick geometries

also requires information on how the HE is confined. This is done at the HE/material interface through

specification of the “edge” angle, which we define here as the angle between the shock normal direction

and the tangent to the material interface [5]. In Jackson and Short [8], it was shown that any detonation
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whose propagation can be adequately represented by (1) must necessarily have a scale factor R/T < 1,
provided that, in the rate-stick geometry, the magnitude of the slab component of curvature increases

monotonically with radius.

2 Formulation of Steady Detonation Propagation in Rate-Stick and Slab Geometries

Consider the steady propagation of an axisymmetric detonation in the positive axial z direction of a

cylindrical explosive (rate-stick), where the DSD surface is given as a function of radial coordinate r
by z = zs(r), with a surface normal orientated in the direction of fresh reactants. Defining a level set

function S = z − zs(r), the normal to the surface is

n =
∇S

|∇S| =
1

√

1 + [d(zs(r))/dr]
2

(

− d

dr
zs(r)er + ez

)

, (2)

with a total curvature given by the sum of the slab (κs) and axisymmetric (κa) components, where

κ = ∇ · n = κs + κa, κs = − z′′s (r)
(

1 + [z′s(r)]
2

)3/2
, κa = − z′s(r)

r
(

1 + [z′s(r)]
2

)1/2
. (3)

With D0 as the steady axial detonation phase speed, the shock angle φ between the axial direction and

the surface normal n at any point on the surface is determined by

cosφ =
Dn

D0

=
1

|∇S| =
1

(

1 + [z′s(r)]
2

)1/2
,

dzs
dr

= − tanφ, (4)

so that κ can be written as

κ = κs + κa, κs =
dφ

dξ
, κa =

sinφ

r
, (5)

where ξ is surface arc length. Switching to φ as the independent variable, the (r, z) components of the

surface shape can then be calculated by integration of

dr

dφ
=

cosφ

κs
,

dz

dφ
= −sinφ

κs
, (6)

subject to

z(φ = 0) = 0, r(φ = 0) = 0, and r(φ = φedge) = R, (7)

where φedge is the shock angle at the edge of the explosive (r = R). Due the 1/r term in the axisym-

metric curvature component in (5), the integration of (6) is started at a finite small value of φ, where

r ∼ φ

κs(φ = 0)
, z ∼ − φ2

2κs(φ = 0)
, φ ≪ 1, (8)

and on φ = 0,

Dn = D0, κs(φ = 0) = κa(φ = 0), κ = 2κs(φ = 0), where κs(φ = 0) = f(D0)/2. (9)

For the 2D slab geometry, the above analysis is repeated, except that κa = 0, while r now refers to

the distance from the slab center to the slab edge. Boundary conditions (7) with r(φ = φedge) = T/2,
where T is the slab thickness, can be applied directly to the integration of (6).
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3 Scaling Behaviour for D0 → DCJ

We assume a Dn − κ law of the linear form

Dn

DCJ
= 1−Bκ, (10)

which allows the solutions in individual layers to be derived analytically. Note that the parameter B
represents a length scale that is characteristic of the reaction zone thickness. We are interested in the

limit D0 → DCJ , and define a small parameter ǫ such that

ǫ = 1− D0

DCJ
, ǫ ≪ 1. (11)

Slab Geometry: For the slab geometry, the differential equation (6) for r(φ) becomes

[1− (1− ǫ) cosφ]
d(r/B)

dφ
= cosφ, (12)

subject to boundary conditions (7). For ǫ ≪ 1, we find an inner layer in the central part of the charge

described by the scalings φ = O(
√
ǫ) and r/B = O(1/

√
ǫ), where

r

B
=

√

2

ǫ
tan−1

(

φ√
2ǫ

)

+O(
√
ǫ). (13)

If the degree of confinement is such that φedge = O(
√
ǫ), (13) describes the solution from the charge

center to the charge edge. Note that contained within the inner layer is a region of size φ = O(ǫ) around

r = 0 where r/B = O(1), in which
r

B
∼ φ

ǫ
. (14)

For φedge = O(1), an outer layer must be appended to the inner layer which extends to the edge of the

charge. In this layer, φ = O(1), r/B = O(1/
√
ǫ), where

r

B
=

π√
2ǫ

− φ− 1

tan(φ/2)
+O(

√
ǫ), (15)

after matching with (13).

Rate-stick Geometry: For the rate-stick geometry, the differential equation (6) for r(φ)/B becomes

[

1− (1− ǫ) cosφ− sinφ

(r/B)

]

d(r/B)

dφ
= cosφ. (16)

We again find an inner layer in the central part of the charge where φ = O(
√
ǫ) and r/B = O(1/

√
ǫ).

The solution in this layer is

φ√
ǫ
=

√
2J1(

√
ǫr/

√
2B)

J0(
√
ǫr/

√
2B)

, (17)

where J0 and J1 are the order 0 and order 1 Bessel functions of the first kind. As for the slab geometry,

contained within the inner layer is a region near r = 0 where φ = O(ǫ), in which

r

B
∼ 2φ

ǫ
. (18)
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For φedge = O(1), we must again insert an outer layer which extends to the edge of the charge. As for

the slab geometry, φ = O(1) and r/B = O(1/
√
ǫ). Solving and matching with the inner layer gives

r

B
=

√
2β√
ǫ

− φ− 1

tan(φ/2)
+O(

√
ǫ), (19)

where β ≈ 2.40483 is the first positive zero of J0(β) = 0.

Scaling factor Implications. The asymptotic analysis above reveals three cases of interest for the

scaling factor ratio R/T :

Case 1: Strong confinement defined by φedge = O(ǫ). In this case, there is a single layer describing

the solution for 0 ≤ φ ≤ φedge. In the rate-stick, the O(ǫ) slab Bκs and axisymmetric Bκa components

of curvature are equal across the charge. It then follows from (14) and (18) that

1−R/T = O(ǫ) > 0, (20)

i.e. the scale factor is unity to leading-order for strong confinement defined by φedge = O(ǫ). Specif-

ically, to O(ǫ), it can be shown that R/T ∼ 1 − φ2/12ǫ. Bdzil [1] has shown that the scale factor

R(D0)/T (D0) = 1 can be approached in the limit where the streamline angle deflection behind the

detonation shock is small, which is consistent with this analysis.

Case 2: Moderately strong confinement defined by φedge = O(
√
ǫ). In this case, there is again a

single layer describing the solution for 0 ≤ φ ≤ φedge. In the rate-stick, the scaled slab and axisymmetric

curvature components are again of size O(ǫ). However, in a region of this layer defined by O(ǫ) < φ ≤
φedge, the two curvature components are no longer equal. This drives the scale factor below unity by

O(1) amounts, i.e.

1−R/T = O(1) > 0, (21)

for moderately strong confinement defined by φedge = O(
√
ǫ). The actual value of the ratio R/T is

determined through equations (13) and (17).

Case 3: Weak or no confinement defined by φedge = O(1). In this case, the solution for 0 ≤ φ ≤ φedge

is now described by two layers. The inner layer, represented by case 2 above, for φ = O(
√
ǫ), is joined

to an outer layer where φ = O(1). Significantly, in the outer layer, the curvature is dominated by the

slab component where Bκs = O(1), while Bκa = O(
√
ǫ). The outer layer solutions (15) and (19)

show that in both cases the charge extent becomes independent of φ to leading-order. Consequently, the

scaling factor ratio R/T is constant to leading-order. Specifically, we find that

R/T = β/π +O(ǫ), (22)

where β/π ≈ 0.7655, for weak or no confinement defined by φedge = O(1).

Figure 1 shows a comparison of the scale factor variation R/T with φ derived from a composite of

solutions (13) and (15) for the slab and (17) and (19) for the rate-stick (dashed line) and from numer-

ical solutions of (6) (solid lines). A rapid decrease in the ratio of R/T is observed for small φ before

approaching close to the limit defined by (22). The agreement between the asymptotic and numerical

solutions is excellent. Figure 2 shows a comparison of the scale factor R/T variation with D0 de-

rived from the composite asymptotic solutions and a numerical solution of (6) for an O(1) edge angle

φedge = 0.7033841. For small ǫ, the composite and numerical solutions are in good agreement. As ǫ
increases, the solutions diverge, but the asymptotic solutions still provide a reasonable approximation to

the numerical solution even at values of D0 significantly below DCJ (at D0 = 7 mm/µs, ǫ = 0.0974).

25
th ICDERS – August 2–7, 2015 – Leeds 4



Short, M. Asymptotics of DSD for D0 → DCJ

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7

R
/T

φ (rad)

Figure 1: Comparison of the scale factor variation R/T with φ derived from composite asymptotic

solutions (dashed line) and from numerical solutions of (6) (solid lines). Here B = 0.1 cm and DCJ =
0.775525188 cm/µs at a fixed phase velocity of D0 = 0.775 cm/µs (ǫ = 6.772× 10−4). The composite

and numerical solutions almost overlay in the plot.
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Figure 2: Scale factor R/T variation with changes in D0 with B = 0.1 cm and DCJ = 0.775525188
cm/µs for an edge angle φedge = 0.7033841. A composite asymptotic solution (dashed line) and numer-

ical solution of (6) (solid line) are shown.
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The agreement between the asymptotic and numerical solutions at larger ǫ can be improved by extending

the asymptotic analysis to an additional order. For instance, the inner slab solution for φ = O(
√
ǫ) is

r

B
∼
√

2

ǫ
tan−1

(

φ√
2ǫ

)

+
√
ǫ

(

5
√
2

4
tan−1

(

φ√
2ǫ

)

− 5φ

6
√
ǫ

(φ2 + 3ǫ)

(φ2 + 2ǫ)

)

, (23)

while the outer slab solution for φ = O(1) is

r

B
∼ π√

2ǫ
− φ− 1

tan(φ/2)
+

5
√
2

8

√
ǫ. (24)

Similar extensions can be provided for rate-stick geometry, and the results used to generate a second-

order accurate R/T scaling factor variation with D0.
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